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A. Proof of Lemma 1

To show that c(Φ,W,H) ≥ c(Φ̄,W∗,H∗), we first
minimize c with respect to W,H. For a fixed orthogonal
Φ ∈ RM×M we have

c∗(Φ) = min
W,H

c(Φ,W,H) =
∑
mn

(1+logE([ΦY]2mn)), (12)

and that this minimal value is attained at any point (W,H)
that verifies WH = E(|ΦY|◦2). To prove (12), it is sufficient
to show that, under conditions (5)–(6), there exists an exact
NMF of E(|ΦY|◦2) for any Φ. Let D = ΦΦ̄ᵀ, so that Φ =
DΦ̄. Denote V̄ = W̄H̄, v̄mn = [V̄]mn and dmm′ = [D]mm′ .
From (5) and (6) we have

E([ΦY]2mn) = E
((∑

m′

dmm′ [Φ̄Y]m′n

)2)
(13)

=
∑
m′

d2
mm′ v̄m′n. (14)

Hence, because all the terms in (14) are non-negative and
the rank of the matrix V̄ is at most K̄ ≤ K, we have
derived an exact NMF of E(|ΦY|◦2) which proves (12). As
Φ is orthogonal, one can verify that the objective c∗(Φ) is
equivalent to the one used in [12], [14].

Then, it follows that

c∗(Φ) =
∑
mn

log([(ΦΦ̄ᵀ)◦2V̄]mn) +NM. (15)

It remains to prove that minΦ c
∗(Φ) is attained at Φ = Φ̄.

Using the fact that D = ΦΦ̄ᵀ is orthogonal and thus that both
the columns and the rows of D◦2 sum to one, we obtain from
Jensen’s inequality

log

(∑
m′

d2
mm′ v̄m′n

)
≥
∑
m′

d2
mm′ log(v̄m′n). (16)

This implies the following lower bound on c∗(Φ)

c∗(Φ) ≥
∑
mn

∑
m′

d2
mm′ log(v̄m′n) +NM (17)

=
∑
m′n

log(v̄m′n) +NM = c∗(Φ̄). (18)

Moreover, one can see that c∗(Φ̄) = c(Φ̄,W?,H?) for any
W? ∈ RM×K

+ and H? ∈ RK×N
+ such that W?H? = V̄ =

E(|Φ̄Y|◦2) (using (14) and the fact that for Φ = Φ̄, D = I).
This completes the proof. �

B. Proof of Theorem 1

Let (Φ,W,H) be a global minimizer of c such that
c(Φ,W,H) = c∗(Φ̄). Following the results in Lemma 1, we
are going to show that ∀q ∈ {1, . . . , Q}, there exists a partition
{Bq}Qq=1 of {1, . . . ,M} such that spanBq

(Φ) = spanB̄q
(Φ̄).

By definition of B̄q , we denote v̂qn = v̄mn for m ∈ B̄q . Hence
∀q′ 6= q, there exists n ∈ {1, . . . , N} such that v̂qn 6= v̂q′n.
As c(Φ,W,H) = c∗(Φ̄), the equality holds in (16) and we
can write it as

∀n, log

( Q∑
q=1

d̂2
mq v̂qn

)
=

Q∑
q=1

d̂2
mq log(v̂qn), (19)

where d̂2
mq =

∑
m′∈B̄q

d2
mm′ . We will show at the end of the

proof that ∀m ∈ {1, . . . ,M} there exists τ(m) ∈ {1, . . . , Q}
such that

d̂2
mq =

{
1 if q = τ(m),
0 if q 6= τ(m).

(20)

From (20), we can construct Bq = {m : τ(m) = q, 1 ≤ m ≤
M} so that

d̂2
mq =

∑
m′∈B̄q

d2
mm′ = 1 if m ∈ Bq. (21)

By the definition of dmm′ and the orthogonality of Φ and Φ̄,
(21) implies that each row of Φ in the set Bq belongs to
spanB̄q

(Φ̄). Therefore spanBq
(Φ) ⊂ spanB̄q

(Φ̄).
To show that spanBq

(Φ) = spanB̄q
(Φ̄), we first check that

∀q, |Bq| =
M∑

m=1

d̂2
mq =

∑
m′∈B̄q

M∑
m=1

d2
mm′ = |B̄q|. (22)

From (22), we also obtain a similar formula as (21)∑
m∈Bq

d2
mm′ = 1 if m′ ∈ B̄q. (23)

Therefore spanB̄q
(Φ̄) ⊂ spanBq

(Φ).
Finally we show that (20) is correct by absurd. Assume that

(20) is not true. Hence there exist m and q′ 6= q, such that

d̂2
mq ∈ (0, 1) and d̂2

mq′ ∈ (0, 1). (24)

Then, the fact that
∑

q d̂
2
mq =

∑
m′ d2

mm′ = 1 together
with the strict concavity of the log function imply that the
equality (19) can hold only if v̂qn = v̂q′n,∀n. This contradicts
the fact that B̄q ∩ B̄q′ = ∅ and completes the proof. �


