INNER GEOMETRY OF COMPLEX SURFACES: A VALUATIVE APPROACH - Archive ouverte HAL
Article Dans Une Revue Geometry and Topology Année : 2022

INNER GEOMETRY OF COMPLEX SURFACES: A VALUATIVE APPROACH

Résumé

Given a complex analytic germ (X, 0) in (C n , 0), the standard Hermitian metric of C n induces a natural arc-length metric on (X, 0), called the inner metric. We study the inner metric structure of the germ of an isolated complex surface singularity (X, 0) by means of an infinite family of numerical analytic invariants, called inner rates. Our main result is a formula for the Laplacian of the inner rate function on a space of valuations, the non-archimedean link of (X, 0). We deduce in particular that the global data consisting of the topology of (X, 0), together with the configuration of a generic hyperplane section and of the polar curve of a generic plane projection of (X, 0), completely determine all the inner rates on (X, 0), and hence the local metric structure of the germ. Several other applications of our formula are discussed in the paper.
Fichier principal
Vignette du fichier
BelottoFantiniPichonJuly2019.pdf (654.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02543399 , version 1 (15-04-2020)

Identifiants

  • HAL Id : hal-02543399 , version 1

Citer

Andre Belotto da Silva, Lorenzo Fantini, Anne Pichon. INNER GEOMETRY OF COMPLEX SURFACES: A VALUATIVE APPROACH. Geometry and Topology, In press. ⟨hal-02543399⟩
126 Consultations
78 Téléchargements

Partager

More