
HAL Id: hal-02542667
https://hal.science/hal-02542667v1

Submitted on 2 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Projective Cutting-Planes
Daniel Cosmin Porumbel

To cite this version:
Daniel Cosmin Porumbel. Projective Cutting-Planes. SIAM Journal on Optimization, 2020, 30 (1),
pp.1007-1032. �10.1137/19M1272652�. �hal-02542667�

https://hal.science/hal-02542667v1
https://hal.archives-ouvertes.fr

PROJECTIVE CUTTING–PLANES

DANIEL PORUMBEL (CEDRIC CS LAB, CNAM, PARIS, FRANCE)

Abstract. Given a polytope P, an interior point x ∈P and a direction d ∈ Rn, the projection
of x along d asks to find the maximum step-length t∗ such that x + t∗d ∈ P; we say x + t∗d is
the pierce point obtained by projection. In [13], we solely explored the idea of projecting the origin
0n along integer directions only, focusing on dual polytopes P in Column Generation models. This
work addresses a more general projection sub-problem, considering arbitrary interior points x ∈ P
and arbitrary non-integer directions d ∈ Rn, in areas beyond Column Generation. The projection
sub-problem generalizes the separation sub-problem of the well-known Cutting-Planes. We propose
a new algorithm Projective Cutting-Planes that relies on this projection sub-problem to optimize
over polytopes P with prohibitively-many constraints. At each iteration, this new algorithm selects
a point xnew on the segment joining the points x and x + t∗d determined at the previous iteration.
Then, it projects xnew along the direction dnew pointing towards the current optimal (outer) solution
(of the current outer approximation of P), so as to generate a new pierce point xnew + t∗newdnew

and a new constraint of P. By re-optimizing the linear program enriched with this new constraint,
the algorithm finds a new current optimal (outer) solution and moves to the next iteration by
updating x = xnew and d = dnew. Compared to Cutting-Planes, the main advantage of Projective
Cutting-Planes is that it has a built-in functionality to generate a feasible inner solution x + t∗d
at each iteration. These inner solutions converge iteratively to an optimal solution opt(P), and so,
Projective Cutting-Planes is more similar to an interior point method than to the Simplex method.
Numerical experiments in different optimization settings confirm the potential of the proposed ideas.

1. Introduction . Optimizing Linear Programs (LPs) with prohibitively many
constraints has a long history in mathematical optimization. The Cutting-Planes

algorithm maintains at each iteration it an outer approximation Pit of P, i.e., a
polytope Pit defined only by a subset of the constraints of P, so that Pit ⊇ P.
The most canonical Cutting-Planes can be seen as an outer method in the sense that
it converges towards an optimal solution opt(P) through a sequence of outer (infea-
sible) solutions, with no built-in functionality to generate inner solutions. In contrast,
an inner method constructs a sequence of inner feasible solutions xit that converge
towards opt(P) along the iterations it. The proposed Projective Cutting-Planes

is both an inner and an outer method, in the sense that it generates a convergent se-
quence of both inner and outer solutions. We refer the reader to (Section 1.1 of) [13]
for more information and comparisons of inner methods and outer methods.

The proposed algorithm relies on an iterative operation of projecting an interior
point onto facets of P, as illustrated in Figure 1. At each iteration it, an inner
solution xit ∈P is projected towards the direction dit of the current optimal outer
solution opt(Pit−1), i.e., we take dit = opt(Pit−1) − xit. The projection sub-
problem asks to determine t∗it = max {t : xit + tdit ∈P}. For this, one has to find
the pierce (hit) point xit + t∗itdit and a (first-hit) constraint of P, which is added
to the constraints of Pit−1 to construct Pit. At next iteration it+ 1, the proposed
Projective Cutting-Planes takes a new interior point xit+1 on the segment joining
xit and xit + t∗itdit and it projects xit+1 along dit+1 = opt(Pit)− xit+1.

To determine t∗ = max {t : x + td ∈P}, one has to find a (first-hit) constraint
satisfied with equality by x + t∗d. This projection sub-problem implicitly solves
the separation sub-problem for all points x + td with t ∈ R+, because the above
first-hit constraint separates all solutions x + td with t > t∗ and proves x + td ∈
P ∀t ∈ [0, t∗]. A simplified version of the projection sub-problem limited to x = 0n
was already studied in our previous papers on Column Generation [13] and Benders
decomposition models [14]. The current work seeks maximum generality in terms of
projections: we will project arbitrary interior points x ∈P along arbitrary directions
d ∈ Rn, addressing more diverse problems than [13] and [14] together.

1

x1 = [0 0]>

ob
je
ct

iv
e
fu

nc
tio

n

ite
ra

tio
n

1
iteration 2 iteration 3

P

opt(P1)

x2

x3

x1 + t∗1d1

x2 + t∗2d2

x3 + t∗3d3

opt(P2)

Figure 1: The first 3 iterations of the Projective Cutting-Planes on an LP with 2 vari-
ables. At the first iteration, the projection sub-problem projects x1 = 0 = [0 0]> along the
objective function, as depicted by the black dashed arrow. At iteration it = 2, the midpoint
x2 of this black arrow is projected towards the optimal outer solution opt(P1) — at iteration
1, the outer approximation P1 ⊃ P only contains the largest triangle. This generates a
second facet (blue solid line) that is added to the facets of P1 to construct P2. The third
projection is represented by the short arrow in red.

The proposed algorithm is reminiscent of an Interior Point Method (IPM) in the
sense that it generates a sequence of interior points that converge to the optimal
solution. An IPM moves from solution to solution by advancing along a Newton di-
rection at each iteration, in an attempt to solve first order optimality conditions [7].
Advancing along a Newton direction is not really equivalent to performing a pro-
jection, because a projection executes a full step-length (advancing up to the pierce
point) while a Newton step in an IPM does not even advance to fully solve the first
order conditions – since these conditions correspond to a primal objective function
penalized by a barrier term that only vanishes at the last iteration. Certain IPMs
for (dual) LPs with prohibitively-many constraints (in Column Generation) generate
well-centered dual solutions along the iterations by keeping them in the proximity of
a central path [8, § 3.3]. This shares certain goals with the construction of the feasible
solutions x1, x2, x3, . . . in Projective Cutting-Planes. However, each solution of
the above central path belongs to some Pit ⊃P, but not necessarily to P.

Since it generalizes the separation sub-problem, the projection sub-problem may
seem computationally (far) more expensive, but we will see this is not always the
case. We will present in Section 2.2 an overview of several techniques that can bring
us very close to designing a projection algorithm as fast as the separation one. A first
technique simply consists of generalizing the separation algorithm when this does
not induce a significant loss in complexity. We will exemplify this idea on a robust
optimization problem where both sub-problems have the same computational bottle-
neck (scanning all nominal constraints). Another technique applies to the numerous
problems in which the constraints of P are associated to the feasible solutions of an
auxiliary LP or of an Integer LP (ILP), as often happens in Benders reformulation
models or resp. in Column Generation. In this case, the projection sub-problem can
be written as a linear-fractional program: minimize a ratio of two linear functions sub-
ject to linear constraints. Such (continuous resp. discrete) programs can be cast into
classical (continuous resp. discrete) LPs using the Charnes–Cooper transformation [3],

2

and so, they become as difficult as the separation sub-problem.
We will show that a standard Projective Cutting-Planes implementation can

quite easily outperform a standard Cutting-Planes and even certain state-of-the-
art enhanced Cutting-Planes. For instance, for the (well–studied) graph coloring
problem, Projective Cutting-Planes is able to reach lower bounds that have never
been reported before (Remark 6, p. 23). For the Benders decomposition, we will also
compare to the performances of an enhanced Cutting-Planes which seem dominated
by Projective Cutting-Planes. Further experiments on (Multiple-Length) Cutting-
Stock from the follow–up paper [15, § 3.2] confirm that Projective Cutting-Planes

can yield an acceleration factor significantly greater than the one that can be obtained
by traditional stabilization techniques (which is generally below 20%).

However, the (only) goal of the Projective Cutting-Planes is not to compete
with Cutting-Planes and this work was not meant to be a competition paper. It
is more important that the new algorithm has certain features that do not exist
in Cutting-Planes, e.g., it generates feasible solutions along the iterations, it can
eliminate the “yo-yo” effects arising very often (if not always) in Column Generation

(see Figure 3), degeneracy risks are drastically reduced ([15, Remark 9]).
The remainder is organized as follows. Section 2 provides a detailed description of

the generic Projective Cutting-Planes. Section 3 illustrates the application of this
algorithm on different problems in which P is either a primal (master) polytope or
a dual polytope (in Column Generation). Section 4 is devoted to numerical results,
followed by conclusions in Section 5.

2. Algorithmic Description of the Projective Cutting-Planes. Given a
set of (unmanageably-many) constraints A, this paper is focused on solving:1

(2.1) max
{
b>x : a>x ≤ ca, ∀(a, ca) ∈ A

}
= max

{
b>x : x ∈P

}
The standard Cutting-Planes for solving this LP maintains at each iteration it

an outer approximation Pit ⊃P of P obtained by restricting the constraint set A
to a subset Ait. To (try to) separate the current optimal solution xout = opt(Pit) of
Pit, the most standard Cutting-Planes usually solves the separation sub-problem

min
(a,ca)∈A

ca− a>xout. If the optimum value of this sub-problem is less than 0 for some

(a, ca) ∈ A, then xout is infeasible. In this case, the Cutting-Planes method inserts
a>x ≤ ca into the current constraint set (i.e., it performs Ait+1 = Ait∪{(a, ca)}), so
as to construct a new more refined outer approximation Pit+1 and to separate xout /∈
Pit+1. The process is repeated by (re-)optimizing over Pit+1 at the next iteration,
until the current optimal outer solution xout becomes optimal (non-separable).

We propose to replace the above separation sub-problem with the following one.

Definition 2.1. (Projection sub-problem) Given an interior point x ∈P and a
direction d ∈ Rn, the projection sub-problem project(x→ d) asks to find:
1) the maximum step-length t∗ such that x + t∗d is feasible inside P, i.e., t∗ =

max {t ≥ 0 : x + td ∈P}. The solution x + t∗d is referred to as the pierce point.
If x + td is a ray of P, the sub-problem returns t∗ =∞.

2) a first-hit constraint (a, ca) ∈ A satisfied with equality by the pierce point, i.e., such
that a> (x + t∗d) = ca; such a constraint certainly exists if t∗ 6=∞.

1In fact, we will also address a few variations of (2.1). As such, the Benders reformulation model
(3.1.2a)–(3.1.2c) uses integer variables x ∈ Zn

+. When (2.1) is a dual LP obtained after relaxing an
integer Column Generation LP, the goal is actually to find the best rounded-up objective value, i.e.,
“maxb>x” can be replaced by “max

⌈
b>x

⌉
”. One can also use “minb>x” instead “maxb>x” with

no impact on the algorithm design. One can also envisage addressing the case of infinite sets A.

3

At the very first iteration, the Projective Cutting-Planes can start by per-
forming a projection along d1 = b so as to directly advance along the direction with
the fastest rate of objective function improvement, or use any problem-specific direc-
tion d1. An initial feasible (inner) solution x1 is always needed because we do not
focus on problems for which it is difficult to decide whether (2.1) is feasible or not.2

By solving project(x1 → d1) at iteration it = 1, Projective Cutting-Planes

determines the first pierce point x1+t∗1d1 and generates a first-hit constraint (a, ca) ∈
A. After updating A1 = A0∪{(a, ca)}, the first outer approximation P1 is construc-
ted. Notice A0 may contain some simple initial constraints like x ≥ 0n. The proposed
method then executes the following steps at each iteration it ≥ 2:
1. Select an inner solution xit on the segment joining xit−1 and xit−1 + t∗it−1dit−1,

i.e., on the segment between the previous inner solution and the last pierce point.
2. Take the direction dit = opt(Pit−1) − xit pointing towards the current optimal

(outer) solution opt(Pit−1).3 Given that Pit−1 ⊇P 3 xit, we obtain that if xit

is strictly interior, then the objective value can only strictly improve by advancing
along xit → dit; under these conditions, it is impossible to execute degenerate
iterations that keep the objective value constant as in standard Cutting-Planes.

3. Solve the projection sub-problem project(xit → dit) to determine the maximum
step-length t∗it, the pierce point xit + t∗itdit, and a first-hit constraint (a, ca) ∈ A.

4. If t∗it ≥ 1, return opt(Pit−1) as an optimal solution of (2.1) over P.
If t∗it < 1, then current optimal solution opt(Pit−1) can be separated, and so, the
Projective Cutting-Planes performs the following:
– setAit = Ait−1∪{(a, ca)} to obtain a new enlarged constraint set, corresponding

to a more refined outer approximation Pit that excludes opt(Pit−1).
– calculate a new current optimal outer solution opt(Pit) by (re-)optimizing over Pit.
– if xit + t∗itdit and opt(Pit) are close enough (in terms of objective value), stop

and return opt(Pit). For instance, if (2.1) is a relaxation of an integer program
(as in Column Generation), the stopping condition is to reach the same rounded-
up value of the lower and the upper bounds.

– repeat from Step 1 after updating it← it + 1.
The above algorithm is finitely convergent because it implicitly solves a sepa-

ration sub-problem on opt(Pit−1) at each iteration it, generalizing the standard
Cutting-Planes. As hinted at Step 4, if the projection sub-problem returns t∗it < 1,
the solution opt(Pit−1) is certainly separated by the first-hit constraint (a, ca). In
pure theory, in the worst case, the proposed method ends up enumerating all con-
straints of P and it then eventually returns opt(P). The fact that this convergence
proof is very short is not completely fortuitous. Building on previous work [13, 14]
with longer (convergence) theorems, the new Projective Cutting-Planes has been
deliberately designed to simplify all proofs as much as possible.

2.1. Choosing the interior point xit at each iteration it. Just like the
standard Cutting-Planes, the Projective Cutting-Planes is a rather generic al-
gorithm that allows a number of problem–specific adaptations.

A key question is the choice of the interior point xit at (Step 1 of) each iteration

2 For instance, in most Column Generation models, x1 = 0n is feasible. If 0n is infeasible, one
may determine the initial x1 using any problem-specific heuristic. If it is particularly difficult to find
a feasible solution, then the underlying problem is really outside the scope of this work.

3 As for the standard Cutting-Planes, opt(Pit−1) could be an extreme ray r of Pit−1 such
that {x + λr : λ ≥ 0} ⊂ Pit−1 ∀x ∈ Pit; considering opt(Pit−1) = {xit + λr : λ ≥ 0} ⊂ Pit−1,
we obtain dit = r. If project(xit → r) returns ∞, the algorithm returns that (2.1) is unbounded.

4

P

opt(P1)

level set of last

pierce point

0

It
er

at
io
n

1:
m

ax
b
> x

x2 = x1 + 0.9 · t∗1d1x1 + t∗1d1
x2 = x1 + 0.1 · t∗1d1

opt(P)

Figure 2: Intuitive illustration of two different choices of the interior point x2 at iteration
2. The red choice is more aggressive while the blue one is more cautious.

it. One might attempt to choose the best feasible solution found up to iteration
it (the last pierce point) using the formula xit = xit−1 + t∗it−1dit−1. While this
aggressive strategy may perform well in certain settings, it may also lead to poor
results in the long run for many problems – partly because xit can fluctuate too
much from iteration to iteration (this is referred to as the bang–bang effect to be
further studied in [15, § 3.3]). In practice, the best results have often been obtained
by choosing xit = xit−1 + αt∗it−1dit−1 with α < 1; a value of α = 1 does not seem
very effective for any problem studied in this work (or in [15]) except graph coloring.
This is reminiscent of interior point methods for linear programming that usually
avoid touching the boundary of the polytope before fully converging [7].

However, choosing xit = xit−1 + t∗it−1dit−1 when possible (e.g., for graph color-
ing) has the advantage that it enables the resulting Projective Cutting-Planes to
improve the objective value b>xit at each new iteration it – because in such cases
each projection xit → dit can only increase the objective value, as indicated at Step
2 above. As such, the lower bounds of this aggressive Projective Cutting-Planes

variant are monotonically increasing (Figure 3), i.e., they do not exhibit any “yo-yo”
effect with ups and downs like in most (if not all) Column Generation algorithms.

Figure 2. illustrates the difference between an aggressive choice (large α) and a
“cautious” or well-centered choice (small α). The red circle represents an aggressive
definition of x2 associated to a large α, so that x2 is very close to the last pierce point
x1 + t∗1d1. Such a choice enables the projection sub-problem at iteration 2 to easily
exceed the objective value of the last pierce point x1 + t∗1d1 by only advancing a little
from x2 towards opt(P1) – see how rapidly the red dashed arrow crosses the black dot-
ted line, i.e., the level set of the last pierce point

{
x ∈ R2

+ : b>x = b> (x1 + t∗1d1)
}

.
The blue circle represents a choice of a point x2 closer to 0n: it is more difficult to
reach the level set of x1 + t∗1d1 by advancing from this x2 towards opt(P1), but this
blue projection can lead to a stronger (blue) constraint, i.e., the blue solid line cuts
off a larger area of P1 (i.e., of the largest triangle) than the red solid line.

2.2. Techniques for designing a fast projection algorithm. A challenging
aspect when implementing Projective Cutting-Planes is the design of a fast pro-
jection algorithm, because the iterations of a successful Projective Cutting-Planes

should not be significantly slower than the iterations of the standard Cutting-Planes.
For instance, if the projection iterations were two–three times slower than the sepa-
ration iterations, the Projective Cutting-Planes could be too slow, i.e., it could
remain slower than the standard Cutting-Planes even if it converged in half itera-
tions. Although the projection sub-problem generalizes the separation one, we present

5

below several techniques that lead to designing a projection algorithm that competes
(very) tightly with the separation algorithm in terms of computational speed.

Let us first describe how the projection sub-problem project(x→ d) reduces to
minimizing the following fractional program (for any x ∈P and any d ∈ Rn):

(2.2.1) t∗ = min

{
ca − a>x

a>d
: (a, ca) ∈ A, d>a > 0

}
.

We have to show x+td ∈P ∀t ∈ [0, t∗], i.e., a>(x+td) ≤ ca ∀(a, ca) ∈ A ∀t ∈ [0, t∗].
If a>d ≤ 0, then a>(x + td) ≤ a>x ≤ ca actually holds for all t ∈ [0,∞], because
x ∈ P =⇒ a>x ≤ ca. Otherwise, if a>d > 0, then a>(x + td) ≤ ca is equivalent

to t ≤ ca−a>x
a>d

which is true for any t ≤ t∗, because t∗ minimizes the above ratio in

(2.2.1). As such, we will only focus on (a, ca) ∈ A such that a>d > 0 when designing
the projection algorithm. Finally, x + t∗d belongs to the boundary of P because it
satisfies with equality the constraint associated to the minimizer of (2.2.1).

A first technique to efficiently solve the projection sub-problem consists of gen-
eralizing (the main ideas of) the separation algorithm without greatly increasing its
computation time. This can not be simply achieved by repeated separation: such
projection method would call the separation algorithm at least twice, or usually 3 or
4 times, i.e., it could become 3 or 4 times slower than the separation algorithm.4

We here give only one example of a successful generalization of a separation
algorithm. In the context of a (very) classical robust LP [6, 15], the separation of a
given x ∈ Rn reduces to minimizing a difference ca − (a + â)>x over a set of nominal
constraints (a, ca) ∈ Anom and over all possible deviations â of the nominal coefficients

a. The projection sub-problem (2.2.1) reduces to minimizing ca−(a+â)>x
(a+â)>d

over the same

(a, ca) and over the same â. Both sub-problems can be solved by iterating over the
nominal constraints Anom; for each (a, ca) ∈ Anom, the separation sub-problem tries to
minimize the above difference while the projection sub-problem tries to minimize the
above ratio. This objective function change (minimize a ratio instead of a difference)
does not change the nature of the subproblem algorithm: for both sub-problems, the
main computational bottleneck consists of iterating over Anom [15, § 2.1].

A second technique to solve (2.2.1) is applicable to the (numerous) problems in
which the constraints of P are associated to the feasible solutions of an auxiliary
LP. This is the case for most Benders decomposition models (Section 3.1) in which
the separation sub-problem is often formulated as an LP over a Benders sub-problem
polytope P . In this case, (2.2.1) reduces to a linear-fractional program that can be
reformulated as a pure LP using the Charnes–Cooper transformation [3]. This leads
to an algorithm of the same complexity as the separation one, i.e., they both have
the complexity of solving an LP over P .

This technique can be generalized to the (numerous) problems in which the con-
straints of P are given by the feasible solutions of an Integer LP (ILP). We will develop
this idea in Section 3.2, where P is the dual polytope of a Column Generation model
for graph coloring. In this model, each constraint (a, ca) = (a, 1) ∈ A of P is associ-
ated to a primal column, which, in turn, is given by the incidence vector a ∈ {0, 1}n of

4A first call to the separation sub-problem is needed to find a constraint satisfied with equality
by some x + t1d, followed by at least a second call to check if x + t1d can be separated. If x + t1d
can be separated by a new constraint, one can find a solution x+ t2d binding to this new constraint,
with t2 < t1; the process could be repeated, leading to some x + t3d with t3 < t2, etc. Preliminary
experiments suggest that a 3rd or a 4th call is needed at most iterations. It is more fruitful to explore
techniques that can bring us close to designing a projection algorithm as fast as the separation one.

6

a stable in the considered graph. The stables of the graph can be seen as the integer
solutions of a (stable set) polytope defined by edge inequalities. For this case, we pro-
pose a discrete Charnes-Cooper transformation that turns (2.2.1) into a Disjunctive
LP (DLP) and the integrality constraints ai ∈ {0, 1} into disjunctive constraints of the
form ai ∈ {0, α}, where α is an additional decision variable. This DLP has a discrete
feasible area and can be solved with the same techniques as the separation ILP, i.e.,
using a Branch and Bound with bounds determined from continuous relaxations. We
will argue there is no deep reason why such DLP should be much harder in absolute
terms than the ILP solved by the separation sub-problem.5

We now give a last example of a technique for solving (2.2.1). When (2.2.1) is a
dual LP in Column Generation, the separation sub-problem can often be solved by
Dynamic Programming, especially when the primal columns satisfy a resource con-
sumption constraint (as in capacitated routing problems). In certain such cases, if
the separation sub-problem can be solved by Dynamic Programming, so can be the
projection sub-problem. Recall that the main computational bottleneck in Dynamic

Programming is to generate all states. If the number of states is similar for the sepa-
ration and the projection, once all states are generated, it is not difficult to find the
state of minimum objective value (either for a linear objective or for a fractional one).
This is confirmed by the numerical experiments from the follow-up work [15, § 3.2].

3. Adapting the New Method to Different Problems.

3.1. The Projective Cutting-Planes for the Benders Reformulation.

3.1.1. The model with prohibitively-many constraints and their sepa-
ration. Introduced in the 1960s [2], the Benders’ method has become a widely used
Cutting-Planes approach to solve (mixed-)integer linear programs of the form:

(3.1.1) min
{
b>x : Bx + Ay ≥ c, x ∈ Zn+, y ≥ 0

}
.

The goal is to minimize the cost b>x, while allowing the system of inequalities
Bx + Ay ≥ c to have a feasible solution y ≥ 0. The variables y could quantify
flows in network design problems [5], goods delivered to customers in facility loca-
tion problems, second–stage uncertain events in two–stage stochastic LPs, etc. The
integrality x ∈ Zn+ can be lifted in certain problems or to calculate a lower bound.

Considering a fixed x, the system of inequalities Ay ≥ c − Bx admits a feasi-
ble solution y if and only if one can state min

{
0>y : Ay ≥ c−Bx, y ≥ 0

}
= 0.

Writing the dual of this LP, any dual feasible solution u has to belong to P ={
u ≥ 0m : A>u ≤ 0n

}
, where m is the number of rows of A. The dual objective

value associated to u has to be non-positive, i.e., we obtain (c−Bx)>u ≤ 0. Refer-
ring to [14, § 2.1] or [5] for full details on this Benders reformulation process, (3.1.1)
can be equivalently written in the following Benders decomposition form:

}
P

min b>x(3.1.2a)

c>u− (Bx)
>

u ≤ 0 ∀u ∈ P s. t. 1m
>u = 1(3.1.2b)

x ∈ Zn+,(3.1.2c)

5The two programs have rather similar continuity-breaking constraints (ai ∈ {0, α} resp. ai ∈
{0, 1}) and they are typically solved with similar Branch and Bound methods that calculate bounds by
lifting these continuity-breaking constraints. More exact details are provided in Remark 2 for graph
coloring. We chose graph coloring only because it is a problem without complex problem–specific
constraints whose presentation could impair the understanding of the more general ideas.

7

where P below is the Benders sub-problem polytope that does not depend on x:

(3.1.3) P =
{
u ≥ 0m : A>u ≤ 0n

}
.

To solve this ILP, the Benders’ method applies a standard Cutting-Planes algorithm
in which the outer approximations P1) P2) · · · ⊃P generated along the iterations
are interpreted as discrete sets. At each iteration it, we say Pit corresponds to a
relaxed master associated to (3.1.2a)–(3.1.2c), obtained by only keeping a subset of
the constraints (3.1.2b). In fact, the only difference compared to the general large-
scale (2.1) is that x is integer and opt(Pit) needs to be determined using an ILP
solver instead of an LP solver. Given the current optimal solution x = opt (Pit), the
separation sub-problem asks to solve the following LP to (try to) exclude x from P.

(3.1.4) max
{

c>u− (Bx)
>

u : u ∈ P , 1m
>u = 1

}
The normalization 1m

>u = 1 from (3.1.2b) and (3.1.4) can be considered super-
fluous in theory but it is useful to avoid numerical issues in practice.6

3.1.2. Applying Projective Cutting-Planes. To solve (3.1.2a)–(3.1.2c) us-
ing Projective Cutting-Planes one can proceed exactly as indicated in Section 2,
with only one exception: x is integer in (3.1.2a)–(3.1.2c), so that the master prob-
lem becomes an (NP–Hard) ILP, i.e., one needs to call an ILP solver to determine
opt(Pit) at each iteration it. The iterative call to this ILP solver becomes the main
computational bottleneck of the overall Projective Cutting-Planes. This is an en-
couraging factor for adopting the new method: the projection sub-problem is an LP
that can be solved very rapidly compared to the master problem which is an ILP.

Besides the above standard Benders reformulation (3.1.2a)–(3.1.2c), we will also
study a linear relaxation that replaces x ∈ Zn+ with x ∈ Rn+ in (3.1.2c). For both
the integer and the relaxed model, a key question is the choice of the interior point
xit at each iteration it ≥ 1. The first feasible solution x1 is determined by a very
simple heuristic (Section 3.1.4). For it > 1, experiments suggest it is preferable
to choose an interior point xit relatively far from the boundary. We usually set
xit = xit−1 + αt∗it−1dit−1 with α = 0.2 except that we switch to a more aggressive
α = 0.4 in the integer model for it ≥ 100 (towards the end of the search).

Remark 1. Another consequence of the condition x ∈ Zn+ is that the projection
algorithm might return a pierce point xit + t∗itdit that is not an integer. However,
for most problems, one can usually build such an integer feasible solution by simply
rounding up all components of xit + t∗itdit. At least when x encodes design decisions
to install (transmission) facilities, there is generally no reason to forbid an increase
(by rounding) of the number of these facilities. This rounding-up has no impact on
any algorithmic decision (like choosing point xit+1 that may remain non-integer),
because it is only used when one needs a feasible integer point.

3.1.3. The projection sub-problem algorithm. Consider an interior point
x satisfying all constraints (3.1.2b) and a direction d ∈ Rn. Following Definition 2.1
(p. 3), the projection sub-problem project(x→ d) requires finding:
(1) the maximum step-length t∗ ≥ 0 such that x+t∗d satisfies all constraints (3.1.2b);

6This condition is superfluous because all positive multiples of u ∈ P belong to P and they all
produce the same inequality (3.1.2b), i.e., the status of this inequality does not change by multiplying
all its terms by a positive constant. In practice, though, this normalization enables the separation
algorithm to return only normalized constraints (3.1.2b), with no exceedingly large term.

8

(2) a vector u ∈ P such that the constraint (3.1.2b) associated to u is respected
with equality by the pierce point x + t∗d. This u may not be normalized: there
is no need to multiply it by some factor to satisfy 1m

>u = 1 like in (3.1.2b).
Substituting x + t∗d for x into (3.1.2b), project(d → x) requires finding the maxi-

mum value t∗ such that c>u−(B (x + t∗d))
>

u ≤ 0 ∀u ∈ P , equivalent to−t∗ (Bd)
>

u ≤
(Bx)

>
u − c>u ∀u ∈ P . The right–hand side of this last inequality is always non–

negative because x is feasible and satisfies all constraints (3.1.2b). Furthermore, any

u ∈ P associated to a non-positive − (Bd)
>

u ≤ 0 would allow t∗ to be arbitrarily

large. We can focus only on the u ∈ P that satisfy − (Bd)
>

u > 0, and so, t∗ can be
determined by solving the following linear-fractional program:

(3.1.5) t∗ = min

{
(Bx− c)

>
u

− (Bd)
>

u
: u ∈ P , − (Bd)

>
u > 0

}
This program can be translated to a standard LP using the Charnes–Cooper

transformation [3]. Writing u = u
−(Bd)>u

, we obtain u ∈ P =⇒ A>u ≤ 0n,

u ≥ 0m, − (Bd)
>

u = 1 and one can show that (3.1.5) is completely equivalent to:

(3.1.6) t∗ = min
{

(Bx− c)
>

u : A>u ≤ 0n, u ≥ 0m, − (Bd)
>

u = 1
}

It is not hard to check that the above change of variable u → u transforms a
feasible solution of (3.1.5) into a feasible solution of (3.1.6) with the same objective
value and vice versa. The projection algorithm for (3.1.6) requires the same asymp-
totic running time as the separation algorithm that solves (3.1.4): both sub-problems
have the complexity of solving an LP with m variables and n or n+ 1 constraints.

3.1.4. From the general Benders model to a network design problem.
So far, we have only discussed the general Benders model (3.1.2a)–(3.1.2c), avoiding
to describe any specific problem whose details could impair the understanding of
the main ideas. However, we will provide numerical results on a network design
problem [14, § 3.1] that asks to install multiple times a technology (e.g., cables of
bandwidth bwd) on the edges of a graph G = (V,E). The installed links must be able
to transfer data from a source or origin O ∈ V towards a set of terminals T (V ,
each i ∈ T having a flow (data) demand of fi. We use design variables x ∈ Zn+ to
represent the number of links installed on each edge (so that |E| = n) and y ≥ 0 to
encode data flows along edges.

The main Benders ILP (3.1.1) is instantiated as follows. The objective function
minimizes the cost (number) of the installed links: min

∑
{i,j}∈E xij = min 1>nx. We

impose (modified) flow conservation constraints
∑
{i,j}∈E yji −

∑
{i,j}∈E yij ≥ 0 ∀i /∈

T ∪ {O}, ∑{i,j}∈E yji −∑{i,j}∈E yij ≥ fi, ∀i ∈ T and bandwidth constraints yij +

yji ≤ bwdxij∀{i, j} ∈ E, i < j. We also have xij ∈ Z+, yij , yji ≥ 0, ∀{i, j} ∈ E, i < j.
One may also check [14, § 3.1] for full explanations on this model.

Referring to [14, § 3.2] for details on the intermediate steps of the Benders decom-
position process, the final Benders reformulation model is given by (3.1.7a)–(3.1.7c)
below, an instance of (3.1.2a)–(3.1.2c).

min 1>nx(3.1.7a) ∑
i∈T fiui −

∑
{i,j}∈E bwdxijuij ≤ 0 ∀u ∈ P s. t. 1>u = 1(3.1.7b)

x ∈ Zn+,(3.1.7c)

}
P

9

where P is described by (3.1.8) below.

(3.1.8) P = {u ≥ 0 : −uij − ui + uj ,−uij − uj + ui ≤ 0 ∀{i, j} ∈ E, i < j} .
The Projective Cutting-Planes for the general Benders model (3.1.2a)–(3.1.2c)

from Section 3.1.2 can be directly applied to solve the above (3.1.7a)–(3.1.7c). We
construct the very first feasible solution x1 by assigning to each edge {i, j} ∈ E the

value
⌈∑

i∈T fi
bwd

⌉
, so that each edge has enough capacity to transfer all the demands,

making this x1 certainly feasible. The first direction is d1 = −1n, i.e., the direction
with the fastest rate of objective function improvement.

To solve the projection sub-problem project(x → d) for some x that satisfies
(3.1.7b), we will instantiate the general linear-fractional program (3.1.5), following
the development from Section 3.1.3. Accordingly, notice that the numerator of (3.1.5)

contains a term (Bx)
>

u that was built from the terms involving x in the constraint
(3.1.2b). Since (3.1.2b) has been instantiated to the above (3.1.7b), one can check

that (Bx)
>

u corresponds to
∑
{i,j}∈E bwdxijuij . Using the fact that d is defined in

the same space as x, one can also check that (Bd)
>

u becomes
∑
{i,j}∈E bwddijuij .

Finally, c>u represents the free terms (without x) from (3.1.2b) that correspond to∑
i∈T fiui. We thus obtain that (3.1.5) is instantiated as:

(3.1.9) t∗= min

∑
{i,j}∈E bwdxijuij −

∑
i∈T fiui

−∑{i,j}∈E bwddijuij
: u ∈ P ,−

∑
{i,j}∈E

bwddijuij > 0

Recalling how we translated the linear-fractional program (3.1.5) to the LP (3.1.6)

we apply the same Charnes–Cooper transformation to reformulate (3.1.9) as a pure

LP. As such, by substituting u =
u

−∑{i,j}∈E bwddijuij
, (3.1.9) is equivalent to:7

t∗ = min
∑
{i,j}∈E bwdxijuij −

∑
i∈T fiui(3.1.10a)

− uij − ui + uj ≤ 0 ∀{i, j} ∈ E, i < j(3.1.10b)

− uij − uj + ui ≤ 0 ∀{i, j} ∈ E, i < j(3.1.10c)

−∑{i,j}∈E bwddijuij = 1(3.1.10d)

u ≥ 0.(3.1.10e)

3.2. The Projective Cutting-Planes for the graph coloring Column Generation

model. In Column Generation, the generic LP (2.1) is instantiated as the dual of a
relaxed master LP of the form min {∑ caya :

∑
aiya ≥ bi,∀i ∈ [1..n]}, where all the

sums are calculated over all columns (a, ca) ∈ A. These columns may encode sta-
bles in graph coloring, cutting patterns in (Multiple-Length) Cutting-Stock, routes in
vehicle routing problems, assignments of courses to timeslots in timetabling, or any
other specific subsets in the most general set-covering problem. Referring the reader
to [13, 1, 17, 11] for full details, let us focus on the dual LP:

(3.2.1)
max b>x

ya : a>x ≤ ca ∀(a, ca) ∈ A
x ≥ 0n

}
P

The standard Column Generation can be seen as a Cutting-Planes algorithm (e.g.,
Kelley’s method) acting on this dual LP (3.2.1). Besides graph coloring, (3.2.1) will
also serve to model Multiple-Length Cutting-Stock in the follow-up paper [15].

7In both (3.1.10b)–(3.1.10c) and (3.1.8), we use the convention that if i (resp. j) is the source
then the term ui (resp. uj) vanishes, as in Footnote 6 of [14].

10

3.2.1. The separation and the standard Cutting-Planes. Graph coloring
is a set covering problem that asks to determine the minimum number of stables of
a given graph G(V,E) needed to cover (color) each vertex of V once. Focusing on
(3.2.1), each constraint (a, ca) ∈ A corresponds to the incidence vector a of a stable
of G; we assume ca = 1 (each color counts once) and b = 1n (each vertex has to
receive one color). Such assumptions may differ in other graph coloring variants, e.g.,
in multi-coloring b is different from 1n.

To solve (3.2.1) by Column Generation, one needs to solve at each iteration it

the separation sub-problem min(a,1)∈A 1−a>x, where x is the current optimal (outer)
solution opt(Pit). In standard graph coloring, the constraints A are given by the
stables of G and the separation sub-problem reduces to the maximum weight stable
problem with weights x which is NP-hard. The Column Generation formulation of
graph coloring has been widely-studied (see [12, 9] and references therein); besides
popularity reasons, this also comes from the fact that graph coloring is a rather generic
problem with simple constraints. There seems to be less potential in analyzing or
exploiting such constraints than in developing more general optimization techniques.
According to the abstract of [9], Column Generation is also the “best method known
for determining lower bounds on the vertex coloring number”.

3.2.2. The Projective Cutting-Planes for Graph Coloring. We need very
few customizations to apply the generic Projective Cutting-Planes from Section 2
on (3.2.1). First, we define xit = xit−1 + t∗it−1dit−1 at each iteration it > 1,
so that xit becomes the best feasible solution found so far (the last pierce point);
graph coloring is the only problem from this study for which this choice leads to good
results in the long run. For it = 1, we simply take x1 = 0n; d1 is chosen to point
towards a direction obtained from an initial feasible coloring found by a heuristic (see
Footnote 14, p. 19), i.e., to construct d1, we assign to each v ∈ V = [1..n] the value

1

|stab(v)| , where stab(v) 3 v is the stable containing v in the given feasible coloring.

Using such initial feasible coloring offers multiple advantages, both for Projective

Cutting-Planes and for the standard Column Generation.
– This initial coloring provides a set of stables or initial constraints A0 in (3.2.1),

so as to start from the very first iteration with a reasonable outer approximation
P0) P, i.e., the overall solution process is warm–started.

– The first outer approximation P0 obtained as above leads to a first upper bound
b>opt(P0) that is equal to the number of colors used by the heuristic coloring.
This upper bound is used as a marker to evaluate the gap of all lower bounds
reported along all iterations. Without this initial coloring, one might need dozens
or hundreds of iterations to obtain an upper bound of the same quality.

– If we had started by projecting 0n → 1n, we would have obtained a very first
pierce point t∗11n = 1

α(G)1n that might correspond to multiple constraints of (3.2.1)

associated to multiple stables of maximum size α(G). If one then takes x2 =
x1 + t∗11n = 1

α(G)1n, the second projection can return t∗2 = 0 because of a second

stable of size α(G). If this repeats a third or a fourth time, the iterative solution
process could stall for too many iterations, generating a form of degeneracy.

We will also use (in Section 3.2.4) a second coloring model in which we define
the constraints A using a new (broader) notion of reinforced relaxed stables. In this
new model, each element of A is associated to a solution of an auxiliary polytope
P that contains the standard stables. The disadvantage is that P contains many
other elements besides legitimate stables so that the new (3.2.1) model contains more

11

constraints. But the advantage is that the projection sub-problem becomes consider-
ably simpler as it can be formulated as a pure LP (Section 3.2.4). The Projective

Cutting-Planes described above will be applied in the same manner but it will gen-
erate faster and still high-quality lower bounds.

3.2.3. The Projection Sub-Problem. Instantiating (2.2.1) on standard graph
coloring, the projection sub-problem project(x→ d) becomes:

t∗ = min
a

1− x>a

d>a
(3.2.2a)

d>a > 0(3.2.2b)

P0−1

{
ai + aj ≤ 1, ∀{i, j} ∈ E
ai ∈ {0, 1} ∀i ∈ [1..n]

(3.2.2c)

We will translate this integer linear–fractional program to a Disjunctive LP (DLP),
transforming the integrality constraints ai ∈ {0, 1} into disjunctive constraints of the
form ai ∈ {0, α} ∀i ∈ [1..n]. We will see that a disjunctive constraint breaks the
continuity in the same manner as an integrality constraint; thus, the DLP has a
discrete feasible area and can be solved with similar Branch and Bound methods as
an ILP. We recall that the standard separation sub-problem is the standard ILP:
min

{
1− x>a : a ∈ P0−1

}
. The constraints ai + aj ≤ 1∀{i, j} ∈ E from (3.2.2.c) are

referred to as edge inequalities [10, 12]; P0−1 is the set of standard stables and its
convex closure conv(P0−1) is referred to as the stable set polytope.

To write (3.2.2.a)–(3.2.2.c) as a DLP, we propose to apply a discrete version of the
Charnes–Cooper transformation initially applied for standard LPs [3]. Accordingly,

let us consider a change of variables a =
a

d>a
and α =

1

d>a
; we will prove that

(3.2.2.a)–(3.2.2.c) is completely equivalent to:

t∗ = min
a,α

α− x>a(3.2.3a)

ai + aj ≤ α ∀{i, j} ∈ E(3.2.3b)

d>a = 1(3.2.3c)

ai ∈ {0, α} ∀i ∈ [1..n](3.2.3d)

α ≥ 0(3.2.3e)

To prove this equivalence, let us first show that the change of variables a→ a, α
maps a feasible solution a of (3.2.2.a)–(3.2.2.c) to a feasible solution of (3.2.3.a)–
(3.2.3.e) with the same objective value. For this, we divide each term of (3.2.2.b)–

(3.2.2.c) by d>a > 0; after replacing ai =
ai

d>a
∀i ∈ [1..n] and α =

1

d>a
> 0

we obtain the constraints of the Disjunctive LP. Conversely, a feasible solution of
(3.2.3.a)–(3.2.3.e) can be reversely mapped to a = α−1 ·a to obtain a feasible solution
a in (3.2.2.a)–(3.2.2.c). Notice a = α−1 · a is consistent because α = 0 would lead
to a = 0n via (3.2.3.d), rendering (3.2.3.c) infeasible. One can directly check that
the resulting a satisfies all constraints in the initial program. The equality of the

objective values follows from α− x>a = 1
d>a
− x>a

d>a
= 1−x>a

d>a
.

Remark 2. The DLP (3.2.3.a)–(3.2.3.e) uses disjunctive constraints ai ∈ {0, α}
instead of the integrality constraints ai ∈ {0, 1} of the separation sub-problem ILP
min

{
1− a>x : ai + aj ≤ 1 ∀{i, j} ∈ E, a ∈ Zn+

}
. Both the projection DLP and the

12

separation ILP can be solved with similar Branch and Bound methods that calculate
lower bounds by lifting the disjunctive or resp. integrality constraints. These con-
straints break the continuity in a similar manner and we find no deep theoretical
difference that would make one much easier to handle than the other.

Remark 3. Despite the above theoretical similarity between the DLP and the ILP
the practical situation may be different, as of 2019. We solve both the DLP and the
ILP with cplex, implementing the disjunctive constraints as logical constraints. As
such, we implicitly use a larger arsenal on the ILP. For instance, cplex applies many
valid inequalities on the ILP, but it does not “realize” that such ILP cuts could be
translated to DLP valid inequalities.8 This comes from the fact that cplex does not
have the notion of valid inequalities satisfied by all “discrete” DLP solutions that
satisfy ai ∈ {0, α} i ∈ [1..n]; it does not see ai ∈ {0, α} somehow similar to an
integrality constraint (in the sense that ai

α is integer). In fact, it does not even have
the information that lifting a disjunctive constraint ai ∈ {0, α} enables ai to take
a fractional value between two “discrete” bounds 0 and α. As such, cplex can not
exploit this to generate refined branching rules as it does for the ILP.

For a fair comparison, the ILP algorithm should not be more elaborate than the
DLP one. One option would be to disable all cplex options for cuts, branching or
heuristics. But instead of reducing the strength of the ILP algorithm, we prefer to
push the DLP algorithm to a higher level, striving to obtain competitive results in the
end. For this purpose, we reinforce the DLP (3.2.3.a)–(3.2.3.e) by inserting k-clique
inequalities (with k = 4) at the root node of the branching tree, when all disjunctive
constraints (3.2.3.d) are lifted and the problem reduces to a pure LP. This LP is solved
by a cut generation method described in Section 3.2.4, searching at each iteration
to separate the current solution using a k-clique inequality of the form

∑
i∈C ai ≤ 1

(in which C is a k-clique), equivalent to
∑
i∈C ai ≤ α in the DLP (3.2.3.a)–(3.2.3.e),

Most ideas above could naturally extend to address more (diverse) constraints
besides the edge inequalities ai + aj ≤ 1 ∀{i, j} ∈ E. If we replaced these edge
inequalities with other linear constraints, the transformation (3.2.2.a)–(3.2.2.c) →
(3.2.3.a)–(3.2.3.e) would work in similar manner, i.e., any linear constraint can be
reformulated using the Charnes-Cooper transformation. This suggests that the pro-
posed approach could be applied on (numerous) Column Generation models in which
the columns A represent the solutions of an ILP. In such cases, the separation sub-
problem is an ILP and the projection sub-problem can be written as a DLP, replacing
ai ∈ {0, 1} with ai ∈ {0, α}. In fact, we focused on standard graph coloring mainly
because it is a problem with no particularly skewed constraints whose presentation
could clutter (the design of) Projective Cutting-Planes.9

3.2.4. The Projection Sub-Problem in a Second Coloring Model with
RR-Stables. We here use a new coloring model that defines the (dual) constraints

8The logs show that cplex uses many “zero-half cuts” on the ILP. According to the documen-
tation, these cuts are simply “based on the observation that when the lefthand side of an inequality
consists of integral variables and integral coefficients, then the righthand side can be rounded down
to produce a zero-half cut.” For instance, it can sum up different constraints to obtain a1 +a2 ≤ 3.5
which is reduced to the zero-half cut a1 + a2 ≤ 3. The same operations could apply perfectly well
on a disjunctive LP and a1 + a2 ≤ 3.5α could be reduced to a1 + a2 ≤ 3α.

9 For example, the defective coloring problem allows each vertex to have a maximum number of d ≥
0 neighbors of the same color. When d = 0, we obtain standard graph coloring. For d > 0, the edge
inequalities evolve to: n(ai − 1) +

∑
{i,j}∈E aj ≤ d ∀i ∈ [1..n] – notice this constraint is only active

for ai = 1. Applying the discrete Charnes–Cooper transformation, this constraint is translated to
n(ai − α) +

∑
{i,j}∈E aj ≤ dα ∀i ∈ [1..n], obtaining a defecting coloring version of (3.2.3.b).

13

A using a broader notion of reinforced relaxed stables (RR-stables).

Definition 3.1. A reinforced-relaxed stable (RR-stable) is a feasible solution of
an auxiliary polytope P that represents an outer approximation of the stable set poly-
tope conv(P0−1) from (3.2.2.c). We formally say (a, 1) ∈ A ⇐⇒ a ∈ P , defining
P) conv(P0−1) using six cut classes R, as indicated below.

(3.2.4) P =
{
a ≥ 0n : e>a ≤ 1 ∀(e, 1) ∈ R, f>a ≤ 0 ∀(f , 0) ∈ R

}
.

The set R contains six classes (a)–(f) of reinforcing cuts whose design has been in-
spired by research in valid inequalities for the maximum stable problem [10]. The cuts
(a)–(d) can all be enumerated, but the cuts (e)–(f) can be extremely numerous and they
are generated only when needed, using a separation sub-problem. We present all these
cut classes (a)–(f) below, but their exact implementation requires more engineering
detail and we also refer the reader to [15, App. A.3.1] for full descriptions.
(a) We first introduce all edge inequalities au+av ≤ 1 ∀{u, v} ∈ E that, if used alone,

would determine simple relaxed stables.
(b) We impose a clique inequality

∑
v∈C av ≤ 1 for each clique C such that |C | ≤

min(5, k), where k is a parameter that defines the model, see point (f) below.
(c) Cuts (c) are all generated by constructing a family of cliques that cover all ele-

ments of V multiple times using an iterative routine [15, App. A.3.1]; each clique
C constructed this way leads to a cut

∑
v∈C av ≤ 1.

(d) We generate a cut of this class for any u, v, w ∈ V such that {u, v} ∈ E, {u,w} /∈
E and {v, w} /∈ E. Writing Nv = {v′ ∈ V : {v, v′} ∈ E}, we obtain the cut
au+av ≤ aw+a(Nw−Nu∩Nv), where we used notation a(S) =

∑
s∈S as ∀S ⊆ V .

This idea has also been generalized to the case of triangles {µ, u, v} ⊂ V not
connected to a vertex w ∈ V [15, App. A.3.1].

(e) We here consider odd-cycle inequalities
∑
v∈H ah ≤

|H|−1
2 , where H is an odd

cycle. These cuts can not all be generated: they are added by repeated separation.
(f) The last cut class consists of k-clique inequalities a(C) ≤ 1 associated to cliques

C with at maximum k elements, where k is a parameter of the model. For large
values of k, (the iterative call to) the separation sub-problem for these cuts can
become the main computational bottleneck of the overall Cutting-Planes. This
is why we present in [15, App. A.3.3] a specific Branch & Bound with Bounded

Size method devoted to this maximum weight clique problem with bounded size.

Instantiating (2.2.1), the projection sub-problem project(x→ d) becomes

(3.2.5) t∗ = min

{
1− x>a

d>a
: a ∈ P , d>a > 0

}
,

This projection sub-problem (3.2.5) is a linear-fractional program that can be
translated to a standard LP using the Charnes–Cooper transformation [3]. More

exactly, writing a =
a

d>a
and α =

1

d>a
, one can show (3.2.5) is is equivalent to:

t∗ = min α− x>a(3.2.6a)

e>a ≤ α, f>a ≤ 0 ∀(e, 1) ∈ R, ∀(f , 0) ∈ R(3.2.6b)

d>a = 1(3.2.6c)

a ≥ 0n, α ≥ 0(3.2.6d)

To prove this equivalence, we can follow the proof of the equivalence between
(3.2.2.a)–(3.2.2.c) and (3.2.3.a)–(3.2.3.e) from Section 3.2.3. The only difference is

14

that we no longer have disjunctive constraints ai ∈ {0, α} in (3.2.6a)-(3.2.6d); without
these constraints, we can no longer show α = 0 =⇒ a = 0n. However, this Charnes-
Cooper transformation is general and works for any constraints (3.2.6b).10

The LP (3.2.6a)–(3.2.6d) is solved by cut generation. In fact, the cuts (a)–(d)
are all generated at the first iteration and only the cuts (e)–(f) are dynamically gener-
ated by solving the separation sub-problem max

(
max(e,1)∈R e>a− α,max(f ,0)∈R f>a

)
,

for each each current optimal solution (a, α) [15, App. A.3.2]. Notice that no cut in
R depends on x or d; as such, each cut generated at some iteration it of the overall
Projective Cutting-Planes is kept/reused at all next iterations it+1, it+2, etc.

To make Projective Cutting-Planes reach its full potential, it is important to
have a fast separation algorithm for the cuts (f) since the cuts (e) can be separated
in polynomial time by applying Dijkstra’s algorithm on a bipartite graph with 2n+ 2
vertices (see point (e) in [15, App. A.3.1]). The difficulty of separating cuts (f) depends
on the value of k and we designed a specific Branch & Bound with Bounded Size

algorithm that can be very fast when k is low; even for intermediate values of k, this
algorithm can be much faster than existing state-of-the-art software for the (clique)
problem with no size restriction (for k = ∞). The value of k controls a trade-off
between computation time (for the overall the Projective Cutting-Planes) and
the reported optimal value. When k is too small, the outer approximation P)
conv(P0−1) from (3.2.4) may be become too coarse: P may contain too many elements
besides legitimate stables, leading to too many artificial constraints in the new (3.2.1)
model with RR-stables, so that the lower bound reported in the end becomes smaller.

Remark 4. The optimum of the Column Generation model (3.2.1) with RR sta-

bles can exceed the maximum clique size ω because cuts (d) can exclude
[
1
ω

1
ω . . .

1
ω

]>
from P . As such, the new model (3.2.1) does not necessarily contain a constraint
of the form

[
1
ω

1
ω . . .

1
ω

]
x ≤ 1, and so, the dual objective function value does not

necessarily satisfy 1>nx ≤ ω. More generally, the lower bounds b>xit of Projective
Cutting-Planes remain perfectly valid for any (dual) objective function b 6= 1n (e.g.,
in graph multi-coloring) while ω is no longer a valid lower bound when b 6= 1n. �

3.2.4.1. Projecting a boundary point xit can lead to a null step length t∗it in the
model with RR–stables. For the model with RR–stables, choosing xit = xit−1 +
t∗it−1dit−1 is not very effective because such xit is a boundary point that can be-
long to multiple facets. Solving the projection sub-problem on such a point may
(repeatedly) return a new facet that touches xit and a zero step-length. This could
make Projective Cutting-Planes stagnate like a Simplex algorithm that performs
degenerate steps without improving the objective value.

More technically, this can be explained as follows. First, notice that xit =
xit−1 + t∗it−1dit−1 belongs to the first–hit constraint/facet a>x ≤ 1 returned by
the projection sub-problem at iteration it− 1, so that a>xit = 1. Furthermore, the
current optimal outer solution opt(Pit−1) also belongs to the above first–hit facet,
and so, by taking dit = opt(Pit−1) − xit as indicated by Step 2 from Section 2,

10For any constraints (3.2.6b), any feasible solution (a, α) with α = 0 of the LP (3.2.6a)–(3.2.6d)
can always be associated to an extreme ray of feasible solutions in the initial linear-fractional program.
More exactly, one can take any a ∈ P and construct a ray a + za of P , i.e., a + za is feasible in
(3.2.4) for all z ≥ 0. To check this, notice that e>(a + za) ≤ 1 ∀(e, 1) ∈ R follows from a ∈ P
and e>a ≤ 0 ∀(e, 1) ∈ R, which holds because α = 0 in (3.2.6b); a similar argument proves

f>a ≤ 0 ∀(f , 0) ∈ R. The objective value of a + za in (3.2.5) converges to limz→∞
1−x>a−zx>a
d>a+zd>a

=

limz→∞
−zx>a
d>a+z

= −x>a.

15

we also obtain a>dit = 0. Now recall that a can be seen as a feasible solution (an
RR–stable) of the polytope P from (3.2.4), so that there might exist a continuous set
of RR stables â ∈ P very close to a. There might exist multiple first–hit facets (of
P) that touch xit because some of these â ∈ P can satisfy â>xit = 1 — recall that
a = a

α is not an extreme solution determined by optimizing the LP (3.2.6a)–(3.2.6d)
in the direction of xit. As such, it is often possible to find some â ∈ P such that

â>xit = 1 and â>d = ε > 0, which leads to a step-length of t∗it = 1−â>xit

â>dit
= 0

ε = 0.

We thus propose to define xit as a strictly interior point using xit = α(xi−1 +
t∗i−1di−1) with α = 0.9999. This way, the above RR-stables â very close to a no
longer cause any problem: they lead to 1 − â>xit > 0 and to a small (“ε-sized”)

â>dit, so that 1−â>xit

â>dit
becomes very large. Generally speaking, this 0.9999 factor is

reminiscent of the “fraction-to-the-boundary stepsize factor” used in (some) interior
point algorithms to prevent them from touching the boundary — see the parameter
α0 = 0.99 in the pseudo-code above Section 3 in [7].

4. Numerical Experiments. We here evaluate the potential of Projective

Cutting-Planes in a Benders reformulation context and then for graph coloring.11

4.1. The Benders reformulation. We consider the network design problem
from Section 3.1.4 as formalized by (3.1.7a)–(3.1.7c). We use a test bed of 14 existing
instances from [14] and 7 new instances noted a, b, . . . , g; their characteristics are
described in the first 5 columns of Table 1. The bandwidth is always fixed to bwd = 3
and all demands have been generated uniformly at random from an interval [0, dem max].

Table 1 compares the new and the standard method on two problem variants:
1. the linear relaxation of (3.1.7a)–(3.1.7c) in the first group of 21 rows, i.e., we relax

x ∈ Zn+ to x ∈ Rn+ in (3.1.7c), useful to have a lower bound on the original ILP.
2. the original integer Benders model (3.1.7a)–(3.1.7c) in the second group of 10 rows.
The first 5 columns of Table 1 describe the instance: the instance class in Column
1, the instance ID (number) in column 2, the number of edges n = |E| in Column
3, the number of vertices in Column 4 and the maximum demand dem max in Column
5. Column 6 is the optimum value. The columns “avg (std) min” report statistics
over 10 runs on the number of iterations and on the total CPU time.12 The columns
“Time solve master” present the percentage of CPU time spent on solving master
problems along the iterations, i.e., to calculate opt(P1), opt(P2), etc. For the
linear relaxation only, Column 7 (Best IP Sol) reports the best integer solution that
Projective Cutting-Planes could determine along all runs using Remark 1 (p. 8).

4.1.1. The results on the linear relaxation. In the first 21 rows, the average
number of iterations of Projective Cutting-Planes is often better than the best
number of iterations of the standard Cutting-Planes, so that there is no need for an
in-depth statistical test to confirm the difference. The new method can roughly reduce
the average number of iterations by a factor of almost 3 (last rnd-100 instance), or by
a factor of about 2 for roughly a third of the instances. This speed-up is also superior

11The C++ source code is available on-line at cedric.cnam.fr/∼porumbed/projcutplanes/. We
compiled all programs with g++ -O3; we used Cplex 12.6 to solve all (integer) linear programs, using
the concert technology for C++. All reported results were obtained on a mainstream Linux computer
with a i7-5500U CPU and 16GB of RAM; unless otherwise stated, all programs use a single thread.
There are 13279 lines all together, including the experiments from [15].

12By default, the Benders algorithms from Section 3.1 have no random component. However, we
could randomize them by inserting 10 random cut-set constraints in the beginning of the solution
process, as in the experimental section of [14].

16

cedric.cnam.fr/
~
porumbed/projcutplanes/

In
st

an
ce

P
r
o
j
e
c
t
i
v
e
C
u
t
t
i
n
g
-
P
l
a
n
e
s

S
ta

n
d

a
rd

C
u
t
t
i
n
g
-
P
l
a
n
e
s

G
ra

p
h

ID
|E
|
|V
|

demmax

B
es

t
It

er
at

io
n

s
T

im
e

to
ta

l
[s

ec
s]

T
im

e
It

er
a
ti

o
n

s
T

im
e

to
ta

l
[s

ec
s]

T
im

e
cl

as
s

O
P

T
IP

so
lv

e
so

lv
e

S
ol

av
g

(
st

d
)

m
in

av
g

(
st

d
)

m
in

m
a
st

er
av

g
(

st
d

)
m

in
av

g
(

st
d

)
m

in
m

a
st

er
a

1
10

0
20

10
42

.3
33

48
22

.8
(

1
)

22
0
.0

6
(

0
.0

0
2

)
0
.0

6
4
.4

%
3
5

(
4
.9

)
3
1

0
.0

9
(

0
.0

1
)

0
.0

7
5
.5

%
b

1
10

5
60

10
24

5.
67

26
5

73
.8

(
2.

7
)

72
0
.2

(
0
.0

0
6

)
0
.2

6
.1

%
1
3
1

(1
1
.8

)
1
1
5

0
.4

(
0
.0

4
)

0
.3

8
.7

%
c

1
11

0
50

10
20

4.
33

22
0

56
.5

(
1.

5
)

56
0
.2

(
0
.0

0
4

)
0
.2

4
.9

%
7
8
.5

(
1
6

)
6
8

0
.2

(
0
.0

5
)

0
.2

5
.8

%
d

1
12

0
60

10
29

9.
33

31
7

67
.5

(
3

)
63

0
.2

(
0
.0

1
)

0
.2

4
.3

%
1
0
4

(
4
.3

)
1
0
1

0
.4

(
0
.0

2
)

0
.4

6
.1

%
e

1
12

0
30

10
67

.3
33

77
35

.4
(

0.
8

)
35

0
.1

(
0
.0

0
6

)
0
.1

4
.2

%
3
9
.5

(
5
.5

)
3
4

0
.1

(
0
.0

2
)

0
.1

5
.5

%
f

1
60

0
90

10
28

1.
33

30
6

15
0

(3
5.

3)
12

1
6
.2

(
1
.6

)
4
.8

2
.5

%
2
5
1

(2
8
.8

)
1
9
9

8
.1

(
1
.1

)
6
.3

3
.5

%
g

1
10

00
10

0
10

28
4.

33
31

2
14

7
(5

2.
1)

10
7

1
4
.3

(
6
.1

)
9
.7

1
.3

%
3
1
0

(1
9
.6

)
2
7
8

2
3
.4

(
1
.9

)
2
0
.2

3
.3

%

rnd-10

1
70

25
10

81
.6

67
89

22
.3

(
0.

5
)

22
0
.0

4
(<

0
.0

0
1
)

0
.0

4
5
.3

%
2
4

(
0

)
2
4

0
.0

4
(<

0
.0

0
1
)

0
.0

4
6
.2

%
2

70
25

10
64

.6
67

74
19

(
0

)
19

0
.0

4
(<

0
.0

0
1
)

0
.0

4
4
.8

%
2
5

(
0

)
2
5

0
.0

4
(<

0
.0

0
1
)

0
.0

4
5
.9

%
1

80
30

10
94

10
2

32
.2

(
1.

5
)

31
0
.0

7
(

0
.0

0
2

)
0
.0

7
5
.6

%
3
5
.2

(
1
.5

)
3
4

0
.0

7
(

0
.0

0
2

)
0
.0

7
6
.9

%
2

80
30

10
82

91
29

.5
(

1.
5

)
29

0
.0

6
(

0
.0

0
3

)
0
.0

6
5
.1

%
3
7
.6

(
1
.2

)
3
7

0
.0

7
(

0
.0

0
3

)
0
.0

7
6
.3

%
1

90
35

10
12

4.
67

13
7

43
.4

(
1.

2
)

43
0
.1

(
0
.0

0
3

)
0
.1

5
.8

%
7
8
.5

(
7
.5

)
7
1

0
.2

(
0
.0

2
)

0
.2

7
.4

%

rnd-100

1
60

0
90

10
0

29
18

.7
29

46
15

3
(2

0.
7)

12
9

6
.2

(
1

)
5

2
.2

%
2
7
8

(2
7
.7

)
2
4
2

9
.3

(
0
.9

)
7
.9

4
.5

%
2

60
0

90
10

0
27

82
28

10
14

1
(3

7.
4)

11
3

5
.5

(
1
.7

)
4
.3

2
.4

%
2
2
9

(1
7
.9

)
2
0
8

7
.7

(
0
.7

)
6
.9

3
.6

%
1

10
00

11
0

10
0

34
14

.7
34

52
22

9
(7

0.
2)

12
2

2
3
.5

(
8
.1

)
1
1
.5

2
%

3
6
0

(
2
3

)
3
0
6

2
8
.8

(
2
.3

)
2
3
.7

4
.2

%
2

10
00

11
0

10
0

30
80

.3
31

12
19

6
(7

2.
8)

13
6

1
9
.3

(
8
.2

)
1
2
.6

2
.3

%
3
8
9

(3
8
.2

)
3
1
3

3
0
.6

(
3
.7

)
2
2
.2

3
.6

%
1

15
00

13
0

10
0

39
22

39
56

38
2

(
18

2
)

19
3

8
9
.6

(
4
5
.9

)
4
1
.1

3
%

4
6
6

(2
0
.8

)
4
3
0

7
4
.8

(
4
.7

)
6
5
.9

2
.9

%
2

15
00

13
0

10
0

40
33

.7
40

73
28

2
(7

7.
4)

19
0

6
5

(
1
9
.8

)
4
0
.1

2
.2

%
5
3
6

(4
2
.5

)
4
4
6

9
0
.4

(
7
.8

)
7
4
.4

4
.2

%
1

20
00

15
0

10
0

46
38

46
84

25
9

(
10

6
)

16
6

1
0
3

(
5
0
.7

)
5
9
.1

1
%

7
4
4

(6
5
.8

)
6
3
8

2
1
8

(
1
8
.8

)
1
9
3

5
.4

%

r
n
d
-
3
0
0

1
20

00
15

0
30

0
13

31
4

13
36

5
30

2
(
18

7
)

16
4

1
2
2

(
9
2
.6

)
5
8
.1

1
.8

%
7
4
4

(8
7
.9

)
6
2
6

2
1
5

(
2
9
.1

)
1
7
5

4
.9

%
2

20
00

15
0

30
0

13
35

8
13

40
4

29
5

(
17

2
)

16
8

1
1
5

(
7
6
.6

)
5
7
.5

1
.9

%
6
8
8

(7
4
.8

)
6
3
4

2
0
2

(
1
4
.7

)
1
8
4

4
.6

%

a
1

10
0

20
10

46
17

4
(2

7.
4)

14
1

7
.4

(
5
.8

)
3
.3

8
9
.5

%
2
2
9

(4
4
.6

)
1
4
6

9
.6

(
3

)
4
.6

9
5
%

b
1

10
5

60
10

26
0

82
4

(
20

6
)

46
4

1
0
7
3

(
6
3
6

)
3
7
9

9
9
.5

%
2
9
8
7

(
3
7
5

)
2
4
2
7

4
1
2
9

(
8
1
9

)
2
9
7
1

9
9
.8

%
c

1
11

0
50

10
21

4
24

2
−
1

(2
7.

1)
20

1
9
9

(
3
1
.6

)
4
0
.2

9
8
.4

%
5
2
6

(5
8
.6

)
4
4
2

3
7
8

(
7
0
.8

)
2
8
4

9
9
.6

%
d

1
12

0
60

10
31

3
33

6
(5

3.
4)

25
1

3
2
1

(
1
0
3

)
1
5
6

9
9
.2

%
1
3
1
5

(
1
8
4

)
1
0
4
9

2
3
6
7

(
4
6
9

)
1
8
3
7

9
9
.8

%
e

1
12

0
30

10
74

13
36

(
13

8
)

10
20

4
9
0
7

(
1
6
4
0

)
2
0
8
6

9
9
.8

%
2
2
5
0

(
4
5
0

)
1
2
9
2

6
7
0
3

(
2
8
5
7

)
2
4
5
0

9
9
.9

%

rnd-10

1
70

25
10

87
10

2
(1

1.
6)

81
1
1
.7

(
5
.7

)
2
.4

9
7
.2

%
1
3
8

(1
5
.7

)
1
1
1

1
2
.7

(
6
.9

)
3
.2

9
8
.4

%
2

70
25

10
72

15
4

(
31

)
12

1
2
4

(
1
6
.8

)
5
.9

9
8
%

1
8
2

(3
0
.5

)
1
4
2

3
8
.3

(
1
9
.3

)
1
7

9
9
.3

%
1

80
30

10
10

0
18

8
(3

7.
8)

12
6

6
5
.7

(
2
8

)
1
5
.6

9
8
.9

%
3
6
8

(8
7
.9

)
2
3
6

1
8
3

(
8
7
.8

)
4
5
.2

9
9
.6

%
2

80
30

10
88

21
4

(4
3.

6)
10

5
9
6
.5

(
3
3
.1

)
6
0
.4

9
9
.1

%
3
6
9

(5
8
.4

)
3
1
7

1
5
6

(
5
0
.4

)
9
3
.5

9
9
.5

%
1

90
35

10
13

4
72

2
−
5

(6
5.

9)
66

4
7
9
0

(
8
3

)
6
2
9

9
9
.5

%
1
9
6
2
−
2

(
1
8
8

)
1
7
4
8

2
3
1
4

(
3
6
5

)
1
8
0
3

9
9
.8

%

T
ab

le
1:

S
ta

ti
st

ic
al

co
m

p
ar

is
on

b
et

w
ee

n
P
r
o
j
e
c
t
i
v
e
C
u
t
t
i
n
g
-
P
l
a
n
e
s

a
n

d
B

en
d

er
s’

C
u
t
t
i
n
g
-
P
l
a
n
e
s
.

T
h

e
fi

rs
t

g
ro

u
p

o
f

(2
1
)

ro
w

s
co

n
ce

rn
s

th
e

li
n

ea
r

re
la

x
at

io
n

of
th

e
B

en
d

er
s

re
fo

rm
u

la
ti

on
a
n

d
th

e
se

co
n

d
g
ro

u
p

o
f

(1
0
)

ro
w

s
co

n
ce

rn
s

th
e

o
ri

g
in

a
l

in
te

g
er

B
en

d
er

s
m

o
d

el
.

17

to the one obtained by the best stabilized enhanced Cutting-Planes from [14].13

Columns 6 and 7 of the first 21 rows of Table 1 actually represent a lower and
an upper bound for the integer optimum. The gap between these two bounds is 5.5%
in average, or even below 1% if we restrict to the instances with dem max ∈ {100, 300}.
This shows that the integration of Projective Cutting-Planes in a Branch and

Bound for the integer model seems promising: the above gap could actually represent
the gap at the root node of the branching tree and it is well-known that this root
node gap has a high impact on the effectiveness of a Branch and Bound.

4.1.2. The results on the integer model. The last group of 10 rows concerns
the smallest Benders instances from Table 1, because we solve the integer problem
which is far more difficult than the linear relaxation. Comparing Columns 7 and 14
(labelled “avg”), the new method could reduce the number of iterations by factors of
3 or 4 (rows b or d) or 2 (ante-penultimate row). The new method can also halve the
average running time on four instances out of ten (see rows 2, 3, 4, or 7), although
for some rare cases (two instances) it can also fail because of the numerical difficulties
described in [15, App. A.2]. The notation −κ in Columns 7 or 14 indicates that κ
runs out of 10 fail. The running time is not perfectly proportional to the number
of iterations because the structure of the ILP master problems generated along the
iterations can be very different from method to method or from instance to instance.

Remark 5. Such reduction factors of 3 or 4 can not be achieved by applying en-
hancement techniques (or stabilization) on the Benders’ Cutting-Planes. The last
rows of Table 2 from [14] show that such enhancement techniques could lead to, re-
spectively, 116, 165, 276, 244 or 1128 iterations for the last five rows of Table 1 (corre-
sponding to the first 5 instances random-10-bnd3 from [14, Table 2]). Compared to the
number of iterations of the standard Cutting-Planes from Table 1, the enhancement
techniques reduced the number of iterations by a factor between 1.2 and 1.75.

It is also worth noticing that certain enhancement techniques could also be
applied to the Projective Cutting-Planes, e.g., the smoothing technique [14,
§2.4.2] that consists of solving the sub-problem on a smoothed query point instead
of the current optimal solution opt(Pi) could apply in exactly the same man-
ner to Projective Cutting-Planes. In fact, we compared above a non-stabilized
Projective Cutting-Planes against a stabilized Cutting-Planes.

Finally, Columns “Time solve master” contain many entries above 99%, confirm-
ing Section 3.1.2: the computational bottleneck comes from the master ILPs and not
from the projection or the separation sub-problems that both reduce to pure LPs.

4.2. Graph Coloring. We use 15 well-known instances generated during the
second DIMACS implementation challenge in the 1990s [9, 12].

4.2.1. The standard coloring model. We here use the projection algorithm
for standard graph coloring from Section 3.2.3, based on the Disjunctive LP (DLP)
from (3.2.3.a)–(3.2.3.e). We solve both the separation ILP (the maximum weight
clique problem) and the projection DLP with similar Branch and Bound techniques as
described in Remark 2; however, by using cplex in practice, the separation algorithm
is significantly more sophisticated (Remark 3).

13The instances rnd-100 and rnd-300 resp. correspond to the instances random-100-bnd3 and
random-300-bnd3 from Table 4 of [14] and the stabilized Benders’ Cutting-Planes reported in [14,
Table 4] the following numbers of iterations for the seven rnd-100 instances: 235, 224, 320, 328, 408,
529, 563, while for the two rnd-300 instances, it reported 537 and 545 iterations. Compared to this
enhanced Cutting-Planes, Projective Cutting-Planes still needs between 1

4
and 1

2
less iterations.

18

0 20 40 60 80 100 120 140

2

3

4

Iterations

dsjc125.1

Projective Cutting-Planes
optimum, i.e,
dbnd vale = 5

Std. Column
Generation

0 20 40 60 80 100 120 140

3

6

9

12

15

Iterations

dsjc125.5

optimum, i.e,
dbnd vale = 16

0 20 40 60 80 100 120 140

20

30

40

Iterations

dsjc125.9

optimum, i.e, dbnd vale = 43

0 5 10 15 20

25

35

45

Iterations

r125.1c

reached optimal value 46

Figure 3: The lower bounds generated along the iterations by Projective

Cutting-Planes (in red) and resp. Column Generation (in blue) on 4 instances.

Figure 3 depicts the progress over the iterations of the lower bounds reported by
Projective Cutting-Planes compared to those of the standard Column Generation

on four instances.
As hinted in Section 3.2.2, both the new and the standard method benefit from

(warm-)starting the solution process using a heuristic coloring.14 For both methods,
this enables us to use from the beginning a set of initial constraintsA0 (A of the form
a>x ≤ 1, where a ∈ Zn+ is the incidence vector of a stable from the heuristic coloring.
The heuristic coloring also enables us to construct an initial exterior point d1 as
described in Section 3.2.2. At the first iteration, Projective Cutting-Planes solves
project(0n → d1) while the Column Generation solves the separation sub-problem
on the same d1; we obtain similar (warm-)starting conditions for both methods.

We will show that both methods start from the same lower bound. By instanti-
ating (3.2.2.a)–(3.2.2.c), the first projection sub-problem project(0n → d1) reduces

to t∗1 = min
{

1
d>

1 a
: a ∈ P0−1, d>1 a > 0

}
, where recall P0−1 is the set of standard

stables from (3.2.2.c). The first pierce point is t∗1 · d1 and the associated first lower
bound is b>(t∗1 · d1) = t∗1 · 1>nd1, equivalent to:

(4.2.1)
1>nd1

max
{
d>1 a : a ∈ P0−1

}
The separation sub-problem in Column Generation is min{1 − x>a : a ∈ P0−1},
where x is the current optimal outer solution opt(Pit) at iteration it. A well-
known Lagrangean bound for problems with ca = 1 ∀(a, ca) ∈ A is the Farley bound

b>x
1−mrdc(x)

, where mrdc(x) is the minimum reduced cost mrdc(x) = min(a,1)∈A 1−x>a,

as described in [1, § 2.2], [17, § 3.2], [11, § 2.1] or [13, App. C]. Replacing mrdc(x) =
min(a,1)∈A 1− x>a = min{1− x>a : a ∈ P0−1} for x = d1, we obtain (4.2.1).

14We simply used legal colorings determined in our previous work on graph coloring heuristics,
available on-line at cedric.cnam.fr/∼porumbed/graphs/evodiv/ or cedric.cnam.fr/∼porumbed/
graphs/tsdivint/. The associated upper bound value is provided in Column 4 of Table 3.

19

cedric.cnam.fr/
~
porumbed/graphs/evodiv/
cedric.cnam.fr/
~
porumbed/graphs/tsdivint/
porumbed/graphs/tsdivint/

Instance
Classical Column Generation clique Projective Cutting-Planes

beginning mid iter last iter cut sz. beginning mid iter last iter
iter:lb/tm iter:lb/tm iter:lb/tm k iter:lb/tm iter:ca lb/tm iter:lb/tm

dsjc125.1 283:3.44/29.2 380:3.8/53.8 544:4.01/135.6 4 3:3.52/33.0 78:3.80/1225 142:4.01/2809
dsjc125.5 253:13.08/365 306:14.27/634 378:15.08/1101 — 16:13.04/213 62:14.001/1288 136:15.003/4077
dsjc125.9 70:25.67/24.4 134:34.13/78 171:42.11/136 — 2:25.67/7.3 44:34.11/109 150:42.03/486
dsjc250.9 254:51.6/2221 275:54.98/2702 437:70.09/7757 — 5:51.06/487 34:54.01/3013 67:70.01/50185
r125.1 34:2.35/0.06 36:2.62/0.06 47:5/0.08 4∗ 5:2.35/0.18 17:2.61/0.68 20:5/0.80
r125.1c 15:25.09/8.18 17:30.06/8.45 22:46/9.8 — 2:26.83/4.7 6:30.06/10.4 14:46/21.6
r125.5 82:21.39/7.3 100:24.59/9.2 121:36/11.2 4∗ 3:21.21/4.2 67:24.01/74.3 116:36/136.7

Table 2: The Projective Cutting-Planes compared to the classical Column

Generation on all standard graph coloring instances that could be solved by ei-
ther method in less than 10000 seconds. Both the projection and the separation
sub-problems are modeled and solved by cplex; regarding the projection DLP, the
disjunctive constraints are implemented as logical constraints.

∗ For these graphs, we added the cuts (c) from Definition 3.1. We also protected the algo-
rithm from generating zero step-lengths and stagnating: if the projection sub-problem returns
t∗it < 10−6 at some iteration it, we switch to a new formula to determine future inner solutions:
xit = 0.99 (xit−1 + t ∗it−1 dit−1). We thus avoid the degeneracy-like issues from Section 3.2.4.1.

Based on above theoretical arguments, both methods start from the same lower
bound (4.2.1) in Figure 3 at iteration it = 1. However, the lower bounds of the
Projective Cutting-Planes increase monotonically, while those of the standard
Column Generation method exhibit the “yo-yo” effect. This (infamous) effect is
due to the strong oscillations of the optimal solutions opt(Pit) along the Column

Generation iterations it. By stabilizing the Column Generation, one can reduce
such effects, but we are not aware of any other work in which the “yo-yo” effect could
be completely eliminated. Projective Cutting-Planes eliminated it because each
new interior solution xit = xit−1 + t∗it−1dit−1 is better than the previous one xit−1,
i.e., we have b>xit > b>xit−1. The objective value can not decrease by advancing
along xit−1 → dit−1 (i.e., from xit−1 to xit), as also stated at Step 2 in Section 2.

Table 2 reports three lower bounds determined by the classical Column Generation

(Columns 2-4), followed by 3 bounds of the Projective Cutting-Planes (last three
columns). For both methods, the three bounds respectively correspond to the be-
ginning (Columns 2 and 6), to a midpoint (Columns 3 and 7) and to the to end
(Columns 4 and 8) of the solution process. In fact, we tried to make the following
pairs of columns report the same rounded-up bound value: Columns 2 and 6; 3 and 7;
4 and 8. This explains why Column 2 might actually report more than 100 iterations,
i.e., the Column Generation might need hundreds of iterations to reach the bound
value obtained by Projective Cutting-Planes in a dozen of iterations (in Column
6). For each bound, we indicate the number of iterations iter needed to reach it, the
bound value lb and the CPU time tm in seconds. A digit in Column 5 indicates that
we used k-clique inequalities to accelerate the projection sub-problem algorithm (see
Remark 3). We excluded graphs like le450 25c, le450 25d, le450 15c, le450 15d,
dsjc500.1, simply because they require more than 10000 seconds for both methods,
at least when the sub-problem is solved using cplex (see also Remark 6, p. 23).

The first conclusion drawn from Table 2 is that, for half of the instances, the
Column Generation might need hundreds of iterations to reach the lower bounds
generated by Projective Cutting-Planes in less than 20 iterations (compare Col-
umns 2 and 6 labeled “beginning”). This is mainly due to the monotonically increasing
lower bounds of the Projective Cutting-Planes.

20

Regarding the complete convergence, the Projective Cutting-Planes is sys-
tematically faster in terms of iterations, up to reducing the number of iterations to
half (dsjc125.5, r125.1) or to less than a third (on dsjc125.1). However, it can be
slower in terms of absolute CPU times. As discussed in Remark 3, this is mostly due
to the speed of the sub-problem solvers provided by the cplex software package: the
solver for the (separation) ILP is faster than the one for the (projection) Disjunctive
LP. By changing these solvers, the total running time can easily change.15 Based on
the arguments from Remark 2, we see no in-depth reason why the DLP needed for the
projection algorithm should always be fundamentally harder in absolute terms than
a similar-size ILP needed for the separation.

4.2.2. The Projective Cutting-Planes on the model with RR-stables.
We here focus on the coloring model with RR-stables from Section 3.2.4. We recall
the main ideas. The constraints A (the primal columns) are associated to the extreme
solutions of polytope P from Definition 3.1 that contains all standard stables. The
projection sub-problem reduces now to a pure LP (3.2.6a)–(3.2.6d) that is solved by
cut generation as indicated in Section 3.2.4. We will consider two values of the
parameter k that controls the size of the k-cliques used to generate reinforcing cuts
(f) that define P in (3.2.4). Confirming theoretical arguments from Section 3.2.4, a
higher k leads to stronger lower bounds at the expense of a lower speed.

Aiming at an unbiased comparison, we prefer to solve the projection and the
separation sub-problems with similar techniques. In Section 4.2.1, both sub-problems
were solved with the mathematical programming tools (based on Branch and Bound

and continuous relaxations) of cplex. In the current section, we determine the maxi-
mum weight stables for the separation sub-problem using the same Branch & Bound

with Bounded Size (BBBS) algorithm used by the Projective Cutting-Planes to
find k-cliques when constructing P in (3.2.4). For the standard Column Generation,
the maximum stable of the considered graph (Column 5 in Table 3) is given as input
to BBBS, i.e., it represents the bounded size given as input to BBBS.

Table 3 compares the standard and the new method, placing an emphasis on
three lower bounds reported along the iterations. The first four columns describe the
instance: the density in Column 1, the graph in Column 2, |V | in Column 3 and the
heuristic upper bound in Column 4. Columns 6–8 report three lower bounds obtained
by the standard Column Generation along the iterations (each table cell in these
columns indicates the bound value and the required CPU time). For Projective

Cutting-Planes, we consider in Column 9 two values of the parameter k used to
generate k-cliques to construct P . Columns 10–12 provide three lower bounds of the
Projective Cutting-Planes in the same format as in the Columns 6–8.

The last column of Table 3 reports the result of an additional special iteration:
take the last pierce point reported by the Projective Cutting-Planes with RR-

15Indeed, although the sub-problem algorithm can be seen as a black-box component in the overall
design, the CPU performance of all discussed algorithms depends substantially on the running time
of this sub-problem algorithm. Only considering the Column Generation, the total running time can
completely change if we replace the current cplex pricing (Table 2) by a pricing powered by a Branch

& Bound with Bounded Size (BBBS) algorithm (Table 3 in Section 4.2.2). On the low-density graph
dsjc125.1, the Column Generation with cplex pricing needs 135 seconds, while the BBBS version
needs 5431 seconds. The situation is inverted on a high-density graph like dsjc125.9: the cplex

version needed 136 seconds and the BBBS version needed 1.61 seconds. Similar phenomena arise for
the Projective Cutting-Planes; for instance, we could double the running time for dsjc125.1 by
simply changing the implementation of ai ∈ {0, α} from “ai ≤ 0 or ai ≥ α” into “ai = 0 or ai = α”
— both these equivalent constraints are implemented as logical “or” constraints in cplex.

21

D
en

sity
In

sta
n

ce
n

U
p

p
er

b
ou

n
d

O
p

t
m

a
x

S
tan

d
ard

C
o
l
u
m
n
G
e
n
e
r
a
t
i
o
n

w
ith

stan
d

ard
sta

b
les

P
r
o
j
e
c
t
i
v
e
C
u
t
t
i
n
g
-
P
l
a
n
e
s

w
ith

R
R

stab
les

on
e

last
iter

w
ith

std
.stab

.
sta

b
le

lb
/tm

lb
/tm

lb
/
tm

clq
.sz.k

lb
/
tm

lb
/tm

lb
/tm

⌈lb ⌉/tm

0
.0

9
4
d
s
j
c
1
2
5
.
1

125
5

35
3
.4

5/1.5
3.52/760

4
.0

1
/
5
4
3
1

3
2
.9

5
/
0
.4

3
3.01/2.77

4/15.13
4/21.45

4
2
.9

5
/
0
.5

3
3.01/1.22

4/15.51
5/21.06

0
.1

7
l
e
4
5
0
2
5
c

450
2
5

47
2
.5

/5.03
5.2/195

6
.8

7
/
2
5
3
5

5
9
.1

1
/
2
.3

4
10.01/41

2
5

/1242
op

tim
en

d
ed

2
5

9
.1

1
/
2
.2

8
10.01/43

2
5

/1412
op

tim
en

d
ed

0
.1

7
l
e
4
5
0
2
5
d

450
2
5

43
2.77/

5.26
5.45/409

6
.1

5
/
2
4
4
0

5
1
0
.2

1
/
3
.2

8
13.01/224

2
5

/1364
op

tim
en

d
ed

2
5

1
0
.2

1
/
3
.1

4
13.01/210

2
5

/1393
op

tim
en

d
ed

0
.2

4
p
h
a
t
3
0
0
-
1

300
1
9

39
2
.1

1/3.4
7.36/206

1
0
.1

9
/
5
4
1
8

3
4
.5

4
/
1
.5

8
6.01/86

8/292
9/8479

8
6
.0

1
/
3
3

7.01/160
8/267

9/3212

0
.5

0
d
s
j
c
1
2
5
.
5

125
1
8

35
4
.5

/2.25
10.01/2.44

1
5
.0

6
/
4
.8

8
7

7
.9

1
/
0
.6

6
8.01/0.89

9/8.11
14/76

1
0

8
.1

2
/
2
.5

0
8.95/13

10/13.3
11/62

0
.9

0
d
s
j
c
1
2
5
.
9

125
4
4

4
24

/
1.54

40.03/1.60
4
2
.2

6
/
1
.6

1
1
0

1
6
.2

5
/
2
.6

8
24/52

25/259
26/265

∞
2
4
/
7
.7

5
29.06/747

31.01/5497
32/5812

0
.1

0
d
s
j
c
2
5
0
.
1

250
9

70
2.01/

2.28
3.05/270

3
.7

0
/
9
1
8
0

3
3
.5

/
0
.3

5
3.75/10.9

3.81/18.2
5
∗/

1076
4

3
.5

/
0
.4

6
3.7/6.1

3.75/9.8
5
∗/91

0
.5

0
d
s
j
c
2
5
0
.
5

250
2
8

12
5
.6

/4.93
15.04/10.34

2
5
.0

1
/
2
2
5

6
8
.2

4
/
7
.0

3
9.01/13.36

10.001/119
21/5921

∞
9
.9

8
/
8
3

10.01/86
12/391

13/2492

0
.9

0
d
s
j
c
2
5
0
.
9

250
7
3

5
34

.3
/
10.4

60.01/11.18
7
0
.0

9
/
1
1
.6

1
0

1
0
/
3
.1

7
10/3.17

10/3.17
50/586

∞
tim

e
ou

t
(>

10000)
–

0
.1

0
d
s
j
c
5
0
0
.
1

500
1
2

1
2
2

2
.2

5
/5.14

2.50/66
3
.0

6
/
3
3
7
6

3
3
.5

5
/
4
.1

9
4.01/272

5/340
6
∗/5514

5
4
.0

8
/
7
9

4.50/295
5/682

6
∗/5857

0
.0

3
r
1
2
5
.
1

125
5

49
2.31/

0.02
5

/0.2
5

/
0
.2

2
2
.3

1
/
0
.2

3
2.51/5.67

5
/17.7

op
tim

en
d

ed
5

2
.3

1
/
0
.2

6
2.55/2.61

5
/10.6

op
tim

en
d

ed

0
.9

7
r
1
2
5
.
1
c

125
4
6

7
23

/
2.66

34.5/2.67
4
6

/
2
.6

7
1
0

1
0
.5

5
/
0
.4

2
11.27/0.75

16/2.56
17/6.1

∞
2
5
.0

1
/
1
.8

5
34.2/13.26

4
6

/28.64
op

tim
en

d
ed

0
.5

0
r
1
2
5
.
5

125
3
6

5
2
0
.5

7/0.09
25.2/0.22

3
6

/
0
.2

5
3
0

2
0
.5

7
/
0
.7

4
25.04/7.80

30/59.45
30/157.8

3
6

2
0
.5

7
/
0
.7

4
25.01/7.84

3
6

/15.57
op

tim
en

d
ed

0
.1

7
l
e
4
5
0
1
5
c

450
1
5

49
3.07/

6.23
4.22/145

5
.3

2
/
1
1
7
2

3
8
.3

4
/
6
.7

4
10.01/308

1
5

/1751
op

tim
en

d
ed

1
5

9
.1

9
/
1
4
.5

2
13.01/210

1
5

/3331
op

tim
en

d
ed

0
.1

7
l
e
4
5
0
1
5
d

450
1
5

49
3.07/

6.33
4.23/145

5
.3

3
/
1
1
7
2

3
8
.2

1
/
5
.5

3
10.01/359

1
5

/2326
op

tim
en

d
ed

1
5

9
.0

4
/
1
1
.6

12.01/2425
1
5

/3786
op

tim
en

d
ed

T
ab

le
3
:

C
om

p
ariso

n
o
f

3
low

er
b

ou
n

d
s

ob
tain

ed
b
y

th
e

stan
d

a
rd

C
u
t
t
i
n
g
-
P
l
a
n
e
s

(o
n

th
e

o
rig

in
a
l
colorin

g
m

o
d

el)
an

d
b
y

th
e
P
r
o
j
e
c
t
i
v
e

C
u
t
t
i
n
g
-
P
l
a
n
e
s

(on
th

e
colorin

g
m

o
d

el
w

ith
R

R
-stab

les)
a
lo

n
g

th
e

itera
tio

n
s.

F
o
r

th
e
P
r
o
j
e
c
t
i
v
e
C
u
t
t
i
n
g
-
P
l
a
n
e
s
,

th
e

last
colu

m
n

rep
orts

th
e

ro
u

n
d

ed
-u

p
b

o
u

n
d

o
b

tain
ed

b
y

p
erform

in
g

a
last

p
ro

jectio
n

in
th

e
o
rigin

a
l

m
od

el
w

ith
0
-1

sta
bles:

p
ro

ject
th

e
last

p
ierce

p
oin

t
m

u
ltip

lied
b
y
α

=
0.9

999
tow

ard
s

1
n
;
∗

in
d

icates
th

at
w

e
co

u
ld

o
n

ly
co

m
p
u

te
a

low
er

b
o
u

n
d

o
n

th
is

last
step

-len
gth

(u
sin

g
c
p
l
e
x
).

T
h

e
low

er
b

ou
n

d
s

th
at

eq
u

al
th

e
valu

e
o
f

th
e

giv
en

h
eu

ristic
(C

o
lu

m
n

4
)

a
re

m
a
rked

in
b

o
ld

;
w

h
en

th
e
P
r
o
j
e
c
t
i
v
e
C
u
t
t
i
n
g
-
P
l
a
n
e
s

closes
th

e
g
a
p

th
is

w
ay,

th
e

la
st

co
lu

m
n

in
d

icates
“op

tim
en

d
ed

”
b

eca
u

se
p

erfo
rm

in
g

a
n

a
d

d
itio

n
a
l

iteration
w

ou
ld

b
ecom

e
u

seless.

22

stables (next-to-last column), multiply it with α = 0.9999 (for the reasons indicated
in Section 3.2.4.1), and project it towards 1n in the original model with standard
stables. This last projection may lead to an even better lower bound.

Remark 6. The state–of–the–art Column Generation algorithm for graph color-
ing from [9] could not converge in less than three days for instances like le450 25c,
le450 25d, le450 15c, le450 15d and dsjc500.1. The difficulty of these instances is
confirmed by our numerical experiments: our Column Generation can indeed “stall”
on such instances, exactly for the reason indicated in [9], namely, “the maximum-
weight stable-set problems that need to be solved exactly become too numerous and too
difficult.” More generally, low-density graphs like the above ones are often quite dif-
ficult for the standard Column Generation because they have very large stables that
can be really hard to generate (at each call to the separation sub-problem). For such
graphs, our method obtained certain successes:
1. For le450 25c, le450 25d, le450 15c and le450 15d, Projective Cutting-Planes

reported a lower bound that matches the chromatic number in less than one hour,
which seems out of reach for the standard Column Generation. Although these
instances are not very hard in absolute terms because they can be solved with other
external methods based on matching the maximum clique size with an upper bound,
the lower bounds of Projective Cutting-Planes are more general. They could
work in the same manner when the above external methods fail, e.g., for a (dual)
objective function b 6= 1n, as in a multi-coloring problem.16

2. For dsjc500.1, the last projection in the model with standard stables (last column
of Table 3) reports a (rounded up) lower bound of 6; to the best of our knowl-
edge [12, 9], this is the first time a feasible solution of such quality could be found
using a Column Generation model. As in the case of the four graphs at point 1
above, the bound value in itself has been already discovered, but only using external
methods (based on constructing a reduced induced subgraph in [9]). We can even
describe this feasible solution of (3.2.1): assign 0.9999+0.00000101 to the vertices
4, 30, 47, 361, 475 and 0.00000101 to all remaining 495 vertices.17

3. For dsjc250.1, the last column of Table 3 indicates that the (cplex solver for
the) last projection showed that the last step-length t∗last is large enough to prove⌈
3.80585222+t∗last ·250

⌉
= 6, where 3.80585222 is the value of the last pierce point

multiplied by α = 0.9999. By allowing more time, cplex reported (after about 36
hours using up to 20 threads on a multi-core CPU) a lower bound of 0.0088 on the
last step-length, i.e., it proved t∗last > 0.0088. The last projection with standard
stables thus proves a lower bound of

⌈
3.80585222 + t∗last · 250

⌉
≥
⌈
3.80585222 +

0.0088 · 250
⌉
≥
⌈
6.005

⌉
= 7. We see no risk of numerical errors because after 56

hours, cplex even proved t∗last > 0.01. To the best of our knowledge [12, 9], this
is the first time a lower bound of 7 has ever been reported on this graph.

5. Conclusion and Prospects. We proposed a new method to optimize LPs
over polytopes P with unmanageably-many constraints. The key idea is to “upgrade”
the separation sub-problem used in Cutting-Planes to a more general projection sub–

16The chromatic number of such graphs can be more easily determined by exploiting the fact that
the maximum clique size may match an upper bound found by a (meta-)heuristic. When b 6= 1n,
this method fails because the maximum clique is no longer a lower bound.

17The associated objective value is 5 · 0.9999 + 500 · 0.00000101 = 4.9995 + 0.000505 = 5.0005.
Without any risk of numerical errors, we can prove this solution is feasible because there is no stable
of size 100 that contains any of the vertices 4, 30, 47, 361, or 475 (these vertices form a clique).
Indeed, cplex showed in less than 2 hours that the size of such a stable is upper bounded by 99; the
above solution is thus feasible because 0.9999 + 99 · 0.00000101 = 0.99999999 < 1.

23

problem. Given an arbitrary inner (feasible) solution x ∈P and a direction d ∈ Rn,
this sub-problem asks to determine the pierce (first-hit) point x + t∗d encountered
when advancing from x along d. The proposed Projective Cutting-Planes gener-
ates a sequence of inner solutions xit and a sequence of outer solutions opt(Pit) that
both converge to an optimal solution opt(P) along the iterations it. Projective

Cutting-Planes can offer several advantages.
– The convergent sequence of feasible solutions x1, x2, x3, . . . ∈ P is generated

using a built-in mechanism (the projection algorithm). There is no such built-in
functionality in Cutting-Planes: even if one can sometimes use various ad-hoc
methods to calculate feasible solutions in a standard Cutting-Planes (e.g., the
Farley bound in Column Generation), these inner solutions usually remain a by-
product of the algorithm and they do not usually “drive” the Cutting-Planes

evolution. In Projective Cutting-Planes, the inner solutions xit generated along
the iterations it are a vital component that do guide the algorithm evolution.

– The numerical experiments showed a significant potential to reduce the computing
effort needed to fully converge. In Section 4.1, both the number of iterations and
the CPU time could be reduced by factors of up to 3 or 4 (e.g., for instances b and
d in the last rows of Table 1). In graph coloring (Section 4.2.1), the reduction of
the number of iterations can also reach a factor of 4 (first instance in Table 2). We
could even find lower bounds that have never been reported before on the (well-
studied) graph coloring problem (see Points 2 and 3 of Remark 6, p. 23). Further
numerical tests on Multiple-Length Cutting-Stock in [15, Table 5] show a reduction
of a factor of 2 on a few difficult instances, which seems beyond the potential of
more classical stabilization methods.18

– By defining xit as the best solution ever found (the last pierce point), one can prove
that the lower bounds b>xit becomes strictly increasing along the iterations it.
This way, the lower bounds for graph coloring (Figure 3) eliminated the infamous
“yo-yo” effect arising in most (if not all) existing Column Generation algorithms.

There are also certain (inherent) deterrents to adopting to the new method. First, it
can be more difficult to design a projection algorithm than a separation one, because
the projection sub-problem is more general. As such, more work may be needed to
make the Projective Cutting-Planes reach its full potential. Secondly, we do not
(yet) have a fully comprehensive insight into why the Projective Cutting-Planes

is more successful on some problems than on others. It remains rather difficult to
explain why α < 0.5 is often better than α = 1 when choosing the inner solution xit

via xit = xit−1 + α · t∗it−1dit−1. Still, we can advance the following arguments:
– In a successful Projective Cutting-Planes implementation, the feasible solutions

xit generated along the iterations it are rather well-centered, i.e., they do not
exhibit a “bang-bang” behavior with strong oscillations. In a loose sense, the inner
solutions xit are reminiscent of an interior point algorithm in which the solutions
follow a central path [8, § 3.3]. The outer solutions opt(Pit) are reminiscent of the
Simplex algorithm that is known to exhibit a “bang–bang” behavior when moving
along edges from one extreme solution to another. We can argue that, by choosing
xit = xit−1 +α · t∗it−1dit−1 with α < 0.5, Projective Cutting-Planes generates
more well–centered interior paths, limiting the “bang-bang” effects. This idea is

18 Notice that the standard Column Generation needs twice more iterations than Projective

Cutting-Planes on the hard instances from [15, Table 5]; on a quarter of instances from this table
Column Generation needs at least 1.6 more iterations than Projective Cutting-Planes. The po-
tential of stabilization methods seems limited to a factor of 1.2 except for the easier instances m20

and m35, at least based on the experiments from Table 2 of [16].

24

further explored with numerical tests in [15, § 3.3].
– The projection sub-problem may generate stronger constraints than the separation

sub-problem. As described in Section 2.4.1 of [14], when x = 0n, the projection
subproblem project(x → d) is equivalent to normalizing all constraints (to make
them all have the same right-hand side value) and then choosing one by separating
x+d. Even if this paper uses x 6= 0n, the projection sub-problem can still generate
stronger (normalized) constraints than the separation sub-problem.19

The proposed method could be potentially useful to solve other LPs with prohibitively-
many constraints, beyond the four problems addressed in this paper or in the follow-
up work [15], i.e., Projective Cutting-Planes could be implemented whenever it
is possible to design a projection algorithm whose running time is similar to that of
the separation algorithm. We thus hope this work can shed useful light on solving
such large-scale LPs and help one overcome certain limitations of the current practices
used in standard Cutting-Planes.

Acknowledgements We thank the editor and the referees for their work on this paper.

REFERENCES

[1] H. Ben Amor and J. M. V. de Carvalho, Cutting stock problems, in Column Generation,
G. Desaulniers, J. Desrosiers, and M. M. Solomon, eds., vol. 5, Springer, 2005, pp. 131–161.

[2] J. F. Benders, Partitioning procedures for solving mixed-variables programming problems,
Numerische mathematik, 4 (1962), pp. 238–252.

[3] A. Charnes and W. W. Cooper, Programming with linear fractional functionals, Naval re-
search logistics quarterly, 9 (1962), pp. 181–186.

[4] F. Clautiaux, C. Alves, and J. M. V. de Carvalho, A survey of dual-feasible and superad-
ditive functions, Annals of Operations Research, 179 (2009), pp. 317–342.

[5] A. M. Costa, A survey on benders decomposition applied to fixed-charge network design prob-
lems, Computers & operations research, 32 (2005), pp. 1429–1450.

[6] M. Fischetti and M. Monaci, Cutting plane versus compact formulations for uncertain (in-
teger) linear programs, Mathematical Programming Computation, 4 (2-0.05), pp. 239–273.

[7] J. Gondzio, Interior point methods 25 years later, European Journal of Operational Research,
2012, 218 (2-0.05), pp. 587–601.

[8] J. Gondzio, P. González-Brevis, and P. Munari, Large-scale optimization with the primal-
dual column generation method, Math. Prog. Comp., 8 (2016), pp. 47–82.

[9] S. Held, W. Cook, and E. C. Sewell, Maximum-weight stable sets and safe lower bounds
for graph coloring, Mathematical Programming Computation, 4 (2-0.05), pp. 363–381.

[10] A. N. Letchford, F. Rossi, and S. Smriglio, The stable set problem: Clique and nodal
inequalities revisited, submitted to Computers & Operations Research (2020).

[11] M. E. Lübbecke and J. Desrosiers, Selected topics in column generation, Operations Re-
search, 53 (2005), pp. 1007–1023.

[12] E. Malaguti, M. Monaci, and P. Toth, An exact approach for the vertex coloring problem,
Discrete Optimization, 8 (2011), pp. 174–190.

[13] D. Porumbel, Ray projection for optimizing polytopes with prohibitively many constraints in
set-covering column generation, Mathematical Programming, 155 (2016), pp. 147–197.

[14] D. Porumbel, From the separation to the intersection subproblem for optimizing polytopes with
prohibitively many constraints in a Benders decomposition context, Discrete Optimization,
29 (2018), pp. 148–173.

[15] D. Porumbel, Further experiments and insights on Projective Cutting-Planes, technical
report of CEDRIC CS Lab CEDRIC-19-4550, to be later submitted for publication (2019),
http://cedric.cnam.fr/∼porumbed/papers/techrep4550.pdf

[16] D. Porumbel and F. Clautiaux, Constraint aggregation in column generation models for
resource-constrained covering problems, INFORMS JoC, 29 (2017), pp. 170–184.

[17] F. Vanderbeck, Computational study of a column generation algorithm for bin packing and
cutting stock problems, Mathematical Programming, 86 (1999), pp. 565–594.

19Consider choosing between 2x1+3x2 ≤ 1 and 200x1+300x2 ≤ 495. When solving the separation
sub-problem on [1 1]>, the second constraint might seem more violated because 200 + 300− 495 =
5 > 2 + 3− 1 = 4. But the (level sets of the) two constraints are parallel and the second constraint
is considerably weaker, even redundant. It is not difficult to check that the projection sub-problem
can never return this (redundant) second constraint, for any feasible x and for any direction d ∈ R2.

25

http://cedric.cnam.fr/~porumbed/papers/techrep4550.pdf

	Introduction
	Algorithmic Description of the Projective Cutting-Planes
	 Choosing the interior point xit at each iteration it
	 Techniques for designing a fast projection algorithm

	Adapting the New Method to Different Problems
	The Projective Cutting-Planes for the Benders Reformulation
	The model with prohibitively-many constraints and their separation
	Applying Projective Cutting-Planes
	The projection sub-problem algorithm
	From the general Benders model to a network design problem

	The Projective Cutting-Planes for the graph coloring Column Generation model
	The separation and the standard Cutting-Planes
	The Projective Cutting-Planes for Graph Coloring
	 The Projection Sub-Problem
	The Projection Sub-Problem in a Second Coloring Model with RR-Stables

	Numerical Experiments
	The Benders reformulation
	The results on the linear relaxation
	The results on the integer model

	Graph Coloring
	The standard coloring model
	The Projective Cutting-Planes on the model with RR-stables

	Conclusion and Prospects
	References

