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CARROUSEL IN FAMILY AND NON-ISOLATED
HYPERSURFACE SINGULARITIES IN C3

FRANÇOISE MICHEL AND ANNE PICHON

Abstract. We study the boundary Lt of the Milnor fiber for the
reduced holomorphic germs f : (C3, 0) → (C, 0) having a non-
isolated singularity at 0. We prove that Lt is a graph manifold by
using a new technique of carrousel depending on one parameter.
Our results enable us to compare the topology of Lt and of the
link of the normalization of f−1(0).

Mathematics subject classification: 14J17 32S25 57M25

1. Introduction

We denote by B2n
r the 2n-ball with radius r > 0 centered at the

origin of Cn and by S2n−1
r the boundary of B2n

r .
Let f : (C3, 0) −→ (C, 0) be a reduced holomorphic germ. The

singularity of f at 0 is allowed to be non-isolated. We consider the
three underlying topological objects :

• The link L0 = f−1(0) ∩ S5
ε of the surface f−1(0) at 0, whose

homeomorphism class of L0 does not depend on ε when ε > 0
is sufficiently small ( [16], [1]).
• The boundary Lt = f−1(t)∩ S5

ε of the Milnor fiber of f , where
0 < |t| << ε, whose diffeomorphism class does not depend on t
when |t| is sufficiently small ( [16], [6]).
• The link L0 of the normalization of the surface F0 = f−1(0)∩B6

ε

at 0, which can be defined up to diffeomorphism by L0 =
n−1(L0), where n : F0 → F0 denotes the normalization mor-
phism of F0 ([3]).

When the origin is an isolated singular point, L0, Lt and L0 are three-
dimensional differentiable manifolds, each of them being diffeomorphic
to the others.

In this paper, we assume that the singular locus Σ(f) of f is 1-
dimensional. Then only Lt and L0 are differentiable manifolds.
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The resolution theory implies that L0 is a graph manifold in the
sense of Waldhausen, or equivalently a plumbed manifold in the sense
of Neumann ([17], [19], [22]). More precisely, the plumbing graph of
L0 is given, in its normal form, as the dual graph of a good minimal
resolution of the normal surface singularity F0.

We will not recall here the notions of Seifert, graph and plumbed
manifolds. For a quick survey adapted to our situation, see e.g. [15],
section 3.

In [13], we state with a sketch of proof that for a germ f : (C3, 0) −→
(C, 0), the boundary Lt of the Milnor fiber is also a graph manifold
whose Seifert pieces have oriented basis. The main aim of this paper
is to give a detailed proof of this result.

We first describe the manifold Lt using the following strategy (Sec-
tion 2) : by hypothesis the singular locus of f , Σ(f), is a curve.
Let K0 = L0 ∩ Σ(f) be the link of the singular locus in L0. Let
K0 = n−1(K0) be the pull-back of K0 in L0 and Σ(f) = n−1(Σ(f))
be the pull-back of the singular locus. A good resolution of the pair
(F 0,Σ(f)) provides a Waldhausen decomposition for L0 as a union of
Seifert manifolds such that K0 is a union of Seifert leaves. Let M0 be
a tubular neighborhood of K0 in L0. The closure N0 of (L0 \M0) is an
irreducible Waldlhausen graph manifold with boundary that we called
the trunk of L0.

On the other hand, we define, in 2.10, a submanifold Mt of Lt called
the vanishing zone around K0. Theorem 2.14 (3), Theorem 4.1 and
Proposition 5.2 can be summarized in the following theorem:

Theorem.

(1) The closure Nt of Lt\Mt is orientation preserving diffeomorphic
to the trunk N0.

(2) The manifold Mt is an irreducible Waldhausen graph manifold
whose Seifert pieces have oriented basis.

By definition, the number of connected components of L0 equals the
number of irreducible components of f . But Lt is always a connected
manifold (Corollary 2.15). Then if f is reducible, Lt is not homeomor-
phic to L0.

Moreover, our description of Lt enables us to compare the normalized
plumbing graph of Lt with the minimal resolution graph of L0. We will
perform this comparison when f is irreducible.
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Notice first that N0 is a solid torus if and only if the minimal reso-
lution graph of (L0,Σ(f)) is a bamboo with an arrow at one of its ex-
tremities. Moreover, if N0 is not a solid torus, then Lt is an irreducible
3-dimensional manifold (Corollary 5.3). When Lt is not irreducible,
then it is not homeomorphic to L0 as L0 is irreducible ([19], Theorem
1).

Let M be an irreducible graph manifold. We denote by G(M) the
normalized plumbing graph of M as defined in [19]. We denote by
T (M) the separating family of the minimal Jaco-Shalen-Johannson
decomposition of M and by ]T (M) the cardinal of T (M).

Proposition. 5.5 Assume that f is an irreducible germ and that Lt
is an irreducible 3-dimensional manifold. Then

rank H1(G(L0),Z) ≤ rank H1(G(Lt),Z), and

]T (L0) ≤ ]T (N0) ≤ ]T (Lt)

The main aim in the study of the topological aspects of singularities
consists of describing the analytical properties of a singularity which
can be characterized through some topological underlying objects. One
of the most important results in this direction is the following famous
theorem of Mumford, which gives a topological characterization of a
smooth point on a normal surface :

Theorem. ([17]) Let (X,0) be a germ of normal complex surface. If
the link L0 of (X, 0) has the homotopy type of the 3-sphere, then 0 is
a smooth point of X.

The initial motivation of this work was to prove an analogous the-
orem for non-isolated singularities of hypersurfaces in C3. One of the
advantages of our description of Lt as the gluing of the trunk and
the vanishing zone is that it makes fairly easy the comparison of Lt
with L0 in most of the cases. We obtain the following topological
characterization of isolated singularities for the analytic reduced germs
f : (C3, 0) −→ (C, 0).

Theorem. 5.1 Let f : (C3, 0) −→ (C, 0) be a reduced holomorphic
germ. We assume that either f is reducible or Lt is not a lens space.
Then the following assertions are equivalent.

(i) f is either smooth or has an isolated singularity at 0.
(ii) The boundary Lt, t 6= 0, of the Milnor fibre of f is homeomor-

phic to the link L0 of the normalization of f−1(0).
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In [15] , for the germs with equations zm − g(x, y) = 0 where m ≥ 2
and g(x, y) = 0 is a non-reduced plane curve germ, we proved that Lt
is never homeomorphic to L0 even if Lt is a lens space, and that the
later case arises if and only if m = 2 and g has the analytic type of xyl.

The problem of the characterization of the germs f : (C3, 0) −→
(C, 0), which do not have the analytic type of germs with equation
zm − g(x, y) = 0, and which have a lens space as boundary Lt of their
Milnor fiber, remains open. Proposition 5.6 shows that this open case
concerns a very special family of singularities.

In fact, in most of the known cases, Lt is not orientation preserving
homeomorphic to the link LX of any complex normal surface singularity
(X, p). This happens for various reasons. In [13], we show that the germ
f(x, y, z) = xy has Lt ∼= S2×S1, which is not an irreducible 3-manifold.
In [14], we show that for the germs zm − xkyl = 0 such that Lt is not
a lens space (i.e. (m, k) 6= (2, 1)), the boundary Lt is not an LX as the
intersection form associated to its normalized plumbing graph is never
negative definite. In [15], we show that for the germ z2− (x2− y3)yl, l
odd, the boundary Lt is homeomorphic to the boundary of an LX , but
with the reversed orientation. More recently, in [18], A. Némethi and
A. Szilárd describe the boundary of the Milnor fiber for other families
of examples. In particular, they obtain some examples in which some
edges of the normalized plumbing graph of Lt have a sign ε = −1,
which never happens for a LX .

In Sections 3 and 4, we prove that the vanishing zone Mt is a Wald-
hausen graph manifold whose Seifert pieces have oriented basis. This
proof, which is summarized in 4.2, uses two key constructions.

The first key construction, presented in Section 3, is a parametriza-
tion result (Theorem 3.2).

The second key construction consists of describing a Waldhausen
decomposition of Mt in terms of a “carrousel in family” (see 4.3),
parametrized by x varying on a circle S1

α. Let us recall that the ”car-
rousel” has been introduced by D.T.Lê, in [10] p.163, to obtain a geo-
metric proof of the monodromy theorem.

In order to implement this carrousel process, we apply Theorem 3.2
to the germ h = ∂f

∂z
. Then we obtain a parametrization of the critical

locus of the projection of Mt on a solid tori (Lemma 4.7).

However, this parametrization involves some convergent power series
in x. The efficiency of the carrousel process is precisely that it uses
a geometric argument, the so-called Lê-swing (for example see [12]),
which enables one to consider truncated series.
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2. The trunk and the vanishing zone.

In this section, we define the trunk and the vanishing zone of Lt. As
a preliminary, we start in (2.1) and (2.2) by performing generic choices
of the coordinates axis in C3

2.1. The Weierstrass preparation theorem implies that we can choose
f in C{x, y}[z]. Then, the intersection Γ0 between {f = 0} and the
hypersurface in C3 with equation {∂f

∂z
= 0} is a curve which contains

Σ(f).

Claim For a generic choice of the x-axis, ({∂f
∂z

= 0} ∩ {∂f
∂y

= 0})
does not meet the boundary of the Milnor fiber and:

Σ(f) = Γ0 ∩ {
∂f

∂y
= 0}.

Proof. D.T. Lê and B.Teissier ( for example see (2.2.2) in [9] or
IV.1.3.2 p.420 in [21]) have proved that, for a generic choice of the
x-axis,

({∂f
∂z

= 0} ∩ {∂f
∂y

= 0}) = (Σ(f) ∪ Γ(x,f)),

where the irreducible components of Γ(x,f) are one-dimensional an not
included in {f = 0}. They have called Γ(x,f) the polar curve of f for
the direction x. Then, the boundary of the Milnor fiber does not meet
Γ(x,f) ( but its interior does). Moreover, the Milnor fiber does not meet
Σ(f).

�

2.2. Let P : C3 −→ C2 be the map defined by

P (x, y, z) = (x, y).

Let ∆0 be P (Γ0), ∆0 is the discriminant curve. Perhaps after per-
forming a linear change of coordinates in C2, we can assume that the
x-axis is, at the origin, transverse to ∆0 and that in C3, the hyperplanes
Xa = {x = a} meet Γ0 transversely around the origin.

2.3. For technical reasons, we replace in this paper the standard Milnor
ball B6

ε by a polydisc

B(α) = B2
α × B2

β × B2
γ = {(x, y, z) ∈ B6

ε , |x| ≤ α, |y| ≤ β, |z| ≤ γ}
where 0 < α < β < γ < ε/3.

Definition. The polydisc B(α) is a Milnor polydisc for f if for each
α′ with 0 < α′ ≤ α,
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(1) the pair (B(α′), f−1(0) ∩ B(α′)) is diffeomorphic to the pair
(B6

ε , f
−1(0) ∩ B6

ε),
(2) there exists η with 0 < η << α′ such that:

(a) the restriction of f to W (α′, η) = B(α′) ∩ f−1(B2
η \ {0}) is

a locally trivial differentiable fibration over B2
η \ {0},

(b) the isomorphism class of this fibration does not depend on
α′ and η when 0 < η << α′ ≤ α.

Let us denote by S the boundary of B(α) and let S(α) be the subset
of S defined by S(α) = S1

α × int(B2
β) × int(B2

γ). We can choose 0 <
α < β < γ < ε/3 such that the two following inclusions hold :

(10) (S ∩ f−1(0)) ⊂ {|z| < γ}, and
(20) (Γ0 ∩ S) ⊂ S(α).

According to [9], Section 1, the generic choice of coordinates axis
performed in (2.1) and (2.2) and the above conditions on α, β, γ imply
that the polydisc B(α) is a Milnor polydisc for f .

In the sequel, we will then replace the objects defined in the intro-
duction by the following :

• For 0 ≤ |t| ≤ η,

Ft = f−1(t) ∩B(α) and Lt = Ft ∩ S,
• L0 = n−1(L0), where n : F0 → F0 denotes the normalization of
F0,
• K0 = Σ(f) ∩ L0 and K0 = n−1(K0).

Remark 2.4. Let us denote by S ′ the boundary of B2
α × B2

β. The

restriction P0 : L0 → S ′ of P on L0 = S ∩ f−1(0) is a ramified cover
whose ramification locus is the algebraic link ∆0∩S ′ and whose generic
order is the degree of f in z.

The above construction implies the following proposition.

Proposition 2.5. For a sufficiently small tubular neighborhood V of
∆0 ∩ S ′, the two following conditions hold :

(1) V ⊂ S1
α × int(B2

β).

(2) Let M0 be the union of the connected components of P−1
0 (V )

which contain the components of the link K0. Then M0 =
n−1(M0) is a tubular neighborhood of K0 in L0.

Definition 2.6. The trunk of L0 is the closure N0 of L0 \M0 in L0.
The trunk of L0 is the closure N0 of L0 \M0 in L0.
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Proposition 2.7. The trunk N0 is a Waldhausen graph manifold with
boundary.

Proof. By definition N0 = n−1(N0). By construction N0 does not
meet the singular locus Σ(f). Therefore the restriction of n on N0

is a diffeomorphism from N0 to N0. A good resolution of the pair
(F0,Σ(f)) provides a Waldhausen decomposition for L0 as a union of
Seifert manifolds such that K0 is a union of Seifert leaves. As M0 is a
tubular neighborhood of K0 in L0, then the closure N0 of (L0 \M0) is
a waldlhausen graph manifold with boundary. �

Corollary 2.8. The number of boundary components of the trunk N0

is equal to the number of irreducible components of the curve Σ(f).

Proof. In the proof of the above proposition, we show that N0 and N0

are diffeomorphic. By construction, the number of boundary compo-
nents of the trunk N0 is equals to the number of connected components
of K0, which is equal to the number of irreducible components of the
curve Σ(f).

2.9. For each t ∈ B2
η, the singular set Γt of the restriction of P on Ft

is the curve

Γt = {∂f
∂z

= 0} ∩ Ft,

and its discriminant locus is the curve ∆t = P (Γt).
By continuity, we can choose η sufficiently small, 0 < η << α, in

such a way that for each t, |t| ≤ η, the properties that we already have
for t = 0, hold for t ∈ B2

η , i.e. :

(1t) Lt ⊂ {|z| < γ}
(2t) Γt is a curve which intersects transversally S inside S(α)

Moreover, let Pt : Lt → S ′ the restriction of P to Lt. Then,

(3t) the map Pt : Lt → S ′ is a finite ramified cover with ramification
locus Γt ∩ S(α) and branching locus ∆t ∩ S ′.

(4t) ∆t ∩ S ′ ⊂ int(V ).

Definition 2.10. Let L(η) = f−1(B2
η) ∩ S and let M(η) be the union

of the connected components of L(η)∩P−1(V ) which intersect K0. For
any t ∈ B2

η, let Mt = M(η)∩Lt. By definition Mt is the vanishing zone
of Lt and the closure Nt of Lt \Mt in Lt is the trunk of Lt.
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Notice that the choice of V (see 2.5), implies that M(η) ⊂ S(α).

Proposition 2.11. Let N(η) be the closure of L(η) \M(η) in L(η).
There exists a sufficiently small η such that f restricted to N(η) is a
fibration on B2

η.

Corollary 2.12. There exists a sufficiently small η such that for all
t ∈ B2

η \ {0}, Nt is orientation preserving diffeomorphic to N0.

Proof of Proposition 2.11.
i) Let

Γ(η) = L(η) ∩ {∂f
∂z

= 0}.

Then, the restriction of (P, f) on S\Γ(η) is a submersion. By (4t), in
(2.9), Γ(η) does not meet the boundary of N(η), hence the restriction
of f on the boundary of N(η) is a fibration.

ii) Let γ′ such that 0 < γ′ < γ. In S, we consider S̄(α) = S1
α×B2

β×B2
γ′

and S̄(β) = B2
α × S1

β × B2
γ′ where α < β < γ′ < γ.

As L(η) is compact, (1t) implies that there exists γ′ and η with
0 < η << α < β < γ′ < γ such that for all t with 0 ≤ |t| ≤ η,

Lt ⊂ (S̄(α) ∪ S̄(β)).

By (2t) in (2.9), Γ(η) does not meet S̄(β), hence the restriction of f
on N(η) ∩ S̄(β) is a fibration.

iii) Now, we have to prove that the restriction of f on N(η)∩ S̄(α) is
a fibration. Points i) and ii) show that it is a fibration on its boundary.
So, it is sufficient to prove that the projection on the x axis is transverse
to f on N(η) ∩ S(α) i.e. to prove that there exists a sufficiently small
η > 0 such that the set

A = N(η) ∩ S(α) ∩ {∂f
∂z

= 0} ∩ {∂f
∂y

= 0}

is empty. But for a general choice of the coordinates x and y, lemma
(2.1) implies that:

L0 ∩ {
∂f

∂z
= 0} ∩ {∂f

∂y
= 0} = K0 ⊂ int(M0)

Then, by continuity :

(∗) L(η) ∩ {∂f
∂z

= 0} ∩ {∂f
∂y

= 0} ⊂ int(M(η))

(∗) implies that A is empty. �
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2.13. Now, let us describe more precisely the connected components
of the vanishing zone Mt.

The tubular neighborhood V of ∆0 ∩ S ′, used above to obtain the
vanishing zone, can be defined as follows :

Let δ1, . . . , δs be the irreducible components of ∆0. Let us fix i ∈
{1, . . . , s}, and let

u 7→ (uk, φi(u)), where φi(u) =
∞∑
j=1

aju
j

be a Puiseux expansion of the branch δi of ∆0. Let us consider the
neighborhood Wi of δi in C2 defined by

Wi = {(x, y) ∈ C2 / x = uk, |y − φi(u)| ≤ θ, u ∈ C},

where θ is a positive real number.
We now choose θ sufficiently small, 0 < θ << α, in such a way that:

(1) for each i = 1, . . . , s, Wi intersects transversally S ′ inside S1
α ×

int(B2
β),

(2) the intersection Vi = Wi ∩ S ′ is a tubular neighborhood of the
knot δi ∩ S ′,

(3) the solid tori Vi are disjoint.

Let V =
⋃s
i=1 Vi. By continuity there exists η << θ such that for

each t, |t| ≤ η, one has (∆t ∩ S ′) ⊂ int(V ).

Let σ be an irreducible component of Σ(f). There exists i ∈ {1, . . . , s}
such that P (σ) = δi. We denote by M(η, σ) the connected component
of P−1(Vi) ∩ L(η) which contains the knot K0(σ) = σ ∩ S of σ in S.

By definition, the three-dimensional manifold Mt(σ) = M(η, σ)∩Lt
is connected, and we obtain :

Mt =
r⋃
j=1

Mt(σj),

where {σj, 1 ≤ j ≤ r} is the set of the irreducible components of Σ(f).
For each j = 1, . . . , r, let r̄j be the number of irreducible components

of the curve n−1(σj). The boundary of Mt(σj) consists of r̄j tori.

Definition. Mt(σ) is the vanishing zone of Lt along σ.

Proposition (2.7), Corollary (2.12), and the construction 2.13 sum-
marize in the following theorem :
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Theorem 2.14. (1) The boundary Lt of the Milnor fiber of f de-
composes as the union

Lt = Nt ∪Mt,

(2) Nt ∩Mt is a disjoint union or r tori, where r is the number of
irreducible components of the curve Σ(f),

(3) Nt is a Waldhausen manifold orientation preserving diffeomor-
phic to the trunk N0,

(4) Let σ1, . . . , σr be the union of irreducible components of Σ(f).
The connected components of the vanishing zone Mt are the
manifolds Mt(σj), j = 1 . . . r.

Corollary 2.15. The manifold Lt is connected.

Proof. The number of connected components of F 0 and L0 is equal to
the number of irreducible components of f . The intersection between
two irreducible components of f = 0 furnishes at least one irreducible
component of the singular locus Σ(f) and a corresponding connected
component of the vanishing zone. Hence, the constructions given here
show that after the gluing of all connected components of the vanishing
zone with the trunk, we obtain a connected manifold Lt.

�

Remark 2.16. Corollary 2.15 implies that the Milnor fiber Ft is con-
nected. As the singular locus of f has dimension 1, Ft is connected by
a much more general result of M. Kato and Y. Matsumoto in [8].

Remark 2.17. To prove that Lt is a Waldhausen graph manifold, we
still have to prove that Mt(σ) is a waldhausen graph manifold for any
irreducible component σ of Σ(f). This will be done in Section 4.

3. A parametrization theorem

In this section, we consider a reduced analytic germ h : (C3, 0) →
(C, 0) such that h(x, 0, 0) = 0 for all x ∈ C. Let H be the germ of
hypersurface with equation h = 0.

For each x ∈ C, we denote by hx : (C2, 0)→ (C, 0) the germ defined
by : hx(y, z) = h(x, y, z). Hence hx has an isolated singular point at
(x, 0, 0) for all x ∈ B2

α \ {0}.
Let us fix α << 1 and ε << α such that for each x ∈ S1

α, {x} × B4
ε

is a Milnor ball for the germ of curve hx = 0 at (x, 0, 0).

Definition 3.1. A branch of H along S1
α is the closure of a connected

component of the intersection H ∩ (S1
α × (B4

ε \ {0})).
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Theorem 3.2. Let G be a branch of H along S1
α. There exists d, i and

j ∈ N∗, and two convergent power series b(x1/d, u) ∈ C{x1/d}{u} and
c(x1/d, u) ∈ C{x1/d}{u} with b(x, 0) 6= 0 and c(x, 0) 6= 0, such that

(s, u) 7−→ (sd, uib(s, u), ujc(s, u))

is a parametrization of G.

For each x ∈ B2
α \ {0}, let πx : Yx → {x} × B4

ε be the minimal good
resolution of hx, i.e. the minimal composition of blow-ups of points
such that the curve (hx ◦ πx)−1(0) is a normal crossing divisor. We
denote by Ex = π−1

x (x, 0, 0) the exceptional divisor of πx.

The proof of Theorem 3.2 will use the following :

Lemma 3.3. Let h1,x be an irreducible component of hx, let h̃1,x be

its strict transform by πx and let P = Ex ∩ h̃1,x. We can choose local
coordinates (u, v) at P in Yx such that :

(1) u = 0 is a local equation for Ex in Yx.
(2) There exist three integers d, i, j in N∗, two polynomials φ(x1/d, u, v)

and ψ(x1/d, u, v) in C{x1/d}[u, v], where φ(x1/d, 0, v) and ψ(x1/d, 0, v)
are not identically 0, and s ∈ B2

α1/d \ {0} with sd = x such that
:

πx(u, v) = (sd, uiφ(s, u, v), ujψ(s, u, v)).

(3) There exist an integer M ∈ N∗ and two convergent power series
c(x1/d) ∈ (C{x1/d}\{0}) and g(x1/d, u, v) ∈ C{x1/d}{u, v} such
that, for the value s defined just above, we have:

(h ◦ πx)(u, v) = uM
(
ug(s, u, v) + c(s)v

)
Proof. Let us write h(x, y, z) as the sum

h(x, y, z) =
∞∑
n=0

cn(x, y, z),

where for all n ∈ N,

cn(x, y, z) =
n∑
k=0

cn,k(x)ykzn−k

with cn,k(x) ∈ C{x}.
Let m be the least integer such that cm(x, y, z) 6= 0. Perhaps after

performing a change of variables, one can assume that cm,0(x) 6= 0. We
start with the blow-up π1,x of (x, 0, 0) in C2, i.e.:
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π1,x : Y1,x → {x} × B4
ε .

Let E1,x = (π1,x)
−1(x, 0, 0) be the exceptional divisor of π1,x. As

cm,0(x) 6= 0, the axis y = 0 is not a line of the tangent cone of hx. We

will write the intersection points h̃x ∩E1,x with the help of coordinates
(u1, v1) given by the standard chart on (π1,x)

−1({x} × B4
ε) defined by

π1,x(u1, v1) = (x, u1, u1v1)

In the local coordinates (u1, v1), we have :

(hx ◦ π1,x)(u1, v1) = um1

( m∑
k=0

cm,k(x)vm−k1 + u1g1(x, u1, v1)

)
(∗)

where

g1(x, u1, v1) =
∞∑

m′=m+1

um
′−m−1

1 cm′(x, u1, v1)

Then the intersection h̃x∩E1,x consists of the points (x, 0, v1) such that
v1 is a root of the polynomial

Q(v1) =
m∑
k=0

cm,k(x)vm−k1 ∈ C{x}[v].

There exists an integer e > 0 such that the decomposition field of
the polynomial Q is the fraction field Ke of C{x1/e} (for example see
D.Eisenbud [4], p.295). There exists a unique root r1 ∈ Kd1 of Q,
where d1 ≤ e is the minimal integer such that r1 ∈ Kd1 , and a complex
number s1 which satisfies sd11 = x, such that the strict transform of h1,x

( by π1,x), cuts E1,x at the point P1 = (0, r1(s1)). The strict transform
of hx meets also E1,x at the d1 distinct points (0, rδ(s1)) corresponding
to the d1 distinct roots rδ of Q defined by :

δd1 = 1 and rδ(x
1/d1) = r1(δx

1/d1).

We find the others intersection points of the strict transform of hx
( by π1,x) with E1,x with the others roots of Q. The map π2,x is the
blow-ups of all these intersection points.

Remark 3.4. To make the above blow-ups in family for all x ∈ B2
α \

{0}, we have to take a sufficiently small α such that:

(1) cm,0 does not vanish on B2
α \ {0},

(2) if r and r′ are two distinct roots of Q in Ke, then (r − r′)(se)
does not vanish for se ∈ B2

α \ {0}.
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End of proof of Lemma 3.3.

As Kd1 is nothing but the field of convergent Laurent power series
in the variable x1/d1 , there exists l1 ∈ N∗ such that

xl1r1(x
1/d1) ∈ C{x1/d1}

We consider new local coordinates (ũ1, ṽ1) in Y1,x centered at (0, r1(x
1/d1))

by setting :

(u1, v1) = (xl1ũ1, ṽ1 + r1(x
1/d1)) (∗∗)

We then have :

π1,x(ũ1, ṽ1) = (x, u1, u1v1) = (x, xl1ũ1, (x
l1ũ1)(ṽ1 + r1(x

1/d1))

As xl1ũ1 and (xl1ũ1)(ṽ1 + r1(x
1/d1) are in C{x1/d1}[ũ1, ṽ1] and as

ũ1 = 0 is the local equation of E1,x at the point P1, statements (1) and
(2) of lemma (3.3) are proved for π1,x.

When we perform π2,x, we blow-up P1 in Y1,x. In order to write
π2,x in one of the two standard charts around (π2,x)

−1(P1), we perform
in (∗) one of the two following substitutions : (ũ1, ṽ1) = (u2, u2v2) or
(ũ1, ṽ1) = (u2v2, v2). If necessary, we follow it by a new change of
coordinates of the type:

(u2, v2) = (xl2ũ2, ṽ2 + r2(x
1/d2)),

where xl2r2(x
1/d2) ∈ C{x1/d2} is defined as before.

Then, points 1. and 2. of lemma (3.3) are also proved for π2,x ◦
π1,x. By finite iteration, there are also proved for πx. As πx is a good

resolution of hx, the strict transform h̃x is transverse to Ex at P and
has multiplicity 1. A direct computation of hx ◦ πx, with the help of
the point 2. of lemma (3.3) implies point 3.

This ends the proof of lemma (3.3). �

Let U(α) be the interior of (B2
2α\{0}) and H = H∩(U(α)×B4

ε). Let
π1 be the blow-up of the one-dimensional non singular analytic subset
(U(α)× 0× 0) in C3.

π1 : Y1 → (U(α)× B4
ε).

Remark 3.5. For all x ∈ U(α), π1,x , the blow-up of (x, 0, 0) in
{x} × C2, is equal to π1 restricted on (π−1

1 ({x} × B4
ε)). Moreover,

for a sufficiently small α, πx, the minimal good resolution of hx (see
3.3) is the composition of the same number, let say k, of blow-ups of
points.



14 FRANÇOISE MICHEL AND ANNE PICHON

Let H1 be the strict transform ( by π1) of H. If 2α satisfies the
two conditions given in (3.4), H1 meets the exceptional divisor E1 =
π−1

1 (U(α)× 0× 0) along a one-dimensional non singular analytic sub-
set of Y1. More precisely, in the chart (u1, v1) used in the proof of
lemma 3.3, the connected components of E1 ∩ H1 are parametrized
by {(s, 0, r(s)), se ∈ U(α)} for all roots r ∈ Ke of Q. Then, for a
sufficiently small α, the open set E1 ∩ H1 is non singular. Let π2 be
the blow-up of E1 ∩ H1 in Y1. We iterate the same process to obtain
π = πk ◦ ... ◦ π2 ◦ π1 where

π : Yk → (U(α)× B4
ε).

By construction, for each x ∈ U(α), the restriction of π on π−1({x} ×
B4
ε) is equal to the minimal good resolution πx of hx. It is why we say

that π is a resolution in family of hx for x ∈ U(α).
Let Hk be the strict transform of H by π.

Lemma 3.6. Each connected component of (π−1(U(α)×0×0))∩Hk has
an open neighborhood parametrized in s, u and v such that there exist
a positive integer M , c(s) ∈ (C{s} \ {0}) and g(s, u, v) ∈ C{s, u, v}
which satisfy :

(h ◦ π)(s, u, v) = uM
(
ug(s, u, v) + c(s)v

)
.

Proof. Let H(1) be the connected component of Hk which contains
the strict transform h̃1,x considered in lemma 3.3 . Point (3) of lemma
3.3 implies that for all x ∈ U(α), we can trivially parametrized by s,
sd = x, the same chart in (u, v). This chart contains (π−1(U(α)× 0×
0)) ∩ H(1). Lemma 3.3 gives the number M , and the series c(s) and
g(s, u, v).

This ends the proof of lemma (3.6). �

Remark 3.7. By definition (π(H(1))) ∩ (S1
α × B4

ε) is a branch G of H.
Then G = π(G̃) where:

G̃ = {ug(s, u, v) + c(s)v = 0, sd ∈ S1
α, (u, v) ∈ B4

ε}.

Proof of Theorem 3.2.
Thanks to lemma (3.6) and the above remark we have to solve the

following equation:

{ug(s, u, v) + c(s)v = 0},
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where c(s) 6= 0.

Let us perform the change of coordinate u′ =
(
c(s)

)−1
u. Then, we

obtain :

(h ◦ π)(s, u′, v) = u′
M
c(s)M+1

(
u′ g(s, u′c(s), v) + v

)
We replace u′ by u. Now the equation of G̃ is given by:

u g(s, u, v) + v = 0

Let us consider F (u, v) = u g(s, u, v)+v = 0 as an element of A{u, v}
where A = C{s}. As F (0, v) = v, we can applied the Weierstrass
preparation theorem (for example see [23], vol.2, p.139-141), to obtain
R(s, u) ∈ C{s}{u} such that

F (u, v) = 0⇔ v = R(s, u)

This leads to :
h ◦ π(s, u,R(s, u)) = 0.

This equality, together with point 2. of lemma (3.3), implies that h
vanishes on {(sd, uiφ(s, u,R(s, u)), ujψ(s, u,R(s, u))), u ∈ B2

ε}.
For each s ∈ S1

α1/d , we set b(s, u) = φ(s, u,R(s, u)) and c(s, u) =
ψ(s, u,R(s, u)). We have a parametrization

(S1
α1/d)× B2

ε → G

given by
(s, u) 7−→ (sd, uib(s, u), ujc(s, u))

This ends the proof of theorem 3.2. �

4. Mt is Waldhausen : the proof

The aim of this section is to prove the main result of this paper :

Theorem 4.1. Mt is a Waldhausen graph manifold whose Seifert pieces
have oriented basis. .

According to Theorem 2.14, we have to prove that for each branch
σ of the singular locus Σ(f), the vanishing zone Mt(σ) of Lt along σ is
a Waldhausen manifold.

4.2. Abstract of the proof

Before giving the proof in details, let us give the key ideas and steps.
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• At first, we will show that it suffices to prove that Mt(σ) is
Waldhausen when σ is smooth. We will then assume that σ is
the x-axis.
• Let Ψ : (C3, 0) → (C3, 0) be the germ defined by Ψ(x, y, z) =

(x, y, f(x, y, z)). The critical locus of Ψ is H = {∂f
∂z

= 0}, and
its discriminant locus is the image H ′ = Ψ(H). Let Ψt be the
restriction of Ψ on Mt(σ). As σ is the x-axis, the image of Ψt

is equal to S1
α × B2

θ × {t}. Moreover,

Ψt : Mt(σ)→ S1
α × B2

θ × {t},
is a finite ramified cover over the solid torus T = S1

α×B2
θ×{t}

whose ramification locus is the braid Ht = Mt(σ) ∩H.
Set H ′t = Ψt(Ht). To describe H ′t, we consider a branch G of

H along the circle S1
α×{0}×{0} as defined in Section 3, we set

G′ = Ψ(G), and we prove the following parametrization result
(Lemma (4.7)) :

if (x, y, t) ∈ G′, then y satisfies the following equality :

y = b w(x1/d) xe/d
′
tq/p +

∞∑
m=1

bm(x1/n′)trm , (∗)

where b ∈ C∗, d, d′, n, p, p′ and q are positive integers
with pp′ = n, w(x1/d) = 1 +

∑∞
m=1wmx

m/d ∈ C{x1/d}, e ∈ Z,
n′ = dn, bj(x

1/n′) ∈ Kn′ and rm = (qp′ +m)/pp′.
The equality (∗) implies that G′t = Ψt(G ∩Mt(σ)) is a braid

in the solid torus T . But this braid can be rather complicated.
It is the reason why we approximate it by the torus link

App(G′t) = {(x, b xe/d′tq/p, t); x ∈ S1
α}.

Definition. We say that G′t is the braid of G′ = Ψ(G), that
App(G′t) is the torus link associated to G′ and that the pair
(q/p, e/d′) is the pair of the first exponents of G′.

• We index the pairs of first exponents (q/p, e/d′) by lexico-
graphic order. For each of them, (qi/pi, ei,j/d

′
i,j) where 1 ≤

i ≤ k, and 1 ≤ j ≤ li, we construct a vertical polar zone Z(i,j)

(see Definition (4.10)) such that G′t is included in the interior
of Z(i,j) if and only if (qi/pi, ei,j/d

′
i,j) is the pair of the first

exponents of G′ (Lemma (4.11)). Moreover, Z(1,1) is a solid
torus and for all (i, j) not equal to (1, 1), the Z(i,j)’s are concen-
tric thickened tori which recover the solid torus T along their
boundaries.
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• In the solid torus T , we define some tubular neighborhoods
N (G′t) of the link App(G′t) for all the branches G of H such
that :
∗ G′t ⊂ N (G′t)
∗ If G has it’s pair of first exponents indexed by (i, j), then
N (G′t) is included in the interior of Z(i,j).

∗ Let G̃ be another branch of H. If App(G′t) = App(G̃′t),
then N (G′t) = N (G̃′t). Otherwise, N (G′t) and N (G̃′t) are
disjoint solid tori in T (see Lemma (4.13)).

We call the solid tori N (G′t) the approximation tori.

Notation. Let N (i, j) be the union of all the approximation
tori of the branches which have their first exponents indexed by
(i, j).

By construction the closure of Z(i,j) \N(i,j) does not meet the
set of ramification values H ′t of Ψt and is saturated by (ei,j, d

′
i,j)

torus links. The case ei,j = 0 is not excluded, but we always
have 0 < d′i,j. It induces a Seifertic structure on the closure of

Ψ−1
t (Z(i,j) \ N(i,j)).

• The last step consists in showing (see Lemma (4.19)) that Ψ−1
t (N(i,j))

is a disjoint union of solid tori. Then we can extend the Seifert
fibration on all the Ψ−1

t (Z(i,j)). Moreover, we explain in 4.20
why the so constructed Seifert manifolds have oriented basis. It
ends the proof of Theorem 4.1. To prove 4.19, we need Lemma
(4.15) which uses deeply the polar curve theory and the Lê-
swing theorem (introduced by D.T.Lê and B.Perron in [11] )via
the following construction.

4.3. Carrousel in family

Let M(η, σ) (as defined in 2.13), be the union of the Mt(σ) where
t ∈ B2

η. The image of the restriction of Ψ on M(η, σ) is equal to

S1
α × B2

θ × B2
η.

Let us fix a ∈ S1
α and let us consider the plane curve germ fa,

fa : ({a} × C2, (a, 0, 0))→ (C, 0)

defined by fa(y, z) = f(a, y, z). The restriction of Ψ on M(η, σ)∩{x =
a} has Γa = H ∩ {x = a} as singular locus. The curve Γa is nothing
but the polar curve (at (a, 0, 0) ) of fa for the direction y, and the set
∆a = Ψ(Γa) is its discriminant curve.
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Let us consider

M (a)(σ) = M(η, σ) ∩ {x = a} ∩ {|f | = η}.

By construction, the restriction

Ψ(a) : M (a)(σ)→ {a} × B2
θ × S1

η

of Ψ on M (a)(σ) is a ramified cover, whose ramification locus is Γa ∩
{|f | = η}.

Remark. By construction, the Milnor fiber of the plane curve germ
fa is

Ft,a = Mt(σ) ∩M (a)(σ).

The restriction ψa : Ft,a → D of Ψ(a) on Ft,a is a finite ramified
cover over the disk D = {a} × B2

θ × {t}. This ramified cover has been
studied in details by D.T.Lê , (for example in [9] and in [10]) to study
the monodromy of the Milnor fiber as a pull-back (here by ψa) of a
diffeomorphism of the disk D modulo its intersection points with ∆a.
D.T.Lê calls this construction “the carrousel”.

But ψa is also the restriction of Ψt on Ft,a. Then we have to study
the family of ψx with x ∈ S1

α. In order to do this, we construct a
carrousel parametrized by x : it is a carrousel in family.
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4.4. Reduction to a smooth branch of Γt

Let us fix a branch σ of Σ(f) and let

u 7→ (uk, φ(u), ψ(u))

be a Puiseux parametrization of σ.
Let us consider the analytic morphism Θ : C3 → C3 defined by

Θ(x, y, z) = (xk, y + φ(x), z + ψ(x))

Let g : (C3, 0) −→ (C, 0) be the composition g = f ◦ Θ. Then
σ′ = Θ−1(σ) is the x-axis. Moreover, a direct computation of the
derivative of g shows that σ′ is a branch of the singular locus of g.

Let Mt(f, σ) (resp. Mt(g, σ
′)) be the vanishing zone of f along σ

(resp. of g along σ′) defined in the boundary of the ball B(α) (resp.
B(α1/k) as in 2.13. The construction given in 2.13 leads directly to :

Lemma 4.5. Mt(g, σ) = Θ−1(Mt(f, σ)), and the restriction Θ|Mt(g,σ′) :
Mt(g, σ

′)→Mt(f, σ) is a diffeomorphism.

In the sequel, we assume that σ is the x-axis. In particular, the van-
ishing zone Mt(σ) along σ is nothing but

Mt(σ) = Lt ∩ (S1
α × B2

θ × B2
γ), 0 < η << θ << α.

4.6. Parametrization of the branches of Ψ(H)

Let us recall that Ψ : (C3, 0) → (C, 0) denotes the germ defined by
Ψ(x, y, z) = (x, y, f(x, y, z)). The critical locus of Ψ is H = {∂f

∂z
= 0},

and its discriminant locus is the image H ′ = Ψ(H). The proof of the
lemma 4.7 uses theorem 3.2 for the germ h which is the reduced of ∂f

∂z
,

i.e. h is reduced and H = {h = 0}.

Let G be the closure (in C3) of a connected component of

(H \ (S1
α × {0} × {0})) ∩ (S1

α × B2
θ × B2

γ),

i.e. G is a branch of H along the circle S1
α × {0} × {0} as defined in

Section 3.
We set G′ = Ψ(G), and we call G′ a branch of H ′ = Ψ(H) along

S1
α × {0} × {0}.
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Let us recall that Kd denotes the fraction field of C{x1/d}.

Lemma 4.7. There exist:

- d, n, p, p′, q ∈ N∗, where p is prime to q and pp′ = n,
- e ∈ Z and d′ ∈ N∗ is prime to e ( if e = 0, then d′ = 1),
- rm = (qp′ +m)/pp′,
- bj(x

1/n′) ∈ Kn′ , where n
′ = dn,

- w(x1/d) = 1 +
∑∞

m=1wmx
m/d ∈ C{x1/d} and b ∈ C∗.

such that, if (x, y, t) ∈ G′, then y satisfies the following equality :

y = b w(x1/d) xe/d
′
tq/p +

∞∑
m=1

bm(x1/n′)trm (∗)

Remark. As recalled below, the integer d is provided by theorem 3.2
. For each branch G of H there exists such a d minimal which depends
on G. Here, for convenience, we will choose a ( perhaps greater) d
common to all the branches of H.

Proof. Theorem 3.2 provides b(x1/d, u) ∈ C{x1/d}{u} and c(x1/d, u) ∈
C{x1/d}{u} with b(x, 0) 6= 0 and c(x, 0) 6= 0, such that we have a
parametrization

S1
α1/d × B2

ε → G

given by
(s, u) 7−→ (sd, uib(s, u), ujc(s, u))

and we obtain n, j < n, and c′(x1/d, u) ∈ C{x1/d}{u} with c′(x, 0) 6=
0, such that G′ = Ψ(G) admits a parametrization of the form

(s, u) 7→ (sd, uib(s, u), unc′(s, u)) (∗∗)
If necessary, we can perform the modification u = sl

′
u′, l′ ∈ N, to

obtain l ∈ N, cm(s) ∈ C{s} with c0(0) ∈ C∗, such that:

t = unc′(u, s) = u′nsl c0(s)

(
1 +

∞∑
m=1

cm(s)u′m
)

There then exist r(x1/d, u′) ∈ C{x1/d}{u′} with r(0, 0) = 1 and
r0(x

1/d) ∈ C(x1/d) with (r0(0))n = c0(0), such that

t = u′nsl(r0(s))
n(r(s, u′))n.

We perform the following change of coordinates:

u1 = u′ r0(s)r(s, u
′)
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and (∗∗) becomes:

(s, u1) 7→ (sd, ui1b
′(s, u1), u

n
1s

l)

where b′(x1/d, u1) ∈ C{x1/d}{u1}.
Now u1 = s−l/n t1/n and (x, y, t) ∈ G′ satisfies:

y = (x−il/nd ti/n)b′(x1/d, x−l/nd t1/n) (∗ ∗ ∗)

As x ∈ S1
α and t ∈ B2

η with 0 < η << α, there is no problem of
convergency. Moreover, we have :

b′(x1/d, 0) = b(x1/d, 0) = b xk/d(1+
∞∑
m=1

wmx
m/d), k ∈ N, b ∈ C∗, wm ∈ C.

Let

w(x1/d) = 1 +
∞∑
m=1

wmx
m/d ∈ C{x1/d},

if we take p and q prime to each other such that q/p = i/n = qp′/pp′,
n′ = nd, e and d′ prime to each other such that e/d′ = (n k− i l)/(nd),
and if we write (∗∗∗) in terms of the increasing powers of t , we obtain
(∗) of Lemma (4.7) i.e. :

y = b w(x1/d) xe/d
′
tq/p +

∞∑
m=1

bm(x1/n′)trm .

This ends the proof of Lemma 4.7 �

4.8. The polar decomposition

Let us consider the ordered set

Q =

{
qk
pk

< . . . <
q2
p2

<
q1
p1

}
of rational numbers q

p
such that, there exists a branch G′ of Ψ(H) which

admits, with the notations of 4.7, a parametrization of the form :

y = b w(x1/d) xe/d
′
tq/p +

∞∑
m=1

bm(x1/n′)trm ,

with x ∈ S1
α and t ∈ B2

η.
We denote by G′i the union of the branches of Ψ(H) corresponding

to the quotient qi/pi.
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For each i ∈ {1, . . . , k}, let

Qi = {ei,1
d′i,1

< . . . <
ei,j
d′i,j

< . . . <
ei,l(i)
d′i,l(i)

}

be the ordered set of rational numbers such that there exists a branch
of G′i which admits a parametrization of the form:

(1) y = b w(x1/d) xei,j/d
′
i,j tqi/pi +

∞∑
m=1

bm(x1/n′)trm ,

with x ∈ S1
α and t ∈ B2

η.
We denote by G′i,j the union of such branches of G′i.

Let us fix a ∈ S1
α. We consider the plane curve germ fa(y, z) =

f(a, y, z). By definition the above set Q is the set of polar quotients of
fa for the direction y (for example see [9]). We will follow the classical
construction of [12] which furnishes a decomposition of the solid torus
Ta = {a}×B2

θ×S1
η into polar zones in bijection with the polar quotients

qi/pi. This decomposition lifts by Ψ(a) to a Waldhausen decomposition
of the exterior of the link of fa. But as explained in the abstract of
the proof, we will in fact define our polar zones Zi in the solid torus
T = S1

α×B2
θ×{t}. The key idea is that the two constructions coincide

on the disc D = T ∩ Ta where they give a polar decomposition of D as
an union of concentric annuli.

Let us now define this decomposition of T as the union of Zi.

For each i ∈ {1, . . . , k − 1}, let us choose si ∈ Q such that
qi+1

pi+1

< si <
qi
pi
,

Definition 4.9. The first polar zone is the solid torus

Z1 = {(x, y, t) ∈ T/ |y| ≤ ηs1},
and C(1) = Z1 ∩ D is the first polar disc.

If i ∈ {2, . . . , k− 1}, the polar zone Zi is the thickened torus defined
by:

Zi = {(x, y, t) ∈ T / ηsi−1 ≤ |y| ≤ ηsi},
and C(i) = Zi ∩ D is the associated polar annulus.

In T , the value of t ∈ S1
η is fixed. If G is a branch of H with first expo-

nents (qi/pi, ei,j/d
′
i,j), then the braid Ψt(G) = G′t admits a parametriza-

tion of the form (1) in 4.8.
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To take account into the first exponent of x, we will refine the polar
decomposition of T . For each j ∈ {1, . . . , li−1}, let us choose a rational
number νi,j such that

ei,j+1

d′i,j+1

< νi,j <
ei,j
d′i,j

,

There exists η sufficiently small, 0 < η << θ << α, such that the
following inequalities hold :

0 < ηq1/p1αν1,1 < ηq1/p1αν1,2 < . . . < ηq1/p1αν1,l1−1 < ηs1 ,

for each i ∈ {2, . . . , k − 1},
ηsi−1 < ηqi/piανi,1 . . . < ηqi/piανi,li−1 < ηsi ,

and

ηsk−1 < ηqk/pkανk,1 . . . < ηqk/pkανk,lk−1 < θ.

Definition 4.10. The vertical polar zones Z(i,j), 1 ≤ i ≤ k, 1 ≤ j ≤ li,
are defined as follows :

• Z(1,1) is the solid torus

Z(1,1) = {(x, y, t) ∈ T/ |y| ≤ ηq1/p1αν1,1},
• For (i, j) not equal to (1, 1), Z(i,j) is a thickened torus :
∗ If 1 < i ≤ k,

Z(i,1) = {(x, y, t) ∈ T / ηsi−1 ≤ |y| ≤ ηqi/piανi,1},
∗ if 1 ≤ i ≤ k, j = {2, . . . , li − 1},

Z(i,j) = {(x, y, t) ∈ T / ηqi/piανi,j−1 ≤ |y| ≤ ηqi/piανi,j},
∗ if 1 ≤ i < k,

Z(i,li) = {(x, y, t) ∈ T / ηqi/piαν1,li−1 ≤ |y| ≤ ηsi},
∗ and

Z(k,lk) = {(x, y, t) ∈ T/ ηqk/pkαν1,lk−1 ≤ |y| ≤ θ}.

The associated refined polar annuli are :

C(i, j) = Z(i,j) ∩ D

By construction the torus T is equal to the union of the vertical polar
zones Z(i,j), 1 ≤ i ≤ k, 1 ≤ j ≤ li. The intersection of two consecutive
(for the lexicographic order on the (i, j)) vertical polar zones is a unique
torus which is the common connected component of their boundaries.
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The intersection between non consecutive vertical polar zones is empty.
But, the most important property of the vertical polar zones is given
by Lemma (4.11).

Lemma 4.11. There exist α and η sufficiently small, 0 < η << θ <<
α, such that a branch G′ of H ′ = Ψ(H) has (qi/pi, ei,j/d

′
i,j) as pair of

first exponents if and only if the braid G′t = Ψt(Mt(σ) ∩G) is included
in the interior of Z(i,j).

Proof. By definition, G′ has a parametrization of the form (1) in 4.8:

y = b w(x1/d) xei,j/d
′
i,j tqi/pi +

∞∑
m=1

bm(x1/n′)trm ,

Therefore, (x, y, t) ∈ G′t if and only if

|y| = αei,j/d
′
i,jηqi/pi

∣∣∣∣b w(x1/d) +
∞∑
m=1

bm(x1/n′)trm−qi/pi(x−ei,j/d
′
i,j )

∣∣∣∣.
Then, the inequality

νi,j <
ei,j
d′i,j

< νi,j−1

implies lemma 4.11 for the zone Z(i,j) where 1 ≤ i ≤ k, j =
{2, . . . , li − 1}.

As si <
qi
pi
< si−1, the computations are similar for the other vertical

polar zones.
�

4.12. The approximation solid tori

Let G be a branch of H such that G′ = Ψ(G) is parametrized by

y = b w(x1/d) xe/d
′
tq/p +

∞∑
m=1

bm(x1/n′)trm .

We approximate the braid G′t = Ψt(G ∩ Mt(σ)) by a torus link
App(G′t) as follows :

Definition. The link App(G′t) associated to the braid G′t is the torus
link in T = S1

α × B2
θ × {t} defined by:

App(G′t) = {(x, b xe/d′tq/p, t), x ∈ S1
α}.
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Let l be the l.c.m. of d′ and p. Let a ∈ S1
α, let s and τ be such that

sd
′
= a and τ p = t.

Definition. The suns of G′t are the intersection points S(G′t) = G′t ∩
D = {(a, b ξ se τ q, t), ξl = 1}

Let ρ = (e/d′ + 1/2d).

Definition. We call approximation solid tori of G′t the tubular neigh-
borhood N (G′t) of App(G′t) defined by:

N (G′t) = {(x, y, t) ∈ T such that 0 ≤ | y − b xe/d′tq/p | ≤ ηq/pαρ}.

Lemma 4.13. There exist α and η sufficiently small, 0 < η << θ <<
α, such that:

(1) The intersection N (G′t)∩D consists of l disjoint discs of radius
equal to ηq/pαρ which have the l suns of G′t as centers.

(2) The braid G′t is included in N (G′t).
(3) If (qi/pi, ei,j/d

′
i,j) is the pair of the first exponents of G′t then

N (G′t) ⊂ int(Z(i,j)).

(4) Let G̃ be another branch of H. If App(G′t) = App(G̃′t), then
N (G′t) = N (G̃′t). Otherwise, N (G′t) and N (G̃′t) are disjoint
solid tori in T

Proof. To obtain (1), it is sufficient to prove that if ξ 6= 1, for a
sufficiently small α we have:

3 ηq/pαρ < |(b− ξb)|ηq/pαe/d′ .

But this inequality is equivalent to:

3 α1/(2d) < |(b− ξb)|.

As b is a given non zero complex number, it is sufficient to choose α
sufficiently small to obtain (1).

let (sd
′
, y, τ p) ∈ G′t , then:

y = b w(sd
′/d) seτ q +

∞∑
m=1

bm(sd
′/n′)τ prm .

By construction there exists w1(s
d′/d) ∈ C{sd′/d} such that:

w(sd
′/d)− 1 = sd

′/d w1(s
d′/d).

For sufficiently small, α and η with 0 < η << θ << α, we have:
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|y − bseτ q| = |b w1(s
d′/d) se+(d′/d)τ q +

∞∑
m=1

bm(sd
′/n′)τ prm|

= ηq/pαe/d
′+1/d|b w1(s

d′/d)+
∞∑
m=1

bm(sd
′/n′)s(−e − d′/d) τ−q+prm| < ηq/pαe/d

′+1/2d.

We then get (2).
To get (3), we show that, for sufficiently small, α and η with 0 <

η << θ << α, the distance, in D, between the suns of G′t and the two
boundary connected components of the annulus C(i, j) is bigger than
the radius ηq/pαρ.

By construction, we have for 1 ≤ i ≤ k and j = {2, . . . , li − 1} :

C(i, j) = {(a, y, t) ∈ D with ηqi/piανi,j−1 ≤ |y| ≤ ηqi/piανi,j},

where:

si <
qi
pi
< si−1 , and νi,j <

ei,j
d′i,j

< νi,j−1.

The distance between a sun of G′t and the interior circle of C(i, j) is
equal to:

ηqi/piα(ei,j/d
′
i,j)(|b| − (α(νi,j−1)− (ei,j/d

′
i,j)).

This distance, for sufficiently small α and η, 0 < η << α, is greater
than ηq/pαρi,j because the exponent ρi,j = (ei,j/d

′
i,j + 1/2d) corre-

sponding to a branch with the pair of the first exponents equal to
(qi/pi, ei,j/d

′
i,j), is greater than (ei,j/d

′
i,j). But νi,j <

ei,j

d′i,j
< ρi,j, and

similar computations prove that the distance between a sun of G′t and
the exterior circle of C(i, j) is bigger than the radius ηqi/piαρi,j .

Then (3) is done.
Let us now prove (4). When App(G′t) = App(G̃′t), then by definition
N (G′t) = N (G̃′t).

If G̃′t does not have the same pair of first exponents as G′t then N (G′t)
and N (G̃′t) are included in the interior of distinct vertical polar zones,
they do not meet.

The last case is when G′t and G̃′t have the same pair of first exponents
(q/p, e/d′), but distinct associated torus link. If (sd

′
, y, τ p) ∈ G′t , then:

y = b w(sd
′/d) seτ q +

∞∑
m=1

bm(sd
′/n′)τ prm .
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If (sd
′
, y, τ p) ∈ G̃′t , then:

y = b̃ w̃(sd
′/d) seτ q +

∞∑
m=1

b̃m(sd
′/n′)τ prm ,

where b̃ ∈ C∗ and b̃ 6= ξb, for all ξ such that ξl = 1. But the minimal
value of {|b̃−ξb|, ξl = 1} is well defined. With computations similar of
those performed to obtain points (1) and (2), we can choose sufficiently
small α and η, 0 < η << α, such that the distances between the suns
of G′t and G̃′t are bigger than 3ηq/pαρ. This proves that N (G̃′t) and
N (G′t) are disjoint.

But the trivial projection of T = S1
α × B2

θ × {t} on S1
α restricted

on N (G′t) is a fibration with the discs N (G′t) ∩ D as fiber. Then the
tubular neighborhoods N (G′t) are an union of disjoint solid tori in T

This ends the proof of lemma 4.13 �

Lemma (4.13) allows us to define the solar discs.

Definition 4.14. Let s and τ be such that sd
′

= a and τ p = t. If G
is a branch of H and G′ = Ψ(G) the solar discs associated to G are
the l disjoint discs N (G′t) ∩ D centered at the suns S(G′t) = G′t ∩ D =
{(a, b ξ se τ q, t), ξl = 1} of G′t.

Lemma 4.15. Let DG be a solar disc of G, then Ψ−1
t (DG)) is a disjoint

union of discs.

To prove lemma 4.15 we need the following subsection.

4.16. Carrousel in family

Let M(η, σ) (as defined in 2.13), be the union of the Mt(σ) where
t ∈ B2

η. The image of the restriction of Ψ on M(η, σ) is equal to

S1
α × B2

θ × B2
η.

Let us fix a ∈ S1
α and let us consider the plane curve germ fa,

fa : ({a} × C2, (a, 0, 0))→ (C, 0)

defined by fa(y, z) = f(a, y, z). The restriction of Ψ on (M(η, σ)∩{x =
a}) has Γa = H ∩ {x = a} as singular locus, it is the polar curve ( at
(a, 0, 0) ) of fa for the direction y. The set ∆a = Ψ(Γa) of its singular
values is the corresponding discriminant curve.

By construction, the Minor fiber of the plane curve germ fa is

Ft,a = Mt(σ) ∩ {x = a}.

Let ψa be the restriction of Ψ on Ft,a :
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ψa : Ft,a → D.
As ψa is equal to the restriction of Ψt on Ft,a. Lemma 4.15 is equiv-

alent to:

Claim. Let DG be a solar disc of G, then ψ−1
a (DG)) is a disjoint

union of discs.

Now we will prove this claim.
Let δ be a irreducible component of the discriminant ∆a which is

included in G′ = Ψ(G). Then a Puiseux expansion of δ is given by:

y = b w(sn) sed
′′
tq/p +

∞∑
m=1

bm(s)trm .

Where s and d′′ satisfy the following equalities: snd = a and d′d′′ = nd.
Moreover, the suns of δ as defined in [12], in (2.4.3)p.157, are the
following p points of D: {(a, b w(sn) sed

′′
τ q, t), τ p = t }. In [12], a

solar ”polar” disc D is defined in (2.4.6), and lemma 2.4.7 states that
ψ−1
a (D) is a disjoint union of discs. This uses the Lê-swing. Our polar

disc DG takes account of the coefficients parametrized by x via w(x1/d)
and is slightly different from D. But we can consider the curve δ′ having
y = b sed

′′
tq/p as Puiseux expansion in {a} ×C2. If we use the curve δ′

in the proof of lemma (2.4.7) ( in [12],) in place of δ0, we obtain, with
exactly the same arguments, that ψ−1

a (DG)) is a disjoint union of discs.
This proves the claim. �

Remark 4.17. In [2], C.Caubel proves a very general version of the
Lê-swing. In particular let D be a subdisc of a polar annuli C(i, j).
We say that D is marked if it contains points of ∆a in its interior, but
the boundary of D does not meet ∆a. Proposition (2.4) in [2], implies
that:

if D is a marked subdisc contained in a sector, in C(i, j), of angle θ
with θ < 2π(qi/pi + 1/2pi), then D can be swung.

Then, in the case a plane curve germ (as fa in our case), we obtained
(as proved in (2.4.12) of [12]), that ψ−1

a (D) is a disjoint union of discs.
By definition our polar disc DG is contained in such a sector.

4.18. Vertical monodromy

Let p be the restriction on Mt(σ) of the projection on the x-axis i.e.:

p : Mt(σ) → S1
α.
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In (2.1) we choose a generic x-axis such that p is a submersion on
Mt(σ) when t ∈ S1

η, 0 < η << α. Then p is a differentiable fibration
of fiber Ft,a and Mt(σ) is the mapping-torus of a diffeomorphism h :
Ft,a → Ft,a . Following the terminology introduced by D. Siersma in
[20], h is a representative of the vertical monodromy for σ.

Let N (i, j) be the union of all the approximation tori of the branches
which have their first exponents indexed by (i, j).

Lemma 4.19. Each Ψ−1
t (N(i,j)) is a disjoint union of solid tori.

Proof of Lemma 4.19. By construction the boundary of Ψ−1
t (N(i,j))

meets {x = a} transversally for all a ∈ S1
α. Then, the restriction pi ,j

of p on Ψ−1
t (N(i,j)) is a fibration. But the fibers of this restriction is a

disjoint union of Ψ−1
t (DG)) for all the polar discs DG of the branches

G′ = Ψ(G) having (qi/pi, ei,j/d
′
i,j) as pair of first exponents. Lemma

4.15 implies that the fibers of pi ,j are a disjoint union of discs. Then
Ψ−1
t (N(i,j)) is the mapping torus of a disjoint union of discs, it is a

disjoint union of solid tori.
�

Lemma 4.19 is the key-lemma which enables one to conclude :
By construction the closure of Z(i,j) \ N(i,j) does not meet the ram-

ification value H ′t of Ψt and is saturated by (ei,j, d
′
i,j) torus links. The

case ei,j = 0 is not excluded, but we always have 0 < d′i,j. It induces

a Seifert structure on the closure of Ψ−1
t (Z(i,j) \ N(i,j)). Moreover the

so obtained Seifert leaves are, by construction, transverse to the fibers
of p. Then, lemma 4.19 allows us to extend the Seifertic structure on
the disjoint union of solid tori Ψ−1

t (N(i,j)), the connected components
of Ψ−1

t (DG)) being the meridian discs of the tori Ψ−1
t (N(i,j)), there

is no singular leaf in the constructed Seifert structure on Ψ−1
t (Z(i,j))

and the possible exceptional leaves are the cores of the tori Ψ−1
t (N(i,j))

or in Ψ−1
t (S1

α × {0} × {t}). The union along their boundaries of the
Seifert manifolds Ψ−1

t (Z(i,j)), for all (i, j) gives a waldhausen structure
on Mt(σ) = Ψ−1

t (S1
α × B2

θ × {t}).

Remark 4.20. The above constructed Seifert leaves of Mt(σ) define a
quasi-finite vertical monodromy which preserves the orientation of the
oriented Milnor fiber Ft,a. It implies that the obtained Seifert pieces of
Mt(σ) have oriented basis.

This ends the proof of Theorem 4.1
�
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5. A topological characterization of isolated
singularities

In this section, we prove the following topological characterization
of isolated singularities, which was the first motivation of this work.

Theorem 5.1. Let f : (C3, 0) −→ (C, 0) be a reduced holomorphic
germ. We assume that either f is reducible or Lt is not a lens space.
Then the following assertions are equivalent.

(i) f is either smooth or has an isolated singularity at 0.
(ii) The boundary Lt, t 6= 0, of the Milnor fibre of f is homeomor-

phic to the link L0 of the normalization of f−1(0).

The degenerating case when f is irreducible and Lt is a lens space
remains open.

If f is reducible, Lt is not homeomorphic to L0. Indeed, by defini-
tion, the number of connected components of L0 equals the number
of irreducible components of f , but Lt is always a connected manifold
(Corollary 2.15).

On the other hand, L0 is an irreducible 3-dimensional ([19], Theorem
1).

Then, it suffices to prove the theorem when f is an irreducible germ
and Lt is an irreducible 3-dimensional manifold. From now on, we
assume that f is irreducible.

Before proving the theorem, we will establish some basic properties
of Lt.

Proposition 5.2. The trunk N0 and the vanishing zone Mt are irre-
ducible 3-manifolds.

Recall that a 3-manifold M is irreducible if every embedded 2-sphere
in M is the boundary of a 3-ball.

Proof of Proposition 5.2. It suffices to prove that every connected
component W of N0 is irreducible. Let (S, p) be an irreducible compo-

nent of F0 whose link contains W , and set γ = Σ(f)∩S. Then W is the
complement of a tubular neighborhood of the link of the complex germ
of curve (γ, p) in the link of the normal complex surface singularity
(S, p). Therefore W is irreducible (see [15], 9.2, Cor. J).

According to 4.18, each connected component Mt(σ) of the vanishing
zone Mt is fibered over the circle S1 with a connected and orientable
fibre not diffeomorphic to the 2-sphere. Therefore Mt(σ) is irreducible
(see [15], 9.1., Lemma A).

�
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Corollary 5.3. Assume that f irreducible and that N0 is not a solid
torus. Then Lt is an irreducible 3-dimensional manifold.

Proof It is an easy consequence of the following general principle,
which is a consequence of [22] : let (Mi), i = 1, . . . , k be a finite col-
lection of Seifert manifolds with non empty boundary, none of them
being a solid torus. Let M be constructed by gluing the Mi’s along
boundady tori. Then M is irreducible. �

Notice that N0 is a solid torus if and only if the minimal resolution
graph of (L0,Σ(f)) is a bamboo with an arrow at one of its extremities.

Remark 5.4. In fact, when f is irreducible, Lt is a reducible 3-
dimensional manifold if and only if N0 is a solid torus and a Seifert
leaf on the boundary of Mt is a meridian of Nt

∼= N0.

Let M be an irreducible graph manifold. We denote by T (M) the
separating family of the minimal Jaco-Shalen-Johannson decomposi-
tion of M and by ]T (M) the cardinal of T (M). When M has empty
boundary, we denote by G(M) the normalized plumbing graph of M
as defined in [19]

Proposition 5.5. Assume that the germ f is irreducible and that Lt
is an irreducible 3-dimensional manifold. Then

]T (L0) ≤ ]T (N0) ≤ ]T (Lt), and

rank H1(G(L0),Z) ≤ rank H1(G(Lt),Z)

Proof When N0 is a solid torus, then L0 is a lens space. Then
rank H1(G(L0),Z) = 0, T (N0) = ∅ and the two inequalities hold.

Assume that N0
∼= Nt is not a solid torus, then

T (Mt) ∪ T (Nt) ⊂ T (Lt)

On the other hand, one has ]T (L0) ≤ ]T (N0) as the closure of L0\N0

is a disjoint union of soli tori.
When M is an irreducible graph manifold without boundary, we

denote by G ′(M) the graph G(M) without weights, and we extend the
definition of G ′(M) to the case when M has a non empty boundary by
symbolizing each boundary component of M by a free edge.

For example, the graph G ′(N0) is obtained from normalized plumbing
graph with arrows of the pair (L0,Σ(f)) by removing the weights (genus
and Euler classes) and by replacing each arrow by a free edge.
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According to Theorem 2.14, Lt is obtained from Nt
∼= N0 and Mt

by gluying together these two manifolds along their boundary compo-
nents. Then the graph G ′(Lt) is obtained from the two graphs G ′(N0)
and G ′(Mt) by identifying the free edges corresponding to the glued
boundary components. This proves the second inequality.

�

Proof of theorem 5.1 (i) ⇒ (ii) follows from Milnor’s theory ([16]).
To prove (ii)⇒ (i), let us assume that f is neither smooth nor has an

isolated singularity at 0. As mentioned at the begining of the Section,
it suffices to prove (ii) ⇒ (i) when f is an irreducible germ and Lt is
an irreducible 3-manifold.

If the trunk N0
∼= Nt is a solid torus, then L0 is a lens space. But, we

have assumed that Lt is not a lens space, then Lt is not homeomorphic
to L0.

Now, assume that the trunk N0
∼= Nt is not a solid torus. Then Lt is

obtained as the union of the two irreducible manifolds Mt and Nt along
their boundaries (2.14), none of them being a solid torus. Therefore Lt
is irreducible (Corollary 5.3).

Assume first that there exists a connected component Mt(σ) of Mt

whose boundary is not connected. Gluing the manifold Mt(σ) to the
trunk Nt increases the number of cycles in the normalized plumbing
graph G(L0). Therefore,

rank H1(G(L0),Z) < rank H1(G(Lt),Z)

and L0 is not homeomorphic to Lt.
We now assume that each connected component Mt(σ) of Mt has a

connected boundary, i.e. that Mt(σ) ∩Nt consist of a single torus.
When ]T (L0) < ]T (Lt), then L0 is not homeomorphic to Lt.
Otherwise, the equality ]T (L0) = ]T (Lt) implies that the connected

components of Mt are all Seifert manifolds and that the Seifert struc-
ture induced on the boundary components are homological to that of
Nt.

We now use the following :

Remark. Let M be an irreducible orientable 3-dimensional manifold
whose Jaco-Shalen-Johannson decomposition admits only Seifert pieces
with orientable basis. Assume that M is not diffeomorphic neither to a
lens space nor to a solid torus. Then, according to the classical classifi-
cation of irreducible 3-dimensional manifolds (see [7]), the following two
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numbers are some numerical invariants of the homeomorphism class of
M :

(1) The sum g(M) of the genus of the bases of the Seifert pieces of
M in any Jaco-Shalen-Johannson decomposition of M ,

(2) the global number s(M) of exceptional Seifert leaves in the
minimal decomposition of M .

Let r be the number of irreducible components of Σ(f). As each
connected component Mt(σ) of Mt has a connected boundary, then r is
also the number of irreducible components of the curve Σ(f). Therefore
the trunk N0

∼= Nt has r boundary components (Corollary 2.8), and
L0 is obtained by gluing r solid tori along the r boundary components
of N0. We then have :

g(L0) = g(N0) and s(L0) ≤ s(N0) + r (∗)
Let σ be an irreducible component of Σ(f). Let p : Mt(σ) → S1 be

the locally trivial fibration with fiber Ft,a and monodromy h : Ft,a →
Ft,a defined in 4.18.

If the transversal section of F0 at a point of σ \ {0} is the ordinary
quadratic germ, then the Milnor fibre Ft,a is an annulus [−1,+1] ×
S1. As Mt(σ) has a connected boundary, then h : [−1,+1] × S1 →
[−1,+1]×S1 is isotopic to the diffeomorphism h(t, z) = (−t, z̄) and its
mapping torus Mt(σ) is the so-called Seifert Q manifold ([22]), which
has two exceptional fibers and base a disk.

In all other cases, χ(Ft,a) < 0. Then Mt(σ) has either g(Mt(σ)) > 0
or at least two exceptional fibers, i.e. s(Mt(σ)) ≥ 2.

If there exists σ such that g(Mt(σ)) > 0, then g(Lt) > g(Nt) =
g(N0) = g(L0), then Lt is not homeomorphic to L0.

Otherwise, each Mt(σ) has at least 2 exceptional fibres, and

s(Lt) ≥ s(Nt) + 2r

Then (∗) implies s(Lt) > s(L0) and Lt is not homeomorphic to L0.
�

Theorem 5.1 remains open when f is irreducible and Lt is a lens
space. The following proposition shows that, in fact, this case concerns
a very special family of singularities. Recall that the K0 denotes the
link of the curve Σ(f) in the link L0 of the normalization F0 of F0.

Proposition 5.6. Let f : (C3, 0) −→ (C, 0) be a reduced holomorphic
germ such that f is irreducible and Lt is a lens space. Then

(1) The trunk N0 is a solid torus, L0 is a lens space, Σ(f) is an
irreducible germ of curve and the minimal resolution graph of
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the pair (F0,Σ(f)) is a bamboo with an arrow at one of its
extremities,

(2) Mt is connected with a connected boundary.

Proof of proposition 5.6. Let σ be a component of Σ(f). According
to 4.18, Mt(σ) is fibred over the circle with fiber Ft,a. As Ft,a is not a
disk, then Mt(σ) is not a solid torus.

Let T be a connected component of ∂Nt = ∂Mt. As the connected
components of Mt are irreducible manifolds (5.2) none of them being
a solid torus, then T is incompressible in Mt (see [15], 9.1, prop. D).
Now, as the trunk N0

∼= Nt is irreducible (5.2), if it were not a solid
torus, T would also be incompressible in Nt (see again [15], 9.1, prop.
D). Then, van Kampen’s Theorem and Dehn’s Lemma would imply
that T is incompressible in Lt. But a torus embedded in a lens space
is always compressible. Hence N0

∼= Nt is a solid torus and then the
minimal resolution graph of the pair (F0,Σ(f)) is a bamboo with an
arrow at one of its extremities. It follows immediately that L0 is a lens
space. According to 2.8, the curve Σ(f) is irreducible in F0. Therefore
Σ(f) is also irreducible.

As the trunk N0
∼= Nt is a solid torus, the vanishing zone Mt is

connected with a connected boundary because ∂Nt = ∂Mt.
�
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[6] H. Hamm and D. T. Lê : “Un théorème de Zariski du type de Lefschetz”. Ann.
Sci. Ecole Norm. Sup. 6(1973) p.317-355.

[7] A. Hatcher: “Notes on basic 3-dimensional topology” available on the Net at
http://www.math.cornell.edu/∼hatcher

[8] M. Kato, Y. Matsumoto: “On the connectivity of the Milnor fiber of a holo-
morphic function at a critical point”, Manifolds -Tokyo 1973 (Proc. Internat.
Conf., Tokyo, 1973) p. 13–136. Univ. Tokyo Press, Tokyo, 1975.
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