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GENERALIZED BOUNDS FOR SINE AND COSINE

FUNCTIONS

YOGESH J. BAGUL AND CHRISTOPHE CHESNEAU

Abstract. In this paper, we propose several new lower and upper bounds
for the functions sinx/x and cosx. In particular, we refine by generaliz-
ing some known inequalities involving these functions. To attain this aim,
monotonicity rules and ratio of consecutive even indexed Bernoulli num-
bers play an important role.

1. Introduction

Since the last two decades, there has been a growing interest in the field of
inequalities involving trigonometric functions (see [4, 6, 7, 10, 13, 15, 16, 18, 21],
and references therein). In this connection, R. Klén et al. [13] proved the
following inequalities:

1− x2

6
<

sinx

x
< 1− 2x2

3π2
; 0 ∈ (0, π/2). (1.1)

These inequalities were sharpened in [5] as follows:

1− x2

6
<

sinx

x
< 1− 4x2

3π2
; 0 ∈ (0, π/2). (1.2)

In the same paper [5], the inequalities

1− x2

2
< cosx < 1− 4x2

π2
; x ∈ (0, π/2) (1.3)

and

2− x2

2
< cosx <

2

2 + x2
; x ∈ (0, π/2) (1.4)

were proved by Y. J. Bagul and S. K. Panchal. Another interesting inequality
[3] is stated as

π2

π2 + 2(π − 2)x2
<

sinx

x
<

6

6 + x2
; x ∈ (0, π/2). (1.5)
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For refinements of lower bounds, C. Chesneau and Y. J. Bagul [9] established
that (

1− x2

π2

)π2/6

<
sinx

x
; x ∈ (0, π) (1.6)

and (
1− 4x2

π2

)π2/8

< cosx; x ∈ (0, π/2). (1.7)

Inequalities having resemblance with the above inequalities (i.e., close resem-
blance with (1.6) and (1.7)) can also be found in [21]. Motivated by these
inequalities, and the challenge to sharpen them as well, we aim to further re-
fine and generalize these inequalities by using new mathematical approaches.

The rest of the paper is planned as follows. Section 2 presents some useful
preliminaries and lemmas. The main results are provided in Section 3. Section
4 is devoted to applications of these results.

2. Preliminaries and lemmas

First of all, we need to remind ourselves the following power series expan-
sions [12, 1.3.1.4]:

tanx

x
=

∞∑
n=1

22n(22n − 1)

(2n)!
|B2n|x2n−2; |x| <

π

2
(2.1)

and

x cotx = 1−
∞∑
n=1

22n

(2n)!
|B2n|x2n; |x| < π. (2.2)

Similarly, ( x

sinx

)2
= 1 +

∞∑
n=1

22n

(2n)!
(2n− 1)|B2n|x2n; |x| < π (2.3)

can be found in [7, p. 128] or can be easily obtained from (2.2). Here, B2n are
even indexed Bernoulli numbers. With these series expansions, the following
four lemmas allow us to establish our main results.

Lemma 1. ( [2, p. 10]) Let p, q : [a, b] → R be continuous functions. More-
over, let p, q be differentiable functions on (a, b), with q′(x) 6= 0, on (a, b).
Now, set

r1(x) =
p(x)− p(a)

q(x)− q(a)
, r2(x) =

p(x)− p(b)
q(x)− q(b)

, x ∈ (a, b).

Then,
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(i) r1(·) and r2(·) are increasing(strictly increasing) on (a, b) if p′(·)/q′(·)
is increasing(strictly increasing) on (a, b).

(ii) r1(·) and r2(·) are decreasing(strictly decreasing) on (a, b) if p′(·)/q′(·)
is decreasing(strictly decreasing) on (a, b).

Lemma 1 is known in the literature as a monotone form of l’Hôpital’s rule
(see also [14]). Lemma 2 below can be found in [1, 11].

Lemma 2. ( [1, 11]) Let A(x) =
∑∞

n=0 anx
n and B(x) =

∑∞
n=0 bnx

n be con-
vergent for |x| < T, where an and bn are real numbers for n = 0, 1, 2, · · ·
such that bn > 0., and T > 0 is a fixed constant. If the sequence an/bn is
strictly increasing(or decreasing), then the function A(x)/B(x) is also strictly
increasing(or decreasing) on (0, T ).

The result below is about lower and upper bounds for a ratio involving
absolute Bernoulli numbers. It is established in [17].

Lemma 3. ( [17]) For k ∈ N, the Bernoulli numbers satisfy

(22k−1 − 1)

(22k+1 − 1)

(2k + 1)(2k + 2)

π2
<
|B2k+2|
|B2k|

<
(22k − 1)

(22k+2 − 1)

(2k + 1)(2k + 2)

π2
.

The inequality in the following lemma is known in the literature as Wilker’s
inequality and it is proved in [20].

Lemma 4. [20] If x ∈ (0, π/2), then

tanx

x
+

(
sinx

x

)2

> 2.

3. Main results

We will now state and prove the main results of the paper.

Theorem 1. Let the function fu(x) = ln(sinx/x)
ln[(π2−ux2)/π2]

be defined on (0, π/2)

and u 6= 0. Then,

1. fu(x) is strictly decreasing on (0, π/2) if 4
(
1− 8

π2

)
6 u 6 4,

2. fu(x) is strictly decreasing on (0, π/2) if u < 0,

3. fu(x) is strictly increasing on (0, π/2) if 0 < u 6 π2

15 .

Proof. First of all, note that ln
(
π2−ux2
π2

)
is defined in (0, π/2) provided that

u 6 4. Now, consider

fu(x) =
ln
(
sinx
x

)
ln
(
π2−ux2
π2

) =
f1(x)

(f2)u(x)
,
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where f1(x) = ln
(
sinx
x

)
and (f2)u(x) = ln

(
π2−ux2
π2

)
satisfying f1(0

+) = 0 =

(f2)u(0+). Differentiation gives

f ′1(x)

(f2)′u(x)
=

1

2u
(π2 − ux2)

(
sinx− x cosx

x2 sinx

)
=

1

2u

(
π2

x2
− π2 cotx

x
− u+ ux cotx

)
=

1

2u
(f3)u(x).

Clearly, (f3)u(x) is decreasing if and only if (f3)
′
u(x) < 0. Consequently, by

using Lemma 1, we can conclude that fu(x) will be decreasing if (f3)
′
u(x) < 0.

This implies that

−2π2 + π2
( x

sinx

)2
+ π2

x

tanx
+ ux2

x

tanx
− ux2

( x

sinx

)2
< 0

or

π2
[( x

sinx

)2
+ x cotx− 2

]
< ux2

[( x

sinx

)2
− x cotx

]
.

This inequality is equivalent to

π2
[(

x
sinx

)2
+ x cotx− 2

]
x2
[(

x
sinx

)2 − x cotx
] < u,

since the relation x
tanx < 1 <

(
x

sinx

)2
is well known. Set f4(x) =

( x
sin x)

2
+x cotx−2

x2
[
( x
sin x)

2−x cotx
]
,

so that f4(x) < u
π2 . Owing to (2.2) and (2.3), we have

f4(x) =

∑∞
n=1

22n

(2n)!(2n− 2)|B2n|x2n∑∞
n=1

22n

(2n)!2n|B2n|x2n+2

=

∑∞
n=2

22n

(2n)!(2n− 2)|B2n|x2n∑∞
n=2

22n−2

(2n−2)!(2n− 2)|B2n−2|x2n

=

∑∞
n=2 anx

2n∑∞
n=2 bnx

2n
,

where an = 22n

(2n)!(2n− 2)|B2n| and bn = 22n−2

(2n−2)!(2n− 2)|B2n−2| > 0.

Therefore, with cn = an
bn

, we get

cn =
an
bn

=
4|B2n|

2n(2n− 1)|B2n−2|
and

cn+1

cn
=

2n(2n− 1)

(2n+ 1)(2n+ 2)

|B2n−2|
|B2n|

|B2n+2|
|B2n|

.
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Lemma 3 yields

|B2n−2|
|B2n|

>
(22n−1 − 1)

(22n−3 − 1)

π2

2n(2n− 1)
,
|B2n+2|
|B2n|

>
(22n−1 − 1)

(22n+1 − 1)

(2n+ 1)(2n+ 2)

π2
.

This gives
cn+1

cn
>

(22n−1 − 1)2

(22n−3 − 1)(22n+1 − 1)
.

Now, we claim that cn+1

cn
> 1. Indeed, if cn+1

cn
6 1 for n > 2, then (22n−1−1)2 6

(22n−3− 1)(22n+1− 1) or 22n > 22n−3 + 22n+1 > 22n+1, which is absurd. Thus
the sequence {anbn } is strictly increasing. By Lemma 2, f4(x) is also strictly

increasing on (0, π/2). Hence, sup{f4(x) : x ∈ (0, π/2)} = limx→π/2 f4(x) =
4(π2−8)
π4 6 u

π2 . Thus (f3)u(x) and fu(x) are strictly decreasing on (0, π/2)

if 4
(
1− 8

π2

)
6 u 6 4. For second and third statements, we follow similar

arguments and conclude that (f3)u(x) is strictly increasing on (0, π/2) if u
π2 6

inf {f4(x) : x ∈ (0, π/4)} = limx→0+ f4(x) = 1
15 , i.e., u 6 π2

15 . This ends the
proof of Theorem 1. �

The statement of Theorem 1 can be extended on (0, π) as presented below.

Theorem 2. Let the function fu(x) be defined as in Theorem 1 on (0, π) and
u 6= 0. Then,

1. fu(x) is strictly decreasing on (0, π) if u = 1,
2. fu(x) is strictly decreasing on (0, π) if u < 0,

3. fu(x) is strictly increasing on (0, π) if 0 < u 6 π2

15 .

Proof. We omit the proof since it is very similar to the proof of Theorem 1. �

We in turn have a generalization of first parts of Theorems 1 and 2 as
follows.

Theorem 3. If u > 1, then the function fu(x) defined in Theorem 1, is
decreasing on (0, π/

√
u). In particular, with this fixed value of u, if x ∈ (0, µ]

where µ ∈ (0, π/
√
u), then the best possible constants α and β such that(

1− ux2

π2

)α
<

sinx

x
<

(
1− ux2

π2

)β
(3.1)

are π2

6u and ln(sinµ/µ)
ln(1−uµ2/π2)

respectively.

Proof. The proof is similar to that of Theorem 1. Let us just mention that

lim
x→0+

fu(x) > fu(x) > lim
x→µ−

fu(x)

and the limits limx→0+ fu(x) = π2

6u and limx→µ− fu(x) = ln(sinµ/µ)
ln(1−uµ2/π2)

give the

inequalities (3.1). �
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Corollary 1. If x ∈ (0, π/2) and 4
(
1− 8

π2

)
6 u 6 4, then the best possible

constants α and β such that(
1− ux2

π2

)α
<

sinx

x
<

(
1− ux2

π2

)β
(3.2)

are π2

6u and ln(2/π)
ln(1−u/4) , respectively.

Proof. As 4
(
1− 8

π2

)
6 u 6 4, by Theorem 1, fu(x) is strictly decreasing on

(0, π/2). So, noticing that

lim
x→0+

fu(x) =
π2

6u
> fu(x) > lim

x→π/2−
fu(x) =

ln(2/π)

ln(1− u/4)
,

the proof is complete. �

Figure 1 illustrates Corollary 1 by plotting the following two dimensional
functions:

A(x, u) =
sinx

x
−
(

1− ux2

π2

)α
, B(x, u) =

(
1− ux2

π2

)β
− sinx

x

for x ∈ (0, π/2) and 4
(
1− 8

π2

)
6 u 6 4.

x

0.5

1.0

1.5

u

1

2

3

4
A

(x,u)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

 

x

0.5

1.0

1.5

u
1

2

3

4

B
(x,u)

0.1

0.2

0.3

 

(a) (b)

Figure 1. Plots of (a) A(x, u) and (b) B(x, u) for x ∈ (0, π/2)
and 4

(
1− 8

π2

)
6 u 6 4.

From Figure 1, we visually observe the findings; we have A(x, u) > 0 and
B(x, u) > 0 for the considered values of x and u.

On the similar line we can have following corollaries.
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Corollary 2. If x ∈ (0, µ] where µ ∈ (0, π) and u = 1, then the best possible
constants α and β such that(

1− ux2

π2

)α
<

sinx

x
<

(
1− ux2

π2

)β
(3.3)

are π2

6u and ln(sinµ/µ)
ln[(π2−uµ2)/π2]

, respectively.

Corollary 3. If u ∈ (−∞, 0)∪
(

0, π
2

15

]
, then the best possible constants α and

β such that (
1− ux2

π2

)β
<

sinx

x
<

(
1− ux2

π2

)α
(3.4)

are:

1. π2

6u and ln(2/π)
ln(1−u/4) , respectively, if x ∈ (0, π/2).

2. π2

6u and ln(sinµ/µ)
ln[(π2−uµ2)/π2]

, respectively, if x ∈ (0, µ] and µ ∈ (0, π).

The proof of Theorem 3 necessarily uses proof of Theorem 1 and it should
be remembered that its proof can be given independently. To get the idea
of independent proof of Theorem 3, we state and prove similar statement for
cosine function.

Theorem 4. If u > 4, then the function gu(x) = ln(cosx)
ln(1−ux2/π2)

is decreasing

on (0, π/
√
u). In particular, with this fixed value of u, if x ∈ (0, µ] where

µ ∈ (0, π/
√
u), then the best possible constants η and ξ such that(

1− ux2

π2

)η
< cosx <

(
1− ux2

π2

)ξ
(3.5)

are π2

2u and ln(cosµ)
ln(1−uµ2/π2)

, respectively.

Proof. Let us consider

gu(x) =
ln(cosx)

ln
(

1− ux2

π2

) =
g1(x)

(g2)u(x)
,

where g1(x) = ln(cosx) and (g2)u(x) = ln
(

1− ux2

π2

)
satisfying g1(0) = 0 =

(g2)u(0). Upon differentiation, we get

g′1(x)

(g2)′u(x)
=

1

2u
(π2 − ux2)tanx

x
=

1

2u
(g3)u(x),
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where (g3)u(x) = (π2 − ux2) tanxx = (π2 − ux2)
∑∞

n=1
22n(22n−1)

(2n)! |B2n|x2n−2 by

(2.1). After several simplifications, we arrive at

(g3)u(x) =

∞∑
n=1

π222n(22n − 1)

(2n)!
|B2n|x2n−2 − u

∞∑
n=1

22n(22n − 1)

(2n)!
|B2n|x2n

=
∞∑
n=0

π222n+2(22n+2 − 1)

(2n+ 2)!
|B2n+2|x2n −

∞∑
n=1

22nu(22n − 1)

(2n)!
|B2n|x2n

= π2 +

∞∑
n=1

anx
2n.

It has derivative

(g3)
′
u(x) =

∞∑
n=1

2nanx
2n−1,

where an = π222n+2(22n+2−1)
(2n+2)! |B2n+2|− 22nu(22n−1)

(2n)! |B2n|. From the right inequal-

ity of Lemma 3, we obtain

π2(22n+2 − 1)|B2n+2| < (22n − 1)(2n+ 1)(2n+ 2)|B2n|.
This yields, with a > 4,

π222n+2(22n+2 − 1)

(2n+ 2)!
|B2n+2| <

22n22(22n − 1)

(2n)!
|B2n|

6
22nu(22n − 1)

(2n)!
|B2n|.

Thus, an 6 0; ∀n ∈ N and consequently, (g3)u(x), and hence gu(x), are de-

creasing in (0, π/
√
u). Lastly the relation limx→0+ gu(x) = π2

2u > gu(x) >

limx→µ− gu(x) = ln(cosµ)
ln(1−uµ2/π2)

proves the inequalities (3.5). �

Before giving an enhanced statement similar to the one of Theorem 1 for
gu(x), we first provide an alternative proof to the result of Sándor-Bhayo [19,
Theorem 1].

Theorem 5. ( [19, Theorem 1]) The function P (x) = 2x−sin 2x
x2(2x+sin 2x)

is strictly

increasing on (0, π/2). In particular, the inequalities

π2 − x2

π2 + x2
<

sinx

x
<

12− x2

12 + x2
(3.6)

are true in (0, π].

Proof. Let

P (x) =
2x− sin 2x

x2(2x+ sin 2x)
=

2x− sin 2x

2x3 + x2 sin 2x
.
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Differentiation gives

(2x3 + x2 sin 2x)2P ′(x) = −8x3 − 8x3 cos 2x+ 4x2 sin 2x+ 2x sin2 2x

= 8x2 cosx(sinx− x cosx) + 8x cos2 x(sin2 x− x2)
= 8x cosx Q(x),

where Q(x) = x sinx+ sin2 x cosx− 2x2 cosx > 0 by Lemma 4. The limits at
the extremities give the inequalities (3.6). �

We are now in the position to state and prove an enhanced statement of
Theorem 4.

Theorem 6. Let the function gu(x) be defined as in Theorem 4 on (0, π/2)
and u 6= 0. Then

1. gu(x) is strictly decreasing on (0, π/2) if u = 4,
2. gu(x) is strictly decreasing on (0, π/2) if u < 0,

3. gu(x) is strictly increasing on (0, π/2) if 0 < u 6 π2

3 .

Proof. As in the proof of Theorem 4, we have u 6 4 and

g′1(x)

(g2)′u(x)
=

1

2u
(π2 − ux2)tanx

x
=

1

2u
(g3)u(x),

where (g3)u(x) = (π2 − ux2) tanxx . It has the following derivative

(g3)
′
u(x) =

1

x2
(
x
[
(π2 − ux2) sec2 x− 2ux tanx

]
− (π2 − ux2) tanx

)
= π2(x sec2 x− tanx)− ux2(tanx+ x sec2 x).

Clearly, (g3)u(x) is decreasing if and only if (g3)
′
u(x) < 0. Consequently, by

using Lemma 1, we can conclude that gu(x) will be decreasing if (g3)
′
u(x) < 0

which implies that

ux2(tanx+ x sec2 x) > π2(x sec2 x− tanx),

i.e.,

u

π2
>

x sec2 x− tanx

x2(x sec2 x+ tanx)
=

2x− sin 2x

x2(2x+ sin 2x)
= P (x).

By virtue of Theorem 5, we can write u
π2 > sup {P (x) : x ∈ (0, π/2)} =

limx→π/2− P (x) = 4
π2 , i.e., u > 4. Thus, (g3)u(x) is strictly decreasing if u 6 4

and u > 4 i.e., u = 4. Hence gu(x) is strictly decreasing on (0, π/2) if u = 4.
For second and third statements, we follow the similar arguments and conclude
that (g3)u(x) is strictly increasing on (0, π/2) if u

π2 6 inf {P (x) : x ∈ (0, π/2)} =

limx→0+ P (x) = 1
3 , i.e., u 6 π2

3 . This completes the proof. �

As a consequence of Theorem 6, we have following direct corollaries.
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Corollary 4. If x ∈ (0, λ] where λ ∈ (0, π/2) and u = 4, then the best possible
constants η and ζ such that

(
1− ux2

π2

)η
< cosx <

(
1− ux2

π2

)ζ
(3.7)

are π2

2u and ln(cosλ)
ln[(π2−uλ2)/π2]

, respectively.

Proof. By the first statement of Theorem 6 and the use of the limits limx→0+ gu(x) =
π2

2u and limx→λ− gu(x) = ln(sinλ)
ln[(π2−uλ2)/π2]

, we get the required result. �

Corollary 5. If u ∈ (−∞, 0)∪
(

0, π
2

3

]
and x ∈ (0, λ] where λ ∈ (0, π/2), then

the best possible constants η and ζ such that

(
1− ux2

π2

)ζ
< cosx <

(
1− ux2

π2

)η
(3.8)

are π2

2u and ln(cosλ)
ln[(π2−uλ2)/π2]

, respectively.

Figure 2 illustrates visually Corollary 5 by considering the two dimensional
functions:

C(x, u) =

(
1− ux2

π2

)η
− cosx, D(x, u) = cosx−

(
1− ux2

π2

)ζ

for u ∈
(

0, π
2

3

]
and x ∈ (0, λ] where λ = π/3.
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x

0.2
0.4

0.6
0.8

1.0

u

1

2

3

C
(x,u)

0.00

0.02

0.04

0.06

 

x

0.2
0.4

0.6
0.8

1.0

u

1

2

3

D
(x,u) 0.01

0.02

0.03

 

(a) (b)

Figure 2. Plots of (a) C(x, u) and (b) D(x, u) for u ∈
(

0, π
2

3

]
and x ∈ (0, λ] where λ = π/3.

From Figure 2, as proved analytically, we see that C(x, u) > 0 and D(x, u) >
0 for the considered values of x and u.

4. Applications

Inequalities (1.6) and (1.7) are particular cases of Corollary 2 (or Theorem
3) and Corollary 4 (or Theorem 4), respectively, with their extensions to the
right also. Now, putting u = π2/6 and u = 4/3 in (3.2), we get, respectively,
the following inequalities:

1− x2

6
<

sinx

x
<

(
1− x2

6

)β1
; x ∈ (0, π/2), (4.1)

and (
1− 4x2

3π2

)π2/8

<
sinx

x
<

(
1− 4x2

3π2

)β2
; x ∈ (0, π/2) (4.2)

with β1 = ln(2/π)
ln(1−π2/24)

≈ 0.85248 and β2 = ln(2/π)
ln(2/3) ≈ 1.113739.

Obviously, the inequalities (4.1) and (4.2) refine those in (1.1) and (1.2).
By fixing u = 1 in Corollary 1, we get refinement of both (4.1) and (4.2). The
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refined inequalities can be formulated as follows:(
1− x2

π2

)π2/6

<
sinx

x
<

(
1− x2

π2

)β3
; x ∈ (0, π/2), (4.3)

with β3 = ln(2/π)
ln(3/4) ≈ 1.569728.

Similarly after fixing u = 4/5 in Corollary 1, we get

(
1− 4x2

5π2

)5π2/24

<
sinx

x
<

(
1− 4x2

5π2

)β4
;x ∈ (0, π/2), (4.4)

where β4 = ln(2/π
ln(4/5) ≈ 2.023732.

We found sharpest double inequality among all the inequalities in (3.2) by
fixing least value of u in Corollary 1 as follows:

[
1− 4

(
1− 8

π2

)
x2

π2

] π2

24(1−8/π2)

<
sinx

x
<

[
1− 4

(
1− 8

π2

)
x2

π2

]β5
; x ∈ (0, π/2),

(4.5)

where β5 = ln(2/π)
ln(8/π2)

≈ 2.150207.

Again, from Corollary 3, we obtain the following better inequalities by putting

respectively u = π2

15 and u = 4
7 , obtaining

(
1− x2

15

)β6
<

sinx

x
<

(
1− x2

15

)5/2

; x ∈ (0, π/2) (4.6)

and (
1− 4x2

7π2

)β7
<

sinx

x
<

(
1− 4x2

7π2

)7π2/24

; x ∈ (0, π/2), (4.7)

where β6 = ln(2/π)
ln(1−π2/60)

≈ 2.512743, and β7 = ln(2/π)
ln(6/7) ≈ 2.929488,

Remark 1. There is no strict comparison among the inequalities in (4.5), (4.6)
and (4.7).

A refinement of (1.5) is obtained by putting u = −π2

6 in Corollary 3 as
follows: (

6

6 + x2

)β8
<

sinx

x
<

6

6 + x2
; x ∈ (0, π/2), (4.8)
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where β8 = − ln(2/π)
ln(1+π2/24)

≈ 1.310971. For better refinement of inequalities of

type (4.8), we can put the negative values of u in Corollary 3 such that |u| is
least possible. For example, putting u = −1 in Corollary 3 we get(

π2

π2 + x2

)β9
<

sinx

x
<

(
π2

π2 + x2

)π2/6

; x ∈ (0, π/2), (4.9)

where β9 = − ln(2/π)
5/4) ≈ 2.023732 and it is still possible to get sharper and

sharper inequalities involving sinx
x .

For inequalities involving cosx, we directly obtain from Corollary 5, the
following inequalities for x ∈ (0, λ] :

(
1− x2

3

)ζ1
< cosx <

(
1− x2

3

)3/2

, (4.10)

(
2

2 + x2

)ζ2
< cosx <

2

2 + x2
(4.11)

and (
π2

π2 + x2

)ζ3
< cosx <

(
π2

π2 + x2

)π2/2

, (4.12)

where λ ∈ (0, π/2), ζ1 = ln(cosλ)
ln(1−λ2/3) , ζ2 = − ln(cosλ)

ln(1+λ2/2)
and ζ3 = − ln(cosλ)

ln(1+λ2/π2)
.

Note that the right inequalities of (4.10), (4.11) and (4.12) are in fact true
in (0, π/2). The right inequality of (4.10) can also be seen in [8, Lemma 2.9].
The double inequality (4.11) is sharpened version of (1.4) and (4.12) further
refines (4.11).

Lastly, combining different inequalities we get inequalities of great interest.
For instance, from (1.6) and (4.9) we have

(
π2 − x2

π2

)π2/6

<
sinx

x
<

(
π2

π2 + x2

)π2/6

; x ∈ (0, π). (4.13)

Note here that the right inequality in (4.13) holds in (0, π) due to Theorem 1,
3(Corollary 2). Another one for cosx is given as(

π2 − 4x2

π2

)π2/8

< cosx <

(
π2

π2 + 4x2

)π2/8

; x ∈ (0, π/2), (4.14)

where the left inequality is (1.7) and right inequality are a consequence of
Theorem 6(Corollary 5). Thus, we can establish several inequalities of type
(4.13) and (4.14).
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For another interesting application, one can consider the following chain of
inequalities obtained by E. Neuman [16]:

(cosx)1/3 <

(
cosx

sinx

x

)1/4

<
sinx

arctan(sinx)
<

(
cosx+ sinx/x

2

)1/2

<

(
1 + 2 cosx

3

)1/2

<

(
1 + cosx

2

)2/3

<
sinx

x
; x ∈ (0, π/2). (4.15)

To add a piece to this chain of inequalities, we first prove the two following
propositions.

Proposition 1. If x ∈ (0, π/2), then we have

3

2

[(
1− x2

π2

)π2/3

−
(

3

4

)π2/3
]
< cosx <

1

2

[
3

(
1− x2

π2

)π2/3

− 1

]
. (4.16)

Proof. Set

h(x) =
3

2

(
1− x2

π2

)π2/3

− cosx.

On differentiating, we get

h′(x) = sinx− x
(

1− x2

π2

)π2−3
3

> 0,

since π2−3
3 > π2

6 implies
(

1− x2

π2

)π2−3
3

<
(

1− x2

π2

)π2
6

and
(

1− x2

π2

)π2
6
< sinx

x

by (3.2). Therefore, h(x) is strictly increasing in (0, π/2). Hence, we have

h(0) < h(x) < h(π/2), i.e., 1
2 < h(x) < 3

2

(
3
4

)π2/3
, which proves the proposi-

tion. �

Proposition 2. If x ∈ (0, π/2), then we have

2

(
1− x2

π2

)π2/4

− 1 < cosx < 2

(
1− x2

π2

)π2/4

− 2

(
3

4

)π2/4

. (4.17)

Proof. Set

k(x) = 2

(
1− x2

π2

)π2/4

− cosx.

After differentiating, we have

k′(x) = sinx− x
(

1− x2

π2

)π2−4
4

< 0,



GENERALIZED BOUNDS FOR SINE AND COSINE FUNCTIONS 15

since π2−4
4 ≈ 1.467401 < β3 ≈ 1.569728 implies that

(
1− x2

π2

)β3
<
(

1− x2

π2

)π2−4
4

and sinx
x <

(
1− x2

π2

)β3
by (4.3). Thus, k(x) is strictly decreasing in (0, π/2).

Hence, we have k(0) > k(x) > k(π/2), i.e., 1 > k(x) > 2
(
3
4

)π2/4
. The propo-

sition is proved. �

Now, the rearrangement and combination of the right inequality of (4.8)
and left inequality of (4.9) give us

(
1 + 2 cosx

3

)1/2

<

(
1− x2

π2

)π2/6

<

(
1 + cosx

2

)2/3

; x ∈ (0, π/2). (4.18)

The chain of inequalities in (4.7) is extended as

(cosx)1/3 <

(
cosx

sinx

x

)1/4

<
sinx

arctan(sinx)
<

(
cosx+ sinx/x

2

)1/2

<

(
1 + 2 cosx

3

)1/2

<

(
1− x2

π2

)π2/6

<

(
1 + cosx

2

)2/3

<
sinx

x
; x ∈ (0, π/2).

(4.19)
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[15] B. Malešević, T. Lutovac, M. Rašajski, and B. Banjac, Double-sided Taylor’s approxi-
mations and their applications in theory of trigonometric inequalities, in ’Trigonometric
Sums and Teir Applications’ ed. by A. Raigorodskii and M. T. Rassias, Springer, Cham,
pp. 159-167, 2020. Online: https://doi.org/10.1007/978-3-030-37904-9

[16] E. Neuman, Refinements and generalizations of certain inequalities involving trigono-
metric and hyperbolic functions, Advances in Inequalities and Applications, Vol. 1, No.
1, pp. 1-11, 2012.

[17] F. Qi, A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers,
Journal of Computational and Applied Mathematics, Vol. 351, 1 May, pp. 1-5, 2019.

[18] F. Qi, D.-W. Niu, and B.-N. Guo, Refinements, Generalizations and Applications of
Jordans inequality and related problems, Journal of Inequalities and Applications, Vol.
2009, Article ID 271923, 52 pp., 2009.

[19] J. Sándor and B. A. Bhayo, On an inequality of Redheffer, Miskolc Mathematical Notes,
Vol. 16, No. 1, 2015, pp. 475-482.

[20] J. S. Sumner, A. A. Jagers, M. Vowe, and J. Anglesio, Inequalities involving trigonomet-
ric functions, The American Mathematical Monthly, Vol. 98, No. 3, 1991, pp. 264-267.

[21] L. Zhu and J. Sun, Six new Redheffer-type inequalities for circular and hyperbolic
functions, Comput. Math. Appl., Volume 56, pp. 522-529, 2008.

Department of Mathematics, K. K. M. College, Manwath, Dist : Parbhani(M.S.)
- 431505, India

E-mail address: yjbagul@gmail.com

LMNO, University of Caen-Normandie, Caen, France
E-mail address: christophe.chesneau@unicaen.fr


