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On the Identifiability of Transform Learning for
Non-negative Matrix Factorization

Sixin Zhang, Emmanuel Soubies, and Cédric Févotte Senior Member, IEEE

Abstract—Non-negative matrix factorization with transform
learning (TL-NMF) aims at estimating a short-time orthogonal
transform that projects temporal data into a domain that is more
amenable to NMF than off-the-shelf time-frequency transforms.
In this work, we study the identifiability of TL-NMF under
the Gaussian composite model. We prove that one can uniquely
identify row-spaces of the orthogonal transform by optimizing
the likelihood function of the model. This result is illustrated on
a toy source separation problem which demonstrates the ability
of TL-NMF to learn a suitable orthogonal basis.

Index Terms—NMF, transform learning, identifiability, source
separation, joint diagonalization.

I. INTRODUCTION

SPECTRAL unmixing by non-negative matrix factorization
(NMF) is a standard approach to signal decomposition.

It proceeds by transforming the signal into a domain where
NMF is applied. For one-dimensional audio signals, it is
customary to use a short-time frequency transform, such as
the short-time Fourier or discrete cosine transforms [1], [2].
Such transforms first apply a short-time window to divide
the signal into shorter segments of equal length and then
compute the orthogonal Fourier or cosine transform separately
on each segment. Using such off-the-shelf transforms can be
restrictive and many authors have considered learning adaptive
transforms in various settings, e.g., [3], [4], [5]. In particular,
transform-learning NMF (TL-NMF) was proposed with the
goal of learning an adaptive (short-time) orthogonal transform
together with NMF factors [6]. TL-NMF is also a special
case of independent low-rank tensor analysis (ILRTA) [7]
which offers a general framework for short-time modeling
of temporal sequences under composite covariance models.
In both TL-NMF and ILRTA, the parameters of the model
(e.g. the orthogonal transform and the NMF factors for TL-
NMF) are estimated through the minimization of a non-
convex objective function [7], [8]. The question of whether the
ground-truth parameters of the model correspond to a global
minimizer of the objective function (i.e., the identifiability of
the parameters) has not been studied so far.

In this work, we study the identifiability of the orthogonal
transform in TL-NMF under the Gaussian composite model
(GCM) [1]. We first derive a negative log-likelihood objective
for TL-NMF in Section 2.1. It is a variation of the Itakura-
Saito divergence that is commonly used in NMF (IS-NMF) [1]
and in particular in [6]. In Section 2.2, we establish conditions
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under which the row-spaces of the orthogonal transform in
TL-NMF (i.e., the linear subspaces generated by subsets of its
rows) are identifiable. These conditions generalize prior re-
sults on the identifiability of joint-diagonalization [9]. Finally,
Section 3 illustrates our identifiability result on a toy audio
decomposition problem.

Notations: For a matrix X ∈ RM×N , we denote by
xn, xm and [X]mn (or xmn) its n-th column, m-th row, and
(m,n)-th element respectively. For a vector signal y ∈ RT ,
y(t) denotes its t-th element and yᵀ denotes its transpose.
We write Diag(y) for the diagonal matrix formed out of the
vector y.

II. TRANSFORM LEARNING NMF

Given a temporal signal y ∈ RT , TL-NMF aims at finding
a short-time orthogonal transform φ : RT → RM×N such that
the element-wise squared magnitude |φ(y)|◦2 of φ(y) can be
well approximated by a low-rank or sparse NMF, i.e.,

|φ(y)|◦2 ≈WH. (1)

Denoting by Y ∈ RM×N the matrix that contains N
adjacent and half-overlapping short-time frames of y with
length M , we write φ(y) = ΦY. In this paper, we study
how to identify Φ given observations of y that satisfy (1).
The problem of how to identify the W and H belongs to the
identifiability of NMF [10]. In the next section, we derive
a new objective (slightly different to [6]) for TL-NMF to
learn Φ, W, and H. Throughout the paper, we consider
Φ ∈ RM×M to be a real orthogonal matrix. Moreover
W ∈ RM×K

+ and H ∈ RK×N
+ are non-negative matrices.

A. Gaussian Composite Model

The Gaussian composite model (GCM) is used to charac-
terize sound signals with composite structure [1]. The short-
time Fourier coefficients of a signal is modeled as a sum of
independent Gaussian random variables with an NMF structure
on their variances. We consider this model to characterize the
distribution of φ(y). In short, under the GCM, we have

[ΦY]mn ∼ N (0, [WH]mn), (2)

where the variance is [WH]mn > 0. Moreover, conditioned
on Φ, W, and H, [ΦY]mn is assumed to be independent of
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[ΦY]m′n′ for any (m,n) 6= (m′, n′). As such, the negative
log-likelihood function is given, up to a constant, by

−log p(Y|Φ,W,H) = −
∑
mn

logN
(
[ΦY]2mn

∣∣0, [WH]mn

)
c
=

1

2

M∑
m=1

N∑
n=1

(
[ΦY]2mn

[WH]mn
+ log

(
[WH]mn

))
. (3)

When Φ is fixed (e.g., to the discrete cosine transform, DCT),
minimizing (3) with respect to (w.r.t) W and H is equivalent
to IS-NMF [1]. To study identifiability, we will consider the
expected (w.r.t Y) negative log-likelihood objective:

c(Φ,W,H)
def
= E(− log p(Y|Φ,W,H)) (4)

c
=

1

2

M∑
m=1

N∑
n=1

(
E([ΦY]2mn)

[WH]mn
+ log

(
[WH]mn

))
.

B. Identifiability of Φ

Let us assume that there exists an orthogonal transform Φ̄
such that Φ̄Y follows the GCM with parameters W̄ ∈ RM×K̄

+

and H̄ ∈ RK̄×N
+ . Here K̄ is the ground-truth rank which is not

known a priori. Identifiability is about whether the minimal
solution of c as of (4) in Φ corresponds to Φ̄. In the context
of TL-NMF, we are interested in identifying row-spaces of
Φ̄ such that signal components of different nature can be
transformed into different (orthogonal) row-spaces of Φ̄. This
principle can improve source separation performance as we
shall illustrate in Section 3. More formally, we study the
identifiability in the sense of Definition 1.

Definition 1. Let spanB̄(Φ̄) (resp., spanB(Φ)) denote the
row-space of Φ̄ (resp., Φ) spanned by its rows indexed
by B̄ (resp., B). We say that the rows of Φ̄ indexed by
B̄ ⊂ {1, . . . ,M} are identifiable if any global minimizer of c
is attained for a Φ such that there exists B ⊂ {1, . . . ,M} for
which spanB̄(Φ̄) = spanB(Φ).

We first give sufficient conditions under which every triplet
(Φ̄,W?,H?) with W?H? = W̄H̄ is a global minimizer of c.

Lemma 1. Let Y be a random matrix such that, for each
column yn of Y,

E(yn) = 0, (5)
Φ̄E(ynyᵀ

n)Φ̄ᵀ = Diag(v̄n), (6)

for an orthogonal matrix Φ̄ ∈ RM×M and a vector v̄n =∑K̄
k=1 w̄kh̄kn formed by the non-negative matrices W̄ ∈

RM×K̄
+ and H̄ ∈ RK̄×N

+ . Then, for K ≥ K̄, W? ∈ RM×K
+ ,

and H? ∈ RK×N
+ such that W?H? = W̄H̄, the triplet

(Φ̄,W?,H?) is a global minimizer of c:

c(Φ,W,H) ≥ c(Φ̄,W?,H?), ∀(Φ,W,H). (7)

The proof of Lemma 1 is deferred to the supplementary
material. In the GCM, each column yn of Y follows Φ̄yn ∼
N (0,Diag(v̄n)). Therefore the conditions (5)–(6) of Lemma 1
are always satisfied. Moreover, it is noteworthy to mention that
Lemma 1 applies to a much broader class of signals than those

following the GCM. For instance, when Y is formed by half-
overlapping short-time windows, there does not exist a Φ̄ for
which [Φ̄Y]mn is independent of [Φ̄Y]m′n′ for adjacent n
and n′. Hence the independence assumption from the GCM
under which the objective c has been derived is not satisfied.
However, the conditions in Lemma 1 can still be satisfied,
even if Y is non-Gaussian. Such examples shall be given in
Section 3.

The condition (6) writes as a joint diagonalization of all
the covariance matrices E(ynyᵀ

n), by a common basis Φ̄. The
identification of the rows of Φ̄ is a well-studied problem in the
literature of joint diagonalization [9]. However, the results are
mostly about when Φ equals to Φ̄ up to a signed permutation.
Below we go one step further by studying the identification
of row-spaces of Φ̄.

Theorem 1. Let us partition the rows of W̄H̄ into Q sets
{B̄q}Qq=1 with the smallest possible Q, such that ∀(m,m′) ∈
(B̄q)2 and ∀n ∈ {1, . . . , N}, [W̄H̄]m,n = [W̄H̄]m′,n

(partition into subsets of equal rows, if any). Then, under
the conditions of Lemma 1 (i.e. (5), (6), and K ≥ K̄),
∀q ∈ {1, . . . , Q} the rows of Φ̄ indexed by B̄q are identifiable.

The proof of Theorem 1 is deferred to the supplementary
material. Theorem 1 coincides with Theorem 2 in [9] when
Q = M . However, our result derives from the analysis of
the global minimizers of c while in [9] the authors study a
different objective function.

Numerical illustration: We illustrate the identifiability of Φ̄
through the minimization of c when Y follows the GCM with
the ground-truth parameters Φ̄, W̄, and H̄. In such case, the
expectation in (4) is given by (see the proof of Lemma 1)

E(|ΦY|◦2) = (ΦΦ̄ᵀ)◦2W̄H̄. (8)

Let us consider the case where M = 4, N = 3, K̄ = K = 2,
Φ̄ is the DCT (type-II) and

W̄H̄ =


1 0.1 1.1
1 0.1 1.1

0.1 1 1.1
0.1 1 1.1

 . (9)

Given the structure of W̄H̄ and Theorem 1, there are Q = 2
identifiable row-spaces of Φ̄. The first (resp., second) one is
the linear span of the first and second rows (resp., the third
and fourth rows) of Φ̄ (i.e., B̄1 = {1, 2} and B̄2 = {3, 4}).
To minimize c, we use a slight modification (that reflects the
GCM assumption instead of pure IS divergence) of the block-
coordinate descent algorithm described in [8] (projected quasi-
Newton step for Φ, majorization-minimization for W and H).
The algorithm starts from a random initialization and stops
when sufficient numerical precision is reached.1 The estimated
basis Φ satisfies

ΦΦ̄ᵀ =


0.703 0.711 0.000 0.000
0.000 0.000 0.955 −0.297
0.711 −0.703 0.000 0.000
0.000 0.000 −0.297 −0.955

 .

1The code to reproduce the numerical experiments reported in this paper
is available online (to be released at publication).
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This shows that the first and second rows (resp., the third and
forth row) of Φ̄ are accurately identified with the first and
third row (resp., the second and forth row) of Φ. We remark
that the condition (6) in Lemma 1 implies that existing joint-
diagonalization algorithms, such as [11], [12], [13], [14], could
also be applicable to identify Φ̄ directly, prior to NMF.

III. UNSUPERVISED SOURCE SEPARATION

We evaluate the performance of TL-NMF under the GCM in
an unsupervised single-channel source separation problem. We
study whether TL-NMF can learn an adaptive Φ to improve
source separation performance.

A. Experimental Setting

We consider the signal y(t) =
∑I

i=1 y(i)(t) where (y(i))Ii=1

are random sources defined as the sum of cosine func-
tions shifted by a random phase to mimic musical notes
with different timbres. More precisely, we set y(i)(t) =∑R

r=1 βi,r cos(r(2π fi
f0
t + θi))gi(t) where θi ∈ [0, 2π) is an

uniform random phase, fi > 0 a fundamental frequency,
f0 > 0 is the sampling frequency, r an integer number,
βi,r > 0 a timbre coefficient, and gi ∈ RT a positive envelop
that varies slowly over t ∈ {1, . . . , T}. Moreover, we assume
that θi is independent of θi′ , for all i′ 6= i. Our goal is then
to assess the ability of TL-NMF to separate those I harmonic
notes.

In this section, we consider a scenario with I = 2 sources
that are generated according to the aforementioned model with
R = 2, β1,r = β2,r = 0.5r, as well as the fundamental
frequency f1 = 440Hz (corresponding to musical note A4)
and f2 = 466.16Hz (A4#), respectively. We used T = 15000
and f0 = 5000Hz, leading a signal y of duration 3s. This
sampling rate is large enough to avoid aliasing. One realization
of such a signal is depicted in Figure 1, where one can also see
the shape of the used envelopes gi. Finally, to deploy our TL-
NMF method, we consider a Tukey short-time window a [15]
of length M = 200 (duration dM = 40ms), with a cosine
fraction parameter set to 0.1.

B. Theoretical Analysis

Let us analyse to which extent the assumptions of Lemma 1
are satisfied by the considered signal y. The short-time matrix
Y(i) for the i-th source verifies y(i)

n (m) = y(i)(m + Mn
2 −

M)a(m) (using zero-padding at signal boundaries). From the
independence of the uniform random phases {θi}Ii=1, we get
that E(yn) =

∑
i E(y(i)

n ) = 0 for all n ∈ {1, . . . , N}.
Similarly, E(ynyᵀ

n) =
∑

i E(y
(i)
n y

(i)ᵀ
n ) and its (m,m′)-th

element reads
I∑

i=1

s
(i)
m,m′,n

2

R∑
r=1

β2
i,r cos

(
2πr

fi
f0

(m−m′)
)
, (10)

where s
(i)
m,m′,n = a(m)a(m′)gi(m + Mn

2 − M)gi(m
′ +

Mn
2 − M). As s

(i)
m,m′,n depends on a, the choice of the

window will have an impact on the learnt basis Φ. This
phenomenon has been previously observed in [6], [7], [16].

0 5000 10000 15000
−0.4

0

0.4

0.8

t

Fig. 1: One random realization y of a sum of two har-
monic processes. Source y1(t) (resp., y2(t)) is nonzero
for t ∈ {1, . . . , 5000} ∪ {10001, . . . , 15000} (resp., t ∈
{5001, . . . , 15000}).

Hence, the question is whether there exist Φ̄, W̄, and H̄,
such that E(ynyT

n ) satisfies the joint-diagonalization condi-
tion (6). A general analysis from (10) is challenging. Instead,
let us provide an intuition through the special case where
s

(i)
m,m′,n = s

(i)
n (i.e., independence from m and m′) and, ∀i,

2πr fi
f0

= 2πr f
f0

= πp/M for p ∈ N ∩ (0,M). Then, one
easily gets that E(ynyᵀ

n) = Φ̄ᵀDiag(v̄n)Φ̄ for

v̄n =
∑I

i=1
Ms(i)n

4 (β2
i,1, β

2
i,1, · · · , β2

i,R, β
2
i,R, 0 · · · 0)ᵀ∈ RM

+ ,

Φ̄ = (c1, s1, · · · , cR, sR, ∗ · · · ∗)ᵀ ∈ RM×M , (11)

where cr(m) =
√

2/M cos(2πr f
f0
m + ϕr) and sr(m) =√

2/M sin(2πr f
f0
m+ϕr) for some phase shift ϕr ∈ [0, 2π).

The last M−2R atoms are arbitrary as long as Φ̄ is orthogonal.
Hence, the assumptions of Lemma 1 are satisfied with K̄ = I .

Although the configuration in Section III-A does not follow
the (ideal) assumptions we made to derive (11), the covariance
matrix E(ynyᵀ

n) is still close to be circulant Toeplitz. Indeed,
given the very slow variations of the envelopes gi and the
short duration of the Tukey window, we have a(m) ≈ 1
and gi(m + Mn

2 − M) ≈ gi(
Mn

2 − M), which lead to
s

(i)
m,m′,n ≈ gi(

Mn
2 −M)2. Hence, we expect that TL-NMF

learns a transform Φ containing signal-adapted atoms alike
cos(2πr fi

f0
·+ϕr,i) and sin(2πr fi

f0
·+ϕr,i). In contrast, DCT

atoms are fixed and defined by the frequencies { r
2M f0 =

r
2dM

Hz}M−1
r=0 which do not contain the frequencies of the

pure harmonics that compose the signal y. It is noteworthy
to mention that increasing the window size dM to refine the
frequency grid of the DCT would come at the price of a worse
time-localization of the music notes.

C. Numerical Estimation

Unlike the ideal case where c can be computed from
(4) and (8), we generate 10 i.i.d realizations of the mixed
signal y to construct an empirical estimate of E(|ΦY|◦2),
and thus of c. This allows us to apply the numerical method
deployed in Section II.B to optimize Φ, W, and H. As
a baseline, we consider IS-NMF under a fixed DCT basis,
which we refer to as DCT-NMF. It amounts to minimize the
empirical estimate of c w.r.t W and H under the fixed Φ. The
parameters (Φ,W,H) of TL-NMF and (W,H) of DCT-NMF
are initialized randomly. Both methods are used with K = 2.
To reduce numerical instabilities, we add a small constant ε
to each [ΦY]mn and [WH]mn in the objective (4). Here, we
set ε = 5× 10−7.
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Fig. 2: NMF factors W and H of E(|ΦY|◦2). Top: DCT-
NMF. Bottom: TL-NMF. The m-axis is restricted to where
wkm is non-negligible (m = 1, . . . , 20).

m = 1 m = 2

m = 3 m = 4

m = 5 m = 6

m = 7 m = 8

Fig. 3: The eight most significant atoms of Φ from TL-NMF.

D. Results and Discussion

a) Adaptivity of TL-NMF: Figure 2 displays the NMF
of E(|ΦY|◦2) using TL-NMF and DCT-NMF. For TL-NMF,
the m-axis is reordered by decreasing influence of the atoms,
as measured by the energy

∑
n E([ΦY]2mn). We see that

the columns wk of W are better separated under the Φ
from TL-NMF than under the DCT. Each row hk of H also
varies more smoothly w.r.t n, following the envelope gi(t) of
each source. The eight rows of Φ with largest influence are
depicted in Figure 3. It illustrates that TL-NMF has found
atoms alike cos(2πr fi

f0
· +ϕi,r) or sin(2πr fi

f0
· +ϕi,r), as

expected. The frequencies of these atoms are reported in
Table I. They have been estimated through a nonlinear least-
square regression of the learnt atoms with the harmonic model
(a, f, θ) 7→ a cos(2π f

f0
· +θ). To increase the robustness to

local minimizers, we used 300 randomized initializations of
BFGS and kept the best fit. For comparison, the frequencies
of the 16 most significant DCT atoms are also reported in
Table I. One can see that these DCT atoms are close to but
not concentrated at the fundamental frequencies of the notes

m DCT m DCT
1 437.5 9 887.5
2 462.5 10 487.5
3 450 11 400
4 475 12 500
5 425 13 862.5
6 875 14 950
7 937.5 15 912.5
8 925 16 900

m TL-NMF
1 466.37
2 440.00
3 439.85
4 466.09
5 932.39
6 932.33
7 879.93
8 880.00

TABLE I: Frequencies of the DCT and TL-NMF atoms (in
the same order as in Figure 2 and Figure 3).

source SDR SIR SAR

DCT-NMF 1 14.37 (0.02) 19.98 (0.05) 15.80 (0.01)
2 14.36 (0.00) 19.95 (0.05) 15.81 (0.02)

TL-NMF 1 32.42 (0.09) 40.69 (0.06) 33.12 (0.10)
2 32.41 (0.10) 40.67 (0.07) 33.12 (0.10)

TABLE II: BSS Eval mean values with standard deviation
(in bracket). The SDR is a general measure of performance.
The SIR and SAR measure the influence of interferences
and artifacts, respectively [17]. Decibel values, the higher, the
better.

A4 (440Hz) and A4# (466.16Hz) that compose the signal y.
In contrast, the atoms learnt by TL-NMF are perfectly adapted
to the input signal as they recover the frequencies of the two
notes. This adaptivity explains that a more discriminative NMF
(sparser W and smoother H) can be obtained by using the
learnt Φ rather than the DCT (Figure 2).

b) Source Separation Performance: We apply standard
Wiener filtering to separate each (of the ten) realizations of y
into K = 2 sources. It involves the computation of two masks
from the estimated W and H to be applied to ΦY prior to
overlap-add reconstruction, see [1]. The quality of the separa-
tion is evaluated with the standard toolbox BSS Eval 2.1 [17].
We evaluate the separation of the ten realizations of y and
average the BSS Eval metrics. We then repeat this experiment
5 times and report the mean values with standard deviation of
the metrics in Table II. They show that the performance is
significantly improved over the DCT, thanks to the learning
of a more discriminative basis Φ. We also found that other
types of DCT (I, III, IV) lead to similar BSS Eval metrics
than those obtained with the DCT in Table II.

IV. CONCLUSION

In this paper, we have studied the identifiability of trans-
form learning for NMF under the Gaussian composite model
(GCM). By minimizing the expected negative log-likelihood,
we prove that it is possible to uniquely identify the row-
spaces of the orthogonal transform. This identifiability result
is further supported by a source separation example which
demonstrates the ability of TL-NMF to separate musical notes
with close fundamental frequencies. This is made possible
because the atoms learnt by TL-NMF can precisely adapt to
the frequencies of the musical notes that compose the mixed
signal.



5

REFERENCES

[1] P. Smaragdis, C. Févotte, G. Mysore, N. Mohammadiha, and M.
Hoffman, “Static and dynamic source separation using nonnegative
factorizations: A unified view,” IEEE Signal Process. Mag., vol. 31,
no. 3, pp. 66–75, May 2014.

[2] H. Sawada, N. Ono, H. Kameoka, D. Kitamura, and H. Saruwatari, “A
review of blind source separation methods: two converging routes to
ILRMA originating from ICA and NMF,” APSIPA Trans. Signal Inf.
Process., vol. 8, no. 1, p. e12, May 2019.

[3] S. Abdallah and M. Plumbley, “If the independent components of natural
images are edges, what are the independent components of natural
sounds?” in Proc. ICA, San Diego, USA, 2001, pp. 534–539.

[4] S. Ravishankar and Y. Bresler, “Learning Sparsifying Transforms,” IEEE
Trans. Signal Process., vol. 61, no. 5, pp. 1072–1086, Mar. 2013.

[5] P. Smaragdis and S. Venkataramani, “A neural network alternative to
non-negative audio models,” in Proc. ICASSP, New Orleans, USA, 2017,
pp. 86–90.

[6] D. Fagot, H. Wendt, and C. Févotte, “Nonnegative matrix factorization
with transform learning,” in Proc. ICASSP, Calgary, Canada, 2018, pp.
2431–2435.

[7] K. Yoshii, K. Kitamura, Y. Bando, E. Nakamura, and T. Kawahara,
“Independent low-rank tensor analysis for audio source separation,” in
Proc. EUSIPCO, Rome, Italy, 2018, pp. 1657–1661.

[8] P. Ablin, D. Fagot, H. Wendt, A. Gramfort, and C. Févotte, “A quasi-
Newton algorithm on the orthogonal manifold for NMF with transform
learning,” in Proc. ICASSP, Brighton, United Kingdom, 2019, pp. 700–
704.

[9] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, “A
blind source separation technique using second-order statistics,” IEEE
Trans. signal Process., vol. 45, no. 2, pp. 434–444, Feb. 1997.

[10] D. Donoho and V. Stodden, “When does non-negative matrix factor-
ization give a correct decomposition into parts?” in Proc. Neurips,
Vancouver, Canada, 2004, pp. 1141–1148.

[11] J.-F. Cardoso and A. Souloumiac, “Jacobi angles for simultaneous
diagonalization,” SIAM J. Matrix Anal. Appl., vol. 17, no. 1, pp. 161–
164, Jan. 1996.

[12] D. T. Pham, “Joint approximate diagonalization of positive definite
Hermitian matrices,” SIAM J. Matrix Anal. Appl., vol. 22, no. 4, pp.
1136–1152, May 2001.

[13] A. Ziehe, P. Laskov, G. Nolte, and K.-R. Müller, “A fast algorithm
for joint diagonalization with non-orthogonal transformations and its
application to blind source separation,” J. Mach. Learn. Res., vol. 5,
no. 1, pp. 777–800, Jul. 2004.

[14] P. Ablin, J.-F. Cardoso, and A. Gramfort, “Beyond Pham’s algorithm
for joint diagonalization,” Proc. ESANN, pp. 607–612, 2019.

[15] P. Bloomfield, Fourier analysis of time series: an introduction. John
Wiley & Sons, 2004.

[16] K. Yoshii, R. Tomioka, D. Mochihashi, and M. Goto, “Beyond NMF:
Time-domain audio source separation without phase reconstruction.” in
Proc. ISMIR, Curitiba, Brazil, 2013, pp. 369–374.

[17] E. Vincent, R. Gribonval, and C. Févotte, “Performance measurement
in blind audio source separation,” IEEE Trans. Audio, Speech Lang.
Process., vol. 14, no. 4, pp. 1462–1469, Jul. 2006.


