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2Université de Toulouse - ISAE ; 10 av. Edouard Belin - BP 54032 - 31055 Toulouse Cedex 4, France

Abstract

Mobile devices are connecting to the Internet through an increasingly heterogeneous network environment.
This connectivity via multiple types of wireless networks allows the mobile devices to take advantage of
the high speed and the low cost of wireless local area networks and the large coverage of wireless wide
area networks. In this context, we propose a new handoff framework for switching seamlessly between the
different network technologies by taking advantage of the temporary availability of both the old and the new
network technology through the use of an “on the fly” erasure coding method. The goal is to demonstrate that
our framework, based on a real implementation of such coding scheme, 1) allows the application to achieve
higher goodput rate compared to existing bicasting proposals and other erasure coding schemes; 2) is easy
to configure and as a result 3) is a perfect candidate to ensure the reliability of vertical handovers mobility
management protocols. In this paper, we present the implementation of such framework and show that our
proposal allows to maintain the TCP goodput (with a negligible transmission overhead) while providing in a
timely manner a full reliability in challenged conditions.

Keywords: Mobility management protocol, Vertical handover, On-the-fly coding

1. Introduction

With the proliferation of new wireless access network
technologies, mobile users can now access the Internet
using multiple types of access network technologies.
The characteristics of these access networks vary
greatly; Wireless Local Area Networks (WLANs)
provide high speed access with a network latency of
tens of milliseconds, often at the price of fixed Internet
access but with a very limited coverage. Wireless Wide
Area Networks (WWANs) on the other hand provide
wide coverage but have a significantly lower data rate,
higher latencies up to several hundreds of milliseconds
and a cost which may be several magnitudes larger
than that of WLAN networks. For obvious cost and
performance reasons, smartphone users frequently
switch to WLAN when a hotspot is available although
the cellular connection is almost always enabled.

★Part of these results have been presented in ICST Mobiquitous 2010
∗Corresponding author. Email: pierre-ugo.tournoux@nicta.com.au

Therefore the ability to switch seamlessly between
these different technologies allows a user to maximize
his data rates and an operator to free resources in
more expensive WWAN networks by maximizing the
utilization of lower cost WLAN networks.

Seamless switching between heterogeneous access
networks requires carefully managed vertical (inter-
technology) handovers. Protocols, such as Mobile IP
(see RFC 3344), can be used to ensure the handover does
not break the on-going connections of a mobile node
and that the mobile node remains reachable in spite of
the handover. In a Mobile IP vertical handoff, on-going
traffic is often disrupted due to protocol deficiencies [1].
Although, more advanced handoff protocols such the
Safetynet architecture [2] (and Safetynet v.2 [3], where
the use of FEC codes are suggested to mitigate the
number of lost packets during the bicasting) can be
used to reduce these packet losses, the challenging
wireless link conditions triggering the handoff may
cause unavoidable packet losses. This is especially the
case for upward vertical handovers (i.e. handovers
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from WLAN to WWAN networks) which are typically
performed only when the signal to noise ratio of
the WLAN becomes too weak to provide a correct
connectivity. This decrease of the signal strength may
result in packet losses due to wireless errors or even a
complete loss of connectivity with the Previous Access
Router (PAR) during the time it takes to prepare the
WWAN interface and link layer connection to the Next
Access Router (NAR).

There are currently two main classes of solutions
that address the problem from a transport layer
point of view. The first one aims to improve TCP
tolerance to handover [4, 5] while the second one
uses multipath SCTP [6] version to benefit from this
multiple connectivity capability [7, 8]. In the present
contribution, we show that the proposed coding scheme
shares both advantages and allows the use of any kind
of transport protocol without modification. In other
words, this proposal is completely independent of the
end-to-end transport solution deployed.

In this paper, we present the use an “on the fly”
coding scheme, Tetrys [9], which can be applied to
transport and layer-3 mobility management protocols
to achieve a so called "soft handover" and significantly
reduce the impact of the handover on the application
traffic. A soft handover allows a mobile device to
connect to multiple networks at the same time and
receive coded streams of traffic from multiple routers
or base stations at the same time and to combine
those coded, partially redundant streams to a single,
complete data stream. This allows the handover process
to be very smooth since the ratio of data and the level
of coding of the different streams can be dynamically
adjusted to handle changing packet loss rates. So far soft
handovers have been successfully used only in tightly
controlled horizontal handovers in CDMA networks in
which the traffic is synchronized between the different
base stations and themobile device. This paper explores
whether a similar soft handover can be achieved
in handovers between IP based WLAN and WWAN
networks with the more challenging asymmetric and
non-synchronized network conditions. The purpose of
this study is not to propose yet another exhaustive
mobility management architecture as this generic
coding scheme could be used inside any mobility
management protocol (such as Fast Handovers Mobile
IPv6 for instance). We rather seek to demonstrate that
our adaptive coding scheme can significantly reduce
the impact of the challenged network conditions in
a vertical handover by using a soft handover like
approach. Thus, we evaluate our proposal for vertical
soft handovers and the results obtained show that TCP
remains close to its pre-handoff bitrate.

WWAN
WLAN

PAR

NAR

CN

MN

(a) Standard handover with the use of two interfaces

Internet

ISP

HOME WLAN

UMTS

MN

(b) Opportunistic use of two interfaces without HO

Figure 1. Two illustrations of multipath.

2. Background and related work

A soft vertical handover differs from a hard vertical
handover as no disconnection occurs during the soft
handover process. Although both are challenging, they
impact the transport and application layers differently
and also the methods used to minimize the handover
effect at both layers are different.
The main problem in hard handovers, and also failed

soft handovers, is the handover delay during which
packets are lost. These lost packets cause a number
of issues, discussed below. Solutions for reducing this
delay, i.e. optimizations for hard handovers, consist
of reducing the network detection period, the address
configuration interval and the network registration
time which reduce (see [1]). The solutions are also valid
for reducing the chances of a soft handover turning into
a hard handover.
The first and the most pressing issue that a transport

protocol, such as TCP, must handle is the loss of its in-
flight packets. This handover delay might trigger RTO
in TCP and the resulting backoff procedure could lead
to a connection stall. This problem can be mitigated
by freezing the sending of TCP packets during the
handover process [4]. Another challenge in hard and
soft handovers is the possible differences in network
characteristics between the new and the previous
network in terms of propagation delay, bandwidth and
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packet loss rate (PLR). This problem is often addressed
by adapting the TCP congestion windows length or to
quickly update the TCP RTO value on the new link
(involving active probing on the new link) in order to
prevent RTO buffer overflow and/or RTO expiration [4,
5].

As the multiple interfaces present on a mobile host
can be enabled at the same time, many proposals pro-
vide soft handovers between heterogeneous networks.
This can be achieved with IP-level mobility solutions
such as MIH, Multihoming MIP (see RFC 4908 [10])
at the cost of a devoted network infrastructure. This
provides (see RFC 4980 [11]) improved reliability, load
sharing between the different links and bandwidth
aggregation.

Several proposals use multihoming to improve the
quality of the communication by bicasting the flows
via multiple available interfaces. When a handover
becomes highly probable, packets are sent both from
the PAR and the NAR. This allows a more robust service
as the signal to noise ratio can significantly decrease
during the HO leading to high packet loss rate (PLR) as
shown in Fig. 1(a). Instead of copying the same packets
on both paths, the authors of [12] choose to send data
packets on one path and redundant FEC packets on
the other, thus reducing drastically the impact of losses
on a video stream compared to the standard bicasting
procedure. In [13], the authors obtain a similar result
using staggered FEC.

Several modifications to the Stream Control Trans-
mission Protocol (SCTP) have been proposed, enabling
support for both real-time and non real-time traffic [7,
8] taking benefit of the multihoming capability without
the cost of a large network architecture deployment. For
instance, the authors in [8] demonstrate that the use
of SCTP allowed them to aggregate the bandwidth of
different networks, thus providing a video with a better
quality and a more robust service even in high mobility
scenario.

To illustrate the generic character of our solution,
another application where our proposal is of interest
is illustrated in Fig. 1(b). In this figure, we represent
a mobile node which has subscribed to both ADSL and
3G offer within the same operator and opportunistically
uses its home wireless access (or any accessible local
wireless spot) conjointly with a 3G access. The benefit
of our proposal in this context will be highlighted in
Section 4. Our scheme can be deployed both in a end-
to-end fashion or from the edge router of the ISP to
the terminal host while remaining transparent to the
application layer. On the contrary, SCTP needs an end-
to-end deployment and the use of specific applications
built on top of SCTP socket.

Which issues have still not been addressed?

Adapting TCP to the context of handover would
require changing every transport protocol stack already
deployed to support these changes. In addition,
defining the parameters of these TCP modifications
(new values such as RTO and congestion window:
cwnd, adapted to the new link) require a probing
delay or a certain level of a-priori knowledge of the
links characteristics which may not always be available.
Finally they do not take advantage of the diversity of
the links. The main drawback related to the solutions
based onmultipath SCTP is that they require modifying
the interface between the application and the transport
layer. Additionally, to date, the deployment of SCTP
has been limited to Unix-like hosts. This requirement
would make the deployment of these proposals harder.
The bi-casting proposals, even when they involve
FEC coding, result in halving the available bandwidth
which might already be limited in the case of WWAN
interfaces. Further, with the exception of the bi-casting
procedure, none of these proposals seem to perform
well in challenged conditions with high PLR common
before and after handover due to poor signal quality.
To the best of our knowledge, there currently exists

no solution allowing to benefit from the robustness and
bandwidth aggregation provided by the multihoming
capability of new devices with an application on top
of the standard TCP/IP protocol suite (i.e. without any
modification of the suite).
All these facts motivate our proposal described in the

following section 3.

3. Our proposal

We present in this section the architecture and internal
mechanisms that define our framework proposal.

3.1. Architecture, coding and handover
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Figure 2. How to plug our coding scheme in the network protocol

stack.

Our coding scheme, detailed in the next section,
allows recovering in a timely manner from all the losses
that occurred on a path, regardless of their distribution.
The sole requirement is that in average the amount of
redundant packet sent must be greater than the amount
of the losses. The key idea is to use our proposal to
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enhance the part of a path that can be affected by
PLR losses during a handover. The whole path can
be protected by coding and decoding the packets at
both ends of the connection if the Correspondent Node
(CN) is aware of the different addresses of the Mobile
Node (MN). Otherwise, as Fig. 2 suggests, in the case
where multihoming is provided by an IP-level mobility
solution, the coding/decoding can also be done between
the Access Router (AR) and the MN. We propose to use
our coding scheme at layer-3, thus hiding the losses
to the transport layer. Fig. 2, describes a possible way
to plug our coding scheme through the use of Divert
Socket. In our case, we used the BSD implementation of
divert socket which is also provided under GNU/Linux
with ipchains API.
The sending of a data segment from the CN to the

MN works as follows: as a first step, packets travels
normally through the TCP/IP protocol stack as the
CN is not involved in the coding process. Packets that
reach the Access router cross the IP forwarding rules
(IPFW) which diverts (second step) the packets destined
to the MN to the related Tetrys instance (there might
be one instance by MN supported by the AR). Tetrys
adds the packets to its encoding window and re-injects
them (step 3 and 4) adding a packet sequence number
(three bytes might be more than necessary) plus a bit to
distinguish redundancy from source data packets inside
the IP option field. Redundancy (i.e. coded) packets are
injected with such an IP destination address that they
go through the WWAN (step 4) or WLAN (step 5) links
depending on whether it is an upward or downward
vertical handover. The size of these coded packets is
equal to the maximum size of the data packets currently
in the Tetrys encoding window. Packets reach the MN
through the different interfaces and are diverted to
Tetrys (step 6) which decodes and rebuilds any lost
packets. The whole packets received by the Tetrys
encoder at step 2 are re-injected (step 7) without losses
and ordered in-sequence. Finally at step 8, packets are
transmitted to the transport and application layers in a
transparent manner.
When our coding scheme is used to improve the

link quality (with two interfaces) the source data
packets are sent on the fastest (which is also the more
lossy one in our experimental scenario) interface while
the redundancy (coded) packets are sent through the
WWAN.
During upward handover, the PLR is monitored

and when it exceeds a given threshold (70% in the
experiment), a coded version is sent over the WWAN
for each data packet received from the source. When
the WLAN is definitely out of range, packets are
sent uncoded over the WWAN. During a downward
handover, all the source data packets are sent coded
over the WWAN and uncoded over the WLAN. When
the WLAN PLR decreases below a threshold, the coded

packets will be sent according to the redundancy
ratio through the WWAN only until the PLR becomes
negligible for TCP.

3.2. The Tetrys on-the-fly coding scheme

P3 P4

P3 P4

P3 P4

P3 P4

P3 P4
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R(1,2)

P2

P1
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P2

Missing Pkts Redundancy Pkts

R(1,2)

R(1..6)

R(1..6) R(1..8)

R(9,10)

Figure 3. Tetrys principle.

The Tetrys sender uses an elastic encoding window
(denoted Wsender ) which includes all the source packets
sent and not yet acknowledged. Let Pi be the source
packet with sequence number i. Every k source packets,
the sender sends a (single) repair packet R(i..j), which is
built as a linear combination (with random coefficients)
of all the packets currently in Wsender . The receiver is
expected to periodically acknowledge the received or
decoded packets, and each time the sender receives
an acknowledgment, the acknowledged packets are
removed from Wsender . A receiver can decode lost
packets as soon as the number of available repair
packets is higher or equal to the number of lost packets
(the lost packets are detected by the gaps they introduce
in the sequence number of the received packets). Fig. 3
illustrates this principle. In the figure k = 2, which
means that a repair packet is sent each time two
source packets have been sent. The right side of this
figure shows the list of packets that are lost and not
yet rebuilt, as well as the repair packets kept by the
receiver in order to recover them. During this data
exchange, packet P2 is lost. However, the repair packet
R(1,2) successfully arrives and allows to rebuild P2. The
receiver sends an acknowledgement for packets P1 and
P2, in order to inform the sender that it can compute the
next repair packets from packet P3. Unfortunately this
acknowledgement is lost. However, this loss does not
compromise the following transmissions and the sender
simply continues to compute repair packets from P1.
After this, we see that P3, P4 and R(1..4) packets are also
lost. These packets can be rebuilt using R(1..6) and R(1..8)

since the number of repair packets becomes higher or
equal to the number of lost packets.
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Figure 4. Mechanism to prevent a blocking TCP window.

The acknowledgement path is only used to optimize
the encoding process and is not mandatory during a
handover of a few seconds. However, these acknowl-
edgements contain information about the PLR expe-
rienced by the MN that might be used to update or
tune the redundancy ratio when the handover takes a
longer time (we consider higher than 30sec). If the role
of the coding scheme is to make the transport layer
more robust, the redundancy ratio does not require
to be frequently adjusted while coding for real-time
application would need more accurate adaptation.

Unlike Tetrys, most of the forward error codes (FEC)
used over packet erasure channels are block codes [14].
This means that at the encoder side, a set of repair
packets (R) is built from a given set of source data (SD)
packets and at the decoder side, these repair packets
can only be used to recover SD packets from their
corresponding set. If too many packets (among the SD
and repair packets) are lost during the transmission, the
recovery of the missing SD packets is then not possible.

As a result and compared to block codes:

• Tetrys is tolerant to any burst of source, repair or
acknowledgement losses, as long as the amount of
redundancy exceeds the PLR;

• the lost packets are recovered within a delay that
does not depend on the RTT ;

• the configuration is much easier and more robust
to network variation than configuration for a
block code. This is a key point in the context of
handover;

These properties make Tetrys a perfect candidate
to reduce packet loss and recovery delay during a
handover process.

3.3. Redundancy emission/allocation and interaction
with TCP

TCP is well-known for bad performance over lossy
links as every lost packet is considered by TCP as an
indication of congestion. A possible solution to mitigate
this effect would be to use a FEC mechanism to correct

losses due to link errors. However in [15]1, the authors
show that the joint use of end-to-end FEC with TCP
does not solve the problem in case of significant PLR.
This is due to the fact that TCP needs in-order delivery
of data packets and is also strongly sensitive to RTT
variations which trigger spurious timeouts resulting
in a decreased throughput. A spurious timeout occurs
when a non lost packet is retransmitted due to a sudden
RTT increase (typically when the mobile node moves
from a WLAN to WWAN) which implies an expiration
of the retransmission timer set with a previous, and
thus outdated, RTT value.

In a previous work [9], we have already shown that
this code protects efficiently real-time traffic such as
Voice over IP and video-conferencing over links with
high PLR. Even if TCP behaves and performs better
above Tetrys than above FEC, rebuilding a burst of
L lost packets requires receiving at least L redundant
packets. As explained in Fig. 4, the sending of 1 repair
packet every k source data packets (left subfigure),
L data losses would require k ∗ L more data packets
to be sent by TCP. As TCP cannot send more than
cwnd − L data packets, if k ∗ L > cwnd − L, RTOs may
be triggered and the connection may stall. As the
subfigure on the right suggests, this problem can be
solved by sending repair packets at a minimal rate fr
when the TCP window is abnormally stalled (e.g. when
the throughput drops below k ∗ fr ).

The requirement to correct errors timely while
minimising extra transmissions is thus to size the
frequency so that 1

RTT > fr >
L−R·cwnd
4·RTT , with fr the

minimal frequency for the emission of redundancy
packet (assuming the RTO is roughly four times the
RTT).

3.4. A model for TCP/Tetrys configuration

To refine the estimation of fr , we propose to assess the
probability that TCP/Tetrys detects a congestion event
(e.g. k ∗ L > cwnd − L) for a given cwnd. According to the
distribution of the number of packets still missing when
TCP sends its cwnd, we size fr and choose the most
efficient combination of k and fr .

As losses are induced by errors on the channel
instead of congestion, we assume the packet losses are
independant and identically distributed (i.e. follow a
Bernoulli law) with a loss probability p. Under this
assumption, we introduce a Markov chain: {Yn, n > 0},
which represents the difference between the number of
lost packets and the number of received repair packets
observed after the reception of each repair packet. As in

1In their scheme, TCP is modified to ignore losses. In our case,
we assume a complete separation between the coding layer and the
transport protocols.
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section Sec. 3, we assume the receiver can decode when
Yj = 0.
The evaluation of {Yn, n > 0} is performed after each

Tetrys block. We define a block as a set of k + 1
consecutive packets that begins at the first source
packet sent after a repair packet and ends at the next
repair packet. We point out that our definition of block
does not correspond to the usual definition in coding
theory which is a set of symbols encoded together. In
this context, a repair packet can be encoded from a set
of source data packets belonging to several blocks.

Figure 5. Random variables for Markov chain in the Bernoulli

channel

As shown on Fig 5, the reception of each packet is
represented by a random variable (r. v.) Xi,j , where i > 0
and 0 6 j 6 k. With this notation, i corresponds to the
block and j to the position of the packet in the block.
On the Bernoulli channel, we have P[Xi,j = 1] = p

(the packet is lost), and P[Xi,j = 0] = 1 − p (the packet
is received). Xi,j , where 0 6 j 6 k − 1 thus corresponds
to source packets and Xi,k corresponds to the repair
packets. We define the r.v. Xi , where i > 0, as follows:

Xi =
k

∑

j=0

Xi,j − 1 (1)

Then, the loss of one of the first k (source) packet
increments the value of Xi while the reception of the
repair packet decrements the value of Xi . Since Xi is
obtained from a sum of Bernoulli variables, we have:

P(Xi = u − 1) =

(

k + 1

u

)

pu(1 − p)k+1−u with u = 0, . . . , k + 1

As Yn does not capture the amount of time step away
from the state Yn = 0, we extend it using Zn = (Yn, sn)
(see Fig.6), where sn is the amount of steps spent since
the last decoding (i.e Zn = (0, 0)). Zn = (Yn, sn) is defined
as follows:

Zn = (Yn, sn)



























(Yn−1 + Xn, s + 1) if Yn−1 + Xn > 0

and s < cwnd
k :

(0, 0) if Yn−1 + Xn < 0

(Yn−1,
cwnd
k ) if s > cwnd

k
(2)

Let us denote a(li ,si ),(lj ,sj ) := P(Yn = j and sn = sj |Yn−1 =

li and sn−1 = si ) the transition probabilities between
the states (li , si ) and(lj , sj ). Let us now define A

cwnd : cwnd
k

cwnd − 1 : cwnd
k

... .......

6 : 3 ... 6 : cwnd
k

5 : 3 ... 5 : cwnd
k

4 : 2 4 : 3 ... 4 : cwnd
k

3 : 2 3 : 3 ... 3 : cwnd
k

2 : 1 2 : 2 2 : 3 ... 2 : cwnd
k

1 : 1 1 : 2 1 : 3 ... 1 : cwnd
k

0 : 0

Figure 6. Illustration of the Markov chain Zn = (Yn, sn) with

k = 2.

the matrix (a(li ,si ),(lj ,sj )) with li , lj , si , sj > 0, li , lj <=

cwnd and si , sj >
cwnd
k . Given Z0 = (1, 0, 0, ..) the 1 +

∑i= cwnd
k

i=1 (i ∗ k) dimension probability vector at the initial
state, we can obtain E[interCE] the average number of
data packets sent before a congestion event:

n→∞
∑

n=1

i=cwnd
∑

i=1

i × (P[Zn = (i, cwnd)] − P[Zn−1 = (i, cwnd)])

(3)
As the probability p > 0, all the states (i, j)j<cwnd

are transitives, the probability P[Missing = i] to have
i missing packets at the end of the run is :

P[Missing = i] = lim
n→∞

P[Zn = (i, cwnd)] (4)

Given P[Missing = i] we can assess the probability to
recover a stalled decoding with a fr (namely : Pdec with fr )
as follows:

Pdec with fr =
∑i=cwnd

i=1 P[Missing = i] × (5)
∑u=maxPkt

u=0

(k+1
u

)

pu(1 − p)k+1−u

withmaxPkt themaximum amount of packets sent with
the rate fr before an RTO expires e.g. fr ·

3·RTT
2 .

Figures 7(a), 7(b) and 7(c) respectively show
P[interCE < x], the efficiency of the overall solution
using k and fr , and the probability for a 105 packets
TCP transfer to complete without any RTO triggering.
It clearly exhibits the gain induced by fr and shows that
it is preferable to keep the redundancy ratio 1

k+1 close
to the loss rate p and to allow a higher value of fr . As
a result, the parameters should be computed as follows
taking k as argmax(k |

1
k+1 > p) and the minimum value

of fr such as the results of (5) remains above a threshold
e.g. 99% of the outage should be decoded.
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Figure 7. Results obtained with the Markov chain model Zn.

4. Evaluation

The evaluation of our scheme is done using the ns-2
simulator and a real implementation under BSD. The
ns-2 simulator allows to set up several flows and allow
an easy monitoring of the TCP parameters while the
BSD allows a proof of concept implementation over a
handover scenario.

4.1. Dynamic of TCP/Tetrys flows

We first evaluate our solution using the ns-2 simulator
under the topology described on Fig.8. Figure 9 shows
the throughput and the fairness as a function of the link

2Mb/s
10Mb/s10Mb/s r0

flow1

flow2s2

s1 d1

d2

r1

Figure 8. Topology used for the evaluation using ns-2.
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Figure 9. Average throughput and fairness of two TCP/Tetrys

(resp. TCP) flows as a function of the packet loss rate.

loss rate for TCP/Tetrys. For comparison purpose, fig. 9
also plots the results for regular TCP flows without
applying link-layer losses. We can see that as suggested
by the results presented in Fig. 7(c) TCP/Tetrys allows
a graceful degradation while maintaining a fair sharing
of the bandwidth, with a Jain-index close to 1. The
fairness remains similar even in case where more flows
are involved.

Figures 10(a) and 10(b) show respectively the
dynamic of the congestion window and throughput
for the flows f low1 and f low2 (see the topology
in Fig.8) in the case of TCP/Tetrys and TCP. Figure 10(b)
corroborates the model of Fig. 7(c) as the occurrence
of loss event perceived by TCP is significantly reduced
with only two cwnd reduction within the 100 seconds
of the simulation. As a result, Fig. 10(a) shows that the
throughput is less variable for TCP/Tetrys and with
a standard deviation of the instantaneous throughput
(not shown in the figure) of 23 packets for TCP/Tetrys
and 31 for TCP. Even if the throughput of TCP/Tetrys
is more stable, only two congestion event occurs and
we might expect a smaller standard variation. The
variations are actually due to the fact that when Tetrys
can not decode with the code rate, it needs to detect
the drop in the TCP’s sending rate to start sending the
redundancy packets at the rate fr . During this period,
the TCP throughput is frozen thus leading to such
variation.
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4.2. Comparison with FEC over lossy links

Our testbed architecture is similar to the one presented
in Fig. 2, except for the WLAN and WWAN links
which are emulated with Netem [16] on top of two
Ethernet links. The CN and AR are connected with a
10Mbit/s Ethernet link with a negligible transmission
delay. Default settings assume 10Mbit/s and an RTT of
10ms for the WLAN and 4Mbit/s with a RTT of 100ms
for WWAN (this is realistic for UMTS HSDPA cellular
networks).
As previously stated, Tetrys is not the only code

that can be used with TCP. In this section we compare
the performance of TCP/Tetrys and TCP/FEC using
an ideal block code as FEC. For a given loss rate, the
optimal code rate of a TCP/FEC code is not the same as
TCP/Tetrys. To allow a fair comparison between those
two type of codes, we keep a fixed the code rate of 80%
(i.e. the value of (n, k) are such that k

n = 0.8). As we have
seen in sec.3.4, the overhead induced by fr is negligible
and it is not biasing the investigated trade off between
efficiency and throughput.
Tab. 1 shows the throughput obtained by TCP on

top of Tetrys or FEC when packets are sent over
a single lossy link (over WLAN only). We can see
that both Tetrys and FEC can handle a low loss rate
efficiently maintaining a throughput of 8Mbit/s for
the TCP flow. Similarly to previous work on TCP/FEC
[15], we observe that with a significant loss rate, the
TCP/FEC throughput decreases and the connection

often stalls. In contrast to this, TCP over Tetrys is not
severely impacted by these loss rates, and in fact the
TCP throughput starts to decrease only after PLR =
14%. We have to remark that the code rate is fixed
during the experiments. As a matter of fact, there would
not a decrease of the TCP throughput by dynamically
adjusting the code rate as a function of the PLR.
Tab. 2 shows the throughput obtained by TCP on the

top of Tetrys or FEC when data packets are sent over the
(10Mbit/s, 10ms) WLAN link lossy link and the coded
packets over the (4Mbit/s, 100ms) WWAN link.
We can notice that the results of TCP/FEC are even

worse than in the one link only experiment (Tab. 1).
We can make the same observation for TCP/Tetrys
under small PLR (for 0.5% or 2%). This is explained
by the delay asymmetry between the two links and
the TCP cwnd which fits the bandwidth delay product
(BDP) corresponding to the WLAN link. When losses
occur, their reconstruction requires to wait for the
coded packet that arrives 90ms later. During this time,
no packet reaches the TCP receiver and thus there
is no acknowledgement sent to the TCP sender that
would slide the congestion window. The RTT perceived
by TCP increases with the PLR and the cwnd also
increases until it reaches the BDP corresponding to
the slowest link. This explains the poor performance2

of TCP/Tetrys for small PLR and the improvement
observed when the PLR is higher. These two facts: 1)
the link delay asymmetry, and 2) the few losses not
recovered by FEC, impact the TCP throughput over FEC
more significantly.
In spite of our testbed not enabling bandwidth

aggregation (as in SCTP), these results show that in
contrast to previous coding proposals, Tetrys allows
transport protocols such as TCP to remain efficient in
spite of the deteriorated link conditions during and
around a handover.

4.3. Illustration of the mechanism during a handover
scenario

Fig. 10 shows the results for various WWAN band-
widths (300kbit/s, 1Mbit/s and 4Mbit/s) It takes 0.5
second to the WLAN link to change from "up" state to
"down" state and the same for the opposite transition.
We can see that even if these various parameters have an
impact on the TCP throughput, they do not significantly
impact the amount of time required by TCP to reach its
average throughput with Tetrys. Similar results hold for
different values of the WWAN RTT.
Fig. 11 shows the impact of the redundancy ratio

(R = 1/5, R = 1/6, R = 1/8, R = 1/9) on TCP during a

2This can be solved by artificially delaying the packet at the speed of
the slowest interface.
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PLR 0.0 0.5 2 4 5

TCP/Tetrys (4,5) 7.78/0.01 7.81/0.01 7.81/0.01 7.80/0.01 7.81/0.00
TCP/FEC (4,5) 7.79/0.02 7.83/0.00 6.48/1.2 3.01/0.6 2.68/2.24
TCP/FEC (8,10) 7.81/0.01 7.78/0.05 7.81/0.03 6.3/1.48 Timeout
TCP/FEC (12,15) 7.82/0.02 7.82/0.01 7.79/0.03 7.54/0.10 4.06/5.05
TCP/FEC (16,20) 7.81/0.01 7.81/0.02 7.82/0.01 7.82/0.01 Timeout

PLR 8 10 12 16 20

TCP/Tetrys (4,5) 7.82/0.01 7.81/0.01 7.81/0.01 7.18/0.02 4.61/0.26
TCP/FEC (4,5) Timeout
TCP/FEC (8,10) Timeout
TCP/FEC (12,15) Timeout
TCP/FEC (16,20) Timeout

Table 1. Throughput/Std. dev. in Mb/s for R = 0.2, BD = 10Mbps, BR = 4.0Mbps with data and repair packets sent on WLAN

only.

PLR 0.0 0.5 2 4 5

TCP/Tetrys (4,5) 9.54/0.00 7.69/0.18 6.5/0.49 8.18/0.34 9.02/0.05
TCP/FEC (4,5) 9.53/0.00 5.96/0.02 3.07/0.08 1.13/0.6 1.25/0.14
TCP/FEC (8,10) 9.54/0.00 7.19/0.08 4.72/0.32 2.71/0.46 1.85/0.40
TCP/FEC (12,15) 9.55/0.00 7.7/0.11 4.79/1.36 3.73/1.13 Timeout
TCP/FEC (16,20) 9.53/0.00 7.37/0.65 5.83/0.68 3.73/1.13 0.84/1.18

PLR 8 10 12 16 20

TCP/Tetrys (4,5) 8.55/0.7 8.66/0.3 8.45/0.57 7.10/0.31 5.12/0.2
TCP/FEC (4,5) 0.17/0.05 Timeout
TCP/FEC (8,10) Timeout
TCP/FEC (12,15) Timeout
TCP/FEC (16,20) Timeout

Table 2. Throughput/Std. dev. in Mb/s for R = 0.2, BD = 10Mbps, BR = 4.0Mbps with data sent on WLAN and repair sent on

WWAN only.

handover. In this case, it takes 10 seconds for theWLAN
PLR to switch from 0 to 100% and inversely. The three
sub-figures show different runs of the experiment. We
can see that the configuration of the Tetrys redundancy
ratio does not require to be timely adjusted as there is
no impact on the throughput achieved by TCP.
Compared to block codes (characterized by a specific

FEC coding configuration) where we would have to
dynamically reconfigure the redundancy parameters
((k, n)) as a function of the size of the loss burst, Tetrys is
resistant to any kind of loss burst patterns and does not
need to be dynamically adjusted (as already highlighted
Section 3.2 illustrated and Tab. 1, 2). Furthermore,
although the increase of the redundancy parameters
allows to correct larger burst of losses, they trigger TCP
timeout as the decoding process can be longer than the
RTO value.
This last result illustrates that compared to block

codes (such as a specific FEC coding configuration),
Tetrys is resistant to any kind of loss burst patterns.

5. Conclusion

In this paper, we evaluate the benefits of using an “on
the fly” coding scheme to reduce packet losses during
a soft vertical handover due to low signal quality. The
experimental evaluation suggests that the use of this
type of coding scheme may be an interesting com-
plementary strategy to vertical handover management
protocols due to its fast configurability and in the
context of multipath communications. Our experiments
clearly show that this coding scheme allows to main-
tain the TCP throughput during a handover by taking
advantage of the multiple wireless interfaces present
in today’s smartphones. Particularly, results show that
it significantly improves the quality of TCP flows in
terms of delivery ratio. As a next step, we are planning
to integrate the implementation of this error recovery
algorithm called Tetrys as a part of the SafetyNet archi-
tecture and evaluate the performance empirically using
our SafetyNet implementation.
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