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Abstract In this paper we present a review of progress in
addressing the challenge to understand and describe the vast
complexity and multi-level organisation associated with bio-
logical systems. We begin with a review of past and current
approaches, key lessons, and unresolved challenges, which
require a new conceptual framework to address them. After
summarizing the core of the problem, which is linked to com-
putational complexity, we review recent developments within
the theoretical framework of scale relativity, which offers
new insights into the emergence of structure and function (at
multiple scales), providing a new integrative approach to bio-
logical systems. The theoretical framework describes the crit-
ical role of thermodynamics and quantum vacuum fluctua-
tions in the emergence of charge-induced macroscopic quan-
tum fields (effectively a new quantum field theory) at multiple
scales, which underpin a macroscopic quantum description
of biological systems as a complex exemplar of condensed
matter. The theory is validated through a new biomimetic
experimental approach, which leads to the emergence of plant
and individual cell-like structures with the intrinsic capacity
to divide, differentiate and form multicellular structures. We
discuss how this theoretical framework could be applied to
extend our understanding of cardiac systems biology and
physiology, and challenges such as cancer and neurodegen-
erative disease. We also consider the potential of these new
insights to support a new approach to the development of
emerging quantum technologies.
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b e-mail: denis.noble@dpag.ox.ac.uk
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1 Introduction

The purpose of this review is to provide an update on progress
made globally over the past decade in integrative systems
biology, physiology and medicine, and in our theoretical and
experimental research programme dedicated to the develop-
ment of a scale-relative biology. It builds upon a large cor-
pus of previous research papers, reviews and books in which
we introduced and discussed advances of this fast-growing
research field and presented the rationale and motivation for
exploring the scale-relativity theory framework in biology.
As a background, we refer the reader in particular to our foun-
dational review papers and books introducing scale-relativity
theory in integrative systems biology [1,2], introducing the
principle of biological relativity and providing an overview
of its significance in evolution and physiology [3,4] and the
comprehensive theoretical and mathematical foundations of
scale-relativity theory in physics and its applications to other
sciences including biology [5,6].

In Sect. 2 we review recent advances in systems biol-
ogy and systems medicine, and how they impact physiol-
ogy, biotechnology and synthetic biology. Section 3 consid-
ers the limitations of current theoretical and computational
frameworks and methods to facilitate integration across the
vast complexity and range of scales associated with biolog-
ical systems, introducing the principle of biological relativ-
ity. In Sect. 4 we explain why the theoretical framework of
scale relativity offers a possible solution to the challenge of
computational complexity and multi-scale modelling in bio-
logical systems, thus complementing other proposed com-
ponents of a future integrated theory of biology. Section 5
presents a detailed account of the physical principles that
govern the emergence of biological structures, supported by
recent experimental results, which represent examples of the
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emergence of macroscopic quantum systems in the context
of scale-relativity theory. In Sect. 6 we review the impact of
these results on our understanding of the physics of cell divi-
sion, whilst Sect. 7 considers their generic potential impli-
cations in biological systems. In Sect. 8 we briefly highlight
new insights into the emergence of life. Finally, we describe
in Sect. 9 how we plan to apply the scale-relative biology
framework to cardiac systems biology and physiology and
provide in Sect. 10 our conclusions and perspectives for the
development of future work.

2 Systems and synthetic biology are revisiting
physiology and biotechnology

The past two decades have witnessed a dynamic resurgence
of systems approaches in biology, under the umbrella of “sys-
tems and synthetic biology”. This is reflected in the number
of attempts to define this burgeoning field from a variety of
conceptual, historical or technical perspectives. Through a
systematic review of founding papers up to 2010 [7–39], we
concluded that this body of work essentially represented a
revisit of earlier, incompletely successful attempts at devel-
oping formal theories for modelling biological complexity in
morphogenesis and metabolic networks taking into account
their variability and non-linear dynamics [40–49]. During
the past decade, several interesting trans-disciplinary efforts
have been developed to overcome the difficulties encoun-
tered initially, such as those reviewed in a special issue on
new approaches to a theory of organisms [50], advances in
mathematical biology and physiology [51–54] or a recent
discussion on the new physics needed to probe the origin
of life [55,56]. The recent advances in genomics and bioin-
formatics have leveraged high-throughput experimental and
computational platforms for the collection of comprehensive
data on the genome, transcriptome, proteome, metabolome
and microbiome. The analysis of these data has benefitted
from concepts and methods developed in systems theory,
engineering sciences, and the various mathematical and com-
putational tools available for modelling of structure-function
relationships and dynamics.

A focus on functional properties occurring at multiple lev-
els in biological systems represents a rejuvenation of physiol-
ogy and biotechnology through mathematics, computer sci-
ence and engineering, challenging the dominant paradigm of
molecular biology based on analytical reductionism. During
the last ten years, systems approaches have thus started to per-
vade all areas of animal, human, plant and microbial biology
as reflected in a very extensive and fast-growing literature
and numerous reviews, as summarised in recent reference
texbooks [57,58].

From both a conceptual and practical point of view, we
consider systems biology as an integrative research strategy,

Fig. 1 Upward and downward causation. Loops of interacting down-
ward and upward causation can be built between all levels of biological
organisation. From Fig. 2 in [61]. For further discussion of this diagram
see [54]

designed to tackle the complexity of biological systems and
their behaviour at all levels of organisation (from molecules,
cells and organs to organisms and ecosystems) in normal
and perturbed conditions. It deliberately combines analyti-
cal reductive and integrative systemic approaches [59–62].
Taking advantage of this conceptual duality in a pragmatic
manner, it aims at developing a quantitative and integrated
understanding of biological structures and functions as sys-
tem properties differing from those of the individual inter-
acting components.

Systems biology approaches operate through iterations
between theory and practice, integrating large datasets col-
lected with various targeted and global measurement tech-
nologies. This enables formulation of predictive mathemat-
ical and computational models as simplified representations
of functional and regulatory networks. They have to be as
complex as necessary to account for specific details, whilst
being computationally tractable as well as providing a rea-
sonable and useful answer to the question addressed.

Biological hypotheses derived from such models are
tested computationally and experimentally through pertur-
bation experiments, to help refine the models iteratively. As
indicated in Fig. 1, systems biology approaches, whether they
are data or model-driven, must be combined into question-
driven inquiries, to take into account causation occurring
between organisational levels [1,3,15,63–68].

In this context, evolution, development, physiology and
disease are viewed as dynamic processes that vary struc-
turally and functionally on widely different scales in space
and time between biological states that are constrained by
the functional interrelationships between pathway and net-
work components, as well as the influences of the physical
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environment [54,69]. Indeed, it is now widely accepted that
“nothing in biology makes sense except in the light of evolu-
tion” [70,71], a notion that has important consequences from
an operational point of view for defining life and the histori-
cal conditions of its emergence [72–74]. Grounded on these
conceptual and methodological advances, systems biology
forms the basis for a more profound understanding of biolog-
ical systems properties, and an extension of genetic engineer-
ing into synthetic biology: designing and building biologi-
cal systems with novel properties from a set of pre-defined
modular components [75–81], which has developed as an
active biotechnology engineering field on its own over the
past decade [82,83]. It must be stressed, however, that while
some of the synthetic constructs thus developed are inspired
by identified biological properties, many reflect on engineer-
ing principles that most likely have never been implemented
in real life forms, simply because the extensive biological
variability that developed through evolution represents only a
relatively small subset of the virtually infinite possible com-
binations of life building blocks and environmental influ-
ences into actual functionally organised biological systems.

A successful development of systems and synthetic biol-
ogy approaches, and their application to human biology
and medicine in a predictive, preventive, personalised and
participatory manner led to the emergence of “systems
medicine” during the past ten years. Its effective implemen-
tation requires improved interaction between scientific and
engineering disciplines, and improved sharing of data, tools
and models [34,84–93]. Within this context, the literature has
grown very rapidly, as witnessed by hundreds of review arti-
cles and a number of successful use cases combining high-
throughput functional genomics platforms to process bio-
logical samples and analyse the data produced with bioin-
formatics, computational and mathematical modelling and
simulation tools, including advanced machine learning meth-
ods [94–101]. As summarised in a comprehensive reference
texbook [102], case studies include neurological, cancer, res-
piratory, allergic and infectious diseases supporting pharma-
ceutical research and development to tackle patient needs.

A prominent example of the impact of systems biology
in advancing our understanding of the underlying mecha-
nisms of disease development is reported in chronic obstruc-
tive pulmonary disease, one of the leading cause of morbidity
worldwide. Studies across multiple molecular, cellular, tissu-
lar and organ levels indicate a significant impact on clinical
practice, patient and healthcare management [103–107]. The
experience gained in such projects highlights the need for a
profound revision of the training of life scientists and med-
ical doctors to accomodate the cross-disciplinary nature of
systems medicine [108–110].

This work also pointed to the need to better define and
understand healthy states, which serve as reference for pre-
ventive measures before disease onset. A wide range of

wearable health devices connected through the “Internet of
Things” [111,112] for real time measurement of parame-
ters related to physiology (e.g. blood pressure, body weight),
lifestyle practices and environmental exposures (e.g. nutri-
tion, exercise, sleep and stress), has provided the opportunity
to overcome the limitation of conventional clinical assays
and advanced functional genomics measurements, which are
generally limited to snapshots or at best limited time series.
Initial work using either category alone has demonstrated
the ability to detect early deviations from normal individual
states before appearance of clinical signs of disease onset
[113,114]. These pioneering examples laid the foundation
for the development of a “science of wellness”, leveraging
connected devices and advanced intelligence methods for
data analysis and representation to support disease and health
maps [115–121] raising novel challenges for disease defini-
tion and deployment of integrated care for both individuals
and entire populations [122–126]. Thus, understanding bio-
logical systems and treating diseases can now be envisioned
through the identification and manipulation of global per-
turbed networks rather than unique failing components.

3 A grand challenge of systems biology: multi-scale
integration

In recent years the field has thus made a number of signifi-
cant advances, including extracting functional and regulatory
order through integration of multiple functional genomics
data, literature mining and systemic modelling, supported
by high-throughput technologies, high-resolution imaging,
and mathematical and computational modelling formalisms,
which are the focus of intense community efforts for data
integration and standardisation. The objective is to make
sense of the wealth of big datasets generated [34,84,127–
131]. For example, progress has been made in the develop-
ment of a theory of robustness and fragility, and assessment
of the role of modularity and coupling of networks and path-
ways in biological systems [15,65,132–136].

Importantly, a variety of experimental schemes have high-
lighted the role of stochastic fluctuations or “biological
noise” at the molecular, modular or cellular levels in driv-
ing the behaviour, development and evolution of biological
systems [59,137–142].

At another level, realistic integrated models of functioning
heart, lung and muscle have been developed in the frame of
the Physiome Project and are being extended in the Virtual
Human Physiological Project [84,143–154].

Systems biology approaches start to impact on the drug
discovery process in the biotechnology and pharmaceutical
industry. However, in each of its implementations, the sys-
tems biology research strategy relies on ad hoc combinations
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Fig. 2 Spatial and temporal scales in the Human Physiome Project [144]. According to the principle of biological relativity, all arrows should be
considered as bidirectional

of measurement technologies and formalisms for mathemat-
ical modelling.

Although multiple and wide-ranging structural organisa-
tion levels and time frames are recognised as essential fea-
tures of living systems, the use of various, often incompatible
mathematical and computer formalism makes data integra-
tion and model comparison or coupling difficult if not impos-
sible [1,11,16,19,24,51,155–175]. For example, determin-
istic and stochastic, continuous and discrete modelling are
being used to study e.g. morphogenesis with agent-based
methods and organ structure with finite element lattices, cel-
lular pathways with Boolean and logic networks, molecu-
lar reactions with partial and ordinary differential equations
(Fig. 2).

The increasing complexity of models make fine, coarse
and detailed numerical simulations computationally intrac-
table, despite the exponential growth of computing power.

On-going attempts to overcome these limitations aim
mostly at the development of an integrative computational
framework, few of them tackling it at a more conceptual
level, taking into account concepts from systems engineer-
ing, ecology, complexity and critical transitions that in their
extended forms are the basis of a theory of organisms that
takes into account the fact that multiple levels of organi-
sation are entangled in biological systems as the result of
their history [28,90,176–179]. For example, allometric scale
laws that relate mass and energy metabolism according to
quarter-power laws have been uncovered since the 1930s,
and recently shown to extend across 27 orders of magnitude
of size from molecules to entire organisms. This suggests ele-
ments for a unifying theory of biological structure and organ-
isation, based on power laws across multiple scales, but with-

out relating them to fundamental principles from which they
can be derived [180–184]. Although such power laws appear
also pervasive in a large array of human-related activities
including the development of cities, economies, and com-
panies [184], their universality in biological systems when
assessed under carefully controlled conditions has not been
confirmed [185–187].

4 A solution to the challenge of computational
complexity and multi-scale modelling

Multi-scale integration thus represents a frontier challenge
that needs to be addressed if systems biology is to develop to
its full potential. Our assessment is that most mathematical
and physical theories are unsuitable, as they do not properly
address the space and time scales characteristic of biological
systems and are unable to make experimentally testable pre-
dictions relevant to the most fundamental biological ques-
tions such as the origin of biological structures and of life
itself. A key exception to this is the theory of scale relativ-
ity, which represents a theory of self-organisation across all
scales in nature.

Within the present review we provide an update on the-
oretical and experimental developments, within the frame-
work of scale relativity, which are valid not just for biologi-
cal systems, but condensed matter in general. This represents
an important step, establishing the principle that biological
systems are not privileged, but can be regarded as complex
exemplars of condensed matter.

The fundamental challenge in modelling biological sys-
tems relates to computational complexity. Due to intrinsic
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disorder (chaos) in a biological system, modelling at even the
smallest scales (e.g., the folding of an intrinsically disordered
protein [188]) can prove intractable. It therefore follows that
it is impossible to model a complex biological system at all
scales simultaneously. A solution to this challenge requires a
systematic process of renormalisation at each scale, to reduce
computation complexity. The theory of scale relativity offers
such an approach and we see the beginnings of a coherent
theoretical framework, which allow one to take into account
effects occurring within and across multiple scales and organ-
isational levels. Without such an approach, the predictive
power of systems biology and its application to address fun-
damental and medical questions will remain limited.

For a comprehensive background on the theory of scale
relativity, we refer the reader to a number of papers and books
[2,5,6,189–194]. Meanwhile, in what follows, we review the
most recent updates on theory and experiment relevant to
biological systems, which build on these foundations.

5 The physical principles that govern the emergence of
biological structures

From a biological perspective, the seeds of a new approach
begin with a proposal by Prigogine et al. [195–198] that
“many body” complex systems can be regarded as irreducibly
probabilistic, in a manner analogous with quantum mechan-
ics (QM). This principle, developed through a more recent
programme of work [1,199–201], considers a description of
biological systems within the context of the theoretical foun-
dations of QM and the debate about irreversible laws linked
to determinism and probabilistic descriptions in physics.

When considering the foundations of standard QM, at
the very smallest scales we see a fundamental irreversibil-
ity (symmetry breaking) under the reflection |dt | → −|dt |,
which is at the origin of the complex numberC representation
of quantum mechanics [200]. This complex representation is
reflected in two realR, irreversible processes, which together
form a complex reversible system (a complex path integral),
which leads to the wave function.

Within this context, we consider the emergence of the cell
as a biological system, which begins with external forces
impacting on molecular assembly. In the first instance, ther-
mal fluctuations lead to decoherence and classical physics.
At another level, quantum vacuum and thermal fluctuations
(collectively “environmental fluctuations”) act as a sea of
harmonic oscillators.

A combination of “environmental fluctuations” and levels
of ionisation (which dictate charge density ρ), have a funda-
mental impact on the trajectory and dynamics of particles as
they interact to form larger structures. As ρ increases, repul-
sive forces (Coulomb interactions) between adjacent charged

particles create a barrier to bonding, allowing for greater free-
dom to interact with environmental fluctuations.

The diffusive system of environmental fluctuations can be
written in the form of the Fokker–Planck equation,

∂ P

∂t
+ div(Pv) = D�P. (1)

Alternatively, via a series of calculations, described in
[200], the system of fluctuations can take the form of a Euler
equation (Eq. (2)), in which D represents a standard diffusion
coefficient, with the force expressed in terms of the proba-
bility density P ,

(
∂

∂t
+ V .∇

)
V = −2D2 ∇

(
�

√
P√

P

)
. (2)

The ‘diffusion force’ derives from an external potential,

φdiff = +2D2�
√

P/
√

P, (3)

which introduces a square root of probability, normally asso-
ciated with quantum systems, in the description of a classical
diffusion process.

At the molecular scale, as levels of charge density in the
system increase, charges loosely cluster, with Å-scale holes
within clusters creating an attractive potential well [202]. At
this scale, a small cluster of charges can be seen as a quantum
fluid,

ψn =
N∑

n=1

ψn, (4)

which is expected to be the solution of the Schrödinger equa-
tion

h̄2

2m
�ψn + i h̄

∂ψn

∂t
= φ ψn, (5)

where φ represents an external potential or potentials, includ-
ing φdiff (Eq. (3)).

Introducing ρ and phase, defined as a dimensioned action
A of the wave function ψn = √

ρn × ei An/h̄ along with
the velocity field of the quantum fluid (n), given by Vn =
(h̄/m)∇ An/h̄, we can rewrite the Schrödinger equation in
equivalent form as Euler (Eq. (6)) and continuity equations
(Eq. (7)), which reflect the real and imaginary part of the
Schrödinger equation,

∂Vn

∂t
+ Vn .∇Vn = −∇φ

m
− ∇Qn

m
, (6)

∂ρn

∂t
+ div(ρn Vn) = 0, (7)

where Qn represents a localised quantum potential,

Qn = − h̄2

2m

�
√

ρn√
ρn

, (8)
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Fig. 3 a A BaCO3-SiO2 crystalline lattice structure, reproduced from [200]. b A model of bifurcation, described by successive solutions of the
time-dependent 2D Schrödinger equation in an harmonic oscillator potential plotted as isodensities, reproduced from [199]

which is implicit in the Schrödinger equation (Eq. (5)), but
now explicit in the Euler equation (Eq. (6)).

As reported in [200], when ρ → 0, BaCO3-SiO2 molecu-
lar assembly, unhindered by repulsive charges, results in the
growth of a crystal lattice illustrated in Fig. 3a. By contrast,
as ρ increases, charged molecules become more dynamic.
Figure 3b represents successive solutions, during evolution
of a time-dependent Schrödinger equation in a 2D harmonic
oscillator potential, which leads to a model of bifurcation in
a molecular system. The jump from a one-body to a two-
body, branched structure occurs as the energy level increases
from the fundamental level (n = 0) to the first excited level
(n = 1). An iterative bifurcation process leads to a branched
molecular assembly, high levels of disorder and a fractal
charge density distribution.

As ρ increases, beyond a critical percolation threshold, the
interaction of quantum potentials Qn associated with indi-
vidual charges, leads to the emergence of a charge-induced
fractal network of interconnected channels (Fig. 4), with local
potential wells acting as the roots of the network [200].

The system reflects a transition from a collection of
charges ψn = √

ρn × ei An/h̄ (where An is a microscopic
action), into macroscopic fractal fluctuations, which define a
macroscopic wave function ψN ,

N∑
n=1

ψn → ψN = √
ρN × ei AN /2D̃, (9)

where AN is a macroscopic action, QN (Eq. (10)) is ψD’s
associated macroscopic quantum potential (MQP) and h̄ is
substituted with a macroscopic parameter D̃, which charac-
terises the amplitude of fractal fluctuations across the MQP

and is therefore specific to the system.1 We have

QN = −2D̃2 �
√

ρN√
ρN

. (10)

TakingψN and its associated macroscopic quantum poten-
tial (MQP), we can now write a macroscopic Schrödinger-
like equation (Eq. (11)), and its equivalent Euler and conti-
nuity equations (Eqs. (12) and (13)), in which QN (Eq. (10))
becomes explicit [200]. We have

D̃2�ψN + i D̃
∂ψN

∂t
−

(
φ

2

)
ψN = 0. (11)

∂VN

∂t
+ VN .∇VN = −∇φ

m
− ∇QN

m
, (12)

∂ρN

∂t
+ div(ρN VN ) = 0. (13)

The charge-induced fractal field guides the trajectory of
macroscopic fluctuations. At a quantum critical percolation
threshold, destructive interference effects cancel out of most
frequencies, leaving a coherent resonant frequency [202].
Examples of phenomena in intrinsically disordered con-
densed matter dictated by this effect include coherent ran-
dom lasing (CRL) and high temperature superconductivity
(HTSC) [202,204–206]. In the case of HTSC, the symmetry
breaking linked with a quantum critical fractal network of
charges triggers a classical to quantum “Lifschitz transition”
and a corresponding “Feshbach resonance” associated with
macroscopic quantum coherence [203].

1 We recall that in the case of standard QM, h̄, which is itself a geometric
property of a fractal space, is defined through the fractal fluctuations as
h̄ = 2m D̃ [202,203].
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Fig. 4 Reproduced from [200]. A disordered distribution of individual charges (left). The interaction of quantum potentials associated with each
charge, collectively create a geometric network of hills and valleys (right)

When we consider either standard or macroscopic forms
of the Schrödinger equation (Eqs. (5) and (11)), the exter-
nal potential (φ), associated with thermal fluctuations, com-
petes with quantum potentials (Qn, QN ) implicit in the
Schrödinger equations.

An important insight into the transition is revealed when
comparing the diffusion system (Eq. (2)) with its quantum
analogue (Eq. (14)),

(
∂

∂t
+ V .∇

)
V = +2D̃2 ∇

(
�

√
P√

P

)
. (14)

Comparison between the two systems highlights a striking
level of equivalence, except that in the quantum case, the dif-
fusion constant is now complex (D̃) and the quantum force,
which derives from an internal quantum potential, generated
by its fractal geodesics,

Q/m = −2D̃2�
√

P/
√

P, (15)

is the exact opposite of the external diffusive potential
(Eq. (3)).

When the diffusive potential (Eq. (3)) exceeds the internal
quantum potential (Eq. (15)), it leads to a process of decoher-
ence described by “quantum Brownian motion” [207,208].
During collapse of the wave function, the emergence of
‘pointer states’ is linked to the collapse of the fractal veloc-
ity field, to its more stable roots [200]. These roots form the
preferred set of states of an open system most robust against
environmental interaction, which accounts for the transition
from a probabilistic to a deterministic classical description.

This competing system of processes is fundamental to the
emergence of a cell, its division and formation of a range of
different biological structures. To illustrate how this trans-
lates into practice at macroscopic scales, we first consider
examples of structures grown from BaCO3-SiO2 solutions,
where the primary source of charge is represented by pro-
tons released through dissolution of atmospheric CO2 [200].
As a case study, a fern-like (fractal leaf) structure (Fig. 5a),
reflects partial decoherence of a macroscopic wave function.
Despite its fractal dimension (DF ), it still exhibits a com-
ponent of long-range order, its DF being determined by the
strength of the residual field (QN ), relative to external diffu-
sive forces. As ρ increases, we see an increase in DF relating
to packing of dendritic nm-scale fibrils from which the struc-
ture was constructed, leading to a more classic leaf-like form
(Fig. 5b). For further examples of different emergent proton-
driven plant-like structures see [200].

A further increase in ρ through the incorporation of gib-
berellic acid (GA) as a charged biomolecule into the BaCO3-
SiO2 system reported in [201], resulted in the emergence
of a spherical non-differentiated stem cell-like structure of
≈ 15µm diameter (Fig. 5c). The structure is composed of
densely packed (≈ 5 nm diameter) dendrites, grown sym-
metrically from a centre to fill the space via an iterative pro-
cess of bifurcation. The structure closely resembles a real
cell (without a cell wall) with BaCl2-Na2SiO3/GA compos-
ite dendrites replicating the dendritic structures formed by
microtubules and actin filaments, which dominate the cyto-
plasm where most cellular activities, including cell division
occur [201].
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Fig. 5 a A fractal leaf-like structure. b A standard leaf structure. c A cell-like structure

The result is interesting from a number of different per-
spectives: (i) We see the emergence of the synthetic cell
(Fig. 5c) as an experimental exemplar of closure of con-
straints, typically associated with a biological system [210];
(ii) Fig. 8b showing a division process, reflects the syn-
thetic cell as an autopoietic system [211]; (iii) A charge-
induced fractal network (a macroscopic path integral) rep-
resents an essential ingredient for the emergence of a
coherent macroscopic quantum-like system that underpins
autopoiesis, which could not have emerged from a classi-
cally ordered structure such as a liposome; (iv) With scale
relativity, we have a clearly described physical theory and
mathematical framework available to account for the exper-
imental exemplars of closure of constraints and autopoiesis.
Both theory and experiment represent a step change beyond
earlier theoretical biology studies on autopoiesis [209–211],
and others that emphasise the possible role of protein or lipid
soups with autocatalytic properties in the formation of pro-
tocellular assemblies [212–215].

At a critical point in the decline of ρ, QN becomes insuffi-
cient to support the emergence of a long-range fractal archi-
tecture (such as Fig. 5a), but is sufficient to disrupt the forma-
tion of a crystal lattice, leading to a disordered, tumour-like
structure. Finally, as noted in Fig. 3a, where ρ → 0, full
macroscopic quantum decoherence of the field is reflected in
the formation of a crystalline lattice.

The smallest scale at which we expect a macroscopic
quantum potential (MQP) to emerge begins with molecu-
lar assembly into a range of intrinsically disordered proteins
followed by larger and more complex nm-scale structures,
which form the building blocks for larger, sub-cellular struc-
tures [200,201,216]. At this scale it is thought that short-
range electromagnetic field fluctuations associated with the
quantum vacuum play a key role in assembly, by coupling
synergistically with the charge-induced complex velocity
field, to create a two-component MQP and its associated
structure [200].

Evidence to support the hypothesis of macroscopic quan-
tum coherence in intrinsically disordered structures at this
scale includes CRL in nano-fibres [217] and experimental
confirmation of macroscopic quantum coherence in a pro-
tein complex [218].

As shown in Fig. 5c, as these nm-scale structures grow,
cells that play a significant structural role have the potential
to reach a typical (average) scale of 10–40 µm, except in
special cases such as the extension of the axon and dendrites
from the body of nerve cells,

Beyond this scale, van der Waals forces are exceeded by
gravitational forces, which represent a physical constraint
on cell diameter [200]. Biological systems circumvent this
limitation on scale through either an increase in cell length
(which has limited benefits, except in special cases such as the
extension of the axon and dendrites from the body of nerve
cells), the formation of large multinucleated structures (e.g.,
during the life cycle of some organisms such as Physarum
polycephalum), or more effectively through cell division to
create larger scale structures, which we consider in Sect. 6.

Before discussing the process of cell division we consider
the impact of increasing ρ beyond the level which leads to
a spherical cell-like structures (Fig. 5c) through the inclu-
sion of cytokinin (CK) as a charged biomolecule. In the first
instance we begin to see extended spiral structures, as illus-
trated in Fig. 6a. As reported in [201], this scale of spiral
structure appears in both single-celled spiral diatoms such as
Chaetoceros debilis and multicellular organisms such as Ara-
pidopsis thaliana, where spiral structures occur in tracheary
elements.

To account for this type of spiral structure we first con-
sider Fig. 6b, which represents an early model for the emer-
gence of a spin-like internal angular momentum in fractal
spiral curves [5]. The figure illustrates how “spin” naturally
emerges within a 4D spacetime, in which all four dimensions,
including the invariant proper time s, are fractal.
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Fig. 6 aGrowth of continuous spiral, as a result of a travelling, rotating
wave package when DF = 2. Each stage of assembly adds to previ-
ous growth, creating an aggregated time series. As time progresses, a
consumption led decline in charge density means DF → < 2, which
leads to decline in energy, an increase in wavelength and a vanishing
spiral at the end of the growth process. b Schematic representation of a
fractal curve in spacetime from [5]. The evolution of its coordinates is

described by four fractal functions of the normalised curvilinear coordi-
nate s intrinsic to the fractal curve. c Very high levels of charge density
lead to more ordered packing and a linear arrangement of nano-fibrils,
until a decline in charge density leads to a more spherical, cell-like
structure at the end of the growth process. d Numerical simulation of a
typical spinorial geodesic in a fractal space, from [219]

When considering spin in a quantum system, the angular
momentum Lz = mr2ϕ̇ of a point mass following a classical
spiral path should vanish as r → 0. However, as explained
in [201], while ϕ̇ diverge and r tends to zero, the product
r2ϕ̇ remains finite when DF = 2, while it is vanishing for
DF < 2 and divergent for DF > 2.

Following this interpretation, fractal geodesics of DF = 2
account for the extended spiral structure in Fig. 6a. Mean-
while, a growth led decline in ρ over time leads to an associ-
ated decline in DF (DF → < 2) and energy in the system,
which accounts for the larger diameter, vanishing spiral at
the end of the extended spiral in Fig. 6a.

By contrast, a further, significant increase in ρ through
an increase in CK concentration [201], led to disappearance
of spin and the emergence of a linear fibril assembly, such
as that illustrated in Fig. 6c. The linear assembly relates to
an increase in charge packing density beyond a critical point
of disorder at DF = 2, which leads to increased order and

a decline in quantum coherence. In other words, the chaos-
induced symmetry breaking vanishes, with symmetry being
recovered at the scale at which nano-fibrils aggregate. This is
reflected in more ordered packing of nano-fibrils in the main
stem, a phenomenon observed in the packing of cellulose
nano-fibrils in certain layers of plant cell walls [200,201,
220]. However, as ρ declines during the growth process, it
reaches a point where the symmetry breaks once again and
a spherical, cell-like structure (in this instance) emerges as
secondary structure.

Within standard, non-relativistic QM, intrinsic spin is gen-
erally described by the Pauli equation [5,6,219]. In order
to account for what we have observed in terms of the
Pauli equation, we briefly review its geometric origins. As
described earlier, the origin of a complex wavefunction and
the Schrödinger equation is underpinned by breaking of the
symmetry d+/dt, d−/dt , which we now write in terms of the
invariant proper time (s). Breaking the symmetry ds ↔ −ds,
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leads to a two valuedness, reflected in two total derivatives
d+/ds, d−/ds. Meanwhile, the inclusion of spin comes from
a discrete symmetry breaking on the spacetime differential
element dxμ ↔ −dxμ. This emerges from the fact that
in general, v[xμ(s, dxμ), s] �= v[xμ(s,−dxμ), s], where
the velocity field v is a function of the fractal coordinates,
which in turn depend on the four resolutions dxμ, with
μ = 0, 1, 2, 3.

This second two valuedness, accounted for through alge-
bra doubling from complex numbers C to quaternions H,
corresponds to a second doubling of the total derivatives to
give d++/ds, d+−/ds, d−+/ds and d−−/ds, and a doubling
of the partial derivative ∂/∂xμ → (∂+/∂xμ, ∂−/∂xμ). This
leads to a doublet (ψ1, ψ2) of complex wave functions (a
Pauli spinor), which naturally emerges within the framework
of manifolds carrying a quaternionic structure [221].

On first consideration, one might expect that the Pauli
equation should logically proceed from the symmetry break-
ing dt ↔ −dt (for a non-relativistic motion) and dxμ ↔
−dxμ (for the appearence of spinors). However, as shown
by Célérier and Nottale [219], it is not possible to take this
approach directly writing a non-relativistic equation for spin-
1/2 particles. It can only be derived as a non-relativistic
approximation of the Dirac equation. This requires a fur-
ther (third) doubling linked to breaking of the symmetry
xμ ↔ −xμ, due to the breaking of parity P and time-reversal
T symmetries specific to the relativistic case. This third dou-
bling means the four total derivatives double once again to
become d̃++/ds, d̃+−/ds, d̃−+/ds and d̃−−/ds.

For each of these cases, one finds the total derivative

d

ds
±± = ∂

∂s
+ v

μ
±± ∂μ ∓ λ

2
∂μ∂μ (16)

and its tilde counterpart. These transformations are accounted
for through the introduction of a bi-quaternionic velocity
field, which leads to the Dirac spinor and the derivation of
the Dirac equation. The Pauli equation is then derived at the
non-relativistic limit of the Dirac equation [201,219].

Figure 6d represents a model of a spiral fractal path under-
pinned by a Pauli spinor, which confirms the earlier fractal
model of spin in Fig. 6b as an emergent property of 4D fractal
spacetime. The spiral in Fig. 6d represents just one of an infi-
nite number of possible realisations of an electron as a point
particle. This contrasts with the macroscopic spiral (Fig. 6a),
which reflects the physical integration of a consecutive series
of slices of a 2D fractal space, analogous with Fig. 6b. The
structure that emerges from integration of this set of fractal
geodesics dictates that time must now also be fractal, creat-
ing a composite four-dimensional spacetime construct, which
underpins a macroscopic quaternionic wavefunction (a Pauli
spinor). The result illustrates the fundamental relativistic and
quantum nature of spin (even in a non-relativistic scenario),

which is attributed to the non-differentiability of the quantum
spacetime geometry and not only of the quantum space [6].

A further difference between Fig. 6a and a set of electron
trajectories is that only the field (defined by a MQP), is coher-
ent rather than a fully coherent fluid, vortex-like structure in
the electron case. Figure 6a represents an emergent matter
wave (rather than a point particle), which rotates in a fractal
4D spacetime as a continuous wavefront, at non-relativistic
speeds.

To accommodate intrinsic spin in macroscopic systems,
we treat the Pauli equation in the same way as the Schrödinger
equation in its more generic form (Eq. (11)), where h̄ = 2m D̃
in standard QM. The result (Eq. (17)) is a new, more generic
version of the Pauli equation:

i D̃
∂

∂t
|ψ〉 =

[
1

2m

(
i D̃∇ − qA

)2 − q D̃ σ · B + q A0

]
|ψ〉,

(17)

in which the charge q could potentially include mean charge
on a biomolecule or macroscopic quantum object such as a
protein complex or a cell.

6 The physics of cell division

A theoretical approach to cell division, previously described
in [2,6,200,201], is captured in Fig. 7a and b. Figure 7a

Fig. 7 a Model of division, reproduced from Nottale [6]. b Model of
cell division, reproduced from [2]
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Fig. 8 aA monoculture of spherical structures with evidence of a divi-
sion process. b The process of cell division. In order to grow beyond
a critical point, a symmetric one-body structure, composed of a frac-

tal fluid of molecular trajectories becomes unstable and is forced to
divide. Here frozen in time, we see an unstable intermediate step in
the dynamic transition from a one-body to a two-body structure. c A
branched multicellular structure

reveals stationary solutions of a time-dependent Schrödinger
equation in a 3D harmonic oscillator potential, whilst Fig. 7b,
reveals successive figures, giving the isovalues of the den-
sity of probability for 16 time steps. The first and last steps
(1, n = 0 and 16, n = 1) are solutions of the station-
ary (time-independent) Schrödinger equation, whilst inter-
mediate steps are exact solutions of the time-dependent
Schrödinger equation reflecting transient structures. The
model has a number of features in common with the bifur-
cation process in Fig. 3b, the key difference being that in
the case of bifurcation, the previous structures remain and
add to themselves instead of disappearing as in cell division.
The only other difference lies in the quantum of action, with
Fig. 3b being based on h̄ rather than a macroscopic constant
in (Fig. 7b), although the bifurcation process (Fig. 3b) is also
valid for a macroscopic quantum system at both sub-cellular
and multicellular scales.

Evidence to support the proposed theory of cell division
has been reported in [201]. Figure 8a reveals a collection of
cell-like structures comparable to Fig. 5c, with some captured
in a process of division. The process of “cell division” was
confirmed by observation of a range of intermediate steps
in the process [201]. As an example, Fig. 8b captures the
transition from a one-body to a two-body structure. Like
Figs. 7a and 8b it reflects a point-like probability density.
However, the two-body system is also connected by a bun-
dle of nm-scale dendrites, which evolve in time as a fractal
fluid of geodesics, within a sea of dynamic, environmental
fluctuations. Within this figure we can clearly see a divi-
sion process, supported by a single, interconnected system
of coherent fluctuations, in which, at each point in the initial
one-body system, trajectories exist that connect the two-body
structures.

The hypothesis of cell division as a macroscopic quantum
process in which the energy associated with higher levels
of quantisation is linked to increasing charge density [201]
is supported by results where an increase in ρ leads to an

increase in cell duplication, as well as bifurcation of the cel-
lular structure, as shown in Fig. 8c. This type of branched
multicellular structure bears a striking resemblance to early
stem cell division in Arabidopsis thaliana reported in [201].

The results indicate that the cytosol, as an integral part
of a living cell, provides the fractal architecture to support
a charge-induced macroscopic quantum system, which sup-
ports the theory of the emergence of a cell and its subsequent
division as a macroscopic quantum processes. The capacity to
divide represents a critical step in addressing both the conser-
vation of genetic information and gravitational constraints on
the scale of a cell through the creation of multicellular struc-
tures. Without it the replication of genetic material and the
emergence/evolution of the vast range of structures and func-
tions within more complex multicellular organisms could not
exist.

Bifurcation processes, driven by environmental fluctua-
tions are fundamental to the emergence of the fractal architec-
ture required to form a macroscopic quantum system (order
out of chaos). Depending on conditions, the process of bifur-
cation repeats itself over a broad range of scales, to create a
diverse range of structures, from proteins to cell organelles
and cell walls, which constitute a living cell. The cell as the
‘quantum of life’, then has the potential to repeat the process,
building new networks and structures through spontaneous
duplication and bifurcation to create multicellular structures.

The fractal dimension of a multicellular structure (which
equates with cell packing density), and the average (frac-
tional) charge on each cell, collectively dictate charge den-
sity and its spatial distribution. As we have shown [200,201],
depending on the specific set of internal conditions and their
interaction with the external environment, we can expect to
see the emergence of a diverse range of multicellular systems.

This paradigmatic representation of a cell and its division
implies that a lipid bilayer or membrane is not a fundamental
requirement for the physical process of cell division. How-
ever, it is of course essential for storage and containment as
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the putative cell begins to develop beyond the stage we are
presently considering.

7 Process control in a biological system

Having summarised key elements in the emergence of a
macroscopic quantum system we consider how this trans-
lates more generally into biological systems.

The organisation, development and functioning of com-
plex biological systems are the result of a dynamic interplay
of multiple processes operating at the level of the organ-
ism, its organs, cells and molecules, all levels being in con-
stant interaction with environmental influences, and between
themselves, with no privileged level of causation according
to the principle of biological relativity [3]. An important pro-
cess is the transcription of the genetic code of the genome
DNA into several types of RNA, the transcriptome, including
messenger RNAs, which are then translated into a wide range
of functional proteins, the proteome. There is growing evi-
dence that this process is heavily regulated through changes
in molecular and cellular networks of interactions, contribut-
ing to multiple types of inheritance [69,222]. In this context,
it has been proposed [59] that living systems have the ability
to organise themselves as the result of a conjunction occur-
ring through the variable part of a mostly stable physical
organisation, and the stable part of a network of small fluctu-
ations, thus operating in a “biological spacetime” involving a
variable number of biological dimensions, a conjecture that
is consonant with the principles underlying scale and biolog-
ical relativity [3,6] as well as the theory of organisms [50].

The proteome represents a critical source of charged
macromolecules and catalysts, whose enzymatic activities,
in association with ions (e.g., H+, K+, Na+, Ca2+, Cl− and
HCO−), lead to the production of specific charged molecules,
such as hormones and metabolites (the metabolome) to con-
trol cellular dynamics (fluxome and electrome [223]) and
fate.

A biological system emerges in a quantised way, in
dynamic interaction with its environment, constructed through
a complex set of multi-scale assembly processes, with each
macroscopic wave function being generated from the square
root of charge density (ψ ∝ √

ρ). At each scale, individ-
ual units of charge are associated with a collection of wave
functions at a lower scale.

The smallest units of charge range from individual ions,
nucleic acids, amino acids and hormones, which play a key
role in the emergence of structures such as proteins and nm-
scale sub-cellular components.

Once a mesoscale quantum system such as a protein has
been created, environmental fluctuations and charge density
once again play a key role in the assembly of larger scale
MQPs and the subsequent emergence of larger, sub-cellular

Fig. 9 Reproduced from [2]. Solutions of increasing organisational
complexity of the scale-Schrödinger equation for a harmonic oscillator
scale potential (left), which give the probability for a structure to occur
at a given relative scale. These solutions can be interpreted as describing
systems characterised by an increasing number of embedded structural
levels (right)

structures (e.g., mitochondria and membraneless organelles
[224]). In this larger scale of assembly, charge density is
now defined as an average at the scale of the specific struc-
tural unit. As an example, the very large build up of protons
(H+) in the mitochondrial inter-membrane space means a
large electrostatic potential develops between the 1000–2000
mitochondria per cell and their surrounding cytoplasm.

Looking at the bigger picture, the net result is a dynamic
electromagnetic landscape supported by an assembly of
“charged units”, which collectively dictate the form and func-
tion of a diverse range of cell types.

Following emergence of “the cell,” individual cells act
as macroscopic units of charge in a multicellular network,
which has the potential to create an interconnected, multi-
scale system of MQPs. These increasing scales of organi-
sation, illustrated simplistically in Fig. 9, reflect a series of
quantised transitions from “a fundamental state” (n = 0)
to excited levels (n = 1, 2, 3 . . .). Jumps in organisational
complexity, linked with increases in the energy of the sys-
tem at each scale (associated with increases in the charge
density), lead to a nested set of macroscopic wave functions
and macroscopic equations of state, such as a Schrödinger
equation.

Solutions of these equations yield new, larger scales of
organisation, which have the potential to take on many differ-
ent forms. Figure 10 illustrates just one example of a flower,
but it could include a range of structures such as seeds, leaves
and fruits to whole organisms.
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Fig. 10 A flower-like structure, reproduced from Nottale and Auffray
[2]. The flower represents a solution of a Schrödinger equation describ-
ing a growth process from a centre, with “petals”, “sepals” and “stamen”
traced along angles of maximal probability density

A living exemplar of this type of process is represented by
Dictyostelium discoideum [225]. Under stress, the organism
transitions from a community of up to 100,000 single-celled

amoeba, into a range of multicellular structures, which reflect
different steps in its development cycle, some of which are
illustrated in Fig. 11a. The cell assembly process, stimulated
by charged biomolecules in the form of cyclic adenosine
monophosphate (cAMP), represents a more complex version
of multicellular aggregation, described in Fig. 8c.

Considering the example of D. discoideum in more detail,
Fig. 11b reveals a multicellular, 2D rotating structure dur-
ing the “streaming phase”, which represents the first step
in the process of cellular assembly. Control is convention-
ally ascribed to “chemotaxis”. However, the foundations of
scale relativity offer a new more detailed insight into the
emergence of this rotating, vortex-like structure, which is
underpinned by a spinorial (quaternionic) macroscopic wave
function, emerging from a fractal network of charges. The
charge density variable at this stage is dictated by the molec-

Fig. 11 a A range of structures
of D. discoideum at different
stages in its life cycle. b A
rotating structure during the
“streaming phase” of D.
discoideum, composed of up to
100,000 individual cells. c End
of the accretion stage. d A
profile analogous to the end of
the accretion stage obtained as a
solution of a Schrödinger
equation in a central 1/r
potential and self-attraction

123



88 Page 14 of 24 Eur. Phys. J. A (2020) 56 :88

Fig. 12 a D. discoideum at the
beginning of its 3D growth
phase. b A model of (a) as a
solution of a two-dimensional
Schrödinger equation in a
central potential. c Fruiting
body of D. discoideum selected
from Fig. 11a. (d). A
BaCO3-SiO2/CK based
structure creating the equivalent
of the fruiting body, in Fig. 12c,
but at the scale of a single cell

ular distribution of cAMP plus the charge associated with
each individual cell.

Once cells aggregate into a single entity, one can consider
charge density in terms of cell packing density, the mean
charge on each cell and possibly charge associated with gly-
coproteins, which allow for cell-cell adhesion.

At the end of the streaming phase, the next step in
cellular assembly, takes the form of an annular structure
(Fig. 11c), which is very well described by the solution of a
two-dimensional Schrödinger equation in a central potential

(Laguerre polynomials) similar to atomic orbitals (Fig. 11d).
The square of the modulus of the wave function is here
directly interpreted as density, which provides the height of
the ring along the third dimension z.

Figure 12a shows a next stage in growth beyond the annu-
lus (Fig. 11c), with growth reflecting a natural transfer of
the nature and effect of the density ρ = |ψ |2. Figure 12b
represents a model of this stage obtained as a solution of
a Schrödinger equation in a central 1/r potential with self-
attraction. The model used is a solution of a differential equa-
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tion (Eq. (18)), with the density given by ρ = ∫
z[r ]dr ,

which is also obtained in astrophysical conditions by iden-
tifying “dark matter” with a quantum potential created by
self-gravitation of the gaseous content of a galaxy. It natu-
rally yields a cusp in the central region, as observed. We have

r z′′[r ] + (1 + 2r z[r ])z′[r ] − z[r ]
r

= −
(

1 − rN

r

)
. (18)

As illustrated in Fig. 11a, the organism has the capacity to
change structure through a series of stages, before the final
phase of a fruiting body. By way of confirmation that the pro-
cess of emergence observed in BaCO3-SiO2-based structures
shows a similar set of principles, Fig. 12d shows an exam-
ple of a BaCO3-SiO2/CK structure (grown under the same
conditions as Fig. 6c), which shows a striking resemblance
to that of the D. discoideum fruiting body in Fig. 12c. The
essential difference between the two structures is reflected in
their scales. Figure 12d (≈ 100 µm in height) is built from
≈ 10 nm-scale fibres as the quantised unit of charge, whilst
Fig. 12c represents a multicellular structure (≈ 20 000 µm in
height) built from ≈ 10 µm-scale cells as the quantised unit
of charge. This difference in scales give some insight into
the universal applicability of the charge-induced quantised
fields and associated forces that govern a specific structure,
irrespective of scale.

The system we have described represents a powerful tool-
box, which has been selected for and refined during the evo-
lutionary process to control charge density and its spatial dis-
tribution at the scale and location where the action (growth)
takes place, thus defining the physical environment that dic-
tates the emergence of a specific structure.

Through this process we see the emergence of a multi-
scale, hierarchical field theory, with quantisation of the field
at each scale, forming building blocks for the next level. Due
to high levels of interaction and interdependency between
scales, a change of charge density at one level will funda-
mentally effect structure and function at other scales.

This principle fits well with the principle of “biologi-
cal relativity” established by Noble [30,61,67,69], which
expresses concretely the fact that “there is no necessarily
privileged level in a biological system” which would deter-
mine events occurring at the other levels, only there are inter-
actions between multiple levels. The fundamentally relative
character of scales and biological levels makes it possible
to consider these two notions as equivalent. The intracel-
lular, cellular and tissular levels can be defined only one
with respect to the others, e.g. what is interior at the cell
level become exterior for the nucleus, and what is exterior
becomes interior at the tissue level, requiring specific char-
acterisation of the various boundaries between levels, as they
play a fundamental role in the process of biological individ-
uation [54,226,227].

Biology is currently dominated by the central dogma of
molecular biology, resulting in confusions between molecu-
lar and cellular interpretations of heredity [228]. Using the
common framework of scale relativity and its intrinsic inte-
grative character, we propose to integrate the diverse ele-
ments of biological theories to provide a basis for a unified
theory of living systems in the context of their evolution and
development.

Our initial focus will be on exploring the extent to
which cellular characteristics can be derived from more
fundamental principles that constrain their occurrence in
the scale-relativity framework, so—- that they could be
amenable to experimental manipulations. By providing fun-
damental explanations for complex processes and self-
organisation in natural systems, scale relativity offers the
opportunity to revisit basic biological questions, and at
the same time opens avenues to develop novel modes
of intervention to modulate the behaviour of living sys-
tems.

8 The origins of life

The results reported in [201] offer a number of important new
insights into the emergence of life. Given an appropriate set
of initial conditions, a putative cell in the form of a dendritic
fractal cytoplasm could have emerged as a crude “cell-like”
macroscopic quantum object, with the intrinsic capacity to
divide. If a metaphorical protein soup in a primeval swamp
was able to support an on-going supply of ions, amino acids
and proteins, it could have signalled the spontaneous emer-
gence and evolution of both single and multicellular struc-
tures.

Whilst such a simple self-replicating system cannot in
itself be described as a living system, it appears entirely plau-
sible that given a sufficiently large number of iterations, an
extended evolutionary process could lead to the emergence
of a system that could be defined as living.

Under such conditions, DNA as we know it would not
have been an essential ingredient in the early stages of
such a process, but could have started its evolutionary pro-
cess in parallel with other structural developmental pro-
cesses. However, whilst DNA may not have been an essential
requirement of early, putative life forms, it would have been
essential for later development, contributing to the forma-
tion of proteins and metabolites required to support macro-
scopic quantum processes. In this framework, the genome
operates as an “organ of the cell” memorizing informa-
tion on past sucessful evolutionary processes as discussed
in [69].
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9 Application to cardiac systems biology

In cardiac physiology, models of cardiac activity have been
developed for over a half century, starting with the appli-
cation of the Hodgkin–Huxley theory to cardiac Purkinje
fibres [229,230]. The models have then been enriched to
include many ion channel proteins, and mechanisms for cal-
cium signalling [231,232]. The different types of cardiac
cells have been modelled in animals and human and are
now applied successfully in drug development and testing
[60,233]. Insights have been derived as much from the fail-
ures as from the successes of iterative interactions between
thought experiments based on conceptual models, quantita-
tive simulations user computer models, and experimentation
[13]. Many other models have now been developed, refined,
analysed systematically, and made available publicly on the
CellML website [234–238]. These cellular models, com-
bined into multi-scale tissue and organ models, have been the
basis for the construction of the virtual heart, the first virtual
organ ever to be built through the exemplar Human Phys-
iome Project [13,144,147,239]. These models are revealing
cross talk and interdependence between cardiac structure and
function, ion channel function and cell or tissue behaviour, or
electrophysiology and mechanics, all the way from proteins
to the entire organ [240–243].

Indeed, cardiac physiology represents the most advanced
field with regard to multi-scale analysis, as detailed mod-
els are available for a variety of biological processes. These
include models of metabolic and signalling pathways; mod-
els of ion channels and their interactions with drugs, using
chemical equations and Markov models; detailed single-cell
electrophysiological models of the Hodgkin–Huxley type
incorporating many membrane channel types and process
compartmentalisation; tissue models including ordered vari-
ations in gene expression and activity across, e.g. the ven-
tricular wall or the sinus node-atrial boundary; and detailed
anatomical models derived from imaging data [158,236,244,
245].

We propose to start applying the scale-relativity tools
to the simplest Nobel 1963 model based on the Hodgkin–
Huxley equations, and then to proceed with its generalisa-
tions. The advantage of these simple models is that they
are known to support computer simulations that reproduce
experimental data, increasingly with predictive power. More-
over, they can be treated analytically even for problems
involving conduction of waves of excitation through mul-
tiple cells arranged into a fibre [246]. For example, in the
continuous model approximation, an effective diffusive cur-
rent describes the electrical current in such an extended
fibre. The equation of propagation of the membrane poten-
tial takes the form of a diffusion-like equation: Cm∂V/∂t =
σ∂2V/∂x2 − gr (V − Vr ). This type of equation is at the
heart of the scale-relative description. It can be extended by

adding to the model a backward equation taking into account
irreversibility on small time scales, which leads to represent-
ing the velocity vector by a dual system of equations. In turn,
it may be transformed into a Schrödinger-type equation, and
its solutions could be analysed, compared to experimental
data, and predictions of the extended models tested in iso-
lated animal cardiac cells in culture using the battery of usual
molecular, cellular and physiological techniques in normal
and perturbed conditions [247].

10 Conclusions and future work

One of the key objectives of the theory of scale relativity
is to develop a new, first principles, geometric approach to
understanding the foundations of quantum theory that may
ultimately lead to a unified theory of quantum mechanics and
general relativity. Although a completely unified approach
remains an outstanding challenge, development of the theo-
retical framework that underpins this work has led to progress
in addressing a number of important fundamental questions
relating to standard QM, in addition to a new (analogous)
theoretical framework of macroscopic quantum systems that
can lead to a better understanding of biological systems.

Relevant examples of progress in standard QM include
derivation of the Schrödinger, Pauli and Dirac equations from
first principles. Meanwhile at another level, the principle of
relativity of scales, which is added to the current principle of
relativity involving position, orientation and motion, states
that there is no absolute scale in nature and that only scale
ratios have physical meaning. Within this theory, a new law
(corresponding to a Lorentz group of scale transformations),
marked by a relative transition between Galilean scale rel-
ativity and Lorentzian scale relativity is valid at very small
scales toward the Planck scale [248]. The transition is iden-
tified with the Compton scale of elementary particles, where
their various physical quantities become explicitly dependent
on scale. Within special (Lorentzian) scale relativity theory,
the Planck length-scale plays for scale laws a role similar
to that of the velocity of light for the laws of motion [248].
It is invariant under scale transformations, unreachable and
unpassable, whatever the scale which has been taken as ref-
erence. The validity of this new approach is illustrated in its
application to solving the “proton radius puzzle” [248]. The
results offer convincing support for the hypothesis that the
proton scale is not absolute, but depends on the reference
scale used to measure it.

For clarity we stress that whilst many elements of Galilean
scale-relativity theory are directly relevant to biological sys-
tems, the principle of special scale relativity (as with special
relativity) is not directly applicable at scales typical of bio-
logical systems. In the same way that we only see the full
relevance of special relativity and the application of the Dirac
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equation at velocities approximating the speed of light, we
only see the full implications of the special scale-relativity
theory at or beyond the Compton scale of elementary parti-
cles. However, this statement does not reflect the full picture
as there is still an important connection at a fundamental
level. For example, the connection between biological sys-
tems and special relativity emerges when considering the
description of macroscopic spin emerging from fractal net-
works [201]. In order to describe spin in a non-relativistic sce-
nario, derivation of the motion relativistic case of the Dirac
equation is first required to derive the non-relativistic Pauli
equation.

Whilst the full implications of special relativity or special
scale-relativistic scenarios are not directly relevant in con-
densed matter or biological systems, we are required to con-
sider the fractal geometries underlying the different systems,
which are critical in defining emergent properties such as
spin and scalable structures in both Galilean and Lorentzian
relativistic scenarios.

Within the context of scalable structures, one of the
key elements of the principle of scale relativity relates to
how emergent structures at different specific scales are each
formed from the product of a fractal distribution of charges at
a lower scale, driven by environmental fluctuations in com-
petition with internal forces dictated by charge density and
its spatial distribution (see Eqs. (2)–(3) and (14)–(15) and
related discussion). In other words, a basic set of princi-
ples that underpin any specific scale are repeated at multiple
scales.

These basic principles do not detract from the very com-
plex set of synchronised processes operating within a living
cell that still require more careful analysis. At one level, this
work sheds new light on the role of multi-scale fractal struc-
tures and their ubiquity in biological systems, with the emer-
gence of larger scale ordered structures being governed by
competition between the external diffusive force, and internal
macroscopic quantum forces. At another level genetic diver-
sification has led to an almost infinite set of potential condi-
tions, principally defined by charge density (ion and charged
biomolecule concentration) and its distribution, which leads
to a vast range of possible structures.

The results so far provide convincing evidence that bio-
logical processes, structures and systems are in no way priv-
ileged. The difficulties associated with understanding living
systems is tied up in the vast set of complex, interacting sys-
tems, which goes some way to accounting for the lack of
progress in the deconstruction of processes into their indi-
vidual component mechanisms. However, as a first step in
understanding this complexity, we have shown that it is pos-
sible to recover differentiability and reversibility at the scale
of macroscopic wave functions which define structures and
processes at different scales.

This important theoretical development is supported by a
growing body of evidence to support the theory that macro-
scopic quantum processes play a key role in living systems,
and this may well prove to become a defining criterion of
what constitutes a living system.

We note that these macroscopic quantum systems differ
from standard QM in that only bosons remain coherent, lead-
ing to a new class of quantum systems [200,202,203], which
is exemplified by complexed proteins [218], high temperature
superconducting materials [202–206] and coherent random
lasing [202,217].

Whilst this limits the quantum properties of a macro-
scopic system, many phenomena associated with standard
quantum theory are recovered. These include quantisation,
non-dissipation, self-organisation, confinement, structura-
tion conditioned by the environment and macroscopic quan-
tum decoherence, evolutionary time described by the time-
dependent Schrödinger equation, which describes models of
bifurcation and duplication and, finally, intrinsic spin through
disorder-induced spiral structures, when charge density and
its spatial distribution meet certain criteria. However, as high-
lighted in [201], not all properties associated with standard
quantum mechanics are recovered in the macroscopic theory.
The application of the scale relativity/fractal spacetime the-
ory to standard QM is based on the description of spacetime,
toward small scales, as a pure, fully non-differentiable con-
tinuum. Within this framework, “particles” (accounted for
by a wave function) reflect the various manifestations of the
geodesics of this non-differentiable continuum in which scale
divergence is without any lower limit, so that there is no hid-
den parameter in this case. The various properties of elemen-
tary “particles” (mass, charge, spin, etc.) emerge as manifes-
tations of the geometric properties of this fluid of geodesics.
There is no “trajectory”, but there are only purely geometric
paths. Quantum phenomena such as entanglement, indistin-
guishability of identical particles, or spin–statistics relations
are simple and natural consequences of such a purely geo-
metric description.

Within the context of macroscopic quantum-type systems,
based on a macroscopic constant larger than h̄, the situation
is different and therefore also the interpretation. These sys-
tems are characterised by their fractality on a given range of
scales, with an upper limit (the Einstein–de Broglie scale)
as in standard quantum mechanics, but now there also is a
lower limit. In this case there are particles in the commonly
used sense, which follow trajectories, even though their pos-
sible realisations are infinite in number, fractal and locally
irreversible, which leads to quantum-type equations.

The two situations therefore share a description in terms
of wave function solutions of a Schrödinger or Pauli equation
(although not with the same constant). They therefore share
most of the consequences of this behaviour, except those
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derived from complete non-differentiability (entanglement,
indistinguishability, etc.).

The disorder-induced fields which underpin these systems
have their equivalence in the gauge fields of the electromag-
netic, weak and strong interaction forces. However, this new
quantum field theory of macroscopic quantum systems has
yet to be described in a comprehensive manner as the pro-
posal of a macroscopic Schrödinger or Pauli equation repre-
sents only a first approximation. As in standard QM, these
equations do not help our understanding of the detailed mech-
anisms associated with quantum decoherence. Dealing with
this issue requires a significant new step in our understanding
of the foundations of quantum mechanics, which requires a
detailed mathematical description, to be reported in a future
paper.

Whilst the scale-relativity framework described so far rep-
resents at best a first approximation of reality, progress to date
[1,199–201] has highlighted an important set of general prin-
ciples, which can play the role of signposts, to facilitate new
research that can accelerate our understanding of biological
systems.

We have so far seen a limited number of examples of pos-
sible emergent structures using CO2, as a source of charge
density [200]. We have also demonstrated the potential to
mimic biological systems using charged biomolecules (GA
and CK) to more precisely control the emergence of cell-like
structures, cell division and the growth of simple, multicellu-
lar structures [201]. However, the growth of larger and more
complex structures was constrained by a fixed concentration
of key ingredients which declined over time. This can be
addressed in future work with the design of a system with a
feedback loop, which provides a continuous supply of mate-
rial and a constant set of conditions (over time), to support the
growth of large-scale, multicellular structures. To get maxi-
mum information on the sequence of events during growth,
emergent structures need to be monitored in real time through
live cell imaging techniques using time-lapse microscopy.

It is anticipated that a successful system design could lead
to a new, “cellular” approach to the development of larger
and more complex multicellular structures and new materi-
als. This concept starts to become attractive from a techno-
logical perspective if we consider the theory that a range of
macroscopic quantum phenomena show a remarkably sim-
ilar underlying set of physical principles [200–203]. A key
objective of future work will be to develop a generic, first
principles approach to the development of room temperature
macroscopic quantum systems, which can support technolo-
gies such as HTSC, CRL and quantum computing.

As part of such an approach, as more detailed information
on living systems emerges where we can identify specific
combinations of biomolecules, ions and local conditions with
the emergence of different morphologies and functionalities,
we aim to test our understanding of their influence by repli-

cating the conditions in simpler, more controlled inorganic
growth experiments.

This approach is expected to offer further insights into the
role of the genome, proteome, transcriptome, metabolome,
fluxome and electrome in guiding physical processes and
their impact on the emergence of structure and function at
different scales within biological systems. As we improve our
understanding of the mechanisms associated with biological
processes, it should also lead to an improved understanding
of the mechanisms and associated diseases that undermine
these processes. It is anticipated that this knowledge may be
useful in supporting new ab initio approaches to drug design
and disease mitigation.

While the theories of motion relativity are well established
in physics, the theory of scale relativity is still a matter of
active research and discussion. Its multiple successful pre-
dictions [199–202,249–252] are resolving or redefining fun-
damental problems considered as intractable in the classical
framework. It thus proposes a significant change of paradigm
that has yet to be accepted by most physicists. The choice of
the scale-relativity theory to extend the physical and mathe-
matical framework of systems biology is therefore very chal-
lenging. However, the obvious general occurrence of scales
and organisation levels in biological systems supports the
proposal that such a fundamental theory of scales in nature
could be particularly well adapted to provide the basis for
developing an integrated theory for biology.

The trans-disciplinary nature of the proposed approach
calls for sustained efforts in training and education to facil-
itate interactions at the interface across the multiple disci-
plines involved, with a particular emphasis on biology, com-
puter and engineering sciences, mathematics and physics
[199,253].

The existence of scales and levels of organisation in biol-
ogy raises many questions concerning the ways in which
causation occurs across scales and levels. The principle of
biological relativity [3] is based on distinguishing between
the causation by initial and boundary conditions and the cau-
sation by the molecular dynamics represented by the differ-
entials in the equations used to model biological processes.
The former include the constraints by higher levels of organ-
isation, represented by the large downward facing arrows in
Fig. 1. Taken together the upward and downward forms of
causation are sometimes referred to as circular causality. This
might give the impression that there is a temporal sequence
here, with one form (usually the upward form) being first.
That this is not the case is the outcome of a recent study of
this issue [54] which shows that the two forms are best repre-
sented mathematically as simultaneous. The article also gives
many physiological examples of high-level activity causing
changes at the molecular level of organisation in biology.
The details of causation across scales and levels are there-
fore beginning to be worked out.
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We expect that the successful demonstration in biologi-
cal systems of the predictive power of an extended frame-
work that uses the mathematical toolbox of scale relativity
for multi-scale integration will have enormous consequences
in all areas of biology and medicine where similar hurdles
need to be overcome. By validating the conceptual extensions
of the systems biology framework, it will also provide a solid
foundation for the development of a genuine integrated the-
ory of life based on first principles. Much work remains to
validate experimentally the conceptual and methodological
extensions of the systems biology framework provided by
scale relativity, and to integrate them successfully with the
principles underlying the theories of evolution, development
and functioning of organisms into an integrated theory of life.
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