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Abstract

We consider a ground set E and a submodular function f : 2E → R acting on it. We first propose a
Set Multi-Covering problem in which the value (price) of any S ⊆ E is f(S). We show that the Linear
Program (LP) of this problem can be directly solved by applying a Submodular Function Minimization
(SFM) algorithm on the dual LP. However, the main results of this study concern Prize-Collecting

Multi-Covering With Submodular Pricing, i.e., a more general and more difficult Multi-Covering

problem in which elements can be left uncovered by paying a penalty. We formulate it as a large-scale
LP (with 2|E| variables representing all subsets of E) that could be tackled by Column Generation (CG),
see [18] for a CG algorithm for Set-Covering problems with submodular pricing. However, we do not
solve this large-scale LP by CG, but we solve it in polynomial time by exploiting its integrality properties.
More exactly, after appropriate restructuring, the dual LP can be transformed into an LP that has been
thoroughly studied (as a primal) in the SFM theory. Solving this LP reduces to optimizing a strong map
of O(n) submodular functions. For this, we use the Fleischer-Iwata framework [6] that optimizes all these
O(n) functions within the same asymptotic running time as solving a single SFM, i.e., in O(n7γ + n8),
where n = |E| and γ is the complexity of one submodular evaluation. Besides solving the problem, the
proposed approach can be useful to: (1) simultaneously find the best solution of up to O(n5) functions
under strong map relations in O(n8γ+n9) time, (2) perform sensitivity analysis in very short time (even
at no extra cost), (3) reveal combinatorial insight into the primal-dual optimal solutions. We present
several potential applications along the paper, from production planning to combinatorial auctions.

1 Introduction

A function f : 2E → R is submodular if and only if f(S)+f(T ) ≥ f(S∪T )+f(S∩T ), ∀S, T ⊆ E. A function
f is called supermodular if the inequality is reversed, i.e., if f(S) + f(T ) ≤ f(S ∪T ) + f(S ∩T ), ∀S, T ⊆ E.
The optimization literature is replete with application examples in which one needs to perform Submodular
Function Minimization (SFM), i.e., find a subset S ⊆ E of minimum submodular value f(S). A vast body
of work has been dedicated to SFM and important progress has been done over the last five decades (see,
chronologically, papers such as [5, 11, 15, 6, 8, 12, 13, 17, 14, 9]). This paper is devoted to a classical Set
Multi-Covering problem (cover we copies of each e ∈ E with subsets S ⊆ E of minimum total price) in
which subsets S ⊆ E are valued at a price of f(S) by a submodular function f . The main result concern
the prize-collecting formulation of this problem, i.e., a long-acknowledged set-covering variant [1] in which
some of the we copies can be left uncovered by paying a penalty xe.

A classical approach to such problems uses an Integer Linear Program (ILP) with 2|E| columns repre-
senting all subsets of E. After linear relaxation, this leads to an LP with prohibitively many variables that
is typically optimized by Column Generation (CG) methods [2, 3]. A paradigmatic example of such CG LPs
is the Gilmore-Gomory model for Cutting-Stock. It asks to find the minimum number of columns (subsets
S ⊆ E satisfying a knapsack constraint) that cover we copies of each e ∈ E. Our Set-Covering problem
can always be formulated in this manner, but the column of subset S ⊆ E has a price (objective function
coefficient) of f(S) instead of 1. To optimize such LPs, a CG approach would first start out with a restricted
set of columns; then, at each iteration, a negative reduced cost column would be added by solving a CG
pricing subproblem. If the price of S is f(S), then this subproblem is a SFM problem, as it asks to minimize
a submodular function minus a linear function, i.e., f(S)−

∑
e∈S ze, where ze is the dual value of e.
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The disadvantage of a pure CG algorithm is that it might need too many iterations, i.e., generate too
many columns by solving a SFM problem. To overcome this, we show that the dual of the CG program can
be written as an LP that has been thoroughly studied as a primal program in SFM. In fact, if the objective
is not formulated in a prize-collecting manner, we obtain the submodular polytope in the dual CG LP. In
a prize-collecting formulation, we obtain a well-known polytope1 discovered by Edmonds [5] and used by
most combinatorial SFM algorithms. The program associated to this polytope has integer optimum dual
solutions, and so, the CG program has an integer solution and there is no need for branching to solve it.

Section 3 presents all proposed algorithms; they rely on performing SFM over O(n) subsets of E that we
construct as follows. Given that each element e is demanded we times, we construct an embedding sequence of
subsets Ek ( Ek−1 · · · ( E0 = E such that Ek contain the most demanded elements (highest we), Ek−1 \Ek
contain the second most demanded elements, Ek−2\Ek−1 contain the next most demanded ones, etc. We will
show in Section 3.2 that the most general problem version, the Prize-Collecting Multi-Covering With

Submodular Pricing, can be solved by performing SFM over the above family of subsets. This can be done
by optimizing a strong map sequence of submodular functions, using only one call to the Fleischer-Iwata
algorithm of complexity O(n7γ + n8), i.e., we use the push-relabel Fleischer-Iwata Framework (FIF).

While this approach is not necessarily faster than (naively) applying O(n) times the fastest-available SFM
optimizer (i.e., Orlin’s algorithm [14], to our knowledge), the FIF is more well-suited to SFM over a family of
subsets or over a strong map sequence of submodular functions. In fact, it can simultaneously find in O(n8γ+
n9) time the optimal solution for a strong map sequence of up to O(n5) pricing scenarios (Section 3.3.2.2),
which is faster than applying O(n5) times a black-box optimizer. Such simultaneity properties can be further
used to perform sensitivity analysis, especially if one can anticipate possible data changes and formalize them
using strong map functions. Last but not least, by investigating how the arcs of the push-relabel FIF approach
generalize on our problem (Section 3.2.1), we reveal more combinatorial insight into the problem structure.

Several applications are presented along the paper, starting with Examples 2.1.A-2.1.B and finishing with
Section 4 on related work. For instance, Section 4.1 shows that the related Submodular Cost Set-Covering

(SCSC) does not verify one of the main assumptions required in this work, i.e., the price of columns is not
submodular. The “submodular cost” part in SCSC does not refer to the valuation over the power set of E,
but over the power set of a family of subsets of E.

The remainder of this paper is organized as follows. Section 2 introduces the LP models. Section 3
presents solution methods for these LPs, followed by a sensitivity analysis (Section 3.3) and extensions
towards optimization with parametric pricing functions (Section 3.3.2). Section 4 is devoted to related ideas
and applications, followed by conclusions in the last section.

2 Problem Formal Model

A Set Multi-Covering problem is defined on a ground set E = {1, 2, . . . , n}, a vector of demands w =
[w1 w2 . . . wn]> and a pricing (valuation) function f : 2E → R. The goal is to find a family of subsets of the
form S ⊆ E of minimum total value (cost) that cover exactly we copies each element e ∈ E.2 We assume
we ∈ Z+,∀e ∈ E, but some fractional situations will also be discussed. We only consider here functions f
that are submodular over the power set of E and that satisfy f(∅) = 0 (any submodular function can be
normalized to this form).

It is often more convenient to use the following submodularity definition. We say f : 2E → R is
submodular if and only if:

f(S′ ∪ {e})− f(S′) ≥ f(S ∪ {e})− f(S),∀S′ ⊆ S ( S ∪ {e} ⊆ E (2.1)

1The polytope {ze : ze ≤ f(S)∀S, ze ≤ 0∀e ∈ E} for submodular function f .
2The constraint of exactly covering the given set can be seen as a partitioning constraint. However, the “covering logic” will

be more obvious in the prize-collecting versions studied from Section 2.2 on.
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2.1 A Basic CG Model and Two Motivating Applications

In light of above (2.1), the notion of submodular pricing captures the idea of diminishing marginal pricing :
the value added by a new element e to a larger set S is smaller than the value added by e to a smaller set
S′ ⊆ S. For the sake of clarity, we formulate an introductory, very simple, application of Set-Covering

with Submodular Pricing.

Example 2.1.A. Consider a customer that needs to purchase (exactly) we copies of each product e ∈ E. A
seller applies a submodular function f to set prices over product bundles S ⊆ E. What selection of product
bundles minimizes the total price for the customer?

When above f is non-decreasing (a reasonable condition unless selling at unfairly low prices as in dump-
ing), f is a matroid rank function. The following application better reveals the more global notion of
submodularity (e.g., f is either positive or negative, and usually not monotone).

Example 2.1.B. We consider a set E of facilities such that each facility e ∈ E has a (production) demand
to work exactly we time slots (days). There is a fixed cost ce > 0 per each slot (day) of work at e. We
also consider a benefit be,e′ > 0 when facilities e and e′ work at the same time—e.g., a cost reduction
due to resource sharing or resource complementarity. Formally, we define the submodular function f(S) =∑
e∈S ce −

∑
e,e′∈S be,e′ . The goal is to find a work schedule for all facilities that minimizes the total cost.

We formulate below the primal-dual linear relaxation of Set-Covering with Submodular Pricing. Pro-
gram (2.2a) has 2n variables πS (one for each S ⊆ E) and could be optimized by a classical CG routine that
would iteratively solve the pricing sub-problem: minS⊆E f(S)−

∑
e∈S ze. However, our solution method is

presented in Section 3.1, where we will use the fact that the optimal solution of (2.2a) is always integer.

min
∑
S⊆E f(S)πS

ze :
∑
S3e πS = we ∀e ∈ E

πS ≥ 0 ∀S ⊆ E
(2.2a)

maxw>z

πS :
∑
e∈S ze ≤ f(S) ∀S ⊆ E

ze ∈ R ∀e ∈ E

}
P (f)

(2.2b)

2.2 Prize Collecting and Edmond’s Submodular Polytope

Prize-collecting is a property of covering problems that has been long acknowledged in the optimization
literature [1]. The constraint “cover exactly we copies of e ∈ E” simply becomes “cover at most we copies
but pay a penalty xe for any uncovered copy”. The examples 2.1.A-2.1.B evolve as follows.

Example 2.2.A. Use the same interpretation from Example 2.1.A, but the customer’s exact request of
purchasing we copies of e ∈ E evolves: there is still a need for we copies, but the customer is not willing to
pay more than xe for a copy of e (to add e to some bundle). We interpret xe as a threshold price for product
e, i.e., the customer has the possibility of purchasing e from an external source at a price of xe.

Example 2.2.B. Continuing with Example 2.1.B, we consider that there is still a workload of we days on
each e ∈ E. However, it is possible to work fewer days in e by paying a penalty of xe for each non-working
day. One can consider that xe bears the cost of executing the workload of one day by external means.

The penalties x are usually positive, but negative values can also be coherent—e.g., if the costs ce are
much smaller than the benefits be,e′ in Example 2.1.B. A first primal-dual relaxation of Prize-Collecting
Multi-Covering with Submodular Pricing is a generalization of (2.2a)-(2.2b):

min
∑
e xeσe +

∑
S⊆E f(S)πS

ze : σe +
∑
S3e πS = we ∀e ∈ E

σe ≥ 0 ∀e ∈ E
πS ≥ 0 ∀S ⊆ E

(2.3a)

maxw>z
σe : ze ≤ xe
πS :

∑
e∈S ze ≤ f(S) ∀S ⊆ E

ze ∈ R ∀e ∈ E

(2.3b)

We observe that similar (reversed) primal-dual programs arise in the SFM literature. To bring us closer
to a SFM model, we will reformulate this model so as to replace the “≤ xe” constraint of (2.3b) with a “≤ 0”
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constraint, as it is common in SFM. The reformulation will also reveal a natural justification for calling such
problems “prize-collecting”.

Variable σe represents the number of copies of e left uncovered. If all elements would be left uncov-
ered, a primal solution would be σe = we, ∀e ∈ E and πS = 0, ∀S ⊆ E; the (penalty) price to pay
would be

∑
e∈E wexe. By replacing σe with we −

∑
S3e πS in the objective function of (2.3a), the objec-

tive min
∑
e xeσe +

∑
S⊆E f(S)πS becomes min

∑
e xewe−

∑
e

∑
S3e xeπS +

∑
S⊆E f(S)πS =

∑
e∈E xewe +

min
∑
S⊆E(f(S)−

∑
e∈S xe)πS , which can be written x>w + min

∑
S⊆E f(S)πS , where f(S) is submodular

function:
f(S) = f(S)−

∑
e∈S

xe (2.4)

Taking
∑
e∈E wexe as a reference (penalty) price, our objective is interpreted as follows: start from the

reference price and minimize it by selecting subsets S ⊆ E; each such selection brings an objective function
increase f(S) and a reduction

∑
e∈S xe. This later term actually removes the penalty for letting e uncovered,

i.e., it is a “prize” for covering e. To keep a limit we on the number of cost-reduction prizes for e ∈ E,
one imposes

∑
S3e πS ≤ we; implicitly, σe is we −

∑
S3e πS and it can never be negative. The primal-dual

programs (2.3)-(2.3b) can be restated without primal variables σ:

w>x+ min
∑
S⊆E f(S)πS

ze :
∑
S3e πS ≤ we ∀e ∈ E

πS ≥ 0 ∀S ⊆ E
(2.5a)

w>x+ maxw>z
πS :

∑
e∈S ze ≤ f(S) ∀S ⊆ E

ze ≤ 0 ∀e ∈ E
(2.5b)

One could have obtained Program (2.5b) by performing substitution z ← z − x in (2.3b). We will often
work on the submodular polytope P (f) = {z ∈ Rn :

∑
e∈S ze ≤ f(S) ∀S ⊆ E} already mentioned in (2.2b).

This polytope is used by most SFM algorithms.
Finally, notice that similar primal-dual programs are used in the Prize-Colecting Forest (PCF) model

from [17, § 3]. However, our solution method cannot be applied on this PCF model, as there is an essential
difference: they use a (vertex) ground set V , but the PCF submodular function π acts on sets of subsets of

V (i.e., it is defined on 22
V

instead of 2V ). Comprehensive comparisons with this form of submodularity are
further provided in Section 4.1, as it often arises in Submodular Cost Set Covering.

3 The Proposed Solution Method

We first discuss solution methods for the simpler Multi-Covering with Submodular Pricing in Sec-
tion 3.1. However, the main contributions of this section concern the more general Prize-Collecting

Multi-Covering in Section 3.2. In Section 3.3, we perform a very fast sensitivity analysis based on the
methods from Section 3.2.

3.1 Basic Multi-Covering with Submodular Pricing

3.1.1 A primal approach

The primal LP (2.2a) can be solved relatively straightforwardly using a decomposition on the covering
demand values. We denote the minimum demand by w0 = min{wi : i ∈ [1..n]}. The fact that we need
we copies of each element e allows us to separate the first w0 copies of each e ∈ E from the rest we − w0.
This way, we can incrementally construct the solution: after covering w0 copies of each e ∈ E, one can
remove these demands and solve a residual problem (and all elements with we = w0 vanish). With regards
to the these first w0 copies, it is better to cover them by selecting w0 times the full set E instead of selecting
w0 layers of some partition of E (because f(E) ≤

∑
i∈[1..m] f(Ei) for any partition {E1, E2, . . . , Em} of

E). More formally, the primal problem could be solved by constructing an inclusion sequence of subsets
Ek ( Ek−1 ( . . . E1 ( E0 = E. We start with E0 = E and inductively construct E`+1 ( E` by removing
the lowest-demand elements from E`, i.e., E`+1 = E` − {e ∈ E` : we = w`}, where wl = mine∈E`

we.
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By developing this construction, the optimal primal solution becomes π∗S = w` − w`−1 if S = E` for some
` ∈ [0..k] (consider w−1 = 0) and 0 otherwise. Since this optimal solution π∗ of (2.2a) is integer, we actually
solved both the integer and the fractional Set-Covering with Submodular Pricing. The optimal would
still be integer if one allowed the subsets to be selected a fractional number of times.

The advantage of the above method is that it can simply compute the primal CG optimal solution π∗

in O(n2) time. Indeed, as long as the effective optimal objective value does not need to be calculated, the
sets E0, E1, . . . Ek can be determined without any submodular function evaluation. The very low complexity
O(n2) of this algorithm makes it more effective (both in practice and in theory) than any CG method that
would need to call a SFM algorithm at each iteration.

3.1.2 A dual method

The above pure primal approach has certain limitations: without calculating dual values, it cannot be used
for sensitivity analysis (as in Section 3.3.1), it cannot be generalized to other covering versions and it
does not reveal in-depth combinatorial properties. We will see that a dual standpoint does merit serious
consideration and we hereafter use it to address all remaining questions.

To determine the dual solution in programs (2.2a)-(2.2b), we need to investigate submodular polytopes.
Recall that (2.2b) actually maximizes a linear objective w>z over the submodular polyhedron P (f). It is
not difficult to check that if w ≥ 0, then the optimum solution belongs to the base polyhedron, i.e., to
the face

∑
e∈E ze = f(E). This follows from the fact that if the “≤ f(E)” constraint of P (f) is not tight,

one can always increase some ze—this can be verified using (2.1). However, an optimal solution to (2.2b)
is generated by the well-known Greedy algorithm using a linear order ≺ such that e1 ≺ e2 ≺ · · · ≺ en,
where we1 ≥ we2 ≥ · · · ≥ wen . Furthermore, Greedy also determines the optimal solution π∗ in (2.2a):
π∗S = wei−1

− wei if S = {e1, e2, . . . ei−1}, π∗S = 0 otherwise ∀i = n, . . . , 2, and π∗E = wen . It is not difficult
to check this is the same solution as the one obtained by the primal approach above.

3.2 Prize-Collecting Multi-Covering

The objective of (2.5b) is w>x + maxw>z. By ignoring the reference (penalty) price w>x, we obtain the
program below. One should keep in mind that this reference penalty will still be later used in the sensitivity
analysis when we will investigate the effect of changing the demands w (Section 3.3.1) or the penalties x
(Section 3.3.2.3).

maxw>z
πS :

∑
e∈S ze ≤ f(S) ∀S ⊆ E

ze ≤ 0 ∀e ∈ E
(3.1)

Theorem 1. The optimum of (3.1) can be determined only using a restricted (basic) family of submodular
constraints

∑
e∈S`

ze ≤ f(S`), where S` belongs to an inclusion sequence Sk ( Sk−1 · · · ( S0. Each S` is a
minimizer of f over all S ⊆ E`, where E` belongs to an inclusion sequence Ek ( Ek−1 ( . . . E0 = E such
that E`+1 = E` − {e` ∈ E` : we` = mine∈E`

we},∀` ∈ [0..k].

Proof. Let us start with any optimal solution z∗ of (3.1) and consider its family T ⊆ 2E of z∗-tight sets,
i.e., T = {S ⊆ E :

∑
e∈S z

∗
e = f(S)}. Let us take S0 =

⋃
S∈T S; since the union and intersection of z∗-tight

sets is also z∗-tight (see [12, Lemma 2.3] for a proof), S0 is also z∗-tight. Using z∗e ≤ 0, ∀e ∈ S0, it is clear
that S0 is a minimiser of f over T . We will further prove that S0 is also a minimizer of f over 2E . We now
show that z∗e = 0, ∀e ∈ E0 − S0. Assume z∗e < 0 for some e ∈ E0 − S0: since such e cannot belong to any
z∗-tight set, one could feasible increase z∗e and thus increase the objective function value—impossible given
the optimality of z∗. As such, S0 is a maximal minimizer of f on ground set E0 = E.

We generate by induction all sets E0, E1, . . . Ek and S0, S1, . . . Sk. Given constructed sets from S0, S1, . . . S`,
` ≥ 0 and E0, E1, . . . E`, we inductively construct S`+1. In fact, the construction of E`+1 from E` is already
specified in the hypothesis: remove from E` all elements e` of minimum demand, i.e., elements e` ∈ E` for
which we` = w` = mine∈E`

we, equivalent to E`+1 = {e ∈ E` : we > w`}.
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Take S`+1 as the union of all z∗-tight sets containing only elements of E`+1.

S`+1 =
⋃

S∈T ,S⊆E`+1

S (*)

Let us prove that z∗e = 0,∀e ∈ E`+1 − S`+1. Assume there is e ∈ E`+1 − S`+1 with z∗e < 0 and consider
all z∗-tight sets that contain e. The intersection Se =

⋂
e∈S∈T S needs to be z∗-tight (see [12, Lemma 2.3]).

This intersection Se cannot contain only elements of E`+1, because this would put e into S`+1, using (*)
above. Take any e′ ∈ Se −E`+1: one can feasibly decrease z∗e′ and increase z∗e by the same sufficiently small
ε > 0 (since e, e′ ∈ Se, they always appear together in z∗-tight sets that contain e). Such change would
increase the objective function value by ε(we − we′), which is positive using: (1) we > w` = mine`∈E`

we`
from the construction of E`+1 and (2) w` ≥ we′ from the fact that w` < we′ would put e′ into E`+1.

This objective increase contradicts the optimality of z∗: the assumption z∗e < 0 is false. In a flow push-
relabel interpretation, one would say e → e′ is a (demand-indexed) arc of strictly positive capacity over
which one can perform a push that decreases net flow z∗e′ in e′ and increases z∗e .

The above paragraph showed that z∗e = 0,∀e ∈ E`+1−S`+1; we can also use notation z∗(E`+1−S`+1) =∑
e∈E`+1−S`

z∗e = 0. Since S`+1 is the largest z∗-tight subset of E`+1, S`+1 is a (maximal) minimizer of

f over all subsets of E`+1. Additionally, S`+1 ⊆ S`, because S`+1 is constructed in (*) from z∗-tight sets
S ⊆ E`+1 that also belong to E` ) E`+1; all these z∗-tight sets do arise in the S` construction using the
same (*). The induction step is proved; one stops at k = ` when E`+1 = ∅.

We still have to determine the optimum objective function value OPT= w>z∗ based only on Ek (
Ek−1 ( . . . E0 = E and Sk ⊆ Sk−1 · · · ⊆ S0—see also (3.5) for an intuitive graphical representation of

these inclusion sequences (Section 3.2.1). We write w>z∗ =
∑`=k
`=0

∑
e∈E`−E`+1

wez
∗
e , and let us focus

on determining
∑
e∈E`−E`+1

wez
∗
e for a fixed ` ∈ [0..k]. We argued above that z∗e = 0,∀e ∈ E` − S`.

However, it is not clear how exactly z∗ is defined over S`−E`+1, but we will see this is not really necessary.
Indeed, we only need to determine

∑
e∈S`−E`+1

weze; since all e ∈ S` − E`+1 have the same demand value

w`, this sum can be written w`z
∗(S` − E`+1). Using z∗(E`+1) = z∗(S`+1) = f(S`+1), it is clear that

z∗(S` − E`+1) = z∗(S`)− z∗(E`+1) = f(S`)− f(S`+1). The optimum objective function value becomes:

OPT=w>z∗ =

`=k∑
`=0

wl (f (S`)− f (S`+1)) = w0f(S0) +

k∑
`=1

(w` − w`−1)f(S`) (3.2)

We mention that an analogous result of this theorem can be found in [16, §44.2], where w>z is maximized
over

{
z ∈ RE :

∑
e∈S ze ≤ f(S)

}
. While this polytope is not the same as the one from (3.1), one can relate

the two polytopes using the techniques from [16, 44.1]. Please let us present the consequences of this theorem.
The primal optimal solution π∗ in (2.5a) follows from above (3.2), i.e., using

∑
S⊆E f(S)π∗S = OPT =

w0f(S0) +
∑k
`=1(w` − w`−1)f(S`), the optimal primal solution is : π∗S0

= w0, π∗S`
= w` − w`−1, ∀` ∈ [1..k]

and π∗S = 0, ∀S ∈ 2E − {S0, S1, . . . Sk}.
A Strong Map Sequence of functions can be constructed from the inclusion sequence Ek ( Ek−1 · · · ( E0.

We define the following family of E`-kernel functions (∀` ∈ [0..k]):

f `(S) = f(S ∩ E`) +
∑

e∈S−E`

(|f(e)|+ 1), (3.3)

As a sum between a submodular function and a unimodular one, f ` is submodular. One can check that if
f(S`) = minS⊆E`

f(S), then f(S`) = f `(Sl) = minS⊆E f
`(S). The strict positivity of |f(e)|+ 1 only ensure

that all minimisers of f ` belong to E`. Furthermore, we show that the following is a strong map sequence
of submodular functions :

fk → fk−1 → . . . f1 → f0 = f (3.4)
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First, recall that two functions f and f̂ are in a strong-map relation f → f̂ if and only if f(S ∪ T )− f(S) ≥
f̂(S∪T )− f̂(S),∀S, T ⊆ E. The proof goes on by induction on T , considering any fixed S ⊆ E. Starting with
T = ∅, the strong map inequality f `(S∪T )−f `(S) ≥ f `−1(S∪T )−f `−1(S) is clearly verified. We show it is
still verified after substituting T ← T ∪ {e},∀e ∈ E − (S ∪ T ). Since e can belong to any of El ( El−1 ⊆ E,
there are three cases depending on its position: (i) if e ∈ E − E`−1, both sides increase by |f(e)|+ 1; (ii) if
e ∈ E`−1−E`, the left side increases by |f(e)|+1 and the right side by f ((E`−1 ∩ (S ∪ T )) ∪ {e})−f(El−1∩
(S ∪ T )), and (iii) if e ∈ El, the left side increases by f((E` ∩ (S ∪ T )) ∪ {e}) − f(El ∩ (S ∪ T )) and right
side by f((E`−1 ∩ (S ∪ T ))∪ {e})− f(El−1 ∩ (S ∪ T )). Both cases (ii) and (iii) produces left increases larger
than or equal to the right one, by virtue of (2.1).

The Push-Relabel Fleischer-Iwata framework [6] is tailored especially for strong map sequences of sub-
modular functions. In fact, we showed that the proposed problem can be solved by minimizing the strong
map sequence (3.4). The Fleischer-Iwata framework performs this task in O((n7 + kn2)γ + n8) asymptotic
running time. Since constructing all E` and f` requires less than O(n8) and k is asymptotically smaller than
O(n5), the total asymptotic running time is O(n7γ + n8).

3.2.1 Combinatorial Structure of Optimal z∗

A graphical representation of the inclusion sequences can further clarify the situation. Without restricting
generality, we consider that E = {1, 2, . . . n} is indexed such that wn ≥ wn−1 · · · ≥ w1. This series actually
contains k+1 distinct demand values wk > wk−1 · · · ≥ w0. The last element with demand w` is here denoted
el,∀` ∈ [0..k]. All elements from e` − 1 to e`−1 have demand w`−1 and they form set E`−1 − E`, see (3.5)
below.

S0

Sk−1

Sk

n, n− 1 . . . . . . ek,

Ek

ek − 1, . . . . . . ek−1,

Ek−1

ek−1 − 1, . . . . . . . . . e1 − 1, . . . . . . , e0

...

E1

E0=E

(3.5)

The value of optimal z∗ over the whole E can be constructed by a Greedy approach on a restricted set of
variables. The proof of Theorem 1 only shows that z∗e = 0,∀e ∈ E` − S`,∀` ∈ [0..k] and let us fix these
values. To determine z∗e on all other e ∈

⋃
l∈[1..k] S` − E`+1, we can apply a Greedy approach based on a

linear order e1 ≺ e2 ≺ e3 . . . en that is consistent with:

Sk ≺ Sk−1 − Ek ≺ · · · ≺ S1 − E2 ≺ S0 − E1

A solution z≺ generated by Pure Greedy can have strictly positive values z≺ei , as calculated by the Pure

Greedy formula z≺ei = f ({e1, e2, . . . , ei})−f ({e1, e2, . . . , ei−1}). To overcome this, we can simply change the
Greedy formula to z∗ei ← z−(z≺ei) = min(z≺ei , 0). However, this can only be used to determine one optimal
solution. All optimal solutions can be generated using the classical base polyhedron SFM approach: remove
negativity constraints in (3.1), impose

∑
e∈E ze = f(E) and replace the objective with

∑
e∈E wez

−(ze), so as
to construct an equivalent base polyhedron model.3 Any solution of (3.1) can be seen as a projection (via z−)
of a solution in the base polyhedron, using [12, Lemma 2.4]. As such, any optimal solution can be generated
by projecting a linear combination of solutions constructed by Pure Greedy on the base polyhedron.

A Flow Network enriched with Demand-Indexed Arcs can be associated to the base polyhedron formula-
tion, generalizing classical SFM approaches. For instance, push-relabel algorithms [15, 6] define arcs e→ e′

3The base polyhedron approach is a classical technique in SFM, see Section 4.2 for references and (4.1) for the exact
mathematical model.
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for any e, e′ ∈ E with ze < 0 and ze′ > 0 (we use the arc directions from [12], i.e., e→ e′ could stand for a
path from k1 to k4 in [12, Fig. 1]) and they are still valid. Indeed, the Greedy solution of an order ≺ such
that e′ ≺ e would not get worse by reversing e and e′: this amounts to a non-strict increase of ze < 0 and a
non-strict decrease of z′e > 0 (e.g., by a sufficiently small value), which can only increase z−(ze) + z−(ze′).
This way, one tries to find orders ≺∗ satisfying e ≺∗ e′ for e and e′ as above, so as to move strictly positive
components to the right. Our model generalizes this by introducing demand-indexed arcs e → e′ even for
ze, ze′ < 0: such an arc can be constructed when we > we′ , e.g., when e ∈ Sl+1−El+2 and e′ ∈ Sl−El+1 (in
this case, we ≥ wl+1 > w` ≥ we′). As above, a Greedy solution of an order ≺ such that e′ ≺ e would not get
worse by reversing e and e′: this can only increase ze and decrease ze′ at least by the same sufficiently small
value ε, yielding an increase of the objective by ε(we − we′), as in one argument in the proof of Theorem 1.

3.3 Fast Sensitivity Analysis using Optimal z∗ and the Push-Relabel Framework

Since the input parameters (e.g., demand we, penalty xe (∀e ∈ E), price function f , etc) might represent
managerial decisions, the choice of the best parameter values might be the main issue to be studied. For
such purposes, we propose two sensitivity analysis methods: (i) Section 3.3.1 below, in which we make use
of some primal-dual combinatorial properties studied in Section 3.2.1, and (ii) Section 3.3.2 that exploits the
Fleischer-Iwata Framework (FIF) [6, 15].

While the FIF is not necessarily the fastest solution method for our problem (applying Orlin Algo-
rithm [14] O(n) times requires less asymptotic running time), it is very fast and well-suited for sensitivity
analysis, because it can simultaneously minimize up to O(n5) functions in strong map relations. If some
parameter changes can be anticipated and formalized using strong map relations (Section 3.3.2), the FIF
can determine in advance updated optimal solutions for any of up to O(n5) possible parameter changes—in
some cases (Section 3.3.2.1), this comes at no extra computational complexity cost.

3.3.1 Sensitivity Analysis Using the π∗ − z∗ Duality

We here focus on the effects of demand changes (modifications of w). Some natural questions might be: how
can one rapidly update the optimal solution if product i is no longer needed by the customer (in Example
2.1.A) ? What happens if certain locations in Example 2.1.B are required to perform some extra work?
Instead of re-optimizing after any such demand change, the optimum value can be more rapidly updated by
exploiting the value of an optimum (CG dual) z∗.

In classical LP sensitivity analysis [7, Ch. 6], one interprets z∗e as a shadow price describing the instan-
taneous change, per unit of constraint

∑
S3e πS ≤ we, in the optimum objective value obtained by relaxing

this constraint in (2.5a). Given the high degeneracy of (2.5a), we will actually define and use z∗min(e) and
z∗max(e), the minimum and respectively maximum value of z∗e over all optimal z∗, that can be found using
the method from Section 3.2.1. If e ∈ E` − S` for some l ∈ [1..k], then z∗max(e) = z∗min(e) = 0. Otherwise,
e ∈ S` − E`+1 for some ` ∈ [0..k] (using Ek+1 = ∅). Using (2.1) on (3.5), the minimum (respectively max-
imum) z∗e is realized if order ≺ puts e last (respectively, first) in S` − E`+1. One can check in (3.5) that:
(i) the first case puts e at the last position of S` and, (ii) the second case puts e right after all elements of
E`+1. Case (i) leads to z∗min(e) = f(S`)− f(S` − {e}) and case (ii) to z∗max(e) = f(E`+1 ∪ {e})− f(E`+1).

The demand changes do not modify the feasibility of an optimal z∗ in (3.1) or (2.5b). If one performs
substitution we ← we + α (with α > 0), the reference penalty w>x is increased by αxe (α penalties
more) and w>z∗ is increased by αz∗e . As such, substitution we ← we + α leads to an objective increase
of at least α(xe + z∗max(e)). This simply results from calculating the objective function change induced
on a solution z∗ such that z∗e = z∗max(e). Conversely, a demand decrease we ← we − α leads to a total
objective increase of α(−xe− z∗min(e)) or even more according to the structural changes triggered on the sets
E1, E2, . . . Ek. However, if any of the above minimum objectives increases is greater than 0, the demand
changes surely increases the total objective value. Perhaps rather surprisingly at a first glance, by increasing
the demand, the total price can sometimes decrease: if f(|S|) = 0,∀S ( E and f(E) = −M , the substitution
we → maxe′∈E we′ , ∀e ∈ E reduces the cost to very small values—considering M very large.
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3.3.2 Sensitivity Analysis using the Fleischer-Iwata Framework

If certain parameter changes could be formulated by extending the strong map sequence (3.4), it is possible
to anticipate them at very limited complexity costs. The Fleischer-Iwata Framework can determine in
advance certain updated optimal solutions. The total complexity is either multiplied by one n factor (i.e.,
O(n8γ + n9)) or even unchanged in some cases (§ 3.3.2.1), and this, even for extended sequences of length
up to O(n5).

3.3.2.1 Solving the problem simultaneously for several demand vectors Take linear order n ≺
n − 1 ≺ n − 2 ≺ · · · ≺ 1 that is consistent with the inclusion sequence Ek ( Ek−1 . . . E0 = E. Consider
now that demand vector w is changed to w′; the new vector generates its own inclusion sequence E′k′ (
E′k−1 . . . E

′
0 = E that satisfies the following property: ∀` ∈ [0..k], `′ ∈ [0..k′], either E` ⊆ E′`′ or E` ⊇ E′`′ .

This ensures the existence of a mixed inclusion sequence, for instance:

E′k′ ( E′k′−1 · · · ( E′k′−j1+1 ⊆ Ek ⊆
E′k′−j1 · · · ( E′k′−j2+1 ⊆ Ek−1 ⊆

. . .

E′k′−jk · · · ( E′0 ⊆ E0 =

E

One can easily generalize the strong map sequence fk → fk−1 → . . . f0 from (3.4): use (3.3) to define
new E′`′ -kernel functions for all new E′`′ subsets above. These new kernel functions form a strong map
sequence that include (3.4). As such, the Fleischer-Iwata framework requires the same asymptotic running
time O(n7γ+n8) to provide the minimizer of f over all subsets of E′`′ and E` (with l′ ∈ [0..k′] and ` ∈ [0..k]),
and so, solve the problem simultaneously for both w and w′.

Let us finish with a simple example. An increment-only demand change w → w′ (i.e., w′e − we ∈
{0, 1}, ∀e ∈ E) does generate a valid mixed inclusion sequence. For a fixed ` ∈ [1..k], one needs to use
a linear order ≺ that places all e ∈ E` with w′e = we + 1 before all other e ∈ E`. The incremented
elements lead to new subsets E′`′ embedded between E`+1 and E` (E`+1 ⊆ E′`′ ⊆ E`). This idea can be
generalized: instead of simple increments, consider any larger variations only within [0, wl+1 − w`], or only
within [−(w` − wl−1), 0].

3.3.2.2 Pricing functions in strong map relations Possible changes in the pricing function can be
anticipated and formulated as strong map sequences of the form fm → fm−1 → . . . f0 = f = f−1 →
f−2 → . . . f−p. A E`-kernel function f `i can be directly defined by applying (3.3) from Section 3.1 on fi,
∀i ∈ {m,m− 1, . . . ,−p+ 1,−p}. These E`-kernel functions also form a strong map sequence f `m → f `m−1 →
. . . f `0 = f ` = f `−1 → f `−2 → . . . f `−p. For each ` ∈ [0..k] , this sequence can be optimized by the parametric
Fleischer-Iwata framework of complexity O(n7γ+n8). This complexity bound holds as long p+m ∈ O(n5),
because each of the m+p+1 functions f `i induces an additional computational overhead of O((m+p)n2γ) [6,
§ 3]. By considering all k + 1 possible values of `, the total complexity is O(k(n7γ + n9)) = O(n8γ + n9).

In fact, the complexity at each value of ` can be refined to O(|E`|7γ + |E`|8), because only |E`| elements

matter at level `. This way, the total complexity is
∑k
`=0O(|E`|7γ+ |E`|8): if |E`| ≤ n

(l+1)1/6
, this complexity

sum is dominated by O(n7γ)
∑∞
`=0

1
(l+1)7/6

+O(n8)
∑∞
`=0

1
(l+1)8/6

= O(n7γ+n8). We used the fact that the

hyperharmonic series
∑∞
`=1

1
ns converges to the Riemann zeta function ζ(s) if s > 1.

The example below shows that the proposed O(n8γ+n9) solution method is not only useful for sensitivity
analyses, but also for parametric optimization associated to a strong map sequence of functions.

Example 3.3.2.B Continuing with Examples 2.1.B and 2.2.B, we consider a family of subsets B =
{B1, B2, . . . Bn′} ⊆ 2E; we note bi the benefit resulting from simultaneous work in Bi. A submodular pricing
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function can be defined with a similar formula as in Example 2.1.B: fB(S) =
∑
e∈S ce −

∑
Bi∈B
Bi⊆S

bi .

We now consider a scenario in which the benefit sets B cannot be easily identified (due to absence of
information, or, why not, poor understanding). However, suppose one can indicate (anticipate) a linear
order B1 ≺ B2 ≺ . . . Bn′ : if i ≺ j, then it is easier to obtain benefits from simultaneous work in Bi than in
Bj . Denoting ≺ (Bi) = {B1, B2, . . . Bi}, ∀i ∈ [1..n′], the following functions form a strong map sequence:

f≺(B1) → f≺(B2) → f≺(B3) → f≺(Bn′ )
.

As long as n′ ∈ O(n5), the Fleischer-Iwata framework can simultaneously find the optimal solution for
all above functions within O(k(n7γ + n8)) = O(n8γ + n9) asymptotic running time. To the best of our
knowledge, this is not possible with other FSM algorithms. A more naive approach would require applying
the fastest available SFM optimizer up to nn′ times.

3.3.2.3 Changing the Non-Covering Penalties x First, recall that xe can be interpreted as a thresh-
old pricepoint for e, e.g., in Example 2.2.A, the customer is not willing to pay more than xe to add article e
to an existing bundle. Reasonable questions might be: what happens if the threshold pricepoint xe increases
or decreases for some e ∈ E? Can one anticipate such variations and construct in advance alternatives
solutions with no computational overhead? What is the return on the investment necessary for buying an
asset that could generate any e ∈ E at some price x1e ≤ xe?

A substitution xe ← x1e, ∀e ∈ E would first modify the reference penalty w>x. The submodular pricing
function f(S) = f(S)−

∑
e∈S xe (see (2.4)) is replaced with f1(S) = f(S) +

∑
e∈S xe−x1e. Function f1 only

differs from f by some unimodular increases xe − x1e ≥ 0 on e ∈ S; this can be used to prove the strong
map relation f1 → f . One can further consider more penalty reductions by formulating a gradual sequence
x > x1 > x2 > . . .xm. For instance, the first elements from this series might represent penalty reductions
on a few e ∈ E, followed by reductions on increasingly larger subsets of E towards the end of the series.

Such sequences of price reductions generate strong map relations fm → fm−1 → . . . f1 → f , generalizing
f1 → f . Using the approach described just above (§ 3.3.2.2), the minimizers of all such functions can be
generated in O(n8γ + n9) time, as long as m ∈ O(n5).

4 Related Problems and Ideas

4.1 Submodular Cost Set Covering

Given ground set (universe) E and a family N ⊆ 2E of subsets of E, Submodular Cost Set Cover [9] is
a problem defined using a function fN : 2N → R that is submodular over the power set of N ; the goal is
to find SN ⊆ N such that fN (SN ) is minimized and

⋃
S∈SN

S = E. We obtain Submodular Edge Cover

by simply considering (E,N) as a graph: N contains only subsets of E with two elements. It is useful to
interpret Submodular Cost Set Cover on a bipartite graph: consider vertices N ∪E and add arcs from N
to E such that S → e is an arc ⇔ S 3 e (with S ∈ N and e ∈ E). The objective is to select some SN ⊆ N
that is incident to all e ∈ E and that minimizes fN (SN ). Certain papers also introduce a polymatroid rank
function fcover : 2N → Z+ such that fcover(SN ) is the number of vertices e ∈ E incident to SN , see [11,
Ex. 1.4]; the covering condition can be expressed fcover(SN ) = fcover(N).

The submodularity of fN : 2N → R does not imply submodularity over the power set of E. Let us prove
this with a simple example: E = {1, 2, 3} and N = {A,B,C,D}, where A = {1}, B = {2}, C = {2, 3}, D =
{3}; define fN (SN ) =

∑
S∈SN

gS ,∀SN ⊆ N , where gA = gB = gD = 1 and gC = 3. If one would try to
extend this definition to a CG setting with submodular pricing over the power set of E, the four columns
below could be obtained.

fN ({A})=1 fN ({A,B})=2 fN ({A,D}) = 2 fN ({A,C}) = 4
1 1 1 1

2 2
3 3
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The above column pricing is not submodular over the power set of {1, 2, 3}: there is no diminishing
marginal pricing as in (2.1). The marginal value of {2} is increasing from 1 = fN ({A,B})− fN ({A}) (i.e.,
add {2} to {1}, see second column compared to the first) to 2 = fN ({A,C}) − fN ({A,D}) (add {2} to
{1, 3}, see last column compared to the third).

Submodular Cost Set Cover is also more complex in the sense that the number of variables of the
associated LP can be much larger. If |N | ∈ O(2n), the (natural) use of one variable per subset of N leads
to a doubly-exponential number of variables O(22

n

)—consider, for instance [9, § 4.4] with a large N . This
phenomenon is also discussed in the first paragraph of [17, § 6]; their starting program (called (PCF-IP),

p. 2, § 1) is similar to (2.3a), but their submodular function π has domain 22
V

, where V is a ground set.
However, Set-Covering with Submodular Pricing can be seen as a particular case of Submodular

Cost Set Cover as follows: (i) set N = {{e1}, {e2}, . . . {en}} and (ii) choose an appropriate definition for
fN , i.e., fN (SN ) = f(

⋃
S∈SN

S),∀SN ⊆ N . Due to these particularizations, our primal CG LPs (e.g., (2.2a)
or (2.5a)) have SFM polytopes as dual LPs (e.g., (2.2b) or (2.5b)); this allowed us to use Greedy to show
that these LPs have integer primal optimal solutions (when the demands w are integer). On the other hand,
“Submodular Cost” covering problems have similar LPs with fractional optimal solutions; they are often
tackled by rounding methods, leading to approximation results [9].

4.2 Convex Minimization on the Base Polyhedron

A classical approach in SFM consists of restating (3.1) as an optimization problem over the base polyhedron.
Using the arguments from [12, § 2.4], one can propose the following equivalent formulation:

max
∑
e∈E wez

−(ze)∑
e∈S ze ≤ f(S) ∀S ( E∑
e∈E ze = f(E) ,

(4.1)

where z−(ze) = min(ze, 0). The linear constraints define the base polyhedron, i.e., it is the submodular
polyhedron facet that verifies with equality the constraint associated to E.

We can say that the objective is to minimize
∑
e∈E −ge(ze) over the base polyhedron, where ge(ze) = weze

if ze ≤ 0 and ge(ze) = 0 if ze > 0 (for all e ∈ E). Since −ge is convex, this is a convex minimization problem
over a base polyhedron. Such problems have been already studied in the literature [13]. However, to the
best of our knowledge, the convex optimization approaches do not yet solve programs like (4.1) for the
following reasons: (i) differentiable functions are usually used (above −ge is not differentiable in 0) and (ii)
strict convexity is usually required [13]. Regarding (ii), −ge is not strictly convex because it does not verify
−g(z′ + z′′) > −g(z′) +−g(z′′), ∀z′, z′′ ∈ R (linear functions do not satisfy strict convexity).

4.3 Applications Well-Suited for the Proposed Approach

4.3.1 Combinatorial Auctions and Supermodular Function Maximization

Column Generation (CG) is a common technique for solving Combinatorial Auction Problem (CAP) models
with prohibitively many columns [4, § 3.5]. In this context, program (2.5a) is interpreted as in Example 2.2.A,
but with an objective representing the seller (auctioneer): E is a set of articles offered in an auction, a subset
S ⊆ E is a bundle that can be sold to bidders. The auctioneer has we copies of each article e ∈ E; e can
either be sold in a bundle S 3 e or be kept to be sold later at a threshold price xe. The optimum of (2.5a)
is actually the minimum profit that the auctioneer can obtain by selling all articles.

The relevant goal of an auctioneer is profit maximization. For this purpose, we transform the model:
negate the objective function coefficients and the minimization objective becomes a maximization one,
but bundle prices become −f(S) (∀S ⊆ E); the threshold prices become −xe,∀e ∈ E. If −f is super-
modular, f is submodular; by minimizing w>x + min

∑
S⊆E f(S)πS in (2.5a), one actually maximizes

−w>x + min
∑
S⊆E −f(S)πS . As such, one actually solves the Combinatorial Auction Problem (CAP)

with supermodular bundle pricing : given supermodular bid function −f : 2E → R, select the bids that
maximize the total sales profit.
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While submodularity is a more popular pricing method in well-known package deals (with diminishing
marginal prices), supermodular bundle pricing is also commonly used in game theory or economics to model
bundle synergy [19]. For instance, in finance, a diversified portfolio (bundle) is more valuable (less risky)
than the total value of its constituent assets. In art, a large (complete) collection is worth more than the
sum of its constituent articles. Generally speaking, bundle synergy captures the idea that the whole is worth
more than the sum of its parts, see interesting examples in [19]. As such, CAP bid functions are often
super-additive [4]: a bid on S ∪ S′ needs to be more profitable for the auctioneer than the sum of the bids
on S and S′—otherwise, the auctioneer ignores bid on S ∪S′, considering it less profitable than the separate
bids on S and S′. Supermodularity is a stronger condition that super-additivity, but still reasonable in
auctions: given article e ∈ E, it is natural for a collector to bid more on some new article e to extend a rich
collection S than to extend a incomplete collection S′ ( S. This translates into increasing marginal prices:
the bid function −f satisfies −f(S ∪ {e})− (−f(S)) ≥ −f(S′ ∪ {e})− (−f(S′)),∀S′ ⊆ S ( S ∪ {e} ⊆ E, a
sufficient supermodularity condition, using (2.1).

Let us investigate a classical formulation (CAP1 in [4, § 3.1]) in which there is a set N of bidders with
bid functions −fj (∀j ∈ N). After notational translations and some simplifications, this CAP1 model can

be written as a generalization of (2.5a), using variable πjS to indicate that bundle S is sold to bidder j ∈ N .

min
∑
j∈N

∑
S⊆E fj(S)πjS = max

∑
j∈N

∑
S⊆E −fj(S)πjS∑

j∈N
∑
S3e π

j
S ≤ we ∀e ∈ E

πjS ∈ Z+ ∀S ⊆ E, j ∈ N
(4.2)

For such models, CG is even more well-suited to iterative auctions [4, § 4.3]. In iterative auctions, the
dual values ze are used by the bidders to update their functions and propose better columns. However, the
above LP is already more complicated than (2.5a), because its dual LP (generalizing (2.5b)) actually requires
optimizing over the intersection of |N | sub-modular polytopes. The dual of CAP1 leads in [4, § 3.4.5], under
super-additivity and non-decreasing conditions, to an instance of the polymatroid intersection problem,
which is polynomially solvable. In light of these observations it would be interesting to find whether our
approach could be modified to optimize models like (4.2), but this is a subject for later research.

4.3.2 From SFM to Set-Covering Models: A Multi-Level Location-Supply Example

In general, most submodular function f : 2E → R can generate a Prize Collecting Multi-Covering with

Submodular Pricing application. For this, we can usually apply a multi-level extension that constructs
program (2.3a) by assigning to each e ∈ E a number of levels (separate covering requests) we: each selection
of S 3 e covers a separate level of e. In fact, it is this technique that generated Examples 2.1.A and 2.1.B: the
levels we represent copies of products in the former case and working days in the latter; in this section, we will
represent a number of available quality levels. We will also exemplify a minimization reformulation technique
to ensure that f is an appropriate function for minimization, i.e., even if function f below does not initially
have a coherent cost minimization interpretation, a bi-level modelling can make it well-suited to the objective
of (2.3a). These two techniques are presented on a generalization of a Simple Plant Location Problem [10,
eq. (6)]; in fact, we present it using an equivalent warehouse terminology, inspired by the submodular function
(noted f) from [12, ex. 1.4]. CG models with more complex submodular pricing functions already exist in
the location-inventory literature [18, Appendix B].

We consider a community composed of a set of retail stores R and a set E of potential locations for
warehouses. An external warehouse operator is hired to distribute supplies from warehouses to retails stores.
We propose a bi-level modelling, with two types of decisions:

– open a warehouse at e ∈ E: this yields a benefit φe for the community (more economic activity in e,
less unemployment) and a cost of αφe for the external operator. This level of decisions are taken by
the community;

– serve retail store r from e: this represents a price bre to be payed by the community and a benefit βbre
to be realized by the operator (β > 0), i.e., a part of this benefit βbre is realized by making retail store
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r pay a proportional price bre. We consider that the decision of serving retail store r from e rests only
with the external operator. As such, the operator naturally maximizes its benefit for serving r ∈ R,
i.e., the benefit for serving r is βmax

e∈S
bre, where S ⊆ E is the set of open warehouses (decision take

above).

If the community decides to open warehouses S ⊆ E, the operator has a benefit of fα,β(S) = −α
∑
e∈S φe +

β
∑
r∈R maxe∈S bre and the community has to pay a total price of f(S) = −

∑
e∈S φe+

∑
r∈R maxe∈S bre. It

is possible to have a benefit both for the community (f(S) < 0) and for the operator (fα,β(S) > 0). However,

a natural objective for the community is to chose to open warehouses S for which f(S) is minimized; f is
actually the submodular function [12, Ex. 4], but the objective is now cost minimization instead of benefit
maximization. Without a bi-level modelling, it is not coherent to minimize f while using cost terms like
maxe∈S bre.

To get closer to program (2.3a), the multi-level extension associates to each e ∈ E a maximum level we.
This could be seen as a maximum quality level of the produced articles (e.g., in equivalent Plant Location

Interpretation) or of the available storage capacities: we = 1 when only storage of non-perishable items
is available in e, we = 2 for storage of (long-lasting) food, we = 3 for refrigerated storage, we = 4 for frozen
storage, etc. We consider that if e ∈ E is able to work at level we, e can also work at lower levels, e.g., a
frozen warehouse can also be used as a refrigerated warehouse. For any e ∈ E with we available levels, a
solution that only uses only wi − σe levels is penalized by xeσe, i.e., unused capacities or levels. For the
community, the objective is to minimize the cost; the full program can be written exactly as (2.3a).

5 Conclusions

We presented a solution method based on SFM for Prize-Collecting Multi-Covering with Submodular

Pricing. The practical relevance of this class of problems is underlined by revealing applications in rather
unexpected domains, ranging from production planning and warehouse location to combinatorial auctions
(see Examples 2.2.A-2.2.B or Section 4.3). The problem can be formulated using an LP with 2n variables
(columns); this LP can be optimized using a Column Generation (CG) model with a submodular pricing
sub-problem. This type of CG algorithms was already applied for a location-inventory problem [18] and we
hope that our alternative algorithm sheds useful light into the topic.

Our solution method resides in the fact that, after an appropriate reformulation (Section 2.2), the above
CG LP has a dual LP that is thoroughly studied as a primal program in SFM [12, § 2.4]. This, in turn,
shows that the optimal solution of the CG (fractional) LP is always integer; it can be constructed within
O(n7γ + n8) asymptotic running time, using the Fleischer-Iwata push-relabel algorithm for strong map
sequences of submodular functions (Section 3). A more naive approach would be applying O(n) times the
fastest-available SFM optimizer as a black-box tool. However, by getting more combinatorial insight into
push-relabel models (e.g., see Section 3.2.1), the proposed approach provides other advantages. For instance,
it reveals two faster sensitivity analysis techniques: (i) exploit the combinatorial structure of the optimal
primal-dual solutions in submodular polytopes (Section 3.3.1) or (ii) formulate input parameter changes as
strong map sequences of functions (Section 3.3.2). Furthermore, we showed that our solution method can
actually determine the optimal solution for any of the O(n5) possible pricing scenarios discussed in Section
3.3.2.2 using O(n8γ + n9) time, (significantly) more rapidly than naively calling O(n6) times a faster SFM
black-box optimizer.
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