

Beyond ¹³²Sn: Examples of new data on exotic neutron-rich Te isotopes from fission and β -decay

Radomira Lozeva, Min Si, Guillaume Häfner

▶ To cite this version:

Radomira Lozeva, Min Si, Guillaume Häfner. Beyond 132 S
n: Examples of new data on exotic neutron-rich Te isotopes from fission and
 β -decay. Heavy Ion Accelerator Symposium on Fundamental and Applied Science 2019, Sep 2019, Canberra, Australia. pp.04008, 10.1051/epjconf/202023204008. hal-02542909

HAL Id: hal-02542909 https://hal.science/hal-02542909

Submitted on 24 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Beyond ¹³²Sn

Examples of new data on exotic neutron-rich Te isotopes from fission and β -decay

Radomira Lozeva^{1,*}, Min Si^{1,}, and Guillaume Häfner^{1,2}

¹CSNSM, CNRS/IN2P3, Université Paris-Saclay, F-91405 Orsay Campus, France ²IKP, Universität zu Köln, D-50937 Köln, Germany

Abstract. Exotic nuclei beyond the ¹³²Sn double shell-closure have both single-particle and collective particlehole excitations and are expected to have competing excitation patterns from both type of excitations together with possible structural changes. We are, therefore, studying the region in the close vicinity beyond ¹³²Sn and further with the neutron increase with experimental methods such as induced fission and β decay. Short overview of this knowledge will be given together with examples of newly obtained data at preliminary stage.

1 Introduction and Motivation

Exotic nuclei beyond the ¹³²Sn double shell-closure are influenced by both the Sn superfluity and the evolving collectivity only a few nucleons away, involving predominantly protons from the lower-lying $\pi q_{7/2}$ and $\pi d_{5/2}$ orbitals and the neutrons in the $vf_{7/2}$, $vp_{3/2}$ and $vh_{9/2}$ orbitals beyond, respectively, Z=50, N=82 closed shells. For neutron-rich nuclei, for example at intermediate mass number $A \sim 136$, the interplay between single-particle and collective particle-hole excitations [1, 2] is evident in midshell $\nu f_{7/2}$. On the other hand at the end of the $\nu f_{7/2}$ shell possible sub-shell gap with respect to $vp_{3/2}$ has been suggested [3]. With the extreme addition of neutrons but also of protons also other effects are expected such as the formation of neutron skin [4], orbital crossings between $\pi g_{7/2}$ and $\pi d_{5/2}$ orbitals [5, 6] and possible quickly evolving deformation [7].

The knowledge of experimental nuclear ingredients is especially interesting beyond ¹³²Sn as little is known on how the excitation modes develop with the addition of both protons and neutrons for the Sb, Te, I nuclei. Therefore, systematic prompt and decay studies can be such sensitive probe for their structure [8, 9]. Aiming at more global picture and understanding this barely explored neutron-rich portion of the nuclear chart, we have performed several investigations, recently.

We have produced the nuclei of interest following fission such as relativistic ²³⁸U on ⁹Be at inverse kinematics, thermal neutron-induced fission on ²⁴¹Pu and ²³⁵U or fast neutron-induced fission on ²³⁸U and ²³²Th and in β -decay of fission products in several recent γ -ray spectroscopy projects [8–10]. Consistent data analysis allows to access various spins and excitation energies and to provide complementary data, better understanding, as well as a new and indispensable input to theory. Examples from some of

2 New data on ¹³⁴Te from fission

With only two valence protons outside the doubly-magic ¹³²Sn, a long-lived isomeric J = 6 state emerges in ¹³⁴Te based on the $\pi g_{7/2}^2$ proton configuration. Below the 6_1^+ isomer, a short-lived 4_1 + isomer with $T_{1/2} = 1.28(10)$ ns has been observed [13]. The nucleus of interest has been produced in a fast neutron-induced fission experiment and its de-excitation measured with a hybrid array consisting of HpGe and LaBr₃(Ce) scintillation detectors [10].

Due to its short half-life, the 4_1^+ state is not measurable with HpGe detectors, but delayed LaBr₃(Ce) after tagging the ¹³⁴Te nucleus can be utilized for measuring this state. In the left panel of Fig. 1, the LaBr₃(Ce) energy projection can be seen after gating on the 1279 keV $2^+_1 \rightarrow 0^+_1$ transition and several transitions above the 6^+_1 isomer. Both, 115 and 297 keV transitions feeding and de-populating the 4^+_1 state are visible. Furthermore, the LaBr₃(Ce) projection after an additional LaBr₃(Ce) gate on 115 keV is shown. The time difference spectrum, illustrated in the right panel of Fig. 1 has been fitted with an exponential decay curve plus constant background to obtain the half-life, $T_{1/2}$. A value of $T_{1/2} = 1.3(3)$ ns has been obtained, in accordance with the literature value of 1.36(11) ns [14]. This measurement demonstrates the feasibility of measuring ns and sub-ns lifetimes with this experiment and is employed toward more neutron rich Te isotopes of interest.

3 New data on ¹³⁶Te from fission

The neutron rich ¹³⁶Te has two valence protons and neutrons outside the doubly magic ¹³²Sn and is of major importance to study the onset of collectivity beyond the ¹³²Sn

these studies on isotopes with $A \sim 136$ will be briefly presented along with a short discussion of the new data. Detailed description and further details will be accordingly published in dedicated articles [11, 12].

^{*}e-mail: radomira.lozeva@csnsm.in2p3.fr

Figure 1. (Color online) Left: Delayed LaBr₃(Ce) energy projection after applying a HpGe gate on several transitions in ¹³⁴Te (red) and an additional LaBr₃(Ce) gate on 115 keV (blue). Right: Time difference of the 297 - 115 keV cascade to measure the half-life of the 4_1^+ state in ¹³⁴Te. The distribution was fitted using an exponential decay (red) plus a constant background (black).

Figure 2. (Color online) Left: Prompt energy projection after applying a HpGe gate on the 750 keV transition in ¹³⁶Te. The LaBr₃(Ce) energy spectrum is shown in red and the HpGe spectrum in blue. The strongest transitions from ¹³⁶Te are labeled with their respective energies. Right: LaBr₃(Ce) - HpGe energy matrix after gating on the two lowest transitions in ¹³⁶Te. The zoomed area corresponds to the 750 - 352 keV coincidence.

core. Excited states in ¹³⁶Te have been populated in fast neutron-induced fission and its γ -rays detected using the previously described (Sec. 2) combination of HpGe and LaBr₃(Ce) scintillation detectors.

Figure 2 shows an example for the ¹³⁶Te nucleus. In the left panel of Fig. 2, the energy projection after applying a clean HpGe gate on the 750 keV, $8_1^+ \rightarrow 6_1^+$ transition in ¹³⁶Te is presented. All the transitions below the 6_1^+ are clearly visible in both LaBr₃(Ce) and HpGe energy projections. Utilizing the superior energy resolution of the HpGe detectors one can conclude that the peaks of interest show almost no contribution from other contaminants. From measuring time differences between the labeled transitions, lifetimes of the respective states are deduced.

In the right panel of Fig. 2 an energy matrix is shown to demonstrate the HpGe - LaBr₃(Ce) coincidence between the $8_1^+ \rightarrow 6_1^+$ and $6_1^+ \rightarrow 4_1^+$ transition in ¹³⁶Te. The number of coincidence counts amounts to about 10³ which, scaled by efficiencies for the LaBr₃(Ce), is reasonable to measure

the lifetime of the 6_1^+ state in ¹³⁶Te. This data result will be presented in a forthcoming article [12].

4 New data on ¹³⁶Te from β decay of ¹³⁶Sb

The β -decay data of ¹³⁶Sb to ¹³⁶Te, accessing the lowspin states which are not populated in fission, is extremely scarce [14]. It gives very important information not only on the ground state spin/parity and thus its properties, but also on specific type first excited states, such as the 2⁺₁, 2⁺₂, 2⁺₃ etc. Such measurement has been performed using β -decay of A = 136 fission products after the thermal neutron-induced fission of ²³⁵U and detected using a system of clover HpGe, coaxial HpGe and LaBr₃(Ce) detectors in combination with β -decay detectors and a tape station.

Well adapted to the lifetime of the ¹³⁶Sb nucleus [14], the duty cycle of the system allowed the short-lived daughter to be well separated from the grand-daughter decays

Figure 3. (Color online) Short-lived energy projection corresponding to the decay of ¹³⁶Sb using HpGe detectors and gate on 606 $2_1^+ \rightarrow 0^+$ transition in ¹³⁶Te (red) and an additional anti-coincidence gate on the 1313 keV transition $2_1^+ \rightarrow 0^+$ in ¹³⁶Xe (green). New transitions e.g. candidates belonging to ¹³⁶Te are in black.

Te→I and I→Xe with the help of a chopper system. In addition, to clean-up from the strongly produced grand-daughter activities anti-coincidence gates from the grand-daughter nucleus are applied. Furthermore, long-lived activities in ¹³⁶I grand-daughter are also subtracted from the time window. This is demonstrated in Fig. 3, where several new candidates for the level scheme of ¹³⁶Te are shown. The detailed level scheme will be given together with all newly extracted *logft* values in a forthcoming article [11].

5 Discussion

The new data allows to verify and expand our current knowledge for these mid-shell nuclei (A~136) with respect to the $\nu f_{7/2}$ orbital nuclei, which is the lowest-lying neutron orbital beyond ¹³²Sn. The collected new information allows multiple coincidence relations to be established and used determine the position in the level scheme of new, or verify previously known γ transitions.

In addition, several lifetime measurements have been possible in the data analysis. Added to the new γ -ray information these provide new and important ingredients to compare with shell-model theory. The current understanding of the region with reasonably slow development of collectivity at mid-shell, expected to increase with the increase of the valence particles, can now be reexamined, especially for states which have not been populated in previous measurements. From preliminary view, the new data reasonably well agrees with the expectations from theory, however only the very detailed comparison will allow specific conclusions to be drawn [11, 12]. The experimental ingredients such as the transition rates obtained from the lifetime measurements allow better tuning of the transition matrix elements. Such data is valuable when testing the nucleon-nucleon interaction for the region beyond ¹³²Sn and when predicting nucleon or two nucleon excitations e.g. type $\pi g_{7/2}^2$ and $\nu f_{7/2}^2$ in the currently out of reach A>140 region.

In the data on the Sb β decay, for the first time a very large Q_{β} window has been experimentally scanned. This allows the population of many new low-spin states at high excitation energy. This, respectively, provides a field for more detailed comparison to shell-model, particularly on the strength of the first-forbidden transitions beyond ¹³²Sn. New ingredients in understanding the role of first-forbidden transitions with respect to the Gamow-Teller strength can now be analysed in details, especially as it is open in ¹³⁶I [8], but not seen in the Te chain [14]. Thus, combining both data sets with our previous knowledge in the region, new transitions, new excitation energies and extension of the level schemes, with new spin/parity etc. contributes importantly to the structure studies of the populated states and their behaviour beyond ¹³²Sn.

References

- M. -G. Porquet, S. Peru and M. Girod, Eur. Phys. J. A 25, 319 (2005)
- [2] R. Kshetri, M. Saha Sarkar, and S. Sarkar, Phys. Rev. C 74, 034314 (2006)
- [3] S. Sarkar and M. Saha Sarkar, Phys. Rev. C 81, 064328 (2010)
- [4] B. A. Brown, Phys. Rev. Lett. 85, 5296 (2000)
- [5] J. Shergur, B. A. Brown, V. Fedoseyev *et al.*, Phys. Rev. C 65, 034313 (2002)
- [6] R. Lozeva, H. Naidja, F. Nowacki *et al.*, Phys. Rev. C 93, 014316 (2016)
- [7] W. Urban, T. Rzaca-Urban, A. Korgul *et al.*, Phys. Rev. C 65, 024307 (2002)
- [8] R. Lozeva, E. A. Stefanova, H. Naidja *et al.*, Phys. Rev. C 98, 024323 (2018)
- [9] M. Jentschel, A. Blanc, G. de France *et al.*, J. Inst. **12**, 11003 (2017)

- [10] J. N. Wilsson, M. Lebois, L. Qi et al., Phys. Rev. Lett. 118, 222501 (2017)
- [11] M. Si et al., in preparation
- [12] G. Häfner et al., in preparation

[13] J. P. Omtvedt, H. Mach, B. Fogelberg *et al.*, Phys. Rev. Lett. **75**, 3090 (1995)
[14] www.nndc.bnl.gov