Walter D Neumann 
email: neumann@math.columbia.edu
  
Helge Møller Pedersen 
  
Anne Pichon 
email: anne.pichon@univ-amu.fr
  
Mendes Nunõ-Ballesteros Kerner 
  
  
  
  
  
A characterization of Lipschitz normally embedded surface singularities

Keywords: 2000 Mathematics Subject Classification 14B05 (primary), 32S25, 32S05, 57M99 (secondary)

 we apply it to prove that rational surface singularities are LNE if and only if they are minimal.

Definition 1.1. A germ of a complex normal variety pX, 0q is Lipschitz normally embedded (LNE) if the identity map of pX, 0q is a bilipschitz homeomorphism between inner and outer metrics, i.e., there exists a neighborhood U of 0 in X and a constant K ě 1 such that for all x, y P U 1

This definition was first introduced by Birbrair and Mostowski in [5], where they just call it normally embedded. We prefer adding the word Lipschitz to distinguish this notion from that of projective normal embedding (in algebraic geometry) and normality (in local geometry, commutative algebra and singularity theory).

Lipschitz Normal Embedding (LNE) is a very active research area with many recent results giving necessary conditions for LNE in the real and complex setting, e.g., by Birbrair, Fernandes,

Introduction

If pX, 0q is a germ of a complex variety, then any embedding φ : pX, 0q ãÑ pC n , 0q determines two metrics on pX, 0q: the outer metric d o px, yq :" φpxq ´φpyq (i.e., distance in C n ) and the inner metric d i px, yq :" inftlengthpφ ˝γq : γ is a rectifyable path in X from x to yu , using the riemannian metric on X t0u induced by the hermitian metric on C n . For all x, y P X, d o px, yq ď d i px, yq, and the outer metric determines the inner metric. Up to bilipschitz local homeomorphism both these metrics are independent of the choice of complex embedding. We speak of the (inner or outer) Lipschitz geometry of pX, 0q when considering these metrics up to bilipschitz equivalence.

including a characterization of LNE for semialgebraic sets ( [START_REF] Birbrair | Arc criterion of normal embedding[END_REF]). In this paper we focus on complex normal surfaces. It is a classical fact that the topology of a germ of a complex variety pX, 0q Ă pC n , 0q is locally homeomorphic to the cone over its link X p q " S 2n´1 X X, where S 2n´1 denotes the sphere with small radius centered at the origin in C n . If pX, 0q is a curve germ then it is in fact bilipschitz equivalent to the metric cone over its link with respect to the inner metric, while the data of its Lipschitz outer geometry is equivalent to that of the embedded topology of a generic plane projection (see [18], [START_REF] Neumann | Lipschitz geometry of complex curves[END_REF]). Therefore, an irreducible complex curve is LNE if and only if it is smooth. This is not true in higher dimension.

The main result of this paper, Theorem 3.8, is a characterization of LNE for normal surface germs based on what we call the nodal test curve criterion. The first ingredient of the proof is the arc criterion for LNE (Theorem 4.5) of Birbrair and Mendes [START_REF] Birbrair | Arc criterion of normal embedding[END_REF] which says that one can check if a semialgebraic germ pX, 0q is LNE by testing LNE on each pair of real analytic arc δ 1 , δ 2 P pX, 0q. This criterion is difficult to use effectively since the amount of pairs of curves is incommensurable. Our Theorem 3.8 uses generic projections : pX, 0q Ñ pC 2 , 0q which enable one to reduce drastically the amount of types of pairs of arcs to be tested, namely just certain pairs of arcs in ´1pδq for certain arcs δ Ă pC 2 , 0q called test arcs. This makes the criterion more efficient to prove LNE. For example, we use it in [START_REF] Neumann | Fractions lipschitziennes d'une algèbre analytique complexe et saturation de Zariski[END_REF] to prove that rational surface singularities are LNE if and only if they are minimal.

The second ingredient of the proof is the geometric decomposition of a normal surface germ which was introduced in [START_REF] Birbrair | The thick-thin decomposition and the bilipschitz classification of normal surface singularities[END_REF] and which is presented in Section 6.

The proof of Theorem 3.8 has two keystones: Proposition 5.3 and its enhancement Proposition 11.2. They consist of two successive reductions of the amount of test arcs to be tested. They are stated in terms of real test arcs which are real slices of complex curves on pX, 0q. Then the final part of the proof (Section 14) consists of a reinterpretation of Proposition 11.2 in terms of complex test curves. Acknowledgments. We are deeply indebted to Bernard Teissier for having explained to us the various notions of generic projections. Neumann was supported by NSF grant DMS-1608600. Pedersen was supported by FAPESP grant 2015/08026-4. Pichon was supported by the ANR project LISA 17-CE40-0023-01 and by USP-Cofecub UcMa163-17. We are very grateful for the hospitality and support of the following institutions: Columbia University, Institut de Mathématiques de Marseille, FRUMAM Marseille, Aix Marseille Université, ICMC-USP and IAS Princeton.

Generic projections and Nash modification

In order to state the main Theorem 3.8 in Section 3, we need to introduce the notions of generic projections of a curve and of a surface, and of Nash modification.

Let D be a pn ´2q-plane in C n and let D : C n Ñ C 2 be the linear projection with kernel D. Suppose pC, 0q Ă pC n , 0q is a complex curve germ. There exists an open dense subset Ω C of the Grassmanian Gpn ´2, C n q such that for D P Ω C , D contains no limit of secant lines to the curve C ( [START_REF] Teissier | Variétés polaires II, Multiplicités polaires, sections planes et conditions de Whitney[END_REF]).

Definition 2.1. The projection D is said to be generic for C if D P Ω C .

In the sequel, we will use extensively the following result Theorem 2.2 [21, pp. 352-354]. If D is a generic projection for C, then the restriction D | C : C Ñ D pCq is a bilipschitz homeomorphism for the outer metric.

Let now pX, 0q Ă pC n , 0q be a normal surface singularity. We restrict ourselves to those D in the Grassmanian Gpn ´2, C n q such that the restriction D | pX,0q : pX, 0q Ñ pC 2 , 0q is finite. The polar curve Π D of pX, 0q for the direction D is the closure in pX, 0q of the singular locus of the restriction of D to X t0u. The discriminant curve ∆ D Ă pC 2 , 0q is the image D pΠ D q of the polar curve Π D .

Denote by Pn´1 the dual of the projective space P n´1 , so an element of Pn´1 is a hyperplane corresponding to the kernel of a linear projection ζ : C n Ñ C which is not identically zero. Let CpXq be the conormal space of X, i.e., the closure in X ˆP n´1 of the set tpx, ζq : x P X, T x X Ă ζu. Let κ : CpXq Ñ X be the conormal morphism, defined as the projection on the first factor, and let λ : CpXq Ñ Pn´1 be the projection on the second factor. Each D P Gpn ´2, C n q, can be identified with the pencil of hyperplanes in C n which contains D, i.e., with a line in Pn´1 and Π D " κpλ ´1pDqq.

Now, consider the tautological bundle E Ă Pn´1 ˆGpn ´2, C n q of lines of Pn´1 and the intersection P " pX ˆEq X pCpXq ˆGpn ´2, C n qq Ă X ˆP n´1 ˆGpn ´2, C n q and let e : P Ñ Gpn ´2, C n q be the projection on the third factor, so that for all D P Gpn ´2, C n q, Π D is the image of e ´1pDq by the projection X ˆP n´1 ˆGpn ´2, C n q Ñ X on the first factor. Proposition 2. [START_REF] Birbrair | Arc criterion of normal embedding[END_REF]. An open dense subset Ω Ă Gpn ´2, C n q exists such that:

(i) for each D P Ω, λ ´1pDq X κ ´1p0q is a point and the restriction e : pe ´1pΩqq red Ñ Ω is a flat analytic family of reduced curves with analytic section the intersection with κ ´1p0q. (ii) for each D P Ω, the restrictions κ : λ ´1pDq Ñ Π D and D : Π D Ñ ∆ D are finite birational morphisms and the second morphism is a generic projection of the polar curve Π D . (iii) the family p∆ D q DPΩ is equisingular in terms of strong simultaneous resolution.

Recall that a strong simultaneous resolution is a morphism which is a simultaneous normalization of the family and a local isomorphism in family. We refer to [START_REF] Teissier | Résolution simultanée : II -Résolution simultanée et cycles évanescents[END_REF]Definition 3.1.5] for the precise definition.

Definition 2.4. The projection D : C n Ñ C 2 is generic for pX, 0q if D P Ω.

Proof. (i) follows from Kleiman's transversality Theorem [START_REF] Steven | The transversality of a general translate[END_REF]. The first part of (ii) follows from the proof of Theorem 2.2.4 in [START_REF] Dũng | Limites d'espaces tangents en géométrie analytique[END_REF] and the fact that

D : Π D Ñ ∆ D is a generic projection of the curve Π D is [21, Lemme-clé V 1.2.2 (ii)]. Item (iii) is [20, Section 4, Proposition 2].
Remark 2.5. Item (iii) also implies that the family of polar curves pΠ D q, D P Ω is equisingular in terms of strong simultaneous resolution. Indeed, the curves of pΠ D q, D P Ω have same normalization as their images ∆ D " D pΠ D q and this normalization is the fiber over D P Ω of the normalization P Ñ P of P composed with the morphism e : P Ñ Gpn ´2, C n q and the simultaneous resolution is then obtained by this morphism. Definition 2.6 (Nash modification). Let λ : X t0u Ñ Gp2, C n q be the map which sends x P X t0u to the tangent plane T x X. The closure N X of the graph of λ in X ˆGp2, C n q is a reduced analytic surface. By definition, the Nash modification of pX, 0q is the induced morphism N : N X Ñ X. 

Statement of the theorem

Let : pX, 0q Ñ pC 2 , 0q be a generic projection, let Π be its polar curve and let ∆ " pΠq be its discriminant curve. Denote by ρ 1 : Y Ñ C 2 the minimal composition of blow-ups of points starting with the blow-up of the origin which resolves the base points of the family of projections of generic polar curves p pΠ D qq DPΩ . Definition 3.1. We say ∆-curve for an exceptional curve in pρ 1 q ´1p0q intersecting the strict transform of ∆.

Let us blow up all the intersection points between two ∆-curves. We call σ : Z Ñ Y and ρ " ρ 1 ˝σ : Z Ñ C 2 the resulting morphisms (if no ∆-curves intersect, ρ " ρ 1 ). Remark 3.2. By ((ii)) of Proposition 2.3, the resolution graph of ρ does not depend on . We denote it by T for the rest of the paper. Definition 3.3. A ∆-node of T is a vertex pjq of T which represents a ∆-curve. If two ∆-nodes are joined by a string of valency-two vertices which contains neither a ∆-node nor the root vertex, we choose a vertex on that string, and we call it a separation-node (in particular, a vertex pjq associated with an exceptional curve C j resulting from the blow-ups σ : Z Ñ Y is a separation node).

A node of T is a vertex pjq of T which is either the root-vertex or a ∆-node or a separationnode or a vertex with at least three incident edges.

Let E Ă Y be a complex curve in a complex surface Y and let E 1 , . . . , E n be the irreducible components of E. We say curvette of E i for any smooth curve germ pβ, pq in Y , where p is a point of E i which is a smooth point of Y and E and such that β and E i intersect transversely.

If G is a graph, we will denote by V pGq its set of vertices and by EpGq its set of edges.

Definition 3.4. Let C i be the irreducible component of ρ ´1 p0q represented by piq P V pT q, so we have ρ ´1 p0q " Ť piqPV pT q C i . For piq P V pT q we call test curve at piq (of ) any complex curve germ pγ, 0q Ă pC 2 , 0q such that (i) the strict transform γ ˚by ρ is a curvette of a C i ;

(ii) γ ˚X ∆ ˚" H. A test-curve γ Ă pC 2 , 0q at piq is called a nodal test curve if piq is a node of T . Definition 3.5. Let π 0 : X 0 Ñ X be the minimal good resolution of X which factors through both the Nash modification and the blow-up of the maximal ideal and let G 0 be its resolution graph. For each vertex pvq of G 0 we denote by E v the corresponding irreducible component of π ´1 0 p0q. A vertex pvq of G 0 such that E v is an irreducible component of the blow-up of the maximal ideal (resp. an exceptional curve of the Nash transform) is called an L-node (resp. a P-node) of G 0 . Definition 3.6. Consider the graph G 1 0 of G 0 defined as the union of all simple paths in G 0 connecting pairs of vertices among L-and P-nodes. Let : pX, 0q Ñ pC 2 , 0q be a generic projection. Let γ be a test curve for . A component p γ of ´1pγq is called principal if its strict transform by π 0 is either a curvette of a component E v with v P V pG 1 0 q or intersects π ´1 0 p0q at an intersection between two exceptional curves E v and E v 1 such that both pvq and pv 1 q are in V pG 1 0 q.

We now define the outer and inner contacts between two complex curves on a complex surface germ.

Throughout the paper, we use the "big-Theta" asymptotic notation of Bachman-Landau: given two function germs f, g : pr0, 8q, 0q Ñ pr0, 8q, 0q we say f is big-Theta of g and we write f ptq " Θpgptqq if there exist real numbers η ą 0 and K ě 1 such that for all t with f ptq ď η:

1 K gptq ď f ptq ď Kgptq.
Let S 2n´1 " tx P C n : x C n " u. Let pγ 1 , 0q and pγ 2 , 0q be two germs of complex curves inside pX, 0q. Let q out " q out pγ 1 , γ 2 q and q inn " q inn pγ 1 , γ 2 q be the two rational numbers ě 1 defined by

d o pγ 1 X S 2n´1 , γ 2 X S 2n´1 q " Θp qout q, d i pγ 1 X S 2n´1 , γ 2 X S 2n´1 q " Θp qinn q,
where d i means inner distance in pX, 0q as before. (The existence and rationality of q inn will be a consequence of Proposition 12.1). Definition 3.7. We call q out pγ 1 , γ 2 q (resp. q inn pγ 1 , γ 2 q) the outer contact exponent (resp. the inner contact exponent) between γ 1 and γ 2 .

We now state the main result of the paper. Theorem 3.8 (Test curve criterion for LNE of a complex surface). A normal surface germ pX, 0q is LNE if and only if the following conditions are satisfied for all generic projections : pX, 0q Ñ pC 2 , 0q and nodal test curves pγ, 0q Ă pC 2 , 0q: (1 ˚) for all principal components p γ of ´1pγq, multpp γq " multpγq where mult means multiplicity at 0; (2 ˚) for all pairs pγ 1 , γ 2 q of distinct principal components of ´1pγq, q inn pγ 1 , γ 2 q " q out pγ 1 , γ 2 q. Remark 3.9. The definition of separation node (Definition 3.3) depends on a choice of a vertex along a string joining two ∆-nodes. However, the validity of Theorem 3.8 does not depend on this choice. In fact it follows from the proof that if all the principal components over one test curve at a vertex on such a string satisfy (1 ˚) and (2 ˚) then all principal components over all test curves at vertices on the string satisfy (1 ˚) and (2 ˚).

4.

The real arc criterion for LNE of a semialgebraic germ Definition 4.1 (Real arcs). Let pX, 0q Ă pR n , 0q be a semialgebraic germ. A real arc on pX, 0q will mean the germ of a semialgebraic map δ : r0, ηq Ñ X for some η P R `, such that δp0q " 0 and δptq " t (see also Remark 4.3).

When no confusion is possible, we will use the same notation for the arc δ and the germ of its parametrized image δpr0, ηqq. Definition 4.2. Let pX, 0q Ă pR n , 0q be a semialgebraic germ and let δ 1 : r0, ηq Ñ X and δ 2 : r0, ηq Ñ X be two real arcs on X. The outer contact of δ 1 and δ 2 is 8 if δ 1 " δ 2 and is otherwise the rational number q o " q o pδ 1 , δ 2 q defined by: δ 1 ptq ´δ2 ptq " Θpt qo q.

The inner contact of δ 1 and δ 2 is the rational number q i " q i pδ 1 , δ 2 q defined by d i pδ 1 ptq, δ 2 ptqq " Θpt qi q.

Remark 4.3. 1) The existence and rationality of q i comes from the fact that there exists a semialgebraic metric d P : X ˆX Ñ R (the so-called pancake metric) such that d i and d P are bilipschitz equivalent ([13]).

2) The inner and outer contacts q i pδ 1 , δ 2 q and q o pδ 1 , δ 2 q can also be defined taking reparametrizations by real slices of δ 1 and δ 2 as follows. First note that if δ 1 and δ 2 have different tangent directions then q i pδ 1 , δ 2 q " q o pδ 1 , δ 2 q " 1, so we may assume they have the same tangent direction. We can choose coordinates px 1 , . . . , x n q such that the tangent semi-line of δ 1 and δ 2 has x 1 ą 0 except at 0. For j " 1, 2, consider the reparametrization r δ j : r0, ηq Ñ R n defined by r δ j ptq " δ j X tx 1 " tu. Then we have r δ 1 ptq ´r δ 2 ptq " Θpt qo q and d i p r δ 1 ptq, r δ 2 ptqq " Θpt qi q. Indeed, this is an easy consequence of the following standard lemma: Lemma 4.4. Let B Ă C n be any closed compact convex neighborhood of 0 in C n . Let φ : B Ñ B 1 , where B 1 is the unit ball, be the homeomorphism which maps each ray from 0 to BB linearly to the ray with the same tangent, but of length 1. Then the map φ : B Ñ B 1 is a bilipschitz homeomorphism.

The following result of Birbrair and Mendes is a characterization of closed semialgebraic germs which are LNE.

Theorem 4.5 (The arc criterion for LNE, [START_REF] Birbrair | Arc criterion of normal embedding[END_REF]). Let pX, 0q Ă pR m , 0q be a closed semialgebraic germ. It is LNE if and only if for all pairs of real arcs δ 1 and δ 2 in pX, 0q, q i pδ 1 , δ 2 q " q o pδ 1 , δ 2 q.

5. The real test arc criterion for LNE of a normal complex surface germ Definition 5.1. Let pγ, 0q Ă pC n , 0q be a complex curve germ. Denote by z 1 , . . . , z n the coordinates of C n . We assume that no tangent line to γ is contained in the hyperplane tz 1 " 0u. Fix e iα P S 1 . We call the intersection γ α " γ X tz 1 " e iα t, t P R `u a real slice of γ. Definition 5.2. We call test arc a component of a real slice of a test curve pγ, 0q Ă pC 2 , 0q (Definition 3.4).

Proposition 5.3. A normal surface pX, 0q is LNE if and only if for all generic projections : pX, 0q Ñ pC 2 , 0q and for all test arcs δ of , any pair of components δ 1 , δ 2 of ´1pδq satisfies q i pδ 1 , δ 2 q " q o pδ 1 , δ 2 q.

Proposition 5.3 will be proved in Section 10. Before this, we introduce the necessary material for the proof in Section 6 and we prove preliminary lemmas in Sections 7 to 9.

We will also prove later an enhanced version of this result (Proposition 11.2) which reduces again drastically the amount of pairs of test arcs and which is a version in terms of real test arcs of the main Theorem 3.8).

6. The geometric decomposition of a normal surface germ 6.1. Pieces Birbrair, Neumann and Pichon defined in [START_REF] Birbrair | The thick-thin decomposition and the bilipschitz classification of normal surface singularities[END_REF] some semialgebraic metric spaces (with inner metric) called A-, B-and D-pieces, which we will need in this paper. We give here the definition and basic facts about these pieces (see [START_REF] Birbrair | The thick-thin decomposition and the bilipschitz classification of normal surface singularities[END_REF]Sections 11 and 13] for more details).

The pieces are topologically conical, but usually with metrics that make them shrink nonlinearly towards the cone point. We will consider these pieces as germs at their cone-points, but for the moment, to simplify notation, we suppress this.

By D 2 we mean the standard unit disc in C with S 1 as its boundary, and I denotes the interval r0, 1s. Definition 6.1 Apq, q 1 q-pieces. Let q, q 1 be rational numbers such that 1 ď q ă q 1 . Let A be the euclidean annulus tpρ, ψq : 1 ď ρ ď 2, 0 ď ψ ď 2πu in polar coordinates and for 0 ă r ď 1 let g prq q,q 1 be the metric on A: g prq q,q 1 :" pr q ´rq 1 q 2 dρ 2 `ppρ ´1qr q `p2 ´ρqr q 1 q 2 dψ 2 .

So A with this metric is isometric to the euclidean annulus with inner and outer radii r q 1 and r q . The metric completion of p0, 1s ˆS1 ˆA with the metric dr 2 `r2 dθ 2 `gprq q,q 1 compactifies it by adding a single point at r " 0. We call a metric space which is bilipschitz homeomorphic to this completion an Apq, q 1 q-piece or simply an A-piece. Definition 6.2 Bpqq-pieces. Let F be a compact oriented 2-manifold, φ : F Ñ F an orientation preserving diffeomorphism, and M φ the mapping torus of φ, defined as:

M φ :" pr0, 2πs ˆF q{pp2π, xq " p0, φpxqqq .
Given a rational number q ą 1 , we will define a metric space BpF, φ, qq which is topologically the cone on the mapping torus M φ .

For each 0 ď θ ď 2π choose a Riemannian metric g θ on F , varying smoothly with θ, such that for some small δ ą 0:

g θ "

#

g 0 for θ P r0, δs , φ ˚g0 for θ P r2π ´δ, 2πs .

Then for any r P p0, 1s the metric r 2 dθ 2 `r2q g θ on r0, 2πs ˆF induces a smooth metric on M φ . Thus dr 2 `r2 dθ 2 `r2q g θ defines a smooth metric on p0, 1s ˆMφ . The metric completion of p0, 1s ˆMφ adds a single point at r " 0. Denote this completion by BpF, φ, qq. We call a metric space which is bilipschitz homeomorphic to BpF, φ, qq a Bpqq-piece or simply a B-piece.

A Bpqq-piece such that F is a disc is called a Dpqq-piece or simply a D-piece. Definition 6.3 Conical pieces. Given a compact smooth 3-manifold M , choose a Riemannian metric g on M and consider the metric dr 2 `r2 g on p0, 1s ˆM . The completion of this adds a point at r " 0, giving a metric cone on M . We call a metric space which is bilipschitz homeomorphic to a metric cone a conical piece. We will call any conical piece a Bp1q-piece (they were called CM -pieces in [START_REF] Birbrair | The thick-thin decomposition and the bilipschitz classification of normal surface singularities[END_REF]).

The diameter of the image in BpF, φ, qq of a fiber tru ˆtθu ˆF is Θpr q q. Therefore q describes a rate of shrink of the surfaces tru ˆtθu ˆF in BpF, φ, qq with respect to the distance r to the point at r " 0. Similarly, the inner and outer boundary components of any tru ˆttu ˆA in an Apq, q 1 q have rate of shrink respectively q 1 and q with respect to r. Definition 6.4 Rate. The rational number q is called the rate of Bpqq or Dpqq. The rational numbers q and q 1 are the two rates of Apq, q 1 q.

Classical plane curve theory

Let pγ, 0q Ă pC 2 , 0q and pγ 1 , 0q Ă pC 2 , 0q be two distinct germs of irreducible complex plane curves. Let S 3 " tx P C 2 : x " u. Recall that the contact q out " q out pγ, γ 1 q of γ and γ 1 is the rational number defined by: d o pγ 1 X S 3 , γ 2 X S 3 q " Θp qout q.

Equivalently, q out pγ, γ 1 q is the largest q for which there exist Puiseux expansions y " f pxq and y " gpxq of γ and γ 1 which coincide for exponents ă q and which have distinct coefficients for x q .

Let ρ : Y Ñ C 2 be a sequence of blow-ups of points starting with the blow-up of the origin of C 2 . Let C 1 , . . . , C k be the irreducible components in Y of the exceptional divisor of ρ with C 1 being the exceptional curve of the first blow-up.

Let pγ, 0q and pγ 1 , 0q be two irreducible curve germs whose strict transforms by ρ meet a C i at two distinct smooth points of ρ ´1p0q. Then the contact q out pγ, γ 1 q of γ and γ 1 in C 2 does not depend on the choice of γ and γ 1 . Definition 6.5. We call q out pγ, γ 1 q the inner rate of C i and we denote it by q Ci , or simply q i when no confusion is possible. Let T 0 be the dual tree of ρ, i.e., the vertices p1q, . . . , pkq of T 0 are in bijection with the exceptional curves C 1 , . . . , C k and there is an edge between piq and pjq if and only if C i X C j ‰ H. The vertex p1q, corresponding to the curve C 1 , is the root of T 0 . We weight each vertex piq by the corresponding inner rate q i " q Ci .

A non-root vertex with one incident edge is called a leaf. By classical theory on plane curves, we have: Proposition 6.6. q 1 " 1 and the inner rates along a path from the root to a leaf are strictly increasing. Example 6.7. Consider the curve germ pγ, 0q with Puiseux expansion y " f pxq " x 3{2 x7{4

. Its resolution graph T 0 , with exceptional curves labeled in order of blow-up, is pictured on the left. Its arrow represents the strict transform γ ˚, which meets C 5 at a smooth point.

´3 C1 ´3 C3 ´2 C2 ´1 C5 ´2 C4 1 C1 3 2 C3 2 C2 7 4 C5 5 2 C4
By changing the coefficient of x 7{4 in f pxq one obtains a curve germ γ 1 whose strict transform γ 1 ˚meets at a different point of C 5 . The contact exponent of γ and γ 1 , and hence the inner rate q 5 of C 5 , is 7{4. Similarly, replacing the coefficient of x 3{2 in f pxq by nonzero coefficients other than 1 gives curves whose strict transforms meet C 3 at distinct smooth points and which have pairwise contact 3{2. The inner rates q i for all C i 's are shown in the picture on the right.

Geometric decomposition and inner contacts in C 2

For each i " 1, . . . , k let N pC i q Ă Y be a disk-bundle neighborhood of C i and set

N pC i q :" N pC i q ď j‰i N pC j q.
Let h : C 2 Ñ C be a linear projection such that the point h ˚X ρ ´1p0q P C 1 is a smooth point of C 1 , where ˚means strict transform by ρ. In the neigbourhood U of ρ ´1p0q given by |h| ă η with η sufficiently small, we have a decomposition of Y into pieces as follows:

-for each i " 1 . . . , k, ρpN pC i qq is a Bpq i q-piece B i ; -a B-piece corresponding to a leaf of T 0 is a D-piece; -for each q i ă q j with C i X C j ‰ H, A ij :" ρpN pC i q X N pC j qq is an Apq i , q j q-piece.

We may assume our generic linear form h : C 2 Ñ C has coordinates chosen so the y-axis is the kernel of h. For t P C, we set F t :" tpx, yq : x " tu.

When q i ‰ 1, the fibers of the Bpq i q-piece B i are the intersections B i X F t and by Proposition 6.6, each connected component of the fiber B i X F t is a disc with discs inside removed, its diameter is Θp|t| qi q, and it shrinks uniformly as t tends to 0. An Apq i , q j q-piece has annular fibers by intersecting with F t , t P C.

This induces a decomposition of F t as the union

F t " ď i pB i X F t q Y ď pA ij X F t q.
Consider the graph F defined as follows: the vertices are in bijection with the connected components of Ť i pB i X F t q and the edges between two vertices are in bijection with the annuli of Ť pA i,j X F t q between the two corresponding components of Ť i pB i X F t q. We weight each vertex by the corresponding inner rate and we then have a natural surjective graph-map

E : F Ñ T 0 ,
i.e., EpV pFqq " V pT 0 q and the image by E of an edge pv, v 1 q of F is the edge pEpvq, Epv 1 qq of T 0 . Moreover, E preserves the inner rates, i.e., for each vertex pvq of F the corresponding inner rate q v satisfies: q v " q Epvq . If pνq is a vertex of F, we denote by F t,ν the corresponding component of the decomposition of F t and we denote its inner rate by q ν . Definition 6.8. We call the decomposition of the germ pC 2 , 0q as the union of germs:

pC 2 , 0q " ď iPV pT0q B i Y ď pi,jqPEpT0q A i,j
the geometric decomposition of pC 2 , 0q associated to ρ.

We call the decomposition of the real 2-plane F t as the union of the F t,ν for pνq P V pFq and intermediate annuli F t X A i,j the geometric decomposition of F t associated to ρ and we call the graph F weighted by inner rates its graph. Example 6.9. Using example 6.7 we show below a schematic picture of F t next to the graph F. The gray and white pieces are respectively component slices of A-and B-pieces. We now explain how the geometric decomposition of F t associated with a suitable ρ enables one to compute the contact between two real arcs pδ, 0q and pδ 1 , 0q in pC 2 , 0q.

Note that q o pδ, δ 1 q " q i pδ, δ 1 q since we are in C 2 . If δ and δ 1 have distinct tangent semi-lines, then q i pδ, δ 1 q " 1. Assume that δ and δ 1 have the same tangent real semi-line and that in suitable coordinates px, yq of C 2 , pδ, 0q and pδ 1 , 0q have parametrizations of the form δptq " pt, yptqq and δ 1 ptq " pt, y 1 ptqq. Let ρ be a sequence of blow-ups such that the strict transforms δ ˚and δ 1 meet ρ ´1p0q at two distinct smooth points of ρ ´1p0q. Lemma 6.10. Let pνq and pν 1 q be the two vertices of F such that δptq and δ 1 ptq intersect respectively F t,ν and F t,ν 1 . Then q i pδ, δ 1 q " q ν,ν 1 , where q ν,ν 1 denotes the maximum among minimum of inner rates along paths from pνq to pν 1 q in the graph F (in particular, if pvq " pv 1 q then q v,v 1 " q v ).

Proof. Any path p t between δptq and δ 1 ptq corresponds to a path from pνq to pν 1 q in F which describes the sequence of F t,ν 2 and intermediate annuli crossed by p t , and the length of p t is Θpt q q where q is the minimal inner rate among vertices which are on the path. Since d i pδptq, δ 1 ptqq is the infimum of lengthpp t q among all such paths, this implies q i pδ, δ 1 q ď q ν,ν 1 . Now, choose a path from pνq to pν 1 q maximizing q, so with q " q ν,ν 1 and then, a path p t in F t from δptq to δ 1 ptq realizing it. The path p t has length Θpt q ν,ν 1 q. Therefore q ν,ν 1 ď q i pδ, δ 1 q.

6.4. The Polar Wedge Lemma and the geometric decomposition of a normal surface Definition 6.11. Let pX, 0q Ă pC n , 0q be a complex surface and let N : N X Ñ X be the Nash modification of X (Definition 2.6). The lifted Gauss map r λ : N X Ñ Gp2, C n q is the restriction to N X of the projection of X ˆGp2, C n q on the second factor.

Let : C n Ñ C 2 be a linear projection such that the restriction | X : pX, 0q Ñ pC 2 , 0q is generic. Let Π and ∆ be the polar and discriminant curves of | X . Definition 6.12. The local bilipschitz constant of | X is the map K : X t0u Ñ R Y t8u defined as follows. It is infinite on the polar curve and at a point p P X Π it is the reciprocal of the shortest length among images of unit vectors in T p X under the projection | TpX :

T p X Ñ C 2 .
Let Π ˚denote the strict transform of the polar curve Π by the Nash modification N . Set

B " tx P C n : x C n ď u. Lemma 6.13. Given any neighborhood U of Π ˚X N ´1pB X Xq in N X X N ´1pB X Xq, the local bilipschitz constant K of is bounded on B X pX N pU qq.
Proof. Let κ : Gp2, C n q Ñ R Y t8u be the map sending H P Gp2, C n q to the bilipschitz constant of the restriction | H : H Ñ C 2 . The map κ ˝r λ coincides with K ˝N on N X N ´1p0q and takes finite values outside Π ˚. The map κ ˝r λ is continuous and therefore bounded on the compact set N ´1pB q U . The polar wedge lemma will introduce some particular sets N pU q called polar wedges which will be D-pieces.

Consider the resolution ρ 1 : Y Ñ C 2 which resolves the base points of the family of projections of generic polar curves p pΠ D qq DPΩ and let ρ be ρ 1 composed with some finite sequence of additional blow-ups of points and T 0 the resolution graph of ρ.

Let Π 0 be a component of the polar curve Π of and let ∆ 0 " pΠ 0 q be the corresponding component of the discriminant curve ∆ " pΠq. Let C i be the irreducible component pρ 1 q ´1p0q which intersects ∆ 0 and let pu, vq be local coordinates in Y centered at p " ∆ 0 X pρ 1 q ´1p0q such that v " 0 is the local equation of C. Definition 6.14. The rate q i associated with C i is called the polar rate of Π 0 and ∆ 0 . Lemma 6.15 (Polar Wedge Lemma, [6, Proposition 3.4]). For small α ą 0, consider the disc Dpαq " tu P C : |u| ď αu centered at p " 0 in C i and let Dpαq ˆD2 be the total space of the restriction of the disc bundle N pC i q over Dpαq. Set N ∆0 " ρpDpαq ˆD2 q and let A Π0 pαq be the component of ´1pN ∆0 q which contains Π 0 . Then (i) A Π0 pαq is a Dpq i q-piece, and when q i ą 1, it is fibered by its intersections with the real surfaces th " tu X X, where h : C n Ñ C is a generic linear form; (ii) The strict transform A Π0 pαq ˚by N is a neighborhood of Π 0 in N X which has limit Π 0 as α Ñ 0.

Definition 6.16. The set

Apαq " ď Π0ĂΠ A Π0 pαq
is called a polar wedge around Π, and its image N ∆ pαq by is a ∆-wedge.

Notice that N ∆0 is a Dpq i q-piece inside the q i -piece B i " ρpN pC i qq. We can refine the geometric decomposition of C 2 associated with ρ by decomposing B i into the union of N ∆0 and B i N ∆0 , which is still a Bpq i q-piece. As a consequence of Lemma 6.13 and of the Polar Wedge Lemma 6.15, each component Bpqq (resp. Apq, q 1 q) of this geometric decomposition of C 2 lifts to components of the same type Bpqq (resp. Apq, q 1 q) which are fibered by their intersections with the real surfaces th " tu X X. We obtain a geometric decomposition of the germ pX, 0q as a union of B-and A-pieces. If ∆ 0 is a component of ∆, with the same notations as above, we can now amalgamate each Dpq i q-piece component of ´1pN ∆0 qq with the adjacent component of ´1pB 1

i q, forming a new Bpq i q-piece which is a component of ´1pB i q (see [6, Lemma 13.1]) Summarizing, we then obtain that each piece of the geometric decomposition of C 2 associated with ρ lifts to a union of pieces of the same type and rate, giving a geometric decomposition of pX, 0q as a union of A-and B-pieces. Definition 6.17. We call the decomposition pX, 0q "

ď iPV pT0q ´1pB i q Y ď pi,jqPEpT0q
´1pA i,j q the geometric decomposition of pX, 0q associated with ρ.

Let G be the graph whose vertices are in bijection with the component B-pieces of the decomposition and whose edges are in bijection with intermediate A-pieces in such a way that the edge associated with an A-piece joins the two vertices corresponding to the two B-pieces adjacent to it. We weight each vertex by the rate of the corresponding B-piece. We then obtain a natural surjective graph-map C : G Ñ T 0 .

Inner contacts between real arcs on a normal surface

Let pδ, 0q Ă pC 2 , 0q be a real arc whose strict transform by ρ intersects ρ ´1p0q at a smooth point. We now extend the results of Section 6.3 to compute the inner contact in pX, 0q between two real arcs components δ 1 and δ 2 of ´1pδq.

We choose coordinates : px 1 , . . . , x n q Ñ px 1 , x 2 q and so that δptq " pt, x 2 ptqq. Intersecting the pieces of the geometric decomposition of pX, 0q associated with ρ with the real surface p F t " tx 1 " tu X X, we get a decomposition of p F t . Let p F be the graph whose vertices are in bijection with the components of the intersections of the B-pieces, the edges are in bijection with intermediate annuli and the vertices are weighted by inner rates (we call it the fibergraph). If pνq is a vertex of p F, we will denote by p F t,ν the corresponding component of the decomposition of p F t . The following is an extension of Lemma 6.10. Lemma 6.18. Let pν 1 q and pν 2 q be the two vertices of p F such that δ 1 ptq and δ 2 ptq intersect respectively p F t,ν1 and p F t,ν2 . Then q i pδ 1 , δ 2 q " q ν1,ν2 , where q ν1,ν2 denotes the maximum among minimum of inner rates along paths from pν 1 q to pν 2 q in the fiber-graph p F (again with q ν1,ν2 " q ν1 if pν 1 q " pν 2 q).

Proof. The proof is a straightforward extension of that of Lemma 6.10. Any path p t between δ 1 ptq and δ 2 ptq corresponds to a path from pνq to pν 1 q in p F which describes the sequence of p F t,ν 2 and intermediate annuli crossed by p t , and the length of p t is Θpt q q where q is the minimal inner rate among vertices which are on the path. This implies q i pδ 1 , δ 2 q ď q ν,ν 1 . Now, choose a path from pνq to pν 1 q in p F maximizing q, so with q " q ν,ν 1 and then choose a path p t in p F t from δ 1 ptq to δ 2 ptq realizing it. This path has length Θpt q ν,ν 1 q. Therefore q ν,ν 1 ď q i pδ 1 , δ 2 q.

We also have a natural graph-map respecting inner rates p E : p F Ñ G. To summarize, we have constructed a commutative diagram with four graph-covers respecting inner rates:

p F p E / / p C G C F E / / T 0 6.6.
The graph G and the resolution of pX, 0q.

We use again the notations ρ , T and π 0 : X 0 Ñ X in Remark 3.2 and Definitions 3.3 and 3.5. Consider the pull-back X of ρ and and let α : X 1 Ñ X be the minimal good resolution of X . This induces a resolution π : X 1 Ñ X which factors through X 0 and a projection r : X 1 Ñ Z . We will denote by G the resolution graph of π . The situation is summarized in the following commutative diagram

X 1 r α / / π X 0 π0 X / / X Z ρ / / C 2
Let piq be a vertex of T and C i the corresponding exceptional curve in ρ ´1 p0q. The inverse image of C i by r is a union of k i exceptional curves E i,j , j " 1 . . . , k i of the exceptional divisor of π . So N pC i q lifts by r to k i connected components N pE i,j q, j " 1 . . . , k i where N pE i,j q is a disc neighborhood of E i,j in X 1 . Therefore, the inverse image by of B i " ρ pN pC i qq consists of k i components of the geometric decomposition of pX, 0q. This implies that the graph G is a refinement of G in the sense that we have an inclusion I : V pGq Ñ V pGq between the sets of vertices and the graph G is obtained from G by replacing some strings of valency 2 vertices in G by edges. More precisely, the vertices of G correspond to the irreducible components E ν of the exceptional divisor of π such that r pE ν q is a curve in ρ ´1 p0q. If pνq is a vertex of G, we will also denote pνq the corresponding vertex Ipνq in G and E ν the corresponding component of the exceptional divisor of π . For more details, see Sections 13 and 14 in [START_REF] Birbrair | The thick-thin decomposition and the bilipschitz classification of normal surface singularities[END_REF].

Example 6.19. In this example we will give the four graphs for the simple surface singularity E 8 .

We can assume that E 8 has equation x 2 `y3 `z5 " 0 and then the projection px, y, zq " py, zq is generic, so the discriminant is given by y 3 `z5 " 0. Below is the graph G for E 8 on the left and the resolution graph of the discriminant curve ∆ discriminant on the right. In this example, the graphs G 0 and G coincide. In G the dashed arrows represent the strict transform of the polar, and the dotted arrows represent the strict transform of a generic hyperplane section. In the graph on the right the dashed arrow represents the strict transform of the discriminant. The circled vertices of G are the vertices corresponding to vertices of G by the injection I, and they are weighted by the corresponding inner rates.
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The following picture shows the graphs T , F, G and p F of E 8 . The graph-maps C, E, p C and p E respect the shape and colour of a vertex, i.e., p E of a white vertex with thick boundary is the white vertex with thick boundary in G and so on. Notice that in this case the graphs T , and G are equal, but F and p F differs from them and from each other. For another example, see 11.5. Let pX, 0q Ă pC n , 0q be a normal surface. Let : pX, 0q Ñ pC 2 , 0q be a generic projection. We say pair of vertically aligned real arcs for any pair of distinct real arcs δ 1 , δ 2 on pX, 0q such that pδ 1 q " pδ 2 q.

We use again the notations introduced at the beginning of Section 5: let ρ 1 : Y Ñ C 2 the minimal composition of blow-ups of points which resolves the base points of the family of projections of generic polar curves p pΠ D qq DPΩ . We denote by ∆ ˚the strict transform of the discriminant curve ∆ of by ρ 1 . Proposition 7.2. A normal surface pX, 0q Ă pC n , 0q is LNE if and only if for all generic projections : pX, 0q Ñ pC 2 , 0q, for all real arcs pδ, 0q Ă pC 2 , 0q such that ∆ ˚X δ ˚" H, any pair of vertically aligned arcs δ 1 , δ 2 in ´1pδq satisfies the the arc criterion, i.e., q i pδ 1 , δ 2 q " q o pδ 1 , δ 2 q.

Proof. If pX, 0q is normally embedded, then the vertical arc criterion is a consequence of the arc criterion of Theorem 4.5.

Conversely, assume that any pair of vertically aligned real arcs by a generic projection satisfies the arc criterion. We have to prove that any pair of real arcs also satisfies the arc criterion.

Let δ 1 and δ 2 be a pair of real arcs on X. If their tangent semi-lines are distinct, then q i pδ 1 , δ 2 q " q o pδ 1 , δ 2 q " 1 and the arc criterion is satisfied. We now assume that δ 1 and δ 2 have the same tangent semi-line.

We choose a generic projection : pX, 0q Ñ pC 2 , 0q with polar curve Π such that δ i X Π ˚" H for i " 1, 2, where ˚means strict transform by the Nash modification N . Then we can choose α ą 0 such that the polar wedge Apαq intersects the germs pδ 1 , 0q and pδ 2 , 0q only at 0. Consider the two real arcs σ i " ˝δi : r0, ηq Ñ C 2 . Let P t : r0, 1s Ñ X be the path on X defined as the lifting by with origin δ 1 ptq of the segment S t joining σ 1 ptq and σ 2 ptq. Denote by δ 1 2 ptq the extremity of the path P t . Then pδ 2 , δ 1 2 q is a pair of vertically aligned real arcs on pX, 0q. By hypothesis, it satisfies the arc criterion so we have q i pδ 1 2 , δ 2 q " q o pδ 1 2 , δ 2 q. Assume first that the path P t does not intersect Apαq. By Lemma 6.13, we can choose a real K 0 ě 1 such that the local bilipschitz constant of is bounded by K 0 on B X pX Apαqq.

We then have

δ 1 ptq ´δ1 2 ptq ď d i pδ 1 ptq, δ 1 2 ptqq ď lengthpP t q ď K 0 lengthpS t q ď K 0 δ 1 ptq ´δ2 ptq . Therefore, δ 2 ptq ´δ1
2 ptq ď δ 2 ptq ´δ1 ptq ` δ 1 ptq ´δ1 2 ptq ď p1 `K0 q δ 1 ptq ´δ2 ptq . We then obtain δ 1 ptq ´δ2 ptq ď d i pδ 1 ptq, δ 1 2 ptqq ` δ 1 2 ptq ´δ2 ptq ď p1 `2K 0 q δ 1 ptq ´δ2 ptq , which implies q o pδ 1 , δ 2 q " minpq i pδ 1 , δ 1 2 q, q o pδ 2 , δ 1 2 qq. On the other hand, we have d i pδ 1 ptq, δ 2 ptqq ď d i pδ 1 ptq, δ 1 2 ptqq `di pδ 1 2 ptq, δ 2 ptqq, therefore minpq i pδ 1 , δ 1 2 q, q i pδ 2 , δ 1 2 qq ď q i pδ 1 , δ 2 q. Since q i pδ 1 2 , δ 2 q " q o pδ 1 2 , δ 2 q, we then obtain q o pδ 1 , δ 2 q " minpq i pδ 1 , δ 1 2 q, q o pδ 2 , δ 1 2 qq ď q i pδ 1 , δ 2 q, which implies q o pδ 1 , δ 2 q " q i pδ 1 , δ 2 q since q i pδ 1 , δ 2 q ď q o pδ 1 , δ 2 q. Therefore, the pair δ 1 , δ 2 satisfies the arc criterion for normal embedding.

Assume now that the path P t intersects the polar-wedge Apαq.

Let us treat first the case for α ą 0 sufficiently small. Let A 1 pαq denote the union of components of Apαq which intersect P t . If t is sufficiently small, we have δ 1 ptq R A 1 pαq by choice of , so σ 1 ptq R pA 1 pαqq and also δ 1 2 ptq R A 1 pαq, so σ 2 ptq R pA 1 pαqq. Then we can replace the segment S t by a path S t from σ 1 ptq to σ 2 ptq such that lengthpS 1 t q ď πlengthpS t q and such that the lifting of S 1 t by with extremities δ 1 ptq and δ 1 2 ptq does not intersect Apαq. Then the previous inequalities are modified by a factor of π and we obtain:

δ 1 ptq ´δ2 ptq ď d i pδ 1 ptq, δ 1
2 ptqq ` δ 1 2 ptq ´δ2 ptq ď p1 `2K 0 πq δ 1 ptq ´δ2 ptq , which leads to q o pδ 1 , δ 2 q " q i pδ 1 , δ 2 q by the same arguments as before.

Let us now assume that for all α ą 0, δ 1 2 X Apαq ‰ t0u. Let A 0 pαq be the component of Apαq containing δ 1 2 . Let α 1 ą α and let r σ 2 be a real arc inside pA 0 pα 1 qq such that for all t, r σ 2 ptq P S t and the strict transform of r σ 2 ptq by ρ 1 does not intersect ∆ ˚. Then decreasing α if necessary, we can assume r σ 2 ptq R pA 0 pαqq. Consider the path β 1 t defined as the lifting by with origin δ 2 ptq of the segment β t " rr σ 2 ptq, σ 2 ptqs. Let r δ 2 ptq be the extremity of β 1 t and let r δ 1 2 ptq be the point of P t such that p r δ 1 2 ptqq " r σ 2 ptq. Then r δ 1 2 ptq and r δ 2 ptq are vertically aligned. Since both r δ 1 2 ptq and r δ 2 ptq are outside Apαq, we can apply what we just proved and we obtain q i pδ 1 , r δ 2 q " q o pδ 1 , r δ 2 q. Call q this number and let s the polar rate of A 0 pαq (Definition 6.14).

Since δ 1 and δ 2 have the same tangent semi-line, then σ 2 and r σ 2 also have the same tangent semi-line L. Therefore, we have d o pσ 2 ptq, r σ 2 ptqq " lengthpβ t q " Θpt s q. We then obtain: d i p r δ 2 , δ 2 q ď lengthpβ 1 t q ď K 0 lengthpβ t q " Θpt s q, which implies:

d i pδ 1 , δ 2 q ď d i pδ 1 , r
δ 2 q `di p r δ 2 , δ 2 q " Θpt q q `Θpt s q.

On the other hand, we have Θpt q q `Θpt s q " d o pσ 1 , σ 2 q ď d o pδ 1 , δ 2 q.

Since d o pδ 1 , δ 2 q ď d i pδ 1 , δ 2 q, we obtain d o pδ 1 , δ 2 q " d i pδ 1 , δ 2 q " Θpt q q `Θpt s q, and then q i pδ 1 , δ 2 q " q o pδ 1 , δ 2 q.

Remark 7.3. We proved Proposition 7.2 because it is what we need to prove Proposition 5.3. But with a little more work one can adapt the proof to get a criterion using just one fixed generic projection : pX, 0q Ñ pC 2 , 0q, if one consider all real arcs δ of pC 2 , 0q, even those such that ∆ ˚X δ ˚‰ H. It is worth noting that the statement of Proposition 7.2 can also be easily improved by reducing the criterion to pairs of vertically aligned real arcs corresponding to three fixed generic projections 1 , 2 , 3 : pX, 0q Ñ pC 2 , 0q. Indeed, if 1 is chosen, it suffices to chose 2 and 3 so that p 1 pΠ 2 qq ˚X ∆ 1 " H, p 1 pΠ 3 qq ˚X ∆ 1 " H and p 1 pΠ 2 qq ˚X p 1 pΠ 3 qq ˚" H where ˚means strict transform by ρ 1 1 and where for i " 1, 2, 3, Π i is the polar curve of i and ∆ i " i pΠ i q. Then, for any pair of real arcs δ 1 and δ 2 on pX, 0q, at least one of 1 , 2 or 3 satisfies ∆ i X i pδ 1 q ˚" H and ∆ i X i pδ 2 q ˚" H.

Partner pairs

Let pX, 0q be a normal surface germ and let : pX, 0q Ñ pC 2 , 0q be a generic projection. Let pδ, 0q and pδ 1 , 0q be two real arcs in pC 2 , 0q which have parametrizations of the form δptq " pt, yptqq and δ 1 ptq " pt, y 1 ptqq in suitable coordinates and which meet the discriminant curve ∆ of only at 0. Let δ 1 , δ 2 be a pair of components of the lifting ´1pδq. Let S t be the segment in F t joining δptq and δ 1 ptq. Let P 1,t and P 2,t be the liftings of S t by the cover | p Ft : p F t Ñ F t with origins respectively δ 1 ptq and δ 2 ptq. Denote their extremities by δ 1 1 ptq and δ 1 2 ptq. This defines a pair δ 1 1 , δ 1 2 of distinct components of ´1pδ 1 q.

Definition 8.1. We say that δ 1 1 , δ 1 2 is the partner pair of δ 1 , δ 2 over δ 1 .

Lemma 8.2. Assume that δ 1 , δ 2 has a partner pair δ 1 1 , δ 1 2 such that q i pδ 1 1 , δ 1 2 q ă q i pδ, δ 1 q. If the pair δ 1 , δ 2 satisfies the arc criterion q i pδ 1 , δ 2 q " q o pδ 1 , δ 2 q, then δ 1 1 , δ 1 2 also satisfies it.

Proof. We have d i pδ 1 1 ptq, δ 1 2 ptqq ď lengthpP 1,t q `di pδ 1 ptq, δ 2 ptqq `lengthpP 2,t q.

Since q i pδ 1 1 , δ 1 2 q ă q i pδ, δ 1 q and since for k " 1, 2, we have lengthpP k,t q " Θpt qipδ,δ 1 q q, we then obtain q i pδ 1 1 , δ 1 2 q ě q i pδ 1 , δ 2 q. We also have d i pδ 1 ptq, δ 2 ptqq ď lengthpP 1,t q `di pδ 1 1 ptq, δ 1 2 ptqq `lengthpP 2,t q, which leads to q i pδ 1 1 , δ 1 2 q ď q i pδ 1 , δ 2 q with the same argument. Therefore q i pδ 1 1 , δ 1 2 q " q i pδ 1 , δ 2 q. The inequality d o pδ 1 ptq, δ 2 ptqq ď lengthpP 1,t q `do pδ 1 1 ptq, δ 1 2 ptqq `lengthpP 2,t q gives q o pδ 1 , δ 2 q ě q o pδ 1 1 , δ 1 2 q and d o pδ 1 1 ptq, δ 1 2 ptqq ď lengthpP 1,t q `do pδ 1 ptq, δ 2 ptqq `lengthpP 2,t q leads to q o pδ 1 1 , δ 1 2 q ě q o pδ 1 , δ 2 q. Therefore q o pδ 1 1 , δ 1 2 q " q o pδ 1 , δ 2 q. Since q o pδ 1 , δ 2 q " q i pδ 1 , δ 2 q, then q o pδ 1 1 , δ 1 2 q " q i pδ 1 1 , δ 1 2 q as desired.

Lemma 8.3. Let ρ : Y Ñ C 2 be a sequence of blow-ups of points which resolves the base points of the family of projected polar curves p pΠ D qq DPΩ and let T 0 be the resolution graph of ρ. Let δ a real arc in pC 2 , 0q whose strict transform intersects ρ ´1p0q at a smooth point p and let δ 1 , δ 2 be a pair of vertically aligned arcs over δ. Let δ 1 be another real arc in pC 2 , 0q and let δ 1 1 , δ 1 2 be the partner pair of δ 1 , δ 2 over δ 1 . Let ∆ be the discriminant curve of . We assume that none of δ ˚and δ 1 ˚intersects ∆ ˚and that the pair δ 1 , δ 2 satisfies the arc criterion.

(i) If δ 1 ˚passes through p, then δ 1 1 , δ 1 2 also satisfies the arc criterion; (ii) Let C j be the component of ρ ´1p0q such that p P C j and let pν 1 q and pν 2 q be the two vertices of p F such that δ 1 ptqP p F t,ν1 and δ 2 ptqP p F t,ν2 , so we have pE ˝p Cqpν 1 q " pE ˝p Cqpν 2 q " pjq. Let pν 0 q be a vertex of p F on a path from pν 1 q and pν 2 q such that q ν1,ν2 " q ν0 . Assume q ν0 ă q j and set pj 0 q " pE ˝p Cqpν 0 q. Let T 1 0 Ă T 0 be the connected component of T 0 pj 0 q which contains pjq and set E 1 " Ť

kPV pT 1 0 q C k . If δ 1 ˚X E 1 ‰ H, then δ 1 1 , δ 1 
2 also satisfies the arc criterion.

Proof. (i) Let C j be the component of ρ ´1p0q such that p P C j . Since δ and δ 1 both pass through p, then q i pδ, δ 1 q ą q j . By Lemma 6.18, we have q i pδ 1 1 , δ 1 2 q " q j . Therefore q i pδ, δ 1 q ą q i pδ 1 1 , δ 1 2 q and we then get (i) by applying Lemma 8.2. (ii) By composing ρ with an additional sequence of blow-ups of points, we can assume that δ 1 intersects ρ ´1p0q at a smooth point. Let C j 1 be the component of E 1 such that δ 1 ˚X C j 1 ‰ H. Then we have q j0 ă q j 1 . By assumption we also have q j0 ă q j . Therefore, by Lemma 6.10, we get q i pδ, δ 1 q " q j,j 1 ą q j0 since pjq and pj 1 q are in the same connected component of T 0 pj 0 q. On the other hand, by Lemma 6.18, q i pδ 1 , δ 2 q " q ν1,ν2 " q ν0 " q j0 . We then have q i pδ, δ 1 q ą q i pδ 1 , δ 2 q and we conclude again by applying Lemma 8.2.

LNE along strings

Let : pX, 0q Ñ pC 2 , 0q be a generic projection and let ρ : Y Ñ C 2 be a sequence of blow-ups of points which resolves the base points of the family of projected polar curves p pΠ D qq DPΩ . Let E 1 be the union of components of ρ ´1p0q which are not ∆-curves. Let pδ, 0q Ă pC 2 , 0q be a real arc such that δ ˚X E 1 ‰ H and such that δ ˚intersects ρ ´1p0q at a smooth point. Lemma 9.1. Let C be the component of ρ ´1p0q such that C X δ ˚‰ H and let q C be its inner rate. Let δ 1 and δ 2 be two real arc components of ´1pδq and consider the two points p 1 " δ 1 X N ´1p0q and p 2 " δ 2 X N ´1p0q where ˚means strict transform by the Nash modification N . Assume that q i pδ 1 , δ 2 q " q C . Then the pair of arcs pδ 1 , δ 2 q satisfies the arc criterion q i pδ 1 , δ 2 q " q o pδ 1 , δ 2 q if and only if r λpp 1 q ‰ r λpp 2 q, where r λ denotes the lifted Gauss map (Definition 6.11).

Proof. By (i) of Lemma 8.3, it suffices to prove the result when δ is the real slice of a complex curve γ whose strict transform by ρ is a curvette of C. We may assume that our coordinates are px, yq and that δ is parametrized by δptq " pt, yptqq. By Lemma 6.18, the assumption q i pδ 1 , δ 2 q " q C is equivalent to asking that in the fiber-graph p F, the two vertices pν 1 q and pν 2 q such that δ i ptq P p F t,νi are joined by a path along which inner rates are ě q C . Set q " q C . Then γ has a Puiseux expansion of the form y "

k ÿ i"1 a i x pi `ax q p1 `xq 2 bpxqq,
with a, a i P C ˚, 1 ď p 1 ă p 2 ă ¨¨¨ă p k ă q, 1 ă q 2 and where the higher order terms ax q`q 2 bpxq P Ctx 1{n u contain only non essential exponents. Let q 1 and q 2 be two rational numbers such that q 1 ă q ă q 2 and such that any branch of the discriminant curve ∆ of with Puiseux expansion of the form y " ř k i"1 a i x pi `h.o., where h.o. means higher order terms, satisfies the following property: the first exponent ą p k is not inside the interval rq 1 , q 2 s. Set αpxq " ř k i"1 a i x pi . This is equivalent to asking that the strict transforms by ρ of the curves with Puiseux expansion y " αpxq `xq 1 with q 1 P rq 1 , q 2 s intersects ρ ´1 p0q along a union of curves C u1 Y . . . Y C ur in E 1 which corresponds to a string pu 1 q ´pu 2 q ´¨¨¨´pu r q in the resolution tree of ρ . Then δ is contained in the real 3-dimensional semialgebraic germ A with boundary defined by: A " tpt, yq P R `ˆC : t q2 ď |y ´αptq| ď t q1 u .

If n is the multiplicity of γ then A is the union of n real 3-dimensional semialgebraic germs with boundary which are pairwise disjoint outside 0. We write pA, 0q for the one containing δ.

Let m be the multiplicity of pX, 0q. Then ´1pAq consists of m semialgebraic germs pA piq , 0q, i " 1, . . . , m, which are pairwise disjoint outside 0. For each i, the restriction : A piq Ñ A is an inner bilipschitz homeomorphism by the Polar Wedge Lemma 6.15. Let 1 i : pt, yq Þ Ñ 1 i pt, yq P A piq be the inverse map of | A piq . Assume δ 1 Ă A p1q and δ 2 Ă A p2q .

For s P C such that t q2 ď |s| ď t q1 , consider the function g : A Ñ p0, `8q defined by gpt, sq " 1 1 pt, αptq `asq ´ 1 2 pt, αptq `asq . Set s 0 " t q p1 `tq 2 bptqq. We have in particular: gpt, s 0 q " δ 1 ptq ´δ2 ptq Let us give an estimate of gpt, s 0 q. Fix a small t P R `and let us write the Taylor formula for s Þ Ñ gpt, sq at the point s 0 . We get for s P C such that t q2 ď |s| ď t q1 : gpt, s 0 q ´gpt, sq " ps 0 ´sqa 1 ptq `ps 0 ´sq 2 a 2 ptq `ps 0 ´sq 3 a 3 ptq `¨¨¨, where a 1 ptq equals the distance between the lines L p1q t " T δ1ptq X X tx " t, y P Ru and L p2q t " T δ2ptq X tx " t, y P Ru in the Grassmanian Gp1, R 2n q.

Set s " t q 1 where q ă q 1 ď q 2 . Then s 0 ´tq 1 " t q p1 `tq 2 bptqq ´tq 1 " Θpt q q. We then have:

gpt, s 0 q ´gpt, t q 1 q " Θpt q qa 1 ptq `Θpt 2q qa 2 ptq `Θpt 3q qa 3 ptq `. . . , p1q

By Lemma 6.18, we have q i pδ 1 , δ 2 q " q and d i p 1 1 pt, αptq `at q 1 q, 1 2 pt, αptq `at q 1 qq " Θpt q 1 q .

The latter equality implies: gpt, t q 1 q " 1 1 pt, αptq `at q 1 q ´ 1 2 pt, αptq `at q 1 ď d i p 1 1 pt, αptq `at q 1 q, 1 2 pt, αptq `at q 1 qq " Θpt q 1 q Then dividing the equality (1) by d i pδ 1 ptq ´δ2 ptqq " Θpt q q, we get: δ 1 ptq ´δ2 ptq d i pδ 1 ptq ´δ2 ptqq " Θpa 1 ptqq.

Set P 1 " r λpp 1 q and P 2 " r λpp 2 q. As t tends to zero, a 1 ptq tends to the distance between the two real lines L 1 " P 1 X tx " t, y P Ru and L 2 " P 2 X tx " t, y P Ru. If P 1 " P 2 , we then have L 1 " L 2 so lim tÑ0 a 1 ptq " 0 and we get q i pδ 1 , δ 2 q ą q 0 pδ 1 , δ 2 q.

Since the components of ´1pAq which contain A p1q and A p2q are tangent to the same line L, then by Whitney's Lemma [START_REF] Whitney | Tangents to an analytic variety[END_REF]Theorem 22.1], we have L Ă P 1 and L Ă P 2 . Therefore, if P 1 ‰ P 2 , then we also have L 1 ‰ L 2 , which means that lim tÑ0 a 1 ptq ‰ 0. In that case, we then have q i pδ 1 , δ 2 q " q 0 pδ 1 , δ 2 q. Let pνq be a vertex of p F and let δ be a real arc on pX, 0q such that for all t P p0, ηq, δptq P p F ν,t . If pνq is not a P-node, then the intersection point of the strict transform δ ˚of δ by the Nash modification of pX, 0q is a point p which does not depend on the choice of δ. We set r λpνq :" r λppq, where r λ is the lifted Gauss map. Let now pν 1 q and pν 2 q be two vertices of p F which are in the same connected component of p F minus its P-nodes and let δ 1 and δ 2 be two real arcs such that for all t P p0, ηq, δ 1 ptq P p F ν1,t and δ 2 ptq P p F ν2,t . Then the strict transforms of δ 1 and δ 2 by the Nash modification N of pX, 0q intersect the exceptional divisor at the same point p, and we then have r λpν 1 q " r λpν 2 q.

Proof. The "only if" direction of Theorem 5.3 is a direct consequence of Theorem 4.5.

Let us prove the "if" direction. We assume that for all generic projections : pX, 0q Ñ pC 2 , 0q, any pair of components δ 1 , δ 2 over any test arc δ of satisfies the arc criterion q i pδ 1 , δ 2 q " q o pδ 1 , δ 2 q.

Let δ : r0, ηq Ñ C 2 be a real arc such that ∆ ˚X δ ˚" H where ˚means strict transform by ρ , and let δ 1 and δ 2 be two components of ´1pδq. We assume that δ is not a test arc. By Proposition 7.2, we have to prove that q i pδ 1 , δ 2 q " q o pδ 1 , δ 2 q.

Assume first that δ ˚intersects the component C j of pρ q ´1p0q at a smooth point p of pρ q ´1p0q. Let δ 1 be a test arc passing through p and let δ 1 1 , δ 1 2 be the partner pair of δ 1 , δ 2 over δ 1 . Since δ 1 is a test arc, the pair δ 1 1 , δ 1 2 satisfies the arc criterion, then applying (i) of Lemma 8.3, we obtain that the pair δ 1 , δ 2 also satisfies it.

Assume now that δ ˚intersects pρ q ´1p0q at an intersection point p " C j 1 X C j 2 . Let us compose ρ with an additional sequence of blow-ups of points α so that δ ˚intersects pρ αq ´1p0q at a smooth point and let C j be the component of pρ ˝αq ´1p0q which intersects δ ˚.

In the tree T , this replaces the edge between pj 1 q and pj 2 q by a string S " pj 1 q ´¨¨¨´pjq ṕj 2 q. We assume q j 1 ă q j 2 . Let δ 1 and δ 2 be test arcs at pj 1 q resp. pj 2 q. Let δ 1 1 , δ 1 2 be the partner pair of δ 1 , δ 2 over δ 1 , and the same for δ 2 1 , δ 2 2 over δ 2 . For i " 1, 2, let pν i q, pν 1 i q and pν 2 i q be the vertices of p F such that δ i ptq P p

F t,νi , δ 1 i ptq P p F t,ν 1 i and δ 2 i ptq P p F t,ν 2 i .
The string S lifts to two strings S 1 and S 2 in p F with extremities respectively pν 1 1 q and pν 2 1 q and pν 1 2 q and pν 2 2 q. Case 1. Assume that pν 2 1 q and pν 2 2 q can be joined by a path p along which inner rates are ě q j 2 . We then have q ν 2 1 ,ν 2 2 " q j 2 and also q ν 1 1 ,ν 1 2 " q j 1 since one obtains a simple path from pν 1 1 q to pν 1 2 q by appending S 1 and S 2 to p. Since there are no adjacent ∆-nodes in the tree T , one of pj 1 q or pj 2 q, say pj 2 q, is not a ∆-node (the arguments will be the same when pj 2 q is a ∆-node and not pj 1 q). Since q ν 2 1 ,ν 2 2 " q j 2 and since the pair pδ 2 1 , δ 2 2 q satisfies the arc criterion, then Lemma 9.1 implies that r λpν 2 1 q ‰ r λpν 2 2 q. Since the vertices pν i q and pν 2 i q are in the same connected component of p F minus its P-nodes, then we have r λpν 1 1 q " r λpν 1 q and r λpν 1 2 q " r λpν 2 q. Therefore, r λpν 1 q ‰ r λpν 2 q. Applying again Lemma 9.1 in the converse direction, we obtain that δ 1 , δ 2 satisfies the arc criterion.

Case 2. Assume that pν 2 1 q and pν 2 2 q cannot be joined by a path p along which inner rates are ě q j 2 . Let pν 0 q be a vertex of p F on a simple path from pν 1 1 q to pν 1 2 q such that q ν 1 1 ,ν 1

2 " q ν0 and set pj 0 q " pE ˝p Cqpν 0 q. Since any path from pν 2 1 q to pν 2 2 q is obtained by appending the strings S 1 and S 2 to a path from pν 1 q to pν 2 q, we have

q ν 2 1 ,ν 2 2 " q ν 1 1 ,ν 1
2 " q j0 ă j 2 . Then we can apply (ii) of Lemma 8.3 to the vertex pj 2 q: since the pair pδ 2 1 , δ 2 2 q satisfies the arc criterion then the pair pδ 1 , δ 2 q also satisfies it.

11. Enhanced Proposition 5.3 Definition 11.1. Let : pX, 0q : pC 2 , 0q be a generic projection and let δ be a real test arc for . A component p δ of ´1pδq is principal if it is a real slice of a principal component (Definition 3.6) of ´1pγq. A nodal test arc is a test arc δ which is a real slice of a nodal test curve (Definition 3.4). Proposition 11.2 (Enhanced Proposition 5.3). A normal surface pX, 0q is LNE if and only if for all generic projections : pX, 0q Ñ pC 2 , 0q and for all nodal test arcs δ for , any pair of principal components δ 1 , δ 2 of ´1pδq satisfies the arc criterion q i pδ 1 , δ 2 q " q o pδ 1 , δ 2 q. Definition 11.3. An L-node of the fiber-graph p F is a vertex pνq such that the image of p Epνq by the injection I : V pGq Ñ V pGq is a L-node of the resolution graph G of π (see Section 6.6). Equivalently, pνq is an L-node of p F if and only if for all t P p0, ηq, pH X Xq X p F ν,t ‰ H where H is a hyperplane section of X.

The proof of Proposition 11.2 will use the following characterization of principal component in terms of fiber-graph and which follows immediately from the definitions. Lemma 11.4. Consider the subgraph p F 1 of p F defined as the union of all simple paths in p F connecting pairs of vertices among L-and P-nodes. Let δ be a test arc. A component p δ of ´1pδq is principal if and only if the vertex pνq of p F such that δptqP p F ν,t is a vertex of p F 1 .

In the twin paper [START_REF] Neumann | Fractions lipschitziennes d'une algèbre analytique complexe et saturation de Zariski[END_REF], we prove that any minimal surface singularity is LNE by using Theorem 3.8. In the following example, we illustrate the gain by using Proposition 11.2 instead of Proposition 5.3 on a specific minimal singularity.

Example 11.5. Let pX, 0q be a minimal surface singularity with dual resolution graph Γ given in Example 1 of [START_REF] Bondil | Discriminant of a generic projection of a minimal normal surface singularity[END_REF] and Example 5.6 of [START_REF] Bondil | Fine polar invariants of minimal singularities of surfaces[END_REF]. In the picture below we have to the left the dual graph of the minimal resolution of pX, 0q that factors through both the blow-up and the Nash modification, and on the right the resolution tree of the discriminant. The arrows in the left graph indicates the strict transform of the polar and on the right the strict transform of the discriminant.

´4 ´3 ´2 ´4 ´3 ´2 ´1 ´2 ´2 ´2 ´3 ´4 ´1 ´1 ´2 ´1
There are infinitely many minimal singularities with Γ as its dual resolution graph, but as is shown in [START_REF] Neumann | Fractions lipschitziennes d'une algèbre analytique complexe et saturation de Zariski[END_REF] they all have the same bilipschitz geometry. The discriminant of pX, 0q has equation px 4 `y4 qpx 2 `y5 qpx `y2 `iy 3 qpx `y2 ´iy 3 qpy 2 `x4 q " 0 (Example 5.6 of [START_REF] Bondil | Fine polar invariants of minimal singularities of surfaces[END_REF]). Notice that the graph on the right above is the graph of the resolution ρ 1 . To get the graph of ρ we have to blow up all edges between ∆-nodes. In this case the only edge between ∆-nodes is the edge between the root vertex and adjacent vertex with weight ´1. Hence in the graph above we have blown up this edge to create a separation-node. In the following picture, the left graph is p F and the right graph is F. The graph-map p C preserves the shape and colour of a vertex, i.e., p C of a white vertex with thick boundary in p F is the white vertex with thick boundary in F and so on. All the vertices of F but the white one with thin boundary are nodes. The subgraph of p F consisting of the vertices connected by the thick edges is p F 1 . The graph p F has 36 vertices while p F 1 has only 12 vertices. Consider a test arc δ at the central vertex of F with inner rate 2 (its strict transform is represented by an arrow) on the picture. Its lifting by has 6 components, whose strict transform are represented by the 6 arrows in p F. Therefore, to prove LNE by using Proposition 5.3, we would have to test the arc criterion on each of the 15 pairs of arcs among these components. Now, only 3 of the three arrows are attached to p F 1 , i.e., correspond to principal components of ´1pδq. Therefore, to prove LNE by using Proposition 11.2 instead of Proposition 5.3, we just have to test the criterion on pairs of arcs among these 3 principal components, so we just have to test 3 pairs of arcs instead of 15. 

2

F

Notice that each component of the complementary subgraph p F p F 1 is a rooted tree oriented from its root by strictly increasing inner rates and attached to p F 1 by a single edge adjacent to its root.

The proof of Proposition 11.2 needs the following key Lemma.

Lemma 11.6. Let pj 1 q be a vertex of T . Let T 1 be a maximal connected subgraph of T whose vertices pkq ‰ pj 1 q satisfy that the simple path from pkq to the root vertex passes through pj 1 q. Let p F 1 and p F 2 be two distinct components of p F pE ˝p Cq ´1pj 1 q with pE ˝p Cqp p F 1 q " pE ˝p Cqp p F 2 q " T 1 . Assume that for all pairs of vertices pν 1 1 q and pν 1 2 q adjacent to p F 1 and p F 2 respectively, all generic projections : pX, 0q Ñ pC 2 , 0q and all test arcs δ 1 at pj 1 q, any pair of components δ 1 1 , δ 1 2 over δ 1 with δ 1 i ptq P p F t,ν 1 i satisfies the arc criterion. Then for all generic projection : pX, 0q Ñ pC 2 , 0q and for all test arcs δ at a vertex pjq of T 1 , any pair of arcs δ 1 , δ 2 over δ with δ i ptq P p F t,νi with pν i q P V p p F i q satisfies the arc criterion.

Proof. Let p F 1 and p F 2 be the two components of p F pE ˝p Cq ´1pj 1 q which contain pν 1 q and pν 2 q respectively. First, notice that if pν 1 1 q and pν 2 1 q are two vertices of pE ˝p Cq ´1pj 1 q adjacent to p F 1 , then there is a simple path inside p F 1 from pν 1 1 q and pν 2 1 q and this path then has its inner rates all ě q j 1 . The same is true for two vertices adjacent to p F 2 with a path inside p F 2 . Therefore, if pν 1 1 q and pν 1 2 q are two vertices of pE ˝p Cq ´1pj 1 q adjacent respectively to p F 1 and p F 2 , then q ν 1 1 ,ν 1 2 does not depend on the choice of pν 1 1 q and pν 1 2 q. We set q " q ν 1 1 ,ν 1 2 . Notice that when q ă q j 1 , the proof of the lemma is a direct application of (ii) of Lemma 8.3. We now give the proof in all cases.

We have q ν1 " q ν2 " q j ą q j 1 and for i " 1, 2, any simple path from pν i q to a vertex of pE ˝p Cq ´1pj 1 q has strictly decreasing rates. Moreover, any simple path p from pν 1 q to pν 2 q in p F must go through a vertex pν 1 1 q pν 1 q adjacent to p F 1 and then to a vertex pν 1 2 q pν 2 q adjacent to p F 2 (maybe pν 1 1 q " pν 1 2 q pν 1 q " pν 2 q). This implies that q ν1,ν2 " q in the graph p F. Let δ 1 be a test curve at pj 1 q, let δ 1 1 , δ 1 2 be the partner pair of δ 1 , δ 2 over δ 1 and let pν 1 1 q and pν 1 2 q be the two vertices of pE ˝p Cq ´1pj 1 q such that δ 1 1 ptq P p F t,ν 1 1 and δ 1 2 ptq P p F t,ν 1 2 . By Lemma 6.18 we therefore obtain q i pδ 1 1 , δ 1 2 q " q ν 1 1 ,ν 1

2 " q ν1,ν2 " q i pδ 1 , δ 2 q, so q i pδ 1 , δ 2 q " q. Let us now prove that q o pδ 1 1 , δ 1 2 q " q. :

: Here misprint : this should be qopδ 1 , δ 2 q " q Choose coordinates of C 2 so that " px, yq and F t " tx " tu with t P R `. For i " 1, 2, let p S t,i be the surface inside p F t defined as Ť vPV p p Fiq p F t,v union the intermediate annuli corresponding to the edges of p F i and the edges joining p F i to vertices of pE ˝p Cq ´1pj 1 q. The two surfaces p S t,1 and p S t,2 are disjoint. By hypothesis, any test curve δ 1 at pE ˝p Cqpν 1 1 q satisfies the arc criterion, i.e., for any pair of components δ 1 , δ 2 of ´1pδ 1 q, we have q o pδ 1 1 , δ 1 2 q " q i pδ 1 1 , δ 1 2 q " q. In particular, this holds for any test curve δ 1 such that δ 1 ptq P BS t , where S t is the disc in F t defined by S t " p p S t,1 q " p p S t,2 q and B means boundary. Then, using the same arguments as in the proof of Proposition 7.2, we obtain that the outer distance between the boundaries B p S t,1 and B p S t,2 is a Θpt q q. Therefore, the images 1 p p S t,1 q and 1 p p S t,2 q by a generic projection 1 : pX, 0q Ñ pC 2 , 0q given by 1 " px, zq consist of two discs of diameter Θpt q q at distance Θpt q q from each other inside 1 pF ν 1 ,t q Ă tx " tu. Since 1 pδ 1 q Ă 1 p p S t,1 q and 1 pδ 2 q Ă 1 p p S t,2 q, we then have q o p 1 pδ 1 q, 1 pδ 2 qq " q.

Let γ be a plane curve germ such that δ is a real slice of γ and take for 1 : pX, 0q Ñ pC 2 , 0q a projection which is also generic for the complex curve γ 0 " ´1pγq. Then the restriction 1 | γ0 : γ 0 Ñ 1 pγ 0 q is a bilipschitz homeomorphism for the outer metric (Theorem 2.2). In particular, we have q o pδ 1 , δ 2 q " q o p 1 pδ 1 q, 1 pδ 2 qq. Therefore q o pδ 1 , δ 2 q " q.

Summarizing, we then obtain q o pδ 1 , δ 2 q " q " q i pδ 1 , δ 2 q q o pδ 1 1 , δ 1 2 q " q " q i pδ 1 1 , δ 1 2 q, proving the lemma.

Proof of Proposition 11.2. The "only" if direction is a direct consequence of Proposition 5.3. Hence we only need to prove the "if" direction. Assume that for all generic projections , any pair of principal components over a nodal test arc for satisfies the arc criterion. By Proposition 5.3 we just need to show that this implies that for all test arcs δ for , any pair of components δ 1 , δ 2 of ´1pδq also satisfies the arc criterion q i pδ 1 , δ 2 q " q o pδ 1 , δ 2 q.

By assumption, any pair of principal components over a nodal test arc satisfies the arc criterion. Hence we first assume that δ is a test curve at a vertex pjq of T which is not a node, and that δ 1 and δ 2 are principal components. For i " 1, 2, let pν i q be the vertex of p F such that δ i X p F t,νi ‰ H. Let S be the string in T minus the nodes which contains pjq. Since ´1pδq contains a principal component, then the two vertices pj 1 q and pj 2 q adjacent to S are nodes. We assume q j 1 ă q j ă q j 2 . Let S 1 and S 2 be the two strings in p F containing respectively pν 1 q and pν 2 q and such that pE ˝p CqpS i q " S. For each i " 1, 2, let pν 1 i q and pν 2 i q be the two nodes of p F adjacent to S i which map respectively to pj 1 q and pj 2 q by C ˝p E (we may have ν 1 1 " ν 1 2 or ν 2

1 " ν 2 2 ). Assume first that q ν1,ν2 " q j . Since the strings S 1 and S 2 are disjoint except perhaps at their extremities, this means that there is a simple path from pν 2 1 q to pν 2 2 q with rates ě q j 2 and that q ν 1 1 ,ν 1 2 " q j 1 and q ν 2 1 ,ν 2 2 " q j 2 . By definition of ρ , at least one of pj 1 q and pj 2 q is not a ∆-node. Assume that pj 1 q is not a ∆-node. Let δ 1 be a test curve at pj 1 q and let pδ 1 1 , δ 1 2 q be the partner pair of pδ 1 , δ 2 q over δ 1 . Since δ 1 and δ 2 are principal it follows that δ 1 1 and δ 1 2 are principal and hence by hypothesis pδ 1 1 , δ 1 2 q satisfies the arc criterion. Then, by Lemma 9.1, the values of the Gauss map r λ at pν 1 1 q and pν 1 2 q are distinct. Since for each i " 1, 2, the vertices pν 1 i q and pν i q are in the same connected component of p F minus its P-nodes, then they correspond to the same value of the Gauss-map. Summarizing, we obtain that r λ has distinct values at pν 1 q and pν 2 q. Applying Lemma 9.1 in the other direction, we obtain that pδ 1 , δ 2 q satisfies the arc criterion. When pj 1 q is a ∆-node, then pj 2 q is not a ∆-node and one proves that pδ 1 , δ 2 q satisfies the arc criterion by the same arguments as in the previous case.

Assume now that q ν1,ν2 ă q j , so we have q ν1,ν2 ď q j 1 . Since pjq and pj 2 q are in the same connected component of T pj 1 q and since the pair pδ 1 1 , δ 1 2 q satisfies the arc criterion, then pδ 1 , δ 2 q also satisfies the arc criterion by Lemma 8.3 (ii).

Since we have proved that all pairs of principal components satisfy the arc criterion, we must prove that if one of δ 1 and δ 2 , say δ 1 , is not principal, then the pair δ 1 , δ 2 also satisfies q i pδ 1 , δ 2 q " q o pδ 1 , δ 2 q. Let pν i q be the vertex of p F such that δ i X p F t,νi ‰ H. Since δ 1 is not principal, pν 1 q is in the complementary subgraph p F p F 1 . Let p F 1 be connected component of

p F p F 1 containing pν 1 q.
It is a tree and there is a unique vertex pν 1 1 q of p F 1 adjacent to p F 1 . Then pν 1 1 q is a node of p F and the vertex pj 1 q " pC ˝p Eqpν 1 1 q is a node of T . We use again the notations introduced in the proof of Lemma 11.6: let p S t,1 be the part of p F t associated with p F 1 and set S t " p p S t,1 q. Let Π be the polar curve of . Since Π X p S t,1 " H, the restriction | p St,1 : p S t,1 Ñ S t is a regular connected covering over a disc, and hence, an isomorphism. This implies that pν 2 q is not a vertex of p F 1 , so it is in a connected component p

F 2 of p F pE ˝p Cq ´1pj 1 q distinct from p F 1 .
Assume first that there is a vertex pν 1 2 q adjacent to p F 2 which is in p F 1 . Then all vertices adjacent to p F 2 also are in p F 1 . Since pν 1 1 q is in p F 1 , then all vertices adjacent to p F 1 also are in p F 1 . Therefore, by hypothesis, any pair of components δ 1 1 , δ 1 2 at such vertices over any test curve at pj 1 q satisfies the arc criterion. Then, applying Lemma 11.6 we obtain that pδ 1 , δ 2 q also satisfies the arc criterion.

Assume now that all vertices pν 1 2 q adjacent to p F 2 are in p F p F 1 , i.e., δ 1 2 is not principal. The component r F 2 of p F p F 1 containing pν 2 q is a tree and there is a unique vertex pν 2 2 q of p F 1 adjacent to r F 2 . Set pj 2 q " pE ˝p Cqpν 2 2 q. Then pν 2 2 q is a node of p F. Let r F 1 be the connected component of p F pE ˝p Cq ´1pj 2 q containing pν 1 q. Since pν 1 1 q is in p F 1 and since pν 1 1 q P r F 1 , then any vertex pν 2 1 q adjacent to r F 1 is also in x F 1 . Therefore, by hypothesis, any pair of components δ 1 1 , δ 1 2 at such vertices pν 2 1 q and pν 2 2 q over any test curve at pj 2 q satisfies the arc criterion. Then, applying twice Lemma 11.6 we obtain first that any pair pδ 1 1 , δ 1 2 q at vertices pν 1 1 q and pν 1 2 q over any test curve δ 1 at pj 1 q satisfies the arc criterion, and then that pδ 1 , δ 2 q also satisfies the arc criterion.

We then have proved that for all test curves δ, any pair of components δ 1 , δ 2 of ´1pδq where at least one of δ 1 , δ 2 is not principal satisfies the arc criterion.

Inner contacts between complex curves on a normal surface

We need the following proposition in the proof of Theorem 3.8. Proposition 12.1. Let pγ, 0q and pγ 1 , 0q be two irreducible complex curves on pX, 0q tangent to the same complex line parametrized by x P C, let δ 1 , . . . , δ r be the components of the real slice γ X tx " t P R `u and let δ 1 1 , . . . , δ 1 s be those of γ 1 X tx " t P R `u. Then we have: q out pγ, γ 1 q " max k,l q o pδ k , δ 1 l q and q inn pγ, γ 1 q " max k,l q i pδ k , δ 1 l q.

Proof. Assume pX, 0q Ă pC n , 0q and call px, x 2 , . . . , x n q the coordinates of C n . We can assume that the tangent lines at 0 to γ and γ 1 are not included in the hyperplane tx " 0u. Therefore the outer contact q out pγ, γ 1 q can be computing by taking intersection with balls with corners S 1 t ˆB2n´2 α with α ą 0 sufficiently large instead of standard spheres S 2n´1 t , i.e., we have q out pγ, γ 1 q " ord t d o pγ X t|x| " tu, γ 1 X t|x| " tuq.

Moreover, γ and γ 1 admit Puiseux expansions px, x 2 , . . . , x n q " px, f 2 pxq, . . . , f n pxqq with f i P Ctx 1{r u and px, x 2 . . . , x n q " px, g 2 pxq, . . . , g n pxqq with g i P Ctx 1{s u respectively. Then the intersection γ X t|x| " tu is a uniform braid obtained as the trajectory of the r points γ X tx " tu over the circle S 1 t " tx " te iθ : θ P Ru through the Puiseux expansion, and we have the same for γ 1 . Therefore, q out pγ, γ 1 q can be computed by measuring distances inside the hyperplane tx " tu, i.e., q out pγ, γ 1 q " ordptq d o pγ X tx 1 " tu, γ 1 X tx " tuq. Since by definition γ X tx " tu " tδ k ptq, k " 1 . . . , ru and γ 1 X tx " tu " tδ 1 l ptq, l " 1 . . . , su, we then obtain q out pγ, γ 1 q " max k,l q out pδ k , δ 1 l q.

When working in C 2 , inner and outer distances coincide and we then have q inn pγ, γ 1 q " max k,l q i pδ k , δ 1 l q. When n ą 2, then we can extend the above argument working with a geometric decomposition of pX, 0q. Consider a generic projection : pX, 0q Ñ pC 2 q which is also generic for the curve γ Y γ 1 and let ρ : Y Ñ C 2 be the minimal sequence of blow-ups of points which resolves the basepoints of the family of projected polar curves p pΠ D qq DPΩ and which resolves the curve pγq Y pγ 1 q. Then consider the geometric decomposition of pX, 0q obtained by lifting by the pieces of the geometric decomposition associated with ρ. Then γ and γ 1 are trajectories of the r points γ X tx " tu and γ 1 X tx " tu inside the B-pieces containing them, and since the pieces of the geometric decomposition are fibered by their intersections with tx " tu, which shrink faster than linearly when t tends to 0, then q out pγ, γ 1 q can be computed by measuring inner distance between γ and γ 1 inside the fibers p F t " X X tx " tu. This proves q inn pγ, γ 1 q " max k,l q i pδ k , δ 1 l q.

13. The LNE test -resolution

In this section, we construct a resolution µ 0 : W 0 Ñ X which will be used in the proof of the "only if" direction of Theorem 3.8. It has the following property: it is a good resolution for every principal component over every nodal test curve for every generic projection.

We use again the notations introduced in Section 6.6. Let ξ : X 1 Ñ W be the morphism obtained by blowing down iteratively the exceptional p´1q-curves which are not on simple paths joining vertices of G 1 0 (Definition 3.6). We then obtain a resolution µ : W Ñ X which factors through π 0 : X 0 Ñ X by a morphism β : W Ñ X 0 .

Lemma 13.1. The morphism β does not depend on . We set β 0 " β , W 0 " W and µ 0 " µ , so we have a commutative diagram:

X 1 r ξ / / W 0 µ0 ! ! β0 / / X 0 π0 X Z ρ / / C 2
Proof. β is a sequence of blow-ups of points which are all double points of the successive exceptional divisors. Since the families of curves pΠ D q DPΩ and p D 1 pΠ D qq D,D 1 PΩˆΩ are equisingular in terms of strong simultaneous resolution, this sequence of double points does not depend on the choice of the generic . Definition 13.2. We call µ 0 : W 0 Ñ X the LNE test -resolution of pX, 0q. We denote by Γ 0 the graph of µ 0 and by Γ 1 0 the subgraph of Γ 0 which consists of the union of simple path joining L-or P-nodes.

By construction, we have the following characterization of the principal components over nodal test curves: Lemma 13.3. Let be a generic projection and let γ be a nodal test curve for . A component p γ of ´1pγq is principal if and only if its strict transform by µ 0 is a curvette of a component E v of µ ´1 0 p0q such that pvq P V pΓ 1 0 q.

14. Proof of Theorem 3.8

Proof of the "only if" direction of Theorem 3.8. Assume pX, 0q is LNE. Let : pX, 0q Ñ pC 2 , 0q be a generic projection. Let γ 1 and γ 2 be a pair of complex curves on pX, 0q such that pγ 1 q " pγ 2 q and pγ i q ˚X Π ˚" H. If γ 1 and γ 2 do not have a common tangent line, then q out pγ 1 , γ 2 q " 1 and then q inn pγ 1 , γ 2 q " q out pγ 1 , γ 2 q " 1. If γ 1 and γ 2 have a common tangent line, let δ p1q (resp. δ p2q ) be a component of the real slice of γ 1 (resp. γ 2 ) as in Lemma 12.1. Since pX, 0q is LNE, then q i pδ p1q , δ p2q q " q o pδ p1q , δ p2q q by Theorem 4.5, and then by Lemma 12.1 we get q inn pγ 1 , γ 2 q " q out pγ 1 , γ 2 q and Condition (2 ˚) is satisfied.

We now consider a nodal test curve pγ, 0q and a principal component p γ of ´1pγq. Let us prove that Condition (1 ˚) is satisfied, i.e., that multpp γq " multpγq.

Let piq be the node of T such that γ ˚is a curvette of C i . The strict transform p γ ˚of p γ by µ 0 is a curvette of an irreducible component E of pµ 0 q ´1p0q (Lemma 13.3). Let us again denote by E the irreducible curve in X 1 which maps surjectively on E by ξ . Then we have r pEq " C i .

Let 1 : pX, 0q Ñ pC 2 , 0q be another generic projection for pX, 0q which is also generic for the curve ´1pγq (Definition 2.1). By Lemma 13.1, r 1 pEq is the component C 1 i of ρ ´1 1 p0q corresponding to the node piq of T . We then have q Ci " q C 1 i . The strict transform of 1 pp γq by ρ 1 intersects C 1 i at a smooth point p of pρ 1 q ´1p0q. Let γ 1 be the ρ 1 -image of a curvette of C 1 i which meets C 1 i at a point distinct from p. We then have q out p 1 pp γq, γ 1 q " q C 1 i " q Ci , so there are Puiseux expansions of 1 pp γq and γ 1 which coincide for exponents ă q Ci and which have distinct coefficients for x q C i .

Assume that multpp γq ‰ multpγq, i.e., p γ does not satisfy Condition (1 ˚). Then multpp γq " k multpγq where k is the degree of the restriction | p γ : pp γ, 0q Ñ pγ, 0q. Since 1 is a generic projection for p γ, then it is a bilipschitz homeomorphism from p γ to 1 pp γq for the outer metric (Theorem 2.2) so these two curves have same multiplicity ([18]). Therefore we have multp 1 pp γqq " k multpγq. Since the strict transforms of γ and γ 1 by ρ and ρ 1 are curvettes of C i and C 1 i respectively and since these exceptional curves correspond to the same node piq of T , then multpγq " multpγ 1 q. We therefore obtain multp 1 pp γqq " k multpγ 1 q. Since γ 1 is a curvette of C 1 i , then all the characteristic Puiseux exponents of γ 1 are ď q Ci . Since the Puiseux expansions of γ 1 and 1 pp γq coincide up to exponent q Ci , we then obtain that 1 pp γq admits a characteristic exponent q ą q Ci . After change of coordinates if necessary, we can assume that " px, yq, 1 " px, zq and that γ is tangent to the x-axis. We consider the real slices of the curves by intersecting them with tx " t P R `u. Since q is a characteristic exponent of 1 pp γq, there exists two real arcs t Þ Ñ p 1 ptq and t Þ Ñ p 2 ptq in the real slice of 1 pp γq such that d o pp 1 ptq, p 2 ptqq " Θpt q q. Lifting p 1 and p 2 by 1 , we obtain two real arcs t Þ Ñ δ 1 ptq and t Þ Ñ δ 2 ptq inside the real slice of p γ. Since 1 | p γ : p γ Ñ 1 pp γq is a bilipschitz map for the outer metric, then q o pδ 1 , δ 2 q " q o pp 1 , p 2 q " q.

We claim pδ 1 ptqq " pδ 2 ptqq. Indeed, assume the contrary and let q 1 be the rational number defined by d o p pδ 1 ptqq, pδ 2 ptqqq " Θpt q 1 q. Since is the restriction of a linear projection, we have q 1 ě q and then q 1 ą q Cν . On the other hand, pδ 1 q and pδ 2 q are distinct components of the real slice γ X tx " tu, therefore q 1 is one of the characteristic exponents of γ. So we have q 1 ď q Ci . Contradiction.

Since pδ 1 q " pδ 2 q, then δ 1 and δ 2 are tangent to the same semi-line and we get q i pδ 1 , δ 2 q " q Cν by Lemma 6.18. Since q ą q C , then q i pδ 1 , δ 2 q ă q o pδ 1 , δ 2 q so the pair pδ 1 , δ 2 q does not satisfy the arc criterion (Theorem 4.5) and pX, 0q is not LNE. Contradiction.

The commutative diagram E ˝p C " p E ˝C has the following remarkable property which will be used in the proof of the "if" direction of Theorem 3.8 Lemma 14.1. Let m be the multiplicity of pX, 0q. There exists an integer k ą 0, such that (i) E : F Ñ T is the quotient map of a cyclic action of Z{kZ on the graph F;

(ii) p E : p F Ñ G is the quotient map of a cyclic action of Z{kmZ on the graph p F; (iii) the graph-map p C : p F Ñ F is equivariant for these actions.

Proof. Set " px, yq where h " x is a generic linear form on pX, 0q. By the method described in [7, Section 1], one can construct, using the resolution ρ , a quasi-periodic representative φ : F t Ñ F t of the monodromy of the Milnor fibration of h which has the following property: for each vertex pvq of T , φ exchanges cyclically the connected components of B v X F t , for each edge pvq ´pv 1 q of T , φ exchanges cyclically the annular connected components of A v,v 1 X F t , and there is an integer k ą 0 such that φ k is the identity on B v X F t and a Dehn twist on each annulus component of A v,v 1 X F t . This action induces a cyclic action of Z{kZ on the graph F whose quotient map is E : F Ñ T . This method to construct φ is presented in [START_REF] Du | Filtration par le poids et monodromie entière[END_REF] in the case of the Milnor fibration of a holomorphic function germ f : pC 2 , 0q Ñ pC, 0q, but the same method applies in the more general setting of a holomorphic function pX, 0q Ñ pC, 0q where pX, 0q is a normal surface germ. Applying this method to the holomorphic function h ˝ : pX, 0q Ñ pCq and to the resolution π : X 1 Ñ X (where h " x), we construct a quasi-periodic representative φ : p F t Ñ p F t with order km of the monodromy of h ˝ which induces a cyclic action of Z{kmZ on the graph p F whose quotient map is p E : p F Ñ G. By construction, the graph-map p C : p F Ñ F is equivariant for these actions.

Proof of the "if" direction of Theorem 3.8. Assume that Conditions (1 ˚) and (2 ˚) are satisfied (we will prove at the end that Condition (2 ˚) is not needed for test curves at ∆nodes). First, notice that Condition (1 ˚) implies that for all nodal test curve γ and all principal component p γ of ´1pγq, the restriction | p γ : p γ Ñ γ has degree 1, i.e., it is bijective. Let δ be a nodal test arc and let δ 1 and δ 2 be two distinct principal components of ´1pδq. Let γ be the nodal test curve such that δ is a real slice of γ and let γ 1 and γ 2 be the two components of ´1pγq containing respectively δ 1 and δ 2 . Let pν 1 q and pν 2 q be the two vertices of p F such that δ i ptq P p F t,νi .

Case 1. Assume that q ν1,ν2 " q j . This implies q i pδ 1 , δ 2 q " q j by Lemma 6.18. Let δ 1 1 (resp. δ 1 2 ) be a component of the real slice γ 1 X tx " tu (resp. γ 2 X tx " tu).

Assume that pδ 1 1 q " pδ 1 2 q and let pν 1 1 q and pν 1 2 q be the two vertices of p F such that δ 1 i ptq P p F t,ν 1 i . By condition (1 ˚), if δ 1 1 is a real slice γ 1 X tx " tu, there is a unique component δ 1 2 of the real slice γ 2 X tx " tu such that pδ 1 1 q " pδ 1 2 q, and by Lemma 14.1, we have q ν1,ν2 " q ν 1 1 ,ν 1 2 . Therefore, q i pδ 1 1 , δ 1 2 q " q i pδ 1 , δ 2 q " q j by Lemma 6.18. Assume now that pδ 1 1 q ‰ pδ 1 2 q. Let S t be the segment in C 2 joining pδ 1 1 q to pδ 1 2 q and let δ 2 2 ptq be the extremity of the lifting of S t with origin δ 1 1 ptq. Then δ 2 2 is a component of the real slice γ 2 X tx " tu such that pδ 2 2 q " pδ 1 2 q, and using the arguments of the proof of Lemma 7.2, we have q o pδ 1 1 , δ 1 2 q " minpq i pδ 1 1 , δ 2 2 q, q o pδ 2 2 , δ 1 2 qq. Then a fortiori q i pδ 1 1 , δ 1 2 q ď q o pδ 1 1 , δ 1 2 q ď q i pδ 1 1 , δ 2 2 q. Since pδ 1 1 q and pδ 2 2 q " pδ 1 2 q are distinct component of a real slice of γ, then q i p pδ 1 1 q, pδ 1 2 qq equals one of the essential Puiseux exponents of γ, which are all ď q j . Since q i pδ 1 1 , δ 2 2 q ď q i p pδ 1 1 q, pδ 2 2 qq, then q i pδ 1 1 , δ 1 2 q ď q i p pδ 1 1 q, pδ 1 2 qq, so we then obtain q i pδ 1 1 , δ 1 2 q ď q j . Therefore, q inn pγ 1 , γ 2 q " q i pδ 1 , δ 2 q (cf. Proposition 12.1). Using Condition p2˚q, we then have q o pδ 1 , δ 2 q ď q out pγ 1 , γ 2 q " q inn pγ 1 , γ 2 q " q i pδ 1 , δ 2 q. Therefore q o pδ 1 , δ 2 q ď q i pδ 1 , δ 2 q, and then q o pδ 1 , δ 2 q " q i pδ 1 , δ 2 q since the converse inequality is always true.

Lemma 2 . 7 [ 19 ,

 2719 Part III, Theorem 1.2], [10, Section 2]. A morphism f : Y Ñ X factors through Nash modification if and only if it has no base points for the family of polar curves.
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 7 Vertically aligned arcs Definition 7.1 (Vertical arc criterion).

10 .

 10 Proof of Proposition 5.3 Definition 10.1. A P-node of the fiber-graph p F is a vertex pνq such that the image of

p Epνq by the injection I : V pGq Ñ V pGq is a P-node of the resolution graph G of π (see Section 6.6). Equivalently, pνq is a P-node of p F if and only if for all t P p0, ηq, Π X p F ν,t ‰ H, where Π denotes the polar curve of a generic projection of pX, 0q.

The proof will use the relation between the P-nodes of p F and the lifted Gauss map. Let us explain this first.

Case 2. Assume now that q ν1ν2 ă q j and consider a simple path in p F from pν 1 q to pν 2 q such that q ν1,ν2 is the minimal inner rate along it and let pνq be the vertex on it such that q ν " q ν1,ν2 . Set pj 1 q " pE ˝p Cqpνq. For any test curve γ 1 at pj 1 q and any test arc δ 1 Ă γ 1 , we can apply Case 1 to any pair of δ 1 1 , δ 1 2 over δ 1 such that δ 1 1 ptq and δ 1 2 ptq are in p F t,ν and we get q i pδ 1 1 , δ 1 2 q " q o pδ 1 1 , δ 1 2 q. Then using Lemma 11.6, we conclude q i pδ 1 , δ 2 q " q o pδ 1 , δ 2 q.

Inner contacts on a normal surface and resolution

In this last section, we state and prove an analog of Lemma 6.18 in terms of complex curves and resolution which is very useful to compute inner rates between complex curves on a normal surface germ using resolution and then to check condition (2 ˚) of Theorem 3.8. First, let us introduce a generalization of the inner rates of Definition 6.5. Lemma 15.1. Let π : X 1 Ñ X be a resolution of X and let E be an irreducible component of the exceptional divisor π ´1p0q. Let γ and γ 1 be two complex curve germs in pX, 0q whose strict transforms by π are curvettes of E meeting E at two distinct points. Then q inn pγ, γ 1 q is independent of the choice of γ and γ 1 . Definition 15.2. We set q E " q inn pγ, γ 1 q and we call q E the inner rate of E.

Proof. Let : pX, 0q Ñ pC 2 , 0q be a generic projection for pX, 0q which is also generic for the curve γ Y γ 1 and let ρ : Y Ñ C 2 be the minimal sequence of blow-ups defined as in the proof of Proposition 12.1. There is a component C of ρ ´1p0q which intersect both pγq ˚and pγ 1 q ˚. Let q C be its inner rate. Then the piece ρpN pCqq of the associated geometric decomposition of C 2 lifts by to a union of Bpq C q-pieces, one of them being of the form πpN pEqq. Therefore, q inn pγ, γ 1 q " q C . We then have the following consequence of Proposition 12.1 and Lemma 6.18. Proposition 15.3. Let γ and γ 1 be two complex curves on pX, 0q. Consider a resolution π : X 1 Ñ X which factors through the Nash modification and through the blow-up of the maximal ideal and which is a resolution of the complex curve γ Y γ 1 and set

G be the resolution graph of π whose vertices pvq are weighted by the inner rates introduced in Definition 15.2. Let pvq and pv 1 q be the vertices of G such that γ ˚X E v ‰ H and γ 1 ˚X E v 1 ‰ H. Then q inn pγ, γ 1 q " q v,v 1 where q v,v 1 is the maximum among minimum of inner rates along paths from pvq to pv 1 q in the graph r G.

Proof. By Lemma 12.1, we have q inn pγ, γ 1 q " max k,l q i pδ k , δ 1 l q where the δ k (resp. δ 1 l ) are the components of a real slice of γ (resp. γ 1 ).

First, notice that the statements and proofs of Lemmas 6.18 and 14.1 stay the same if one replaces the resolution ρ and the associated geometric decompositions of pC 2 , 0q, pX, 0q, F and p F by any sequence of blow-ups of points ρ : Y Ñ C 2 which resolves the basepoints of the family of projected polar curves p pΠ D qq DPΩ . As in the proof of Proposition 12.1, consider a generic projection : pX, 0q Ñ pC 2 q which is also generic for the curve γ Y γ 1 and let ρ : Y Ñ C 2 be the minimal sequence of blow-ups of points which resolves the basepoints of the family of projected polar curves p pΠ D qq DPΩ and which resolves the curve pγq Y pγ 1 q. We will use the same notations as before for the graphs of the associated geometric decompositions, in particular the graph-map p E : p F Ñ G. If pvq and pv 1 q are two vertices of G, we will denote by q v,v 1 the maximal among minimal rates along simple paths in G between the vertices pvq and pv 1 q. Since ρ resolves the curve pγq Y pγ 1 q, then there are two vertices pvq and pv 1 q in G such that γ is contained in the B-piece B v and γ 1 is contained in the B-piece B v 1 . As a consequence of Lemma 14.1, the map p E : p F Ñ G satisfies the following property: if p is a simple path in G from the vertices pvq to pv 1 q and if pνq and pν 1 q are two vertices in p F such that p Epνq " pvq and p Epν 1 q " pv 1 q, then there exists m P N ˚such that the lifting by p E of mp with origin pνq is a simple path p p from pνq to pν 1 q in p F. Let p be a path in G between the vertices pvq and pv 1 q such that the minimal inner rate along p equals q v,v 1 . Consider two components δ Ă γ and δ 1 Ă γ 1 of the real slices. Let pνq and pν 1 q be the two vertices of p F such that δptq P p F t,ν and δ 1 ptq P p F t,ν 1 . Lemma 6.18 extends with the same statement and the same proof to a computation of inner contacts using the new graph r F instead of F: q i pδ, δ 1 q equals q ν,ν 1 where q ν,ν 1 equals the maximum of minimum inner rates among all simple paths in r F from pνq to pν 1 q. Using the remark above, we obtain q v,v 1 ď q ν,ν 1 . Now, take a pair δ, δ 1 such that q i pδ, δ 1 q " q inn pγ, γ 1 q (Lemma 12.1) and take a path p p in p F which realizes q ν,ν 1 . Then p p projects by p E to a path p whose support is a simple path from pvq to pv 1 q. Therefore q ν,ν 1 ď q v,v 1 , and the previous inequality gives then q ν,ν 1 " q v,v 1 . Then applying Lemma 12.1, we obtain q inn pγ, γ 1 q " q v,v 1 , where this number is computed in the graph G.

As in Section 6.6, there is again a natural injection I : V pGq Ñ V p r Gq. We denote again by pvq and pv 1 q the images Ipvq and Ipv 1 q. By construction, the sequence of inner rates along a string in r G between two consecutive vertices Ipvq and Ipv 1 q is strictly monotone. Therefore, q v,v 1 computed in the graph G equals the number q v,v 1 computed in the graph r G. This proves the proposition.