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Abstract

The Λ+
c K

− mass spectrum is studied with a data sample of pp collisions at a centre-
of-mass energy of 13 TeV corresponding to an integrated luminosity of 5.6 fb−1

collected by the LHCb experiment. Three Ξ0
c states are observed with a large

significance and their masses and natural widths are measured to be

m(Ξc(2923)0) = 2923.04± 0.25± 0.20± 0.14 MeV,

Γ(Ξc(2923)0) = 7.1± 0.8± 1.8 MeV,

m(Ξc(2939)0) = 2938.55± 0.21± 0.17± 0.14 MeV,

Γ(Ξc(2939)0) = 10.2± 0.8± 1.1 MeV,

m(Ξc(2965)0) = 2964.88± 0.26± 0.14± 0.14 MeV,

Γ(Ξc(2965)0) = 14.1± 0.9± 1.3 MeV,

where the uncertainties are statistical, systematic, and due to the limited knowledge
of the Λ+

c mass. The Ξc(2923)0 and Ξc(2939)0 baryons are new states. The
Ξc(2965)0 state is in the vicinity of the known Ξc(2970)0 baryon; however, their
masses and natural widths differ significantly.
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Singly charmed baryons are composed of a charm quark and two light quarks. Due to
the large mass difference between the charm and the lighter quarks, these baryons provide
an insight into the spectrum of states using symmetries described by the Heavy Quark
Effective Theory [1,2]. Numerous theoretical predictions of the properties of heavy baryons,
containing either a charm or a beauty quark, have been made in recent years [3–13]. In
many of these models, the heavy quark interacts with a lighter diquark, which is treated
as a single object. Other predictions are based on Lattice QCD calculations [14].

In 2017, the LHCb collaboration reported the observation of five new narrow Ω0
c

baryons decaying to the Ξ+
c K

− final state [15], four of which were later confirmed by
the Belle collaboration [16]. It is currently not understood why the natural widths of
these resonances are small [17,18], although a similar trend has recently been observed
in the excited Ω−b states decaying to Ξ0

bK
− [19]. Investigating a different charmed mass

spectrum could lead to a better understanding of this feature.
A natural extension to the Ξ+

c K
− analysis is the study of the Λ+

c K
− spectrum. The

BaBar collaboration was the first to observe a structure in the Λ+
c K

− mass spectrum in
B−→ K−Λ+

c Λ
−
c decays peaking at 2.93 GeV in 2007 [20]. However, it was not interpreted

as a new state due to the absence of an amplitude analysis. Unless otherwise stated,
charge-conjugate processes are implicitly included, and natural units with ~ = c = 1
are used throughout. Later that year another analysis was published [21], looking at
strongly interacting prompt decays of charm-strange baryons to several final states, one of
which was Λ+

c K
−. No resonances were reported in the Λ+

c K
− mass spectrum. The Belle

collaboration also reported the study of B−→ K−Λ+
c Λ
−
c decays [22]. A peaking structure

was observed in the Λ+
c K

− mass spectrum compatible with the results of Ref. [20] and
interpreted as a new Ξ0

c baryon, dubbed Ξc(2930)0. Similarly, evidence of the isospin
partner Ξc(2930)+ in B0→ K0Λ+

c Λ
−
c decays has been claimed [23].

This letter presents a search for excited Ξ0
c baryons, hereafter referred to as Ξ∗∗0c , in

the Λ+
c K

− spectrum in a mass region around the Ξc(2930)0 state, with the Λ+
c baryons

reconstructed in the pK−π+ final state. Defining ∆M ≡ m(Λ+
c K

−)−m(Λ+
c )−m(K−),

the region considered is ∆M < 300 MeV. The data are collected in pp collisions with
the LHCb detector at a centre-of-mass energy of 13 TeV, corresponding to an integrated
luminosity of 5.6 fb−1.

The LHCb detector [24, 25] is a single-arm forward spectrometer covering the pseu-
dorapidity range 2 < η < 5, designed for the study of particles containing b or c quarks.
The detector elements that are particularly relevant to this analysis are: a silicon-strip
vertex detector surrounding the pp interaction region that allows c and b hadrons to be
identified from their characteristically long flight distance; a tracking system that provides
a measurement of the momentum of charged particles; and two ring-imaging Cherenkov
detectors that are able to discriminate between different species of charged hadrons. The
online event selection is performed by a trigger, which consists of a hardware stage, based
on information from the calorimeter and muon systems, followed by a two-level software
stage, which applies a full event reconstruction [26, 27]. Simulated data samples are
produced with the software packages described in Refs. [28–32] and are used to optimise
the selection requirements, to quantify the invariant-mass resolution, and to model physics
processes which may constitute peaking backgrounds in the analysis.

Candidate Λ+
c baryons are formed from the combination of three tracks of good quality

which are inconsistent with originating from any primary proton-proton interaction
vertex (PV) and have large transverse momentum (pT). Particle identification (PID)
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requirements are imposed on all three tracks to suppress combinatorial background and
misidentified charm-meson decays. The Λ+

c candidates are required to have pT > 2 GeV
and are constrained to originate from the associated PV by requiring a small χ2

IP, defined
as the difference between the vertex-fit χ2 of the PV reconstructed with and without the
candidate in question. The Λ+

c vertex must also be displaced from the associated PV
such that the Λ+

c decay time is longer than 0.3 ps. A multivariate classifier based on a
boosted decision tree (BDT) algorithm [33,34] implemented in the TMVA toolkit [35] is
used to further improve the Λ+

c signal purity. The input variables given to the BDT are
the χ2 value of the Λ+

c decay-vertex fit, the Λ+
c flight distance between the production

and decay vertex, the angle between the Λ+
c momentum vector and the line that joins

the Λ+
c decay vertex with its associated PV, the χ2

IP and pT of the Λ+
c candidate, and the

χ2
IP and PID responses of the Λ+

c decay particles. The background sample used in the
BDT training consists of the lower and upper sidebands of the pK−π+ invariant mass
distribution, 2230 − 2250 MeV and 2320 − 2340 MeV, respectively. The signal sample
used is the Λ+

c sample in data after subtracting the background by means of the sP lot
technique [36], exploiting m(pK−π+) as discriminating variable. The training of the
multivariate algorithm is carried out by using 20 000 candidates of the reconstructed Λ+

c

candidates from the data recorded in 2016. The requirement on the BDT response is
determined using 200 000 Λ+

c candidates by maximising the figure of merit S/
√
S +B,

where S is the Λ+
c signal yield extracted from a fit to the mass spectrum of Λ+

c candidates
passing a given BDT requirement and B is expected background yield. The value for B
is extrapolated by scaling the background yield over the full mass range of the fit to a
±15 MeV mass range around the Λ+

c peak.
Misidentified D+ → K−π+π+, D+ → K+K−π+ and D+

s → K+K−π+ background
decays are observed after changing the mass hypothesis of the proton into a kaon or a pion.
These background components are reduced by employing a tighter PID selection and
requiring the invariant mass m(K+K−) to differ by at least 10 MeV from the known φ(1020)
mass [37]. Removing all candidates in mass windows around the D+

(s) mass distributions
would result in a large loss of signal efficiency and therefore is not implemented. However,
it is checked that the results of the analysis are stable when these background components
are removed fully. About 125 million Λ+

c signal decays are selected for further analysis with
a purity of 93%. The invariant-mass distribution of 20% of the Λ+

c candidates satisfying
these selection requirements is shown in Fig. 1.

The Ξ∗∗0c candidates are formed from Λ+
c K

− combinations, where the Λ+
c candidate

mass is required to be within 20 MeV of the known Λ+
c mass [37]. Each Λ+

c candidate is
combined with a K− candidate that is consistent with originating from the associated
PV. The Λ+

c and K− particles are fitted to a common vertex, which is required to be
consistent with the associated PV.

The main contribution to the combinatorial background in the Λ+
c K

− mass spectrum
is due to the large number of kaon candidates from the PV. The signal to background ratio
is improved by optimising the PID criteria of the K− candidates and the pT requirement
on the Ξ∗∗0c candidates using the figure of merit ε/(

√
BP + 5/2) [38]. Here, ε is the

efficiency determined using simulated Ξc(2930)0→ Λ+
c K

− decays, and BP is the number
of Λ+

c K
− candidates in the mass region 260 < ∆M < 290 MeV, corresponding to the

background expected in a mass window around the expected Ξc(2930)0 signal, with width
Γ(Ξc(2930)0) = 26 ± 8 MeV [37]. Based on the optimisation above, the pT of the Ξ0

c

candidates is required to be larger than 7350 MeV, and the kaon PID is required to satisfy
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Figure 1: Distribution of the reconstructed invariant mass m(pK−π+) for 20% of the candidates
in the Λ+

c sample passing the selection described in the text. The solid blue curve shows the
result of the fit, and the dashed blue line indicates the background component of the fit.

a tight criterion. The fraction of events with multiple candidates is found to be 0.88% in
the entire ∆M range. All candidates are included in the analysis.

The resulting ∆M distribution of the signal candidates is shown in Fig. 2, where
a fit to the data is superimposed. Three narrow structures are observed in the Λ+

c K
−

candidate spectrum. These peaking structures are not seen in the wrong-sign (WS) Λ+
c K

+

candidates or Λ+
c sideband distributions. The ∆M distribution also shows a broad structure

to the left of the three narrow structures consistent with being partially reconstructed
Ξc(3055)→ Σc(2455)(→ Λ+

c π)K− and Ξc(3080)→ Σc(2455)(→ Λ+
c π)K− decays, where

the pion is not reconstructed.
An unbinned maximum-likelihood fit, henceforth denoted the reference fit, is performed

to the ∆M distribution to measure the parameters of each peak. The background is
modelled by an empirical function of the form ∆Ma × exp(−b × ∆M), where a and
b vary freely. Each signal peak is described by an S-wave relativistic Breit−Wigner
function convolved with a mass-resolution function. The experimental mass resolution
is determined using simulated Ξ∗∗0c → Λ+

c K
− decays at several Ξ∗∗0c masses. In the

∆M interval where the three narrow peaks occur, the mass resolution varies between
1.7 and 2.2 MeV. Simulated data are also generated to determine the shape of partially
reconstructed Ξc(3055) and Ξc(3080) decays. The shapes of these contributions are
allowed to shift in ∆M by the uncertainties in the decay-product masses, where the
shift is Gaussian constrained. From isospin symmetry, the yields of the components are
constrained to be twice as large as the corresponding Ξc(3055)0 and Ξc(3080)0 components.
The fit model outlined so far does not accurately describe the data in the mass region
close to the kinematic threshold, and thus an additional component is considered. There
are no known decays of Σc(2455)(→ Λ+

c π)K− or Σc(2520)(→ Λ+
c π)K− which could enter

the sample as partially reconstructed components at ∆M ' 0. It is observed that the
missing component is consistent with being due to the partial reconstruction of the state
that peaks around ∆M ' 140 MeV when it decays directly to the Λ+

c K
−π+ final state

without any intermediate resonance. The shape of these partially reconstructed decays is
taken from simulated samples generated using the RapidSim package [39] and the yield is
a free parameter in the fit.

The ∆M distribution with the fit to the data superimposed is shown in Fig. 2(a). The
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Figure 2: Distributions of the reconstructed invariant-mass difference
∆M = m(Λ+

c K
−)−m(Λ+

c )−m(K−) for all candidates passing the selection require-
ments described in the text. The black symbols show the selected signal candidates. The result
of a fit, described in the text, is overlaid (solid blue line). In plot (a) the reference fit is shown.
Plot (b) shows an alternative description to the data, where an additional Gaussian component
given by the cyan dot-dashed line is added to the fit model around ∆M ' 100 MeV. The
missing child particles in the reconstruction are indicated in grey in the legend.

Table 1: Peak positions in the invariant-mass difference distribution ∆M , natural widths Γ,
signal yields and local significances of the three mass peaks obtained from the fit to the Λ+

c K
−

mass spectrum, where the systematic uncertainties are statistical.

Peak of ∆M [MeV] Γ [MeV] Signal yields
142.91± 0.25 7.1± 0.8 5400± 400
158.45± 0.21 10.2± 0.8 10400± 600
184.75± 0.26 14.1± 0.9 11700± 600

goodness-of-fit value is χ2/ndof = 301/(300− 19) = 1.07, where ndof is the number of the
degrees of freedom. Table 1 shows the results for the parameters of the signal peaks of
the reference fit, hereafter named Ξc(2923)0, Ξc(2939)0 and Ξc(2965)0.

To validate the presence of the signal components and test the stability of the fit
parameters, several additional checks are performed. The data are fitted in samples
according to the year of data-taking and to different data-taking conditions depending on
the LHCb magnet configuration. The Λ+

c K
− sample and its charge conjugate are also

studied separately. The results are consistent among all samples.
The data and the reference fit show the least compatibility in the region around

∆M ' 100 MeV. This may be due to a mismodelling of the partially reconstructed
distributions, but it could also be due to the presence of further new Ξ∗∗0c baryon
states. Figure 2(b) shows the ∆M distribution for the signal sample where an additional
component, parametrized by an empirical Gaussian function, has been added to the
reference fit. This fit has a goodness-of-fit value of χ2/ndof = 278/(300− 22) = 1.00. As
a cross-check, this structure is tested in subsamples of the data set divided by data-taking
year, and showed an inconsistency in the scaling of the yield with respect to the integrated
luminosity. Furthermore, the feed-down components are highly suppressed when this
contribution is included. More data are required to understand the cause of this additional
structure. It is accounted for when calculating the systematic uncertainties.
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Table 2: Summary of the contributions to the systematic uncertainties on the resonance
parameters. Absolute deviations from the nominal fit are quoted.

Source Ξc(2923)0 Ξc(2939)0 Ξc(2965)0

m [MeV] Γ [MeV] m [MeV] Γ [MeV] m [MeV] Γ [MeV]
Alternative fit model 0.15 1.6 0.14 0.4 0.04 1.1
Resonance interferences 0.08 0.7 0.06 1.0 0.11 0.7
Momentum-scale 0.04 – 0.05 – 0.06 –
Energy losses 0.04 – 0.04 – 0.04 –
Resolution calibration – 0.6 – 0.2 – 0.3
Total 0.20 1.8 0.17 1.1 0.14 1.3

Several sources of systematic uncertainty may affect the measured parameters. The
fit model uncertainty is evaluated by replacing the background model by an alternative
function, consisting of a combination of the wrong-sign m(Λ+

c K
+) invariant-mass distri-

bution shape and the shape obtained from candidates in the Λ+
c sideband. In addition,

the choice of the relativistic Breit−Wigner model is changed by setting the values of
the angular momentum L between the child particles to L = 1, 2 and separately varying
the Blatt−Weisskopf factors [40] from 2 to 4 GeV−1. Furthermore, the fit is adapted
to include any partially reconstructed decays Ξ∗∗c → Σc(2455/2520)(→ Λ+

c π)K− that
are found to not contribute significantly to the reference fit. Finally, deviations in fit
parameters between the reference fit and the fit shown in Fig. 2(b) are included in the fit
model uncertainty. The largest deviation from the reference fit is quoted as the systematic
uncertainty for the fit model. Resonances with the same spin-parity that are close in
mass can interfere. An interference term is introduced between neighbouring resonances,
for one pair of resonances at a time. With the interference term, the lineshape takes
the form A = |cjBWj + ckBWke

iφ|2 where j and k denote the two resonances, BWj,k are
Breit−Wigner functions and cj,k and φ are free real parameters. The largest difference
between the reference fit and a fit where resonance interference is allowed is used as the
systematic uncertainty. In addition, several other sources of systematic uncertainty only
affect the mass measurement. These include the momentum-scale uncertainty, evaluated
by shifting the momentum-scale of charged tracks by ±0.03% [41] in simulated decays,
and the imperfect modelling of the energy loss in the detector material, resulting in a
systematic uncertainty of 0.04 MeV [42]. Finally, a systematic uncertainty is attributed to
the width measurement, to account for the fact that the simulation may not reproduce the
absolute mass resolution perfectly. The corresponding systematic uncertainty is obtained
by the change in the width when the value of the resolution, determined on simulated
data, is varied by 10% [43]. The systematic uncertainties are summarised in Table 2 and
in Table 3 their measured masses and natural widths are summarised.

The observations described in this letter and the lack of any Ξc(2930)0 signal
indicates that the broad bump observed in B− → K−Λ+

c Λ
−
c decays [20, 22] might

be due to the overlap of two narrower states, such as the Ξc(2923)0 and Ξc(2939)0

baryons. The Ξc(2965)0 baryon is in the vicinity of the known Ξc(2970)0 baryon,
which has been observed in different decay modes, Σc(2455)0K0

S [21], Ξ ′c
+π− [44] and

Ξc(2645)+π− [45]. Furthermore, the Ξc(2965)0 resonance has a natural width and mass
which differs significantly from that of the Ξc(2970)0 baryon, Γ(Ξc(2970)0) = 28.1+3.4

−4.0 MeV
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Table 3: Summary of the parameters for the studied states, showing the measured ∆M values, the
masses and the natural widths, where the first uncertainty is statistical and the second uncertainty
is systematic. For the mass measurement, the third uncertainty denotes the uncertainty on the
known Λ+

c mass [37].

Resonance Peak of ∆M [MeV] Mass [MeV] Γ [MeV]
Ξc(2923)0 142.91± 0.25± 0.20 2923.04± 0.25± 0.20± 0.14 7.1± 0.8± 1.8
Ξc(2939)0 158.45± 0.21± 0.17 2938.55± 0.21± 0.17± 0.14 10.2± 0.8± 1.1
Ξc(2965)0 184.75± 0.26± 0.14 2964.88± 0.26± 0.14± 0.14 14.1± 0.9± 1.3

and m(Ξc(2970)0) = 2967.8+0.9
−0.7 MeV [37]. Further studies are required to establish whether

the Ξc(2965)0 state is indeed a different baryon. The equal spacing rule [46,47] succeeded
to predict the mass of the Ω baryon and holds for other flavour multiplets such as the
sextet of the JP = 3/2+ charmed ground states:

m(Ωc(2770)0)−m(Ξc(2645)0) ' m(Ξc(2645)0)−m(Σc(2520)0) ' 125 MeV.

It is noted that the rule also seems to hold for the Ξc(2923)0, Ξc(2939)0 and Ξc(2965)0

baryons within a precision of a few MeV:

m(Ωc(3050)0)−m(Ξc(2923)0) ' m(Ξc(2923)0)−m(Σc(2800)0) ' 125 MeV,

m(Ωc(3065)0)−m(Ξc(2939)0) ' 125 MeV,

m(Ωc(3090)0)−m(Ξc(2965)0) ' 125 MeV.

This pattern may indicate that the new states reported in this analysis are related to the
excited Ω0

c baryons observed in the Ξ+
c K

− spectrum. Measurements of spin-parities will
be crucial to confirm whether they belong to the same flavour multiplets.

In summary, pp collision data collected by the LHCb experiment at a centre-of-mass
energy of 13 TeV, corresponding to an integrated luminosity of 5.6 fb−1, are used to search
for excited Ξ0

c resonances in the Λ+
c K

− mass spectrum. Three different Ξ0
c baryons,

Ξc(2923)0, Ξc(2939)0 and Ξc(2965)0, are unambiguously observed. The two baryons at
lower mass are observed for the first time, while an investigation of additional final states
is required to establish whether the Ξc(2965)0 and Ξc(2970)0 states are different baryons.
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rUniversità della Basilicata, Potenza, Italy

15



sScuola Normale Superiore, Pisa, Italy
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