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1 Introduction

The authors of [1] introduced ‘alpha space’, a special case of a Jacobi transform [3–5],
as a means to study correlation functions g(z) of one-dimensional conformally invariant
systems. In this paper we discuss a natural two-dimensional version of this construction and
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discuss how it can be used to analyze correlation functions g(z, z̄) that have a convergent
decomposition in two-dimensional (global) conformal blocks. For simplicity we will restrict
ourselves to correlation functions of identical operators, but we believe that our results can
easily be extended to the more general case.

In the next section we recall the one-dimensional definitions of [1] and propose the two-
dimensional extension. Alpha space appears to be particularly useful for finding the OPE
coefficients of the conformal block decomposition in closed form, as we will demonstrate
by proving some exact identities. In section 3 we show that we can easily derive some
of the well-known ‘lightcone bootstrap’ results for conformal correlators with a twist gap
in the t-channel. We believe that alpha space could also be helpful in the analysis of
subleading terms related to the exponentation of anomalous dimensions and the summation
of entire Regge trajectories, which we illustrate by working out the leading order effects of
exponentiation.

In some sense our alpha space transform is inherently Lorentzian because it is an in-
tegral transform over the square where 0 < z, z̄ < 1. What is not built in, therefore, is the
single-valuedness of correlation functions in Euclidean signature, i.e., the requirement that
the spins of the conformal blocks must be integers. This makes it manifestly different from
the density that is defined using harmonic analysis in [6] and which is now known to admit
an analytic continuation in spin through the ‘Lorentzian inversion formula’ of [2]. However
we show in section 4 that it is nevertheless possible to establish a connection between the
densities. To do so we will define a slightly different integral transform of conformal corre-
lators which only works if the spins are integers. We will show that our alpha space results
can be used to determine the meromorphicity properties of this density, but also that some
simple contour pulling directly relates it to the Lorentzian inversion formula of [2]. One
may view this as providing a (heuristic) derivation that the Lorentzian inversion formula
indeed reproduces the conformal OPE coefficients for integer and sufficiently large spins
— but now starting from alpha space rather than from the Euclidean inversion formula.

One important question not addressed here is the existence of an alpha space transform
in more than two dimensions. We hope to address this in the near future. See [7] for a
preview and also [8, 9] for related developments.

2 Alpha space in two dimensions

Consider first an integrable function f(z) defined for 0 < z < 1. Recall that in [1] the
one-dimensional alpha space transform was defined as

f̂(α) =
∫ 1

0

dz

z2 f(z)Ψα(z) , (2.1)

with

Ψα(z) = 1
2
(
Q(α)kα+1/2(z) +Q(−α)k−α+1/2(z)

)
= 2F1

(1
2 + α,

1
2 − α, 1,

z − 1
z

)
,

Q(α) = 2Γ(−2α)
Γ(1

2 − α)2 ,

kh(z) = zh2F1(h, h, 2h, z) .

(2.2)

– 2 –



J
H
E
P
1
2
(
2
0
2
0
)
0
4
8

The functions Ψα(z) have the special property that there is no (logarithmic) branch cut at
z = 1 and have been normalized such that Ψα(1) = 1. We claim that the Ψα(z) for pure
imaginary α form a complete basis in a suitable function space, which implies that f(z)
should be recoverable from the inverse transform,

f(z) =
∫

[dα]2Ψα(z)
Q(±α) f̂(α) , (2.3)

with the integral along the imaginary α axis. Here and below we use the conventions

[dα] = dα

2πi , Q(±α) = Q(α)Q(−α) , (2.4)

and more generally for a function X(α) we will use X(±α) to denote the product
X(α)X(−α). As illustrative examples, let us list the following one-dimensional alpha
space transforms:

zp ⇔
Γ(p− 1

2 ± α)
Γ(p)2 (2.5)

zp

(1− z)q ⇔
∫

[ds]
Γ(−s)Γ(s+ 1

2 ± α)Γ(1− q + s)Γ(p− 1− s)
Γ(s+ 1)Γ(1

2 ± α)Γ(p− q)
(2.6)

(
z

1− z

)p
⇔

Γ(1− p)Γ(p− 1
2 ± α)

Γ(p)Γ(1
2 ± α)

(2.7)

kβ+1/2(z) ⇔ Q(−β)
2

( 1
β − α

+ 1
β + α

)
, (2.8)

with the third expression obtainable as a limit of the second one. Further examples are dis-
cussed in appendix A. The last equation shows how conformal blocks are encoded as simple
poles in f̂(a) and this makes alpha space particularly suitable to immediately recover the
conformal block decomposition of a given function f(z, z̄). As an example, in appendix B
we use alpha space to prove the non-trivial conformal block decomposition appearing in
the ‘remarkable exact identity’ stated in equation (1.2) of [10].

In this note we consider functions f(z, z̄) defined on the Lorentzian square (where z
and z̄ are independent and 0 < z, z̄ < 1) and obeying f(z, z̄) = f(z̄, z). For these functions
we define, in analogy with [1], an alpha space transform as

f̂(α, ᾱ) =
∫ 1

0

dz

z2

∫ 1

0

dz̄

z̄2 Ψα(z)Ψᾱ(z̄)f(z, z̄) (2.9)

and whose inverse transform we claim to exist and be equal to

f(z, z̄) =
∫

[dα]
∫

[dᾱ] 4Ψα(z)Ψᾱ(z̄)
Q(±α)Q(±ᾱ) f̂(α, ᾱ) . (2.10)

These are the two defining equations that provide the starting point for the analyses below.
Our functions f(z, z̄) will be assumed to have a convergent two-dimensional s-channel

conformal block decomposition given by

f(z, z̄) =
∑
n

λ2
nG

(Jn)
∆n

(z, z̄) ,

G
(J)
∆ (z, z̄) = kh(z)kh̄(z̄) + kh(z̄)kh̄(z)

(
h = ∆− J

2 , h̄ = ∆ + J

2

) (2.11)
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and with kh(z) already defined in (2.2). The link between this conformal block decom-
position and the alpha space decomposition is the following. Since f̂(α, ᾱ) is even and
symmetric in its arguments we may rewrite (2.10) as

f(z, z̄) =
∫

[dα]
∫

[dᾱ]
kα+1/2(z)kᾱ+1/2(z̄)
Q(−α)Q(−ᾱ) f̂(α, ᾱ) , (2.12)

after which we can deform the contours of integration into the right half planes and pick
up poles along the real α and ᾱ axis. Notice that 1/Q(−α) is regular for Re(α) > −1/2
so there are no kinematical poles to worry about. Instead we only get contributions from
‘twin poles’ in the alpha space density, which are of the form

f̂(α, ᾱ) ⊃ R

(α− h+ 1
2)(ᾱ− h̄+ 1

2)
+ (α↔ ᾱ) . (2.13)

These give rise to a conformal block in position space,

f(z, z̄) ⊃ λ2 (kh(z)kh̄(z̄) + (z ↔ z̄)) = λ2G
(h̄−h)
h̄+h (z, z̄) , (2.14)

with a coefficient
λ2 = 4R

Q(−h+ 1
2)Q(−h̄+ 1

2)
. (2.15)

We can observe the following map between α and ᾱ and the more conventional ways of
labelling a conformal representation:

α = h− 1
2 = ∆− J − 1

2 ,

ᾱ = h̄− 1
2 = ∆ + J + 1

2 .

(2.16)

From its definition (2.9) it is clear that f̂(α, ᾱ) is invariant under Weyl reflections:

f̂(α, ᾱ) = f̂(−α, ᾱ) = f̂(α,−ᾱ) = f̂(ᾱ, α) , (2.17)

and therefore the two twin poles of (2.13) are always part of a set of eight twin poles for
every conformal block. For large enough h and h̄ these ‘shadow twin poles’ will sit at
negative α or negative ᾱ and therefore not be picked up if we close the integration contours
in the right half planes.

Let us comment on the special status of the identity operator which sits at α = ᾱ =
−1/2. To include this operator one should add a small additional contour to the integral
where both α and ᾱ go around −1/2 so they pick up the pole in [Q(−α)Q(−ᾱ)]−1 at that
point, if desired with a mirror contour at α = ᾱ = 1/2 to make the whole expression even
in α and ᾱ again. This subtlety is symptomatic of a more general problem: for physical
four-point functions in unitary CFTs the integral in (2.9) often does not converge because of
divergences along the boundary of the integration region. We refer to [1] for a prescription
on how to deal with these issues.

– 4 –
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3 The lightcone bootstrap

To gain some intuition for the alpha space transform in two spacetime dimensions we
discuss how to recover the familiar lightcone bootstrap results of [11, 12].

3.1 Large alpha behavior in one dimension

An important ingredient for the following discussion will be a result of [1] pertaining to
the one-dimensional alpha transform f̂(α) of a function f(z). Roughly speaking, if

f(z) = (1− z)−ρ(1 +O(1− z)) , (3.1)

with ρ not an integer, then

f̂(α) = (−α2)ρ−1 Γ(1− ρ)
Γ(ρ) (1 +O(α−2)) . (3.2)

for large and purely imaginary α. Indeed, since Ψα(1) = 1 it is simple to see that the large
imaginary α behavior of f̂(α) is related to the z → 1 limit of f(z), and the precise match
can then easily be recovered by considering the examples in (2.8).

In more detail, we believe that the above statement should be understood in the same
sense as the claim that the Fourier transform of a function f(x) that behaves like (x2)−∆

for small x is given by |p/2|2∆−1√πΓ(1/2 − ∆)/Γ(∆) for large real p. In Fourier space
subtleties arise (a) when ∆ is a non-positive integer and we cannot conclude anything
about the large p expansion, (b) from delta-function-like terms supported at x = 0 which
would correspond to the addition of arbitrary polynomials in p, and (c) for ∆−1/2 a positive
integer, when the position-space distribution is singular and after suitable regularization
we find logarithmic behavior in momentum space.

For the alpha space transform case (a) occurs when ρ is a non-positive integer and in
that case we similarly cannot conlude anything about the large ρ behavior. Furthermore,
we explain in appendix A that polynomials in alpha space correspond to delta-function-like
terms supported at z = 1 in position space which is entirely analogous to case (b). Finally,
case (c) occurs when ρ is a positive integer; the logarithmic behavior of the (regularized)
alpha space transform can be found by taking a limit in (2.8) and subtracting a polynomial
part.

What interests us more than the large imaginary alpha behavior are the OPE co-
efficients, here encoded as poles which (by the assumption that f(z) has a convergent
conformal block decomposition with real scaling dimensions) lie along the real alpha axis.
In order to investigate them it is convenient to define

discα[f̂(α)] := 1
2πi lim

ε→0

(
f̂(α+ iε)− f̂(α− iε)

)
, (3.3)

which is a sum of delta functions since f̂(α, ᾱ) has poles on the real α axis.1 To connect
the large imaginary alpha behavior (3.2) to the asymptotic behavior of discα[f̂(α)] we can

1For example, discα[α−1] = −δ(α). In one-dimensional alpha space the residues have the opposite sign
as the OPE coefficients, so this discontinuity would normally be positive.
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offer the following crude derivation. First we use a dispersion relation trick to find that2

f̂(α) =
∫ ∞

0
dβ

2β
β2 − α2discβ [f̂(β)]

=
∫ ∞

0
ds eα

2s
(∫ ∞

0
dβ 2βe−β2sdiscβ [f̂(β)]

)
.

(3.4)

Plugging in the behavior (3.2) for large imaginary α we recognize that we can apply the
Hardy-Littlewood Tauberian theorem (first applied to OPE data in [13]) to learn that∫ ∞

0
dβ 2βe−βsdiscβ [f̂(β)] ∼ s−ρ

Γ(ρ) , (3.5)

for small s and up to pieces analytic in s. This is a precise way of saying that, for large β,

discβ [f̂(β)] ≈ β2ρ−2

Γ(ρ)2 , (3.6)

in an averaged sense. The prefactor 1/Γ(ρ)2 is interesting. First of all, for ρ a positive
integer the intermediate steps are not valid and would need regularization, but our final
result is regular and we believe it accurately describes the asymptotic behavior of the OPE
coefficients after all. Secondly, as before we learn that the asymptotic behavior of the
discontinuity is effectively zero when ρ is a non-positive integer. This time, however, the
prefactor has double zeroes and therefore we can take a ρ-derivative of both sides to find
that any z → 1 behavior of the form

(z − 1)k or (z − 1)k log(z − 1) , with k ∈ {0, 1, 2, . . .} , (3.7)

contributes zero to the asymptotic behavior of the discontinuity. This, of course, is precisely
the behavior called ‘Casimir regular’ introduced in [10]. As explained there, it makes
intuitive sense because this position-space behavior can easily be engineered by a finite
linear combination of s-channel blocks, for which discβ [f̂(β)] would vanish identically for
sufficiently large β.

3.2 Leading order

Let us return to the two-dimensional alpha space transform. For identical operators we
expect the z̄ → 1 limit of our correlation function to be dominated by the unit operator in
the t channel, which is |z/(1−z)|2∆φ . The alpha space transform of the holomorphic part is∫ 1

0

dz

z2

(
z

1− z

)∆φ

Ψα(z) =
Γ(∆φ − 1

2 ± α)Γ(1−∆φ)
Γ(1

2 ± α)Γ(∆φ)
. (3.8)

The large imaginary ᾱ behavior of the alpha space density is correspondingly

f̂(α, ᾱ) = (−ᾱ2)∆φ−1
(

Γ(∆φ − 1
2 ± α)Γ(1−∆φ)2

Γ(1
2 ± α)Γ(∆φ)2 +O(ᾱ−#)

)
. (3.9)

2Writing a subtracted dispersion relation does not significantly change the argument. Such subtractions
are necessary if ρ > 1 or if (3.2) does not hold along every non-real ray in the complex alpha plane. If f̂(α)
is not polynomially bounded for large non-real α then our argument does not work; it would be interesting
to show that this can never happen if f(z) represents a physical correlation function.

– 6 –
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In this equation we indicated how we expect the corrections to be power-law suppressed,
with an exponent # that we will determine below. In terms of the discontinuity
discᾱ[f̂(α, ᾱ)] the behavior (3.9) then yields∫ ∞

e−ᾱsdiscᾱ[f̂(α, ᾱ)] ∼ Γ(2∆φ − 1)Γ(1−∆φ)
s2∆φ−1Γ3(∆φ)

Γ(∆φ − 1
2 ± α)

Γ(1
2 ± α)

+ s-analytic, as s → 0,

(3.10)
which is a precise way of saying that for large ᾱ

discᾱ[f̂(α, ᾱ)] ≈ ᾱ2(∆φ−1) Γ(∆φ − 1
2 ± α)Γ(1−∆φ)

Γ(1
2 ± α)Γ3(∆φ)

. (3.11)

This expression shows that for asymptotically large ᾱ the operator spectrum is supported
at the double-twist values α = ∆φ − 1

2 + n, a result familiar from the lightcone bootstrap.
Notice that this result holds only up to pieces analytic in s which may come from isolated
poles in ᾱ and which correspond to the Casimir regular terms as we reviewed above.

It is perhaps worth pointing out that our derivation used only the z̄ → 1 behavior of
the correlation function, which we claim to be related to the large ᾱ behavior. Unlike the
position-space analysis, we saw no need to take the z → 0 limit as well. It is therefore nat-
ural to claim that our result remains valid in any regime where the t channel identity dom-
inates, which in particular would include the deep Euclidean regime z, z̄ → 1 which corre-
sponds to α and ᾱ both large. It would be interesting to see if alpha space can be a stepping
stone for a more precise analysis of the asymptotics of the OPE data, perhaps following the
ideas in [14]. Notice that our density f̂(α, ᾱ) does not have any kinematic poles, unlike the
density defined via the Euclidean inversion formula, which might simplify the derivations.

3.2.1 Translation to OPE coefficients

Equation (3.11) only provides the ᾱ discontinuity in an averaged sense. However, spins
are required to be even integers in a physical correlation function of identical operators
and therefore the residue of a pole in (3.11) at α = ∆φ − 1

2 + n for some integer n, as
a function of ᾱ, can have poles (at most) at ᾱ = ∆φ − 1

2 + n + J for J an even integer.
If we assume that an operator of every allowed J is present then the shape of the ᾱ-
discontinuity is fixed. At very large J we find, for every finite n, sequences of blocks with
(h, h̄)→ (∆φ + n,∆φ + n+ J) with OPE coefficients given by

λ2
n,J ≈ 2 4

Q(−ᾱ)Q(−∆φ + 1
2 − n)

ᾱ2(∆φ−1)

Γ(∆φ)2
Γ(2∆φ + n− 1)

n!Γ(∆φ)2

∣∣∣∣∣
ᾱ=∆φ− 1

2 +n+J

≈ 2−2J−4∆φ−4n+5J2∆φ−3/2 πΓ(n+ ∆φ)Γ(n+ 2∆φ − 1)
Γ(∆φ)4Γ(n+ 1)Γ

(
n+ ∆φ − 1

2

) . (3.12)

To obtain this expression we computed the residues of (3.8) and added an extra factor of
2 because only even spins contribute. This matches, of course, the asymptotic behavior
of the OPE coefficients in the mean-field solution which for d = 2 were obtained in [15].
We have therefore reproduced the leading order lightcone bootstrap results of [11, 12] for
identical operators.

– 7 –
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3.3 The lightcone bootstrap at first subleading order

Subleading terms in the large ᾱ expansion originate from the low-twist operators in the
t channel. To take these into account one can introduce the ‘split’ crossing kernel which
one can think of as the alpha space density of a single t-channel block. The chiral part is
defined as [1]3

Ksplit(α, β|∆φ) := 2
Q(−β)

∫ 1

0

dz

z2

(
z

1− z

)∆φ

Ψα(z)kβ+1/2(1− z) . (3.13)

In this paper we will mostly use a slightly different normalization, for which we introduce:

K̃split(α, β|∆φ) := Q(−β)
2 Ksplit(α, β|∆φ) . (3.14)

In appendix C we explain how the split kernel can be written in terms of Wilson functions.
In two dimensions, a single t-channel block for a primary operator with dimension h + h̄

and spin h̄− h, which is given by

f(z, z̄) ⊃ λ2
h,h̄

(
zz̄

(1− z)(1− z̄)

)∆φ

kh(1− z)kh̄(1− z̄) + (z ↔ z̄) , (3.15)

would contribute to the s-channel density as

f̂(α, ᾱ) ⊃ λ2
h,h̄
K̃split(α, h− 1/2|∆φ)K̃split(ᾱ, h̄− 1/2|∆φ) + (h↔ h̄) . (3.16)

We can now consider how this would yield subleading corrections to the mean field behavior.
As before, we take ᾱ large and α fixed. For large non-real values of its first argument the
kernel behaves as

K̃split(ᾱ, β̄|∆φ) =
Γ(3

2 −∆φ + β̄)
Γ(∆φ − 1

2 − β̄)
(−ᾱ2)∆φ− 3

2−β̄
(
1 +O(ᾱ−2)

)
. (3.17)

This allows us to write the subleading correction to equation (3.9) in more detail as:4

f̂(α, ᾱ) = (−ᾱ2)∆φ−1 Γ(∆φ − 1
2 ± α)Γ(1−∆φ)2

Γ(1
2 ± α)Γ(∆φ)2

+ (−ᾱ2)∆φ−h−1λ2
h,h̄

(1 + δh,h̄)Γ(1−∆φ + h)
Γ(∆φ − h) K̃split(α, h̄− 1/2|∆φ)

+O(α−#).

(3.18)

We in particular see that the relative power in α between the leading and subleading term
equals the twist 2h of the first t-channel operator, in agreement with well-known lightcone

3Notice that our ∆φ equals 2h in [1]. This expression is called the ‘split’ kernel because it is the
alpha space density for the single t-channel block kβ+1/2(1 − z)/Q(−β) rather than for the symmetrized
combination Ψβ(1 − z) that was considered in [1].

4A quick recap of the variables used: ∆φ is the scaling dimension of the external operator, which we
take to be a scalar. On the other hand, h and h̄ are the quantum numbers of the t-channel operator of
lowest twist and λ2

h,h̄
the coefficient of the corresponding conformal block.

– 8 –
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bootstrap results. The Kronecker delta arises because both terms in (3.16) contribute
equally for a spin 0 operator. As explained above, the asymptotic behavior at large imagi-
nary α corresponds to a discontinuity at large real α obtained by making the replacement

(−ᾱ2)x−1 → ᾱ2x−2

Γ(x)Γ(1− x) , (3.19)

giving the correction to (3.11)

discᾱ[f̂(α, ᾱ)] ≈ ᾱ2∆φ−2 Γ(∆φ − 1
2 ± α)Γ(1−∆φ)

Γ(1
2 ± α)Γ3(∆φ)

+ ᾱ2∆φ−2h−2
λ2
h,h̄

(1 + δh,h̄)
Γ(∆φ − h)2 K̃split(α, h̄− 1/2|∆φ)

+O(α−#) .

(3.20)

To work out what this means for the OPE data we need the following details about
Ksplit(α, β|∆φ). For fixed β it has double poles at α = ±(∆φ− 1

2 +n), so it takes the form

K̃split(α, β|∆φ) = M
(K)
n (β|∆φ)

(α−∆φ + 1
2 − n)2 + N

(K)
n (β|∆φ)

α−∆φ + 1
2 − n

+ regular , (3.21)

with coefficients M (K)
n (β|∆φ) and N (K)

n (β|∆φ) for which we provide a closed-form expres-
sion in terms of Wilson functions in equation (C.8).

To fix ideas in the following it helps to think of f(α, ᾱ) as having the schematic form,
for α near the n’th of the double twist poles,

f̂(α, ᾱ) ≈
∑
J

Rn(J)
(α−∆φ + 1

2 − n−
1
2γn(J))(ᾱ−∆φ + 1

2 − n−
1
2γn(J)− J)

, (3.22)

which means that for each n we have a sequence of conformal blocks of increasing J with
the following scaling dimensions and spin:

∆n(J) = J + 2∆φ + 2n+ γn(J) ,

λ2
n(J) = 4Rn(J)

Q(−∆φ + 1
2 − n−

1
2γn(J)− J)Q(−∆φ + 1

2 − n−
1
2γn(J))

.
(3.23)

For the discontinuity this would imply that, in a smoothed out sense,

discᾱ[f̂(α, ᾱ)]|ᾱ=∆φ−1/2+n+ 1
2γn(J)+J ≈ −

Rn(J)
α−∆φ + 1

2 − n−
1
2γn(J)

. (3.24)

Comparing this to (3.20), and taking into account the proper change of variables as dis-
cussed in appendix F, we read off that

Rn(J)[ᾱ′(J)]−1∼ ᾱ(J)2∆φ−2

Γ(2∆φ+n−1)
Γ(∆φ)4n! −ᾱ(J)−2h

λ2
h,h̄

(1+δh,h̄)
Γ(∆φ−h)2 N (K)

n (h̄−1/2|∆φ)+...


γn(J)∼−ᾱ(J)−2hλ2

h,h̄
Γn(h,h̄|∆φ)+... (3.25)
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with ᾱ(J) defined implicitly as the solution to

ᾱ(J) = J + ∆φ −
1
2 + n+ 1

2γn(ᾱ(J)) (3.26)

and with
Γn(h, h̄|∆φ) =

(1 + δh,h̄)
Γ(∆φ − h)2M

(K)
n (h̄− 1/2|∆φ) Γ(∆φ)4n!

Γ(2∆φ + n− 1) . (3.27)

yielding the leading order corrections (for any n) to the double-twist alpha space density
at large spin originating from a single t-channel block. For n = 0 we find for example that

Γ0(h, h̄|∆φ) = (1 + δh,h̄) Γ(∆φ)2

Γ(∆φ − h)2
Γ(2h̄)
Γ(h̄)2 , (3.28)

which matches the results in [11, 12].

3.3.1 Reciprocity

The subleading terms in (3.20) arise both from further t-channel blocks, on which we will
comment below, and also because of subleading terms in the large α expansion of (3.16).
The split kernel has an expansion in integer powers of −α2 relative to the leading term
in (3.17). Going through the motions again, we find that the t-channel identity combined
with just a single t-channel block leads to residues and anomalous dimensions with a large
ᾱ-expansion of the schematic form

Rn(J(ᾱ))J ′(ᾱ) ∼ #ᾱ2∆−2 + ᾱ2∆−2−2h
(
# + #ᾱ−2 + #ᾱ−4 + . . .

)
,

γn(J(ᾱ)) ∼ #ᾱ−2h
(
# + #ᾱ−2 + #ᾱ−4 + . . .

)
.

The expansion in integer powers of ᾱ−2 corresponds to the ‘reciprocity principle’ for the
double-twist operators that was highlighted in [16]. The expansion in even powers of α
then becomes an expansion in even powers of the square of the right-hand side. For n = 0
this is (up to a constant shift) precisely the two-dimensional version of the ‘Casimir’ defined
in [16], whereas the case n > 0 was not discussed in [16].

3.3.2 Constraints from exponentiation

The double poles in α arising from the split kernel lead to ‘anomalous dimensions’ in the
large spin expansions. We formalized this above by postulating a form of the discontinuity
in (3.24). This form gives the requisite poles upon expansion for small γ, allowing us to
determine these anomalous dimensions as written in (3.25). However if (3.24) is correct
then the higher-order terms in the small γ expansion require higher-order poles in α. More
precisely, one would expect terms like

discᾱ[f(α, ᾱ)] ⊃ −ᾱ2∆φ−2 Γ(2∆φ + n− 1)
Γ(∆φ)4n!

∞∑
k=0

(−1)kᾱ−2khλ2k
h,h̄

Γkn(h, h̄|∆φ)
2k(α−∆φ + 1

2 − n)k+1 , (3.29)

with poles of order k + 1 in α at the double-twist values. A single t-channel block only
gives double poles, so this exponentiation of the anomalous dimension is not automatic.
What would f̂ t(β, β̄) have to look like to reproduce these singularities?
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As was also already explained in [10], the power of ᾱ in the above expansion indicates
that such operators come from t-channel operators with twists that equals kh. In other
words, the exponentiation of the s-channel anomalous dimensions due to a single t-channel
operator Ot of twist h requires the existence of further t-channel operators with twist kh,
so the multi-twist versions of the original t-channel operator. A single such multi-twist
t-channel operator will not produce the higher-order pole in ᾱ that the above expression
requires, and therefore we actually need an infinite family of such multi-twist t-channel
operators. If we think of Ot as “single-particle exchange”, then a k-particle exchange
diagram is necessary to reproduce the (k+1)-th order pole in the above expression. Notice
furthermore that this k-particle exchange must somehow conspire to give the corresponding
higher-order pole for all n.

This discussion can be quantified. One way to do so is to use the ‘quadruple disconti-
nuity’ as in [2] but we can also do it easily in alpha space: we just need to apply the crossing
kernel to the exponentiated α space s-channel density, like the one postulated in (3.22), in
order to find out the required t-channel density. Up to unimportant subtleties related to
the small α behavior, we have in the conventions of [1] that∫ i∞

−i∞

[dα]
N(α)K(β, α|∆φ)f̂(α) =

∫ ∞
0

dαKsplit(β, α|∆φ)discα[f̂(α)] ,

and therefore we can obtain the requisite t-channel density as

f t(β, β̄) ⊃
∫ ∞

dᾱKsplit(β̄, ᾱ|∆φ)
∫

[dα]Ksplit(β, α|∆φ)
(
− Rn(ᾱ)
α−∆φ + 1

2 − n−
1
2γn(ᾱ)

)

=
∫ ∞

dᾱKsplit(β̄, ᾱ|∆φ)Rn(ᾱ)Ksplit(β,∆φ − 1/2 + n+ γn(ᾱ)/2|∆φ) ,

plus another term that swaps β and β̄. We expect the form of the integrand to only be
valid for large ᾱ, so we will also substitute the large ᾱ behavior of Ksplit(β̄, ᾱ|∆φ). For
large values of its second argument the split kernel behaves as

Ksplit(β̄, ᾱ|∆φ) ∼ Q(−β̄)Γ2(∆φ − 1/2− β̄)(ᾱ2)1+β̄−∆φ + (β̄ ↔ −β̄) . (3.30)

We will also take β large in order to find an estimate at large spin in the t-channel.
Using (3.17) we then find leading order behavior of the form

f t(β, β̄)⊃Q(−β̄)Γ2(∆φ−1/2− β̄) (3.31)

×
∫ ∞

dᾱRn(ᾱ) 2Γ(1+n+γn(ᾱ)/2)
Γ(−n−γn(ᾱ)/2)Q(1/2−∆φ−n−γn(ᾱ)/2)(ᾱ2)1+β̄−∆φ(−β2)−1−n−γn(ᾱ)/2 .

As a consistency check, notice that if γn(ᾱ) were to vanish then there is nothing to expo-
nentiate, and in that case the above expression also does not teach us anything about the
t-channel OPE density. We see that the leading trajectory with n = 0 dominates, so let us
focus on that one from now on. Passing to the discontinuity, we obtain

discβ [f t(β, β̄)]⊃Q(−β̄)Γ2(∆φ−1/2− β̄)
∫ ∞

dᾱ
R0(ᾱ)(ᾱ2)1+β̄−∆φβ−2−γ0(ᾱ)

Γ(−γ0(ᾱ)/2)2Q(1/2−∆φ−n−γn(ᾱ)/2) .

(3.32)
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This is a useful intermediate expression in itself, for example if one has estimates for γ0(ᾱ)
and R0(ᾱ) beyond the leading order. It is similar to equation (4.23) in [2]. For illustrative
purposes let us substitute the leading-order behaviors of these functions and expand at large
ᾱ. We find, in the leading log approximation, the multi-twist poles with residues as in

discβ [f t(β, β̄)]
Q(−β̄)Γ2(∆φ − 1/2− β̄)

⊃ − 1
Q(1/2−∆φ)

∞∑
n=0

(λ2
h,h̄

Γ0(h, h̄|∆φ))n+2

β̄ + 1/2− h(n+ 2)
logn(β)

8β2 . (3.33)

In addition we also have corrections to the double twist operators from the double poles of
the gamma function at β̄ = ∆φ − 1/2 + n. It would be useful to compute these in order to
find the correction of a Regge trajectory to itself. However for this the large ᾱ expansion
that we used does not suffice. This is because for large β the dominant contribution comes
from the smallest possible γ0(ᾱ), and since γ0(ᾱ) is generally negative the most important
contribution will come from small ᾱ rather than from the large ᾱ region. On the other
hand, the new multi-twist poles at β̄ = h(n + 2) − 1/2 that we have just described can
only appear from the large ᾱ region.

3.4 On the convergence of the lightcone bootstrap

Incorporating further t-channel operators leads one to consider an equation of the form

f̂(α, ᾱ) ?=
∑
k

Rk
(
Ksplit(α, βk|∆φ)Ksplit(ᾱ, β̄k|∆φ) + (βk ↔ β̄k)

)
, (3.34)

with k labelling the different t-channel primary operators. Unfortunately the convergence
of the above expansion is problematic. For example, suppose we would like to reproduce
the s-channel identity. As we have just seen (albeit with s- and t-channel swapped), this
fixes the asymptotic form of the discontinuity as in (3.11) which effectively says that we
need an infinite set of t-channel blocks with ever-increasing spin J = β̄ − β, with twists
2β + 1 approaching 2∆φ, and with residues RJ scaling like J2∆φ−3/2. However, as we
already stated above, for large β̄ the kernel behaves as

Ksplit(ᾱ, β̄|∆φ) ∼
(
Q(−ᾱ)Γ2

(
∆φ −

1
2 − ᾱ

)
(β̄2)1+ᾱ−∆φ + (ᾱ↔ −ᾱ)

)
, (3.35)

where for Re(ᾱ) 6= 0 the leading behavior is given by picking the dominant power on the
right-hand side. Substituting β̄ ∼ J and RJ ∼ J2∆φ−3/2 we find J±2ᾱ as the net behavior,
and have to conclude that the sum over J converges nowhere in the complex ᾱ plane. In
short, it suffices to consider just a single Regge trajectory to show that the sum in (3.34)
cannot converge anywhere.5

We can try to remedy this non-convergence as follows. Let us introduce a “doubly
split” kernel, defined as

Kdsplit(ᾱ, β̄|∆φ) = Q(ᾱ)
Q(−β̄)

∫ 1

0

dz

z2

(
z

1− z

)∆φ

kᾱ+1/2(z)kβ̄+1/2(1− z) . (3.36)

5A finite window of convergence could be obtained if the s-channel identity operator were absent, for
example if the operators were not pairwise identical. One can also by hand subtract the s-channel identity,
written as an infinite sum of t-channel blocks, which would result in a conditionally convergent sum. It
would be interesting to work this out further.
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For positive real β̄, this split kernel is analytic in the right half of the ᾱ plane except for
the kinematical simple poles of Q(ᾱ) at positive integer ᾱ. The sum (3.34) can then be
rewritten as6

f̂(α, ᾱ) ?=
∑
k

RkKsplit(α, βk|∆φ)Kdsplit(ᾱ, β̄k|∆φ) + (ᾱ↔ −ᾱ) + (α↔ ᾱ) . (3.37)

The large β̄ limit of the doubly split kernel retains only one of the two powers in (3.35):

Kdsplit(ᾱ, β̄|∆φ) ∼ Q(ᾱ)Γ2
(

∆φ −
1
2 + ᾱ

)
(β̄2)1−ᾱ−∆φ . (3.38)

Returning to the analysis of a single Regge trajectory, we now find that the summand
in (3.37) behaves as J−ᾱ for large J and therefore converges as long as Re(ᾱ) > 1. Our
earlier objection against the convergence of the full sum in (3.37) is therefore neutralized.

It is worthwhile to pursue the analysis of the convergence in (3.37) a bit further. The
s-channel identity operator has a t-channel density takes the form

Γ(∆φ − 1
2 ± β)Γ(1−∆φ)

Γ(1
2 ± β)Γ(∆φ)

× (β ↔ β̄) , (3.39)

and picking up the right poles equation (3.37) then results in the following putative ex-
pression for the alpha space transform f̂1(α, ᾱ) of the s-channel identity operator:

f̂1(α, ᾱ) ?=
∞∑
m=0

m∑
n=0

Γ(2∆ + n− 1)Γ(2∆ +m− 1)
Γ(∆)4(1 + δm,n)m!n!

×Ksplit(α,∆φ + n− 1/2|∆φ)Kdsplit(ᾱ,∆φ +m− 1/2|∆φ)
+ (ᾱ↔ −ᾱ) + (α↔ ᾱ) .

(3.40)

For large m and n the summand behaves as n2±αm−2ᾱ and therefore the sum converges if

Re(ᾱ) > ±Re(α) + 1 . (3.41)

It is now natural to conjecture that a more realistic sum over t-channel blocks will still con-
verge in this wedge. If this is the case then we recover there a function with purely kinemat-
ical poles: simple poles in ᾱ from the prefactor Q(−ᾱ) in the doubly split kernel (3.36) and
double poles in α at the double-twist values from the split kernel itself. If we call this func-
tion f̂an(α, ᾱ) (with ‘an’ for analytic) then the full f̂(α, ᾱ) is recovered from this function as

f̂(α, ᾱ) = f̂an(α, ᾱ) + f̂an(α,−ᾱ) + (α↔ ᾱ) . (3.42)

Clearly this requires going outside the region (3.41) and this is how we envisage that the
kinematical poles in f̂an(α, ᾱ) get replaced by physical poles in f̂(α, ᾱ).

In appendix D we continue our analysis of f̂1(α, ᾱ) and explain how the sums in
equation (3.40) allow us to almost (!) recover the constant function from a sum over t-
channel blocks. In section 4.3 we offer some more comments on using truncated sums in
equations (3.34) and (3.37) as approximations for the s-channel density.

6Recall that for physical operators β̄k = 1
2 (∆k + Jk − 1) ≥ 1

2 (∆k − Jk − 1) = βk so βk can only grow
large if β̄k does as well.
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4 A more analytic density

The alpha space density f̂(α, ᾱ) is inspired by, but not the same as, another density that was
introduced about forty years ago in [6] and obtained from harmonic analysis on the confor-
mal group. Let us call this latter density a ‘Euclidean’ density and denote it as c(α, ᾱ). This
density has received much attention recently because it can be computed using the so-called
‘Lorentzian inversion formula’ of [2] which manifests analyticity in spin (in some domain).

The most important difference between the Euclidean density and the alpha space
density is in the way conformal blocks are encoded by singularities. In the Euclidean density
c(α, ᾱ), a conformal block G(J)

∆ (z, z̄) (with unit coefficient) originates from a pole like

c(α, ᾱ) ⊃ (1 + δJ,0)
κ(ᾱ) × 1

α+ ᾱ−∆

∣∣∣∣
ᾱ=α+J

, (4.1)

whereas in alpha space it would be encoded by twin poles as

f̂(α, ᾱ) ⊃
1
4Q(−α)Q(−ᾱ)

(α− (∆− J − 1)/2)(ᾱ− (∆ + J − 1)/2) + (α↔ ᾱ) . (4.2)

This fundamental difference makes it not straightforward to link the two densities.
However, using our knowledge of the alpha space density it is easy to introduce a slightly
different density which also only has single poles, much like c(α, ᾱ). Starting from this
density, then, we can fairly easily obtain the Lorentizan inversion formula (in two dimen-
sions). This (somewhat heuristic) derivation of the Lorentzian inversion formula does not
proceed in the usual sense, which is by demonstrating its equivalence to the Euclidean
inversion formula [2, 17, 18] (see also [9]), but rather by showing that whatever density it
produces indeed has poles that encode the physical spectrum. To avoid clutter we will first
focus only on the z dependence — we will reinstate the z̄ dependence in subsection 4.2.

Consider, then, a single-variable function f(z). We will suppose that it has an integer-
spaced conformal block decomposition of the form

f(z) =
∞∑
m=0

λmkp+m(z) (4.3)

which converges for z between −∞ and 1. In the alpha space transform of f(z),

f̂(α) =
∫ 1

0

dz

z2 Ψα(z)f(z) , (4.4)

we find poles when α = p + m − 1/2 with residue Rm = −λmQ(−p −m + 1/2)/2. These
poles arise because for these values of α the small z expansion of the integrand contains a
z−1 term, and the residue Rm of the alpha space pole is just the coefficient of this term.
If there are no other terms that cause branch cuts at the origin, which is the case if we
assume an integer-spaced conformal block decomposition and if we remove the kα+1/2(z)
bit from Ψα(z), then we can get Rm also by simply contour integrating around the origin.
Indeed, one may check that, for any h,

Resz=0

[ 1
z2kh+m(z)k1−h−n(z)

]
= δn,m , (4.5)

which is a formula that was already used in [15].
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By putting in all the right factors and deforming the integration contour somewhat
this means that for the density f̌(α) defined as

f̌(a) := −
∫ 0+

−∞

dz

z2 discz[f(z)k−α+1/2(z)] (4.6)

we can recover the OPE coefficients on the nose by simply evaluating it at the right ᾱ:

λm = f̌(p+m− 1/2) . (4.7)

In contrast with f̂(α), there is no need to take a residue.
Notice that the discontinuity will (by construction) have delta function contributions

as z = 0 which of course need to be taken into account — this is why we wrote 0+ as the
upper limit of the integral. A more accurate definition would be that

f̌(α) := 1
2πi

∫
C

dz

z2 f(z)k−α+1/2(z) , (4.8)

where C is a Hankel contour that starts at −∞− iε, runs parallel to the real axis until it
wraps around the origin in a counterclockwise fashion, and then extends to −∞+ iε.

From its definition we observe that f̌(α) is well-defined as long as f(z) < O(z1−ε)
as z → −∞ (both slightly above and below the real axis). We will assume this to be
the case for now, although in the physical case (and for large external dimensions) some
subtractions may be necessary.

The previous discussion needs refinement when p − 1/2 ∈ Z. This is because the
‘shadow’ conformal blocks have poles for positive integer values of α, that is for m ∈ N+

we have

k−α+1/2(z) =
rmkm+1/2(z)

α−m
+O(1) , rm := 2−4mπ

Γ
(

1
2 −m

)2
Γ(m)Γ(m+ 1)

. (4.9)

The definition (4.6) therefore becomes singular and indeed generically does have poles
for negative integer α. For p a positive half-integer, however, equation (4.7) instructs
us precisely to evaluate f̌(α) at these singular values. As it turns out this singularity is
removable precisely in these cases so one can define f̌(α) at integer α via the limit. This does
not completely resolve the issue: for half-integer p the OPE coefficients are now given by:

λm = f̌(p+m− 1/2)− rp+m−1/2f̌
′(−p−m+ 1/2) (for p− 1/2 ∈ Z). (4.10)

as opposed to direct evaluation as in (4.7). We emphasize that the first term is defined
through the limit, and the second term involves a derivative.

It is instructive to consider the density for a single s-channel block. We define

J (C)(α, β) :=
∫
C

dz

z2 k−α+1/2(z)kβ+1/2(z) , (4.11)

which is the ‘analytic’ continuation of the Kronecker delta in (4.5) in the sense that J (C)(β+
n, β) = δn,0. It is analytic in both α and β except for the poles at positive integer α and
negative integer β. For β = 2.2 we plot J (C)(α, β) in figure 1.
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Figure 1. A plot of J (C)(α, β) with β = 2.2 as a function of (real) α. We observe the kinematic
poles at positive integer α. The red dots help to show that J (C)(β + n, β) = δn,0.

If the z → ∞ behavior is sufficiently benign then the s-channel block decomposition
commutes with doing the integral along C. For example, if we define

I(C)
p,q (α) :=

∫
C

dz

z2 k−α+1/2(z)zp(1− z)−q , (4.12)

which converges for p− q < 1, then we would expect that

I(C)
p,q (α) =

∞∑
m=0

I(C)
p,q (p+m− 1/2)J (C)(α, p+m− 1/2) , (4.13)

with the right-hand side a convergent sum. In figure 2, we show how truncated sums on
the right-hand side approximate the left-hand side in a specific example.

We can also consider the density for a single t-channel block, which is a crossing kernel
of sorts. We set

K
(C)
h (α, β) :=

∫
C

dz

z2 k−α+1/2(z)kβ+1/2(1− z)
(

z

1− z

)h
, (4.14)

which differs from the doubly split kernel introduced above by its choice of integration
contour. In isolation this object is slightly difficult to interpret because a t-channel block
cannot be decomposed into s-channel blocks, but we should be able to recover the s-
channel OPE data from an infinite sum of such transformed t-channel blocks. For the
function zp(1− z)−q this for example leads us to the statement that

I(C)
p,q (α) =

∞∑
m=0

I
(C)
h−q,h−p(h− q +m− 1/2)K(C)

h (α, h− q +m− 1/2) . (4.15)

Here we used that its t-channel decomposition consists of conformal blocks with dimensions
h − q + m and with OPE coefficients given by I(C)

h−q,h−p(h − q + m − 1/2). In figure 3, we
again show how truncated sums on the right-hand side approximate the left-hand side in
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Figure 2. Convergence of the s-channel block decomposition for the transform of zp(1 − z)−q

with p = 0.2 and q = 0.3. The dotted line corresponds to I(C)
p,q (α). The blue, orange and green

lines are obtained by keeping respectively 2, 5 and 8 terms in the sum on the right-hand side of
equation (4.13). Notice that they respectively agree with the exact result for 2, 5 and 8 non-negative
integer values of α−p+1/2 which are indicated by the red vertical lines. (For clarity of presentation
we have divided all functions by 4−αΓ(±α) which in particular removed all the poles at positive
integer α.)

-2 2 4 6 8

-0.2

-0.1

0.1

0.2

Figure 3. Convergence of the t-channel block decomposition for the transform of zp(1− z)−q with
p = 0.2 and q = 0.3 and with h = 0.7. The dotted line corresponds to I(C)

p,q (α), and the red dots
highlight the values at α = p − 1/2 + m, m integer, which are the OPE coefficients. The blue,
orange and green lines are obtained by keeping respectively 2, 5 and 8 terms in the sum on the
right-hand side of equation (4.15). (For clarity of presentation we have divided all functions by
4−αΓ(±α) which in particular removed all the poles at positive integer α.)
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a specific example. Remarkably we observe that convergence works best for α around zero
— it would be nice to have a rigorous derivation of this result.

It is of interest to consider the convergence of the t-channel block decomposition, for
which we would need to know the large β behavior of K(C)

h (α, β). Although we were unable
to obtain an exact result, some numerical experimentation leads us to believe that

K
(C)
h (α, β) ∼ Q(−β)

β
as β →∞ , (4.16)

with an undetermined prefactor that depends on α and h. On the other hand, we know from
the analysis in section 3.1 that the OPE coefficient density behaves as β2h−2/Q(−β) so as to
reproduce the identity operator in the other channel. We therefore find the decomposition
of f̌(α) into a sum over t-channel blocks should be convergent as long as h < 1. This was
to be expected, since the contour C lies in the region where both the s channel and the t
channel block decomposition converge and for h < 1 there are no issues at infinity.

4.1 Relation to double discontinuities

By pulling the rightmost endpoint of the contour a bit more rightward we may write

f̌(α) = 1
2πi

∫ 1

−∞

dz

z2

(
f(z − iε)k−α+1/2(z − iε)− f(z + iε)k−α+1/2(z + iε)

)
, (4.17)

where we recall that we are considering functions f(z) with integer-spaced conformal block
decomposition,

f(z) =
∞∑
m=0

λmkp+m(z) , (4.18)

for some real p. The astute reader may have observed the missing iε prescription for the
measure 1/z2 in (4.17). In fact, the correct prescription is always the same as indicated in
the remainder of the integrand and we will simply continue to omit it to avoid clutter.

For the following discussion to go through we will need to assume a few things. First
of all we will suppose that the singularities in f(z) at z = 1 and z =∞ are not too severe,
in the sense that f(z) = O((1− z)−1+ε) as z → 1 and f(z) = O(z1−ε) as z →∞ for some
ε > 0. Furthermore, f(z) has a ‘kinematic’ cut from 0 to −∞; let us suppose that f(z)
further only has a cut from 1 to +∞ and that the structure of cuts on the secondary sheets
that we find by passing through either of these two cuts is the same. These assumptions
appear to be satisfied if f(z) is a physical correlation function in a one-dimensional unitary
conformal theory of identical operators with scaling dimensions less than one. With these
assumptions in place we can entertain ourselves with some contour deformations as follows.

We begin by pulling the entire +iε part of the integral in (4.17) upward in the complex
z plane. We first deform the contour smoothly until it lies just above the cut from 1 to +∞,
and then proceed by pulling it through the cut (from above) and continue to move it on the
second sheet so that it now lies just below the negative real axis from −∞ to 1. This replaces
f(z) and k−α+1/2(z) with their continuation on the second sheet and changes the sign of
the iε term. Mutatis mutandis we do the same for the −iε part of the integral to find that:

f̌(α) = 1
2πi

∫ 1

−∞

dz

z2

(
f	(z + iε)k	−α+1/2(z + iε)− f�(z − iε)k�−α+1/2(z − iε)

)
, (4.19)
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where the circle indicates the direction of the continuation around z = 1. Next we can use
k�−α+1/2(z) = k−α+1/2(z)− 2πi αQ(α)Ψα(z) ,

k	−α+1/2(z) = k−α+1/2(z) + 2πi αQ(α)Ψα(z) ,
(4.20)

and substitute Ψα(z) = 1
2(Q(α)kα+1/2(z) + (α → −α)). We now leave everything that

involves kα+1/2(z) on the secondary sheets whereas we move everything that involves
k−α+1/2(z) back to the first sheet. A little bit of reshuffling gives

f̌(α) = κα
2

∫ 1

−∞

dz

z2

[
f(z + iε)kα+1/2(z + iε)(1 + i cot(πα))

+ f(z − iε)kα+1/2(z − iε)(1− i cot(πα))
− f�(z − iε)kα+1/2(z − iε)

− f	(z + iε)kα+1/2(z + iε)
]

(4.21)

with
κα :=

Γ(α+ 1
2)4

4απ2Γ(2α)2 = 1
απ2Q(−α)2 . (4.22)

For sufficiently large α the integrand should be finite as z → 0 on all the sheets. In that
case we can split the contour integrals up at 0 into two parts that lie along the real z axis.
There are no branch cuts from 0 to 1 so in this bit the iε prescription is unnecessary. For
the bit from −∞ to 0 we will use

kh(z ± iε) = e±iπhk̃h(z) , (4.23)

with7

k̃h(z) := (−z)h2F1(h, h, 2h, z) . (4.24)

This leads us to

f̌(α) = κα

∫ 1

0

dz

z2 kα+1/2(z)
[
f(z)− 1

2f
	(z)− 1

2f
�(z)

]
+ κα

2 cos(π(α+ 1/2))

∫ 0

−∞

dz

z2 k̃α+1/2(z)
[
f(z + iε) + f(z − iε)

]
− κα

2

∫ 0

−∞

dz

z2 k̃α+1/2(z)
[
f�(z − iε)e−iπ(α+1/2) + f	(z + iε)eiπ(α+1/2)] .

(4.25)

Now, we are mostly interested in the OPE coefficients λm, and these are given by
evaluating f̌(α) at α = p+m− 1/2 with integer m. For these values of α we find

λm =
{
κα

∫ 1

0

dz

z2 kα+1/2(z)
[
f(z)− 1

2f
	(z)− 1

2f
�(z)

]

+ (−1)m κα
2 cos(πp)

∫ 0

−∞

dz

z2 k̃α+1/2(z)
[
f(z + iε) + f(z − iε)

]
(4.26)

− (−1)mκα2

∫ 0

−∞

dz

z2 k̃α+1/2(z)
[
f�(z − iε)e−iπp + f	(z + iε)eiπp

]}
α=p+m−1/2

.

7For later reference also note that, for w < 0 and 0 < z < 1, k̃h(w) = kh
(

w
w−1

)
and kh(z) = k̃h

(
z
z−1

)
.
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The first bit is the double discontinuity of [2] of f(z) around 1. The second bit can also
be written as a double discontinuity around minus infinity, but of a function f̃(z) which
for z < 0 is defined as

f̃(z) := f(z + iε) + f(z − iε)
2 cos(πp) , (4.27)

and for other values of z via analytic continuation. Its block decomposition reads simply

f̃(z) =
∞∑
m=0

λm(−1)mk̃p+m(z) . (4.28)

Altogether we can then write that

λm = f̌ (t)(p+m− 1/2) + (−1)mf̌ (u)(p+m− 1/2)

f̌ (t)(α) := κα

∫ 1

0

dz

z2 kα+1/2(z)dDisc1[f(z)]

f̌ (u)(α) := κα

∫ 0

−∞

dz

z2 k̃α+1/2(z)dDisc∞[f̃(z)]

= κα

∫ 1

0

dz

z2 kα+1/2(z)dDisc1

[
f (z/(z − 1))
:]

.

(4.29)

This is of course reminiscent of the ‘Lorentzian inversion formula’ of [2], for which we
have now derived a one-dimensional version in the case where f(z) has an integer-spaced
conformal block decomposition.

The somewhat odd manipulations we had to perform to arrive at f̌ (u)(α) are actually
redundant in a two-variable function f(z, z̄). In that case, whenever z is continued to
negative values in the above, we can also continue z̄ to negative values. This leads to extra
phase factors and avoids the need to introduce f̃(z). We will discuss the two-variable case
in more detail below.

4.1.1 Examples
We now have two ‘inversion formulas’ that give the OPE coefficients of a function f(z)
with integer-spaced conformal block decomposition. To compare the different expressions
it is instructive to consider the above examples again.

Our first example is a sanity check of our derivations. We consider zp(1−z)−q. If we set

I(s)
p,q (α) =

∫ 1

0

dz

z2 kα+1/2(z)zp(1− z)−q , (4.30)

and use that
dDisc1[zp(1− z)−q] = 2 sin2(πq)zp(1− z)−q ,

dDisc∞[zp(1− z)−q
:

] = 2 sin2(π(p− q))(−z)p(1− z)−q ,
(4.31)

then the equivalence of the two inversion formulas should imply that

I(C)
p,q (p+m− 1/2) = κα

(
2 sin2(πq)I(s)

p,q (α) + (−1)m2 sin2(p− q)I(s)
p,p−q(α)

)∣∣∣
α=p+m−1/2

.

(4.32)
This indeed works very well for any integer m (including m < 0), as we illustrate in
figure 4.
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Figure 4. A visualization of equation (4.32) corresponding to the equivalence of the two inversion
formulas for zp(1− z)−q with p = 0.2 and q = 0.3. The orange curve is the left-hand side, so f̌(α),
and the blue and black curves are the two expressions on the right-hand side, so f̌ (t)(α) + f̌ (u)(α)
and f̌ (t)(α)− f̌ (u)(α). As indicated by the red dots, we find agreement for α = p+m− 1/2 where
the correct λm are reproduced. (For clarity of presentation we have divided all functions by 4−α.)

Next we can consider the case where f(z) is a single s-channel block, say kβ+1/2(z).
Then f̃(z) = k̃β+1/2(z) and from the equations given above it is not hard to deduce that
both dDisc’s are identically zero and therefore equation (4.29) trivially states that λm = 0
for all m. This is a pretty good score: compared to the exact answer, which is λm = δm,0
(and p = β + 1/2), we correctly obtained all but one of the OPE coefficients! Notice that
the missing OPE coefficient was correctly reproduced above by our starting point, which
for the case at hand was J (C)(α, β) as plotted in figure 1. It is therefore the preceding
derivation that should be invalid for m = 0, and this is indeed the case: because of the
well-known singularity in the ‘Regge’ limit z → 0 of k	β+1/2(z) and k�β+1/2(z) we could
not really push the contour on the secondary sheets all the way to 0 for α ≤ β, thereby
invalidating the split of the integral into the t- and u-channel parts.

Finally we can consider conformal block expansions in the crossed channels. Let us
first write the t-channel block decomposition as

f(z) =
(

z

1− z

)h∑
q

µqkhq(1− z) . (4.33)

As we discussed around equation (4.15), the original contour integral formula also com-
mutes with the t-channel block decomposition and we can write

f̌(α) =
∑
s

µsK
(C)
h (α, hs − 1/2) . (4.34)

On the other hand, for the dDisc formula we first of all have to realize that the integral in
f̌ (u)(α) is entirely over a region where the t-channel block decomposition does not converge
and we need to instead consider the ‘u-channel’ conformal block decomposition of f̃(z). It
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Figure 5. Convergence of the t-channel block decomposition in the ‘dDisc inversion formula’ (4.36)
for zp(1 − z)−q with p = 0.2, q = 0.3 and h = 0.7. We plot f̌ (t)(α) + f̌ (u)(α) on the left and
f̌ (t)(α) − f̌ (u)(α) on the right. The dotted lines correspond to the exact expression, and the red
dots are the λm for α = p+m− 1/2. The solid lines correspond to approximations where we keep
only 2 (blue, behind orange), 5 (orange) and 8 (green) terms in each of the cross-channel conformal
block decompositions. (For clarity of presentation we have divided all functions by 4−α.)

reads:
f̃(z) = (−z)h

∑
r

µ̃rk̃hr(1/z) , (4.35)

and the corresponding dDisc inversion formula would read

λm
!= 2κα

(∑
q

µq sin2(π(hq − h))L(s)
h (α, hq − 1/2)

+(−1)m
∑
r

µ̃r sin2(π(h̃r − h))L(s)
h (α, h̃r − 1/2)

)∣∣∣∣∣
α=p+m−1/2

,

(4.36)

at least for those values of m where the aforementioned subtleties related to the Regge
limit do not come into play. Here we used the doubly split kernel

L
(s)
h (α, β) :=

∫ 1

0

dz

z2

(
z

1− z

)h
kα+1/2(z)kβ+1/2(1− z) . (4.37)

and the sine factors arise from taking the dDisc of the individual t- and u-channel blocks.
Let us again consider the function zp(1 − z)−q as an example. The corresponding

cross-channel decompositions are

hs = h− q + s µq = I
(C)
h−q,h−p(h− q − 1/2 + s) s ∈ {0, 1, 2, . . .} , (4.38)

h̃r = h− p+ q + r µ̃r = I
(C)
h−p+q,h−p(h− p+ q − 1/2 + r) r ∈ {0, 1, 2, . . .} . (4.39)

In figure 5 we show what happens if we plug these into (4.36) for p = 0.2, q = 0.3, h = 0.7,
and keep only finitely many terms. Note that the exact result for the same values of p
and q was already shown in figure 4. It is most interesting to compare this cross-channel
approximation with figure 3 (these are the same OPE coefficients but the normalizations
used in the plots are different). We see that the one-dimensional ‘dDisc inversion formula’
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gives an excellent approximation for all m ≥ 1 and provides a smooth function through
the OPE coefficients with even and odd m. (It is not entirely clear from the figure, but
the sum over t-channel blocks is also monotonically increasing.) The approximation with
the ‘contour inversion formula’ in figure 3, by contrast, is not as good, not monotonic and
not ‘smooth’ in the sense that the interpolating function has poles on the real α axis. On
the other hand, it is able to capture the m = 0 OPE coefficient (at α = −0.3), which is
completely missed by the dDisc inversion formula, and, less importantly perhaps, all the
zeroes at negative m. In this sense the dDisc inversion formula sacrifices convergence for
m ≤ 0 in favor of excellent convergence for m ≥ 1.

Let us finally remark that the comparison above used twice the OPE data for the dDisc
inversion formula since we kept 2, 5 and 8 blocks in both the t-channel and the u-channel,
compared to only t-channel blocks in the contour inversion formula. One may correct for
this, but it does not meaningfully change the previous discussion about the merits of each
inversion formula.

4.2 Two variables

It is now natural to define a transform of the form

1
2πi

∫ 1

0

dz

z2

∫
C

dz̄

z̄2 Ψα(z)k−ᾱ+1/2(z̄)f(z, z̄) . (4.40)

A single s-channel block would transform to

kβ+1/2(z)kβ̄+1/2(z̄)+(β ↔ β̄) → Q(−β)
2

( 1
β − α

+ 1
β + α

)
J (C)(ᾱ, β̄)+(β ↔ β̄) .

(4.41)
Let us focus on the pole near α = β. If we set ᾱ = j + α and let j be an integer then we
find the behavior

δj,JQ(−β)/2
β − α

, (4.42)

with J = β̄ − β the spin of the s-channel block that we are transforming. On the other
hand, the residue of the shadow pole at α = −β is not directly related to an OPE coefficient
and therefore less useful. To get rid of the shadow poles we can once more split the density
and introduce:

�
f(α, ᾱ) = Q(−α)

2πi

∫ 1

0

dz

z2

∫
C

dz̄

z̄2 k−α+1/2(z)k−ᾱ+1/2(z̄)f(z, z̄) , (4.43)

which removes the pole at α = −β.
For f(z, z̄) we have in mind a general CFT four-point function (in two or more di-

mensions, and with or without Virasoro symmetry) and then it is tempting to believe the
fundamental meromorphicity property persists: we claim that for integer values of ᾱ ± α,
the transformed function has poles precisely when α equals the twist of an s-channel block
with residues given in terms of the corresponding OPE coefficients. In simple examples this
property directly follows from the general properties of the one-dimensional alpha space
transforms in combination with the manipulations of the previous sections, for example in
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all cases where f(z, z̄) factorizes like f1(z)f2(z̄) or equals a finite sum of such products.
But whether it is true more generally remains a conjecture at this point.

The density
�
f(α, ᾱ) appears to have the right analyticity structure to make contact

with the density that can be obtained from the Euclidean and Lorentzian inversion formulae
of [6] and [2]. Let us make this connection more precise.

First we perform the contour pulling exercise of the previous section for the z̄ integral
and replace it with the intermediate result (4.25). To do this we have to be able to split
the z̄ integrals that run from −∞ to 1 at the point z̄ = 0. This splitting is possible if the
small semicircular contour integrals around z̄ = 0 do not contribute, which can generally
be arranged by taking the real part of ᾱ sufficiently large.8

In the one-dimensional example, the step from (4.25) to (4.26), which we recall
is just the substitution α = p + m − 1/2, was possible because of the integer-spaced
conformal block decomposition of f(z) and because we knew the ‘offset’ p − 1/2. In the
two-dimensional case the correct substition is ᾱ = α + j. This works because of our
previous assumption that the physical OPE coefficients are encoded in the poles of

�
f(α, ᾱ)

after this substitution. So even though the physical values of h̄ are not integer spaced, for
each pole the ‘offset’ is provided by the value of α at the pole, and the integer spacing is
provided by the integrality of the spin j.

Finally we proceed to a version of equation (4.29) with a clean split between a t-channel
and a u-channel contribution. For the former we can leave the z integral in place, whereas
for the parts contributing to f̌ (u)(ᾱ) we rotate the z integral into the lower or upper half
plane so it is parallel to the negative real axis. This latter rotation introduces an analytic
part from the contribution from 1 to ∞, which does not contribute dynamical poles in
α, and also some phase factors which (if we rotate in the correct sense) precisely ensure
that the single-variable dDisc∞ in (4.29) becomes the original two-variable dDisc∞ of [2].
Finally, if we shadow-symmetrize the density as in

�
f(α, ᾱ) +

�
f(−ᾱ,−α) , (4.44)

then we find ourselves integrating this dDisc against a ‘block with dimension and spin
interchanged’, exactly as in [2]. So this explains how alpha space in two dimensions can be
related to the Lorentzian (and therefore also Euclidean) inversion formulas.9

4.3 Sum over t-channel blocks

We can once more consider the two-variable function f(z, z̄) as a sum over t-channel blocks
and try to swap the integrals over z and z̄ with this sum, in the vein of equations (3.34)

8This is the “Regge boundedness” condition of [2]. For example, consider the contribution from the
Regge limit where both z and z̄ are small and in a case where f(z, z̄) is bounded by a constant; for it to
vanish we need Re(ᾱ− α) = J > 1, which agrees with [2].

9An important ingredient for the other inversion formulas to work is single-valuedness of the Euclidean
correlator. Even though our prescription started entirely in the Lorentzian square, this property did enter
our derivation via the demand for an s-channel conformal block decomposition with integer spins.
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Figure 6. In black, dashed: the transform
�
f(α, α + j) for the function given in equation (4.46)

as a function of α with j = 0 (left) and j = 6 (right). We have divided by a normalization factor
Q(α)Γ(±(α + j))4−α−j which in particular got rid of all the kinematic poles. Colored lines: the
approximation to this density by transforming a finite sum of the first few t-channel blocks, ranging
from a single block (blue line) to 45 blocks (purple line). As expected, we observe good convergence
for negative α. Since we chose ∆φ = 0.7 the individual t-channel blocks only produce poles at
α = 0.2 and so we can only approximately observe the actual pole at α = −0.3.

or (3.37). For our more analytic density we would have
�
f(α, ᾱ) ?=

∑
k

Rk
(
Kdsplit(−α, βk|∆φ)K(C)

∆φ
(ᾱ, β̄k) + (βk ↔ β̄k)

)
. (4.45)

As follows from the previous analyses, we should be able to commute the sum with the
above integrals when α is sufficiently negative. In fact, it appears that ᾱ can kept finite, see
for example the convergence everywhere in figure 3. Let us work this out in the two-variable
version of the simple example we considered before, that is we decompose

(zz̄)p

[(1− z)(1− z̄)]q , (4.46)

with p = 0.2 and q = 0.3 into t-channel blocks with ∆φ = 0.7. The formulas are entirely
analogous to the discussion around figure 3 and we will not repeat them here. For spins 0
and 6 we plot the results in figure 6, which clearly exhibits the good convergence properties
for negative α.

Discussion. An interesting question is how much information about the s-channel OPE
data can be obtained from a finite sum of t-channel blocks. Early encouraging results [19]
showed how we can obtain surprisingly accurate estimates of at least the leading Regge tra-
jectory from only a few t-channel blocks in the four-point function of the σ operator in the
three-dimensional Ising CFT. This analysis was substantially improved with a more sys-
tematic analysis of multiple correlation functions in [10]. The Lorentzian inversion formula
of [2] not only provides a more in-depth understanding of this phenomenon by appealing
to analyticity in spin; in practice its use also somewhat improves [20] the estimates of the
spectrum at low spins.

More generally, sums like (4.45) and similar expressions discussed either in this paper or
elsewhere are often used to obtain an approximation of the s-channel spectrum from a finite
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number of t-channel blocks (or Regge trajectories). As we have seen, these approximations
appear to be reliable at large J (or at large ∆, see [14]). For finite J and ∆ there is no small
parameter and the error is not under control but in several cases the estimates turn out to
be remarkably close to numerical bootstrap results (see for example the above references,
but also [21] for a four-dimensional supersymmetric example).

With this in mind it might be interesting to take a closer look at our formulas. First of
all, in equations (3.34) and (3.37) we find that each t-channel block contributes double poles
in both α and ᾱ. This reflects the fact that a single t-channel block cannot be expressed as a
sum of s-channel blocks or ∆-derivatives of s-channel blocks: to reproduce the log(z) log(z̄)
one would have to take both a ∆-derivative and a J-derivative of an s-channel block. In
the lightcone bootstrap we circumvented this issue by considering the discᾱ, getting rid
of one of the double poles, and interpreting the other as a small anomalous dimension at
large ᾱ. Formulas like (4.45) but also the Lorentzian inversion formula handle the issue
differently: they presuppose that f(z, z̄) can be decomposed into integer spin s-channel
blocks, and if one plugs in a finite number of t-channel blocks then the transform itself
ensures that the result is cast into a form that can be interpreted as a sum over s-channel
blocks or ∆-derivatives thereof. Of course one loses information in the process: indeed, for
these transforms one does not obtain a single t-channel block if one reverts its density back
to position space.

Finally, the main difference between (4.45) and the Lorentzian inversion formula is of
course analyticity in spin. As noted already in the one-dimensional case, (4.45) appears
to converge to the right answer for all spins J ≥ 0, albeit much more slowly than in the
Lorentzian inversion formula. It would be interesting to consider more realistic correlation
functions, for example those in the three-dimensional Ising model decomposed into two-
dimensional blocks [22], and see how well (4.45) compares to the Lorentzian inversion
formula both at spin 0 and also at higher spins. This might in particular provide a nice
alternative tool to analyze the deep Euclidean limit as in [14]. We leave more investigations
to future work.
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A Further alpha space densities

In this appendix we give a few examples of ‘exotic’ alpha space densities for various func-
tions and distributions. We will restrict ourselves to one-dimensional alpha space.
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A.1 Polynomials in alpha space

Consider an alpha space density that is a polynomial in α2. Much like in ordinary mo-
mentum space, the corresponding position-space expression turns out to be a derivative
of a delta function. To see this it suffices to consider the density f̂(α) = 1 since all other
polynomials can be obtained by finite action of the Casimir operator. There are many
ways to see that this density gives a delta function centered at one in position space. For
example, we can consider

f(z) = zp

p
⇔ f̂(α) = Γ(p− 1/2± α)

pΓ(p)2 . (A.1)

Now take the large p limit of both sides we get

f(z) = lim
p→∞

zp

p
= δ(z − 1) ⇔ f̂(α) = 1 . (A.2)

Notice that the support of the delta function is understood to lie entirely within the range
of a z-integral from 0 to 1, as is stated more precisely by its definition as a limit.

A more elegant derivation is the following. We start from:

log(1− z) ⇔ 1
α2 − 1

4
(A.3)

and use Parseval’s formula to say that

〈Dz log(1− z), f(z)〉 =
∫ 1

0

dz

z2Dz(log(1− z))f(z) (A.4)

=
∫

[dα] 2f̂(α)
Q(α)Q(−α)

(
α2 − 1

4
α2 − 1

4

)

=
∫

[dα] 2Ψα(1)f̂(α)
Q(α)Q(−α)

= f(1)

where we have used the fact that

Dzf(z) ⇔
(
α2 − 1

4

)
f̂(α) . (A.5)

Therefore, an alpha space density of 1 corresponds to a position space function of Dz log(1−
z) which is equal to z2 δ(1− z).

A.2 The constant function

Next we consider the alpha space transform of f(z) = 1. We could consider the p → 0
limit of the above expression but this is a little nasty because of the coalescence of three
poles at α = ±1/2. It is simpler to start from

f(z) = kh(z) ⇔ f̂(α) = −Γ(2h)/Γ(h)2

α2 − (h− 1/2)2 =: f̂h(α) , (A.6)
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and take the limit h→ 0 for which the left-hand side clearly becomes 1. On the right-hand
side we find

lim
h→0

f̂h(α) =

1/2 if α = ±1/2 ,
0 otherwise.

(A.7)

Strange as it may seem, we claim that the right-hand side is our best possible definition
of the alpha space transform of the constant function. As a consistency check, notice that
the action of the Casimir differential operator on the constant function is identically zero.
In alpha space this means that the alpha space transform of the constant function, when
multiplied with α2− 1/4, must vanish identically as well and this clearly is the case for the
given function.

More precisely, the z-integral defining the alpha space transform of kh(z) does not
converge if Re(h) ≤ 1/2, and in the inverse transform this issue shows up because we have
to deform the α contour of integration away from the imaginary axis. Precisely at h = 0
the contour then gets pinched between the poles of f̂h(α) at α = ±(h− 1/2) and poles at
α = ±1/2 arising from the measure N(α)−1. In order to avoid this pinching we can push
the contour also beyond the poles at α = ±1/2 and subtract extra factor proportional to
the residues there. Calling this new contour C we get

kh(z) = f̂h(1/2) + f̂h(−1/2) +
∫
C
[dα] 1

N(α)Ψα(z)f̂h(α) . (A.8)

Since C does not cross the points where α = ±1/2, all is well if we send h→ 0 and use the
right-hand side of (A.7).

Fundamentally, for functions that are too singular near z = 0 to be square integrable
it is important to realize that the alpha space contour has to be deformed away from the
imaginary axis [1]. Any alpha space transform like (A.7) therefore must be supplemented
with a prescription of how the integration contour is supposed to lie.

A.3 Logarithms

Since simple poles in alpha space map to conformal blocks, it is sensible to also appraise
higher-order poles. These singularities roughly correspond to derivatives of blocks. As an
example, consider the integral

− Q(−β)
2

∫
[dα] 2Ψα(z)

Q(α)Q(−α)

( 1
(α− β)2 + 1

(α+ β)2

)
. (A.9)

Once again, the symmetry of the integrand allows for the substitution Ψα(z) →
Q(α)kα+1/2(z). After this split, the contour can be closed to the right to pick up the
double pole and give

Q(−β) ∂
∂β

(
kβ+1/2(z)
Q(−β)

)
=
∂kβ+1/2(z)

∂β
+ ψ̃(β)kβ+1/2(z) , (A.10)

where the function ψ̃(β) is defined to be

ψ̃(β) ≡ −d logQ(−β)
dβ

= 2ψ
(1

2 + β

)
− 2ψ(2β) , (A.11)
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Figure 7. Plotted are the contours for the integral eq. (A.14). The blue contour gives log(1 − z)
whereas the figure-of-eight red one gives 2(1 − log(z)). The double poles at α = ±1/2 are marked
by black dots.

and ψ(β) is the digamma function

ψ(β) ≡ d log Γ(β)
dβ

. (A.12)

Putting this all together, the first derivative of a block maps to alpha space like

∂kβ+1/2(z)
∂β

⇔ − Q(−β)
2(α− β)

( 1
α− β

− ψ̃(β)
)

+ (α→ −α) . (A.13)

Such block derivatives produce log(z) terms and so the alpha space density for the logarithm
deserves some attention. Consider the integral∫

dα

2πi
2Ψα(z)

Q(α)Q(−α)(α− 1
2)(α+ 1

2)
(A.14)

over the two contours plotted in figure 7. The blue contour is the standard alpha space
one. Therefore, Ψα can be replaced by Q(α)kα+1/2 under the integral and the contour
closed in the right half plane to give the single block

− 2k1(z)
Q(−1

2)
= −k1(z) = log(1− z) . (A.15)

However, two double poles are enclosed by the red contour because of the Q factors and
so the integral is

− 4 lim
α→−1/2

∂

∂α

(
Ψα(z)(α+ 1

2)
Q(α)Q(−α)(α− 1

2)

)
= 2(1− log(z)) . (A.16)
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We note that in terms of the derivative of a block, the logarithm is

log z =
∂kα+1/2(z)

∂α

∣∣∣∣∣
α=−1/2

. (A.17)

The red contour may appear to be peculiar, but it arises naturally via the following argu-
ment. The derivative of zp with respect to p is zp log(z) and so a regularised alpha space
density for the logarithm can be defined through

zp log(z) ⇔ ∂

∂p

(
Γ(p− 1

2 ± α)
Γ2(p)

)
, (A.18)

where we have used the density for zp as given above. We can get higher powers of
the logarithm by taking further p derivatives. The standard alpha space contour for this
density is pinched at α = ±1

2 as p → 0 and so it makes sense to pull the contour through
α = ±(1

2 − p) with p small, picking up the residues at these points and leaving an integral
along the imaginary axis. The contribution of this integral vanishes as p→ 0 because the
integrand vanishes, and so it can be dropped. The contribution of the residues as p → 0
amounts to

∂Ψα(z)
∂α

∣∣∣∣
α=−1/2

= log(z) , (A.19)

and we see that everything is consistent. The two small contours around α = ±(1
2 − p)

giving rise to these residues can be joined up to give a figure-of-eight path analogous to
the red contour in figure 7.

Similar alpha space densities can be defined by substituting the alpha space transfor-
mation of zp into various Taylor series expansions. Two interesting examples are

log(z) log(1− z) ⇔ 1
(1

2 + α)(1
2 − α)

(
2 Γ
(1

2 ± α
)
− 1

(1
2 + α)(1

2 − α)

)
(A.20)

and the polylogarithm

Lis(z) ⇔
∞∑
p=1

Γ(p− 1
2 ± α)

psΓ2(p) = Γ
(1

2 ± α
)
s+1Fs

(
1
2 + α, 1

2 − α, 1, . . . , 1
2, . . . , 2

; 1
)
(A.21)

for s ∈ Z≥1. Notice that, as always, the residues of the alpha space density immediately
provide the spectrum and coefficients in the conformal block decomposition of the given
functions.

B Proving a remarkable exact identity

The author of [10] procured a formula relating a Casimir singular term to a sum over
conformal blocks, up to a sum over regular terms. In the remainder of this section, we
re-derive their expression using the alpha space formalism.
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A sum over derivatives of some function f can be represented like
∞∑
k=0

df(k)
dk

= −
∫

ds

2πi

(
π

sin(πs)

)2
f(−s) (B.1)

for a suitable contour. As such, the sum(1− z
z

)p
+

Γ(β − 1
2 − p)

Γ2(−p)Γ(β + 1
2 + p)

∞∑
k=0

∂

∂k

(
Γ(β + 1

2 + k)
(k!)2(k − p)Γ(β − 1

2 − k)

(1− z
z

)k)
, (B.2)

which is a Casimir singular term plus an infinite sum over regular terms, is equal to(1− z
z

)p
+

Γ(β − 1
2 − p)

Γ2(−p)Γ(β + 1
2 + p)

∫
ds

2πi
Γ2(s)Γ(β + 1

2 − s)
(s+ p)Γ(β − 1

2 + s)

(1− z
z

)−s
, (B.3)

where the contour encircles the (double) poles at s = −N in a counter-clockwise manner.
Pulling this contour up to lie along the imaginary axis picks up the pole at s = −p,

which contributes
−
(1− z

z

)p
(B.4)

to cancel against the
(

1−z
z

)p
term already present.

The remaining integral can then be taken to alpha space by transforming the z-
dependent factor under the integral according to(1− z

z

)−s
7→

Γ(1− s)Γ(s− 1
2 ± α)

Γ(s)Γ(1
2 ± α)

(B.5)

to give

Γ(β − 1
2 − p)

Γ2(−p)Γ(β + 1
2 + p)Γ(1

2 ± α)

∫
[ds]

Γ(s)Γ(1− s)Γ(β + 1
2 − s)Γ(s− 1

2 ± α)
(s+ p)Γ(β − 1

2 + s)
. (B.6)

This integral produces poles in the α plane because the s contour separating left- and
right-running semi-infinite sequences of poles is pinched whenever α = ±(β+N). As usual,
these poles encode a block decomposition. The residues at the pinch-points prove that
eq. (B.2) is equal to

1
Γ2(−p)

∞∑
n=0

Γ2(β + 1
2 + n)Γ(β − 1

2 − p+ n)
Γ(2(β + n))Γ(β + 3

2 + p+ n)
kβ+n+1/2(z) , (B.7)

which reduces to the block decomposition of
(

1−z
z

)p
when β is tuned to −p− 1

2 .
The significance of this equality is that the residue of the pole at α = β + n in alpha

space is

−
(
Q(−β − n)

2

) Γ2(β + 1
2 + n)Γ(β − 1

2 − p+ n)
Γ2(−p)Γ(2(β + n))Γ(β + 3

2 + p+ n)
, (B.8)

which is asymptotically equal to

− n−2(1+p)

Γ2(−p)

(
1 +O

( 1
n

))
. (B.9)
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That is, the leading asymptotic behavior is independent of β and is exactly equal to the
leading large n asymptotic behavior of

− Γ(−2p− 1 + n)
n! Γ2(−p) , (B.10)

which is the residue of the alpha space density for
(

1−z
z

)p
at α = −p− 1

2 +n. In conclusion,
the addition of the Casimir regular terms has shifted the locations of the blocks and their
OPE coefficients without changing the leading asymptotics. A more complete discussion
can be found in [10].

C Split kernel

The split kernel can be written as

Ksplit(α, β|∆φ) = 2
Q(−β)

∫ 1

0

dz

z2

(
z

1− z

)∆φ

Ψα(z)kβ+1/2(1− z) . (C.1)

It is understood to be defined through analytic continuation when its parameters are outside
the region of convergence of the integral. Using the Mellin-Barnes representation for Ψα(z)
and the useful formula (E.2), we immediately find that it can also be written as

Ksplit(α, β|∆φ) = 2β
Γ(1

2 ± α)

∫
[ds]

Γ(1
2 + s± α)Γ(β + s−∆φ + 3

2)Γ(−s)Γ(∆φ − s− 1)2

Γ(1 + s)Γ(β − s+ ∆φ − 1
2)

.

(C.2)
In more detail, a representation of the split kernel is10

Ksplit(α, β|∆φ) = 2βΓ(∆φ)Γ(1−∆φ)Γ
(

∆φ −
1
2 ± α

)
Γ
(1

2 ± β
)

(C.3)

×
(

Γ(∆φ − 1
2 ± α)Wα(β; 1

2 ,
1
2 ,∆φ − 1

2 ,∆φ − 1
2)

Γ(1
2 ± α)

−
Γ(3

2 −∆φ + β)Wα(β; 1
2 ,

1
2 ,∆φ − 1

2 ,
3
2 −∆φ)

Γ(∆φ − 1
2 + β)

)
,

where

Wα(β; a, b, c, d) ≡
Γ(d− a) 4F3

(
ã− α, ã+ α, a− β, a+ β

a+ b, a+ c, a− d+ 1
; 1
)

Γ(a+ b)Γ(a+ c)Γ(d̃± α)Γ(d± β)
+ (a↔ d) (C.4)

10For four-point functions with unequal external dimensions there exists a similar representation of the
split kernel in terms of Wilson functions; it can be found in [7].
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is called the Wilson function.11 The dual variables in this definition are
ã

b̃

c̃

d̃

 ≡ a+ b+ c+ d

2 −


d

c

b

a

 (C.5)

such that
Wα(β; a, b, c, d) = Wβ(α; ã, b̃, c̃, d̃) . (C.6)

The (tilded) split kernel has double poles when α approaches h− 1/2 + n for non-negative
integer n:

K̃split(ᾱ, β̄|∆φ) = M
(K)
n (β̄|∆φ)

(ᾱ−∆φ + 1
2 − n)2 + N

(K)
n (β̄|∆φ)

ᾱ−∆φ + 1
2 − n

+ regular, (C.7)

with

M (K)
n (β|h) = sin(π(h+ n))

sin(πh)
Γ(2β + 1)Γ(2h− 1 + n)2Γ(1

2 − β)
Γ(n+ 1)2Γ(1

2 + β)

×Wh−1/2+n

(
β; 1

2 ,
1
2 , h−

1
2 , h−

1
2

)
N (K)
n (β|h) =

(−1)nπΓ(2β + 1)Γ(2h− 1 + n)Γ(1
2 − β)Γ(3

2 − h+ β)
sin(πh)Γ(n+ 1)Γ(1

2 + β)Γ(h− 1
2 + β)

×Wh−1/2+n

(
β; 1

2 ,
1
2 , h−

1
2 ,

3
2 − h

)
+ d

dn
M (K)
n (β|h). (C.8)

The doubly split kernel is defined as

Kdsplit(α, β|∆φ) = Q(α)
Q(−β)

∫ 1

0

dz

z2

(
z

1− z

)∆φ

kα+1/2(z)kβ+1/2(1− z) , (C.9)

so that
Ksplit(α, β|∆φ) = Kdsplit(α, β|∆φ) +Kdsplit(−α, β|∆φ) . (C.10)

Using the Mellin-Barnes representation of the hypergeometric functions we arrive at

Kdsplit(α, β|∆φ) = N(α) 2αβ
Γ(β + 1

2)2 (C.11)

×
∫

[ds]
Γ(s)2Γ(β + 1

2 − s)
2Γ(α− 1

2 + ∆φ − s)Γ(1−∆φ + s)2

Γ(α+ 3
2 −∆φ + s)

A∆φ−s,∆φ−β− 1
2 (α)

11Another useful representation is in terms of a single well-poised 7F6:

Wα(β;a,b,c,d) =
Γ(2a+ d̃−α)7F6

(
ã−α, b̃−α, c̃−α,2a+ d̃−1−α, 2a+d̃+1−α

2 ,a−β,a+β

a+b,a+c,a+d, 2a+d̃−1−α
2 , a+b+c+d

2 −α−β, a+b+c+d
2 −α+β

;1
)

Γ(a+b)Γ(a+c)Γ(a+d)Γ(d̃+α)Γ( a+b+c+d
2 −α±β)

.
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with

Ap,q(α) :=
Γ(α+ 3

2 − p)
Γ(1− p)2Γ(α+ 1

2)2

∫
[ds]

Γ(s)2Γ(α− s+ 1
2)2Γ(1− q − s)

Γ(α+ p− q − s+ 1
2)

. (C.12)

In the limit where α is large and p and q are fixed we find that

Ap,q(α) = α2q−2pΓ(1− q)2

Γ(1− p)2

(
1 +O(α−1)

)
. (C.13)

Since Ap,q(α) has poles for negative real α and therefore, in the large α and fixed β limit

Kdsplit(α, β|∆φ) ∼ 2N(α)
Q(−β)Γ(β −∆φ + 3/2)2(α2)∆φ−β−1 , (C.14)

with N(α) = 1
2Q(α)Q(−α). Notice also the obvious symmetry

N(β)Kdsplit(α, β|∆φ) = N(α)Kdsplit(β, α|2−∆φ) , (C.15)

and therefore in the large β limit with fixed α we find

Kdsplit(α, β|∆φ) ∼ Q(α)Γ(α+ ∆φ − 1/2)2(β2)1−∆φ−α . (C.16)

D (Almost) recovering the identity in the s-channel

The s-channel identity f(z) = 1 has a t-channel alpha space decomposition

f̂ t1(β) =
Γ(∆φ − 1

2 ± β)Γ(1−∆φ)
Γ(1

2 ± β)Γ(∆φ)
. (D.1)

The poles at β = ∆φ − 1
2 + n give a contribution

Γ(2∆ + n− 1)
Γ(∆)2n! . (D.2)

The idea in the main text is to use the doubly split kernel to get the s-channel density as
a sum over t-channel blocks. Concretely this would mean

f̂ s1 (α) ?=
∞∑
n=0

Γ(2∆ + n− 1)
Γ(∆)2n! Kdsplit(α,∆φ − 1/2 + n|∆φ) + (α↔ −α) . (D.3)

The summand behaves like n−2α and is therefore convergent for Re(α) > 1/2. We can
conjecture what it is going to be by substituting the defining equation (C.9) for the dou-
bly split kernel and swapping the sum and the integral. This gives the t-channel block
decomposition of the s-channel identity and therefore the sum should equal

Q(α)
∫ 1

0

dz

z2 kα+1/2(z) = 1
2 sin(πα)Γ(3

2 ± α)
. (D.4)
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Numerical experiments for Re(α) > 1/2 confirm this conjecture and so we proceed by
writing:

f̂ s1 (α) ?= 1
2 sin(πα)Γ(3

2 ± α)
+ (α↔ −α) != 0 , (D.5)

where the zero appears simply because the given function is odd in α. This may seem
contradictory but, as we discussed in the previous appendix, the alpha space density for
the s-channel identity has support only for α = ±1/2 and hence 0 is the correct answer
almost everywhere! Clearly at α = 1/2 various subtleties come into play: the integral
in (C.9) diverges but the overall factor Q(α) goes to zero, and furthermore the sum over
n ceases to converge. One may try to make sense of all this, but in our view it is more
important to realize that the prescription in (D.3) requires an analytic continuation to
compute the mirror image with α→ −α and therefore it seems all but hopeless to recover
any non-meromorphic pieces in the s-channel density. If one insists on getting the s-channel
identity from the t-channel then one might be better off writing it as the limit of a function
that has an analytic alpha space transform.

E List of integrals against blocks

In this section we work out some integrals of simple functions against one-dimensional
blocks kα+1/2(z). We first list a few integrals where z ranges from 0 to 1. These play a
role in the ‘split’ discussions in the main text. None of the integrals here are particularly
difficult and most have appeared in the literature before, see for example [1, 2, 23–27]. We
then discuss some integrals along the Hankel contour C defined in section 4.

We first of all define

I(s)
p,q (α) :=

∫ 1

0

dz

z2 kα+ 1
2
(z)zp(1−z)−q (E.1)

=
Γ(1−q)Γ

(
p+α− 1

2

)
Γ
(
p−q+α+ 1

2

) 3F2

(
α+ 1

2 ,α+ 1
2 ,p+α− 1

2
p−q+α+ 1

2 ,2α+1
;1
)

=
Γ(2α+1)Γ(1−q)2Γ

(
p+α− 1

2

)
Γ
(
−p+q+α+ 1

2

)
Γ
(
α+ 1

2

)2
Γ
(
−p+α+ 3

2

)
Γ
(
p−q+α+ 1

2

) 3F2

(
1−q,p−q,p−q

p−q−α+ 1
2 ,p−q+α+ 1

2
;1
)

+
Γ(1−q)Γ

(
p+α− 1

2

)
Γ
(
p−q−α− 1

2

)
Γ(p−q)2 3F2

(
α+ 1

2 ,α+ 1
2 ,−p+α+ 3

2
−p+q+α+ 3

2 ,2α+1
;1
)
,

where the first 3F2 expression is defined for q < 1, where the integral converges near z = 1,
and the second expression provides the analytic continuation to q > 0. Note the special
cases

I(s)
p,p(α) :=

∫ 1

0

dz

z2 kα+ 1
2
(z)

(
z

1− z

)p

=
Γ(2α+ 1)Γ(1− p)2Γ

(
p+ α− 1

2

)
Γ
(
α+ 1

2

)2
Γ
(
−p+ α+ 3

2

) (E.2)
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and

I
(s)
p,0(α) :=

∫ 1

0

dz

z2 kα+ 1
2
(z)zp

= 1
p+ α− 1

2
3F2

(
α+ 1

2 , α+ 1
2 , p+ α− 1

2
p+ α+ 1

2 , 2α+ 1
; 1
)
.

(E.3)

For integrals of blocks against blocks we have, for two s-channel blocks,

J (s)(α, β) :=
∫ 1

0

dz

z2 kα+1/2(z)kβ+1/2(z) (E.4)

= αβQ(−α)Q(−β)
∫

[dt]
Γ(t+ β)Γ(−t+ α)Γ(1

2 ± t)
2

Γ(β + 1− t)Γ(−α+ 1 + t)

= αβQ(−α)Q(−β)
{

Γ(1
2 ± β)2

(α+ β)Γ(1 + α− β)Γ(1− α+ β)

− d

dε

[
Γ(1

2 + α+ ε)Γ(β − 1
2 − ε)

Γ(1
2 + α− ε)Γ(β + 3

2 + ε) 4F3

(
ε+ 1, ε+ 1,−α+ ε+ 1

2 , α+ ε+ 1
2

−β + ε+ 3
2 , β + ε+ 3

2 , 2ε+ 1
; 1
)]∣∣∣∣∣

ε=0

}
,

and for an s-channel against a t-channel block we have already defined the doubly split
crossing kernel (C.9). For our purposes it is useful to introduce a slightly differently nor-
malized function as follows:

L(s)
p (α,β) :=

∫ 1

0

dz

z2

(
z

1−z

)p
kα+1/2(z)kβ+1/2(1−z) = Q(−β)

Q(α) Kdsplit(α,β|p)

=
Γ(2β+1)Γ

(
p+α− 1

2

)2
Γ(−p−α+β+1)

Γ
(
β+ 1

2

)2
Γ(p+α+β)

4F3

(
α+ 1

2 ,α+ 1
2 ,p+α− 1

2 ,p+α− 1
2

2α+1,p+α−β,p+α+β
;1
)

+(α,β,p)→ (β,α,2−p) . (E.5)

Next we consider the integrals along the Hankel contour C that wraps the negative
real axis. It is useful to note that

1
2πi

∫
C

dz

z2

(
z

1− z

)p
= sin(π(p− 1))

π(p− 1) . (E.6)

We have

I(C)
p,q (α) := 1

2πi

∫
C

dz

z2 k−α+ 1
2
(z)zp(1− z)−q

= 1
π

sin(π(α− p− 1/2))I(s)
p,p−q(−α)

= Γ(−p+ q + 1)
Γ
(
−p+ α+ 3

2

)
Γ
(
q − α+ 1

2

) 3F2

(
1
2 − α,

1
2 − α, p− α−

1
2

1− 2α, q − α+ 1
2

; 1
)
,

(E.7)

which works for p− q < 1. It is worthwhile to also state the special case

I
(C)
p,0 (α) = Γ(1− 2α)Γ(1− p)2

Γ
(

1
2 − α

)2
Γ
(
−p± α+ 3

2

) . (E.8)
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For generic p and q we find poles whenever α is a positive integer which is when the
conformal blocks themselves diverge. In the special case that p is a half-integer we find
that these poles disappear and we obtain an analytic function of α. In either case the
OPE coefficients are encoded in the density as described in the main text. Note that the
double poles at integer values of p for q = 0 originate from the divergence of the integral
as |z| → ∞.

Also,

J (C)(α, β) := 1
2πi

∫
C

dz

z2 k−α+1/2(z)kβ+1/2(z) = − 1
π

sin(π(α− β))J (s)(−α, β) . (E.9)

For generic β, the right-hand side again has kinematic poles when α is a positive integer.
As discussed in the main text, this expression should be seen as providing an ‘analytic’
continuation of the Kronecker delta.

Finally we have yet another crossing kernel. We define

K(C)
p (α, β) := 1

2πi

∫
C

dz

z2 k−α+1/2(z)kβ+1/2(1− z)
(

z

1− z

)p
=

∞∑
n,m=0

(−α+ 1/2)2
n(β + 1/2)2

m

(−2α+ 1)n(2β + 1)mn!m!
sin(π(p− α− β − 1))

π(p− α− β + n−m− 1) .
(E.10)

(In Mathematica it is faster to do one of the two infinite sums algebraically, which results
in a 3F2 hypergeometric, before numerically evaluating the remaining sum. One can also
just do the integral numerically.) One observes the symmetry

K(C)
p (α, β) = K

(C)
2−p(−β,−α) , (E.11)

which is obvious from the definition if one deforms the contour C to lie parallel to the
imaginary axis at Re(z) = 1/2.

F Changing variables

In the main text we often encounter a density of the schematic form

λ̃(ᾱ)
α− β̃(ᾱ)

, (F.1)

whereas we are more interested in a density of the schematic form

λ(j)
α− β(j) + regular , (F.2)

with ᾱ = α+ j. In order to match the location of the poles we must require that

β(j)− β̃(j + β(j)) = 0 , (F.3)

which defines β(j) in terms of β̃(·). Secondly we have the equation

λ(j)(α− β̃(j + α)) = λ̃(α+ j)(α− β(j)) + (α− β(j))(α− β̃(α+ j))× regular . (F.4)
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Taking an α derivative and evaluating at α = β(j) gives

λ(j)(1− β̃′(j + β(j))) = λ̃(β(j) + j) , (F.5)

and since
β̃′(j + β(j)) = β′(j)

1 + β′(j) (F.6)

we find
λ(j) = (1 + β′(j))λ̃(β(j) + j) , (F.7)

which defines λ(j) in terms of λ̃(·) and β(j).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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