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ABSTRACT
Motions in the two-body problem against the background of the cosmic vacuum are considered.
The potential function of the problem is taken in the form U = μ/r + H2r2/2, where μ is the
gravitational parameter, H is the effective Hubble constant, which represents cosmic vacuum
and r is a distance from attracting centre. Precise analytical solution of the equations of
motion is obtained. The formulae for calculating a moving particle’s coordinates for any
instance of time with given initial conditions are derived. The chain of the formulae contains
a transcendent equation analogous to the Kepler’s equation in the two-body problem. The
formulae are expressed using incomplete elliptic integrals of the first and third kind.

It is shown that finite motions take place only within a circle with a radius r = (μ/H 2)1/3

centred in an attracting body. In this case, the minimum distance cannot exceed the value of
r� = (μ/4H2)1/3. Circular motions can take place in the area of finite motions. The circular
motions with the radii in the range (r∗, r) are orbitally unstable. This means that the slightest
variations in the initial conditions turn the circular motion either into finite motion with a great
amplitude of distance’s variation or into infinite motion. The latter can exist for any value of
minimum distance.

Numerical integration of the equations of motion has been carried out for a number of
instances. It is shown that, if the equations are solved for the rectangular coordinates, numerical
integration can give erroneous solutions if the trajectory approaches the sphere with the radius
r . This is a result of the accuracy’s loss in the case when two close values are subtracted. A
change of variables in the equations of motion is found which gives no loss of accuracy so that
numerical integration can be carried out with the same accuracy for any trajectory of motions.

Comparison of analytical solution with the numerical integration is made for a number
of sets of initial conditions. It gives complete coincidence of solutions at the time intervals
covering several dozens of revolutions of the particle around the attracting centre.

Key words: gravitation – galaxies: evolution – galaxies: general – galaxies: kinematics and
dynamics – cosmology: theory.

1 IN T RO D U C T I O N

Nowadays, it is an obvious fact that all the bodies of the Universe are
subjected to the mechanical influence of some additional force not
related to the action of other bodies. This influence was predicted
by Einstein and was confirmed by astronomical observations of the
last few decades (Riess et al. 1998; Perlmutter et al. 1999). The
physical cause of the phenomenon was called cosmic vacuum. It is
this physical agent that gives rise to the acceleration of the observed

� E-mail: emelia@sai.msu.ru

expansion of the Universe. The first models of the expansion of the
Universe were elaborated by de Sitter (1917). Friedmann (1922,
1924) took, in addition to the cosmic vacuum, into consideration
non-relativistic matter. But the both treated the Universe as a whole
and the motions of individual galaxies were not considered. Proba-
bly it is the reason why, since de Sitter and Friedmann, it is supposed
that the motions of galaxies in the cosmic vacuum field take place
only in radial directions, tacitly assuming that there are no motions
in lateral directions. This point of view is also encouraged by the
absence of observable motions of galaxies in the picture plane. But
it does not mean that there are no such motions.

C© 2013 The Authors
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In fact, the study of motions of separate galaxies has begun only
in recent years. For instance, the papers by Chernin (2001) and
Dolgachev, Domozhilova & Chernin (2003) study the motions of
the Local Group galaxies in the cosmic vacuum field influenced
by the gravitational forces using the model of planar rectilinear
restricted three-body problem.

Strict description of any motions in the Universe influenced by the
gravitational forces and cosmic vacuum is possible only using the
equations of Einstein’s general relativity theory. But there is a pos-
sibility of studying the influence of cosmic vacuum using only the
equations of Newtonian mechanics by adding to them terms which
approximately describe the influence of cosmic vacuum upon all
the bodies of the Universe. This kind of methodology is used in
celestial mechanics to take into consideration relativistic effects in
the equations of motion of celestial bodies. Obviously, the model
is approximate but, while its accuracy is no worse than that of ob-
servations, the model can be used to solve both straight and reverse
practical problems of the mechanics of the bodies of the Universe.
The matching of the modelled motions with those obtained from
observations can serve as criterium for the model’s accuracy.

Lyk’yanov (2009) studied all possible motions of galaxies in-
cluding those in lateral directions in the repulsion field created by
cosmic vacuum assuming that there are no other forces. In other
words, the problem of the motions of many bodies in cosmic vac-
uum field was considered. Strict analytical solution of this problem
was obtained.

The next step in modelling the motions of the bodies of the
Universe within the frames of the simplified model of cosmic vac-
uum is studying the motion of two bodies influenced by both their
gravitational attraction and cosmic vacuum. Such an approach has
already been applied by Nandra, Lasenby & Hobson (2012) where
some features of the motions were obtained using both Newtonian
mechanics and general relativity theory. However, the exact analyt-
ical solution of the equations of motion in such a statement of the
problem has not yet been derived.

In this paper, we deduce the exact analytical solution of the
two-body problem against the cosmic vacuum background where
the influence is determined by the force depending solely upon
the distance between bodies. The dependence of the force on the
distance was taken in the same form as that used by Lyk’yanov
(2009) and Nandra et al. (2012). In this way, we get a mechanical
model involving two material points (particles) with finite masses
whose motions are influenced by their mutual Newtonian attraction
and by an additional force acting along the line connecting the
particles, constantly directed opposite to the origin of the reference
frame with a value of H2r, where H is an effective Hubble constant
defined only by the cosmic vacuum’s density and r is the distance
to the origin of coordinates. The origin is placed in one of the
moving particles. Since the model involves forces depending solely
on the distance, it is easy to prove that the particles move in a
constant plane. Let us place on this plane a rectangular system of
coordinates (x, y) centred in one of the moving particles. Then, the
motion of another particle in this system of coordinates is described
by the solution of the following system of differential equations:

d2x

dt2
= − μ

r3
x + H 2x,

d2y

dt2
= − μ

r3
x + H 2y, (1)

where μ is a gravitational parameter defined by the formula

μ = G(M1 + M2),

where G is the universal gravitational constant, M1 and M2 are the
masses of the particles.

Now we can define the problem more exactly. It is necessary
to obtain the general solution of the equations of motion, i.e. the
coordinates x, y of the moving particle, as explicit functions of time
and arbitrary constants. These functions can be given by a chain of
formulae where transcendent equations are permissible analogous
to the Kepler equation in the classical two-body problem.

We leave outside of this paper the question of how accurately
such equations of Newtonian mechanics describe the motions of
two gravitating particles in the presence of the cosmic vacuum.
Moreover, it is obvious that the real Universe has more objects than
just two material points and cosmic vacuum, and these objects are
not material points since galaxies are pretty extensive formations.
Nevertheless, we neglect the presence of other attracting bodies as
well as their shapes and dimensions. It is left for further researches
to estimate the errors resulting from the adopted assumptions. We
suppose that the model in consideration may either serve as an
approximate description of real motions or be used as an initial
approximation in solving the problem if it is stated more accurately.

On the other hand, the mechanical model in consideration may be
studied independently from its direct applications. This process can
be useful for both improvement of the methods and accumulation
of our knowledge.

Solving the equations of motion in consideration can be carried
out in three different ways. The first one is to obtain the general ana-
lytical solution depending on four arbitrary constants. This method
provides formulae for direct calculations of a moving particle’s co-
ordinates for any instance of time if initial conditions are given. In
this case, the solution can be derived with any pre-assigned accu-
racy. Errors do not depend on a time interval between initial and
final positions. The second method is numerical integration of the
equations of motion. For given initial conditions, it gives particu-
lar solution successively for a series of instances at a limited time
interval. But the methods of numerical integration have two essen-
tial drawbacks. First, the expansion of time interval results in the
increase of errors. Secondly, the accuracy of the solution is always
limited, whatever perfect method is used. The third method of solv-
ing the equations in consideration is based on treating the motions as
perturbed Keplerian motions. The theory of perturbations provides
us with an approximate solution on the assumption that the cosmic
vacuum’s influence is small compared to the mutual gravitational
attraction of the bodies. A feature of perturbed Keplerian motion
in this problem is that zero initial eccentricities always result in
non-zero perturbations in eccentricities. Thus, we see an apparent
contradiction to the fact of existence of circular motions in this
model. In fact, circular motions are provided here not by non-zero
eccentricity, as it is in many other problems, but by the fact that, if
the eccentricity is considerable, the mean anomaly stops changing
at all so that circular motion is produced by the secular variation of
the argument of latitude, i.e. by the apse line motion.

In this paper, we deduce the exact analytical solution of the two-
body problem against the cosmic vacuum background and check the
solution by comparing it with the results of the numerical integration
of the equations of motion. The perturbed Keplerian motion is not
examined here.

2 R E D U C T I O N O F TH E S O L U T I O N
TO QUA D R AT U R E S

The equations of motion can be written in the form

d2x

dt2
= ∂U

∂x
,

d2y

dt2
= ∂U

∂y
,

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/429/4/3477/1019620 by guest on 28 January 2022



Two-body problem against the cosmic vacuum 3479

where

U = μ

r
+ H 2

2
r2

is the potential function.
Let us examine some features of these equations and their solu-

tions.
The equations of motion have the following energy integral:(
dx

dt

)2

+
(

dy

dt

)2

= μ

(
2

r
+ H 2

μ
r2

)
+ 2α1

and the area integral

x
dy

dt
− y

dx

dt
= 2α2,

where α1 and α2 are arbitrary constants.
There are stationary solutions corresponding to the moving par-

ticle’s positions on the circle with the radius

r =
( μ

H 2

) 1
3

centred in the origin of coordinates. This is the stationary solution
circle. It can also be called zero acceleration circle since any motion
of the particle on this circle has zero acceleration.

Inside the zero acceleration circle, there are circular motions
corresponding to the particular solutions of the equations. If r =
rc ≤ r , the linear velocity Vc of the circular motion is defined by
the relationship

Vc =
√

μ

rc

− H 2r2
c .

On the zero acceleration sphere Vc = 0. The circular motion has the
period of revolution

Tc = 2πrc

Vc

.

As will be shown further, finite motions, i.e. the motions with
distances always less than some finite value, are possible only within
the zero acceleration circle. So, in this problem, it is quite reasonable
to choose the radius of the zero acceleration circle r as a unit for
the measurements of distances.

Let us reduce the equations of motion to canonical form. For
this, we replace the sought functions x, y by distance r and latitude
λ using the formulae

x = r cos λ, y = r sin λ.

Treating the new variables as generalized coordinates, we introduce
corresponding generalized impulses

pr = dr

dt
, pλ = r2 dλ

dt
.

Now the canonical form of the equations of motion can be written
as follows:

dr

dt
= ∂F

∂pr

,
dpr

dt
= −∂F

∂r
,

dλ

dt
= ∂F

∂pλ

,
dpλ

dt
= −∂F

∂λ
,

where the Hamiltonian is

F = 1

2

(
p2

r + p2
λ

r2

)
− μ

r
− H 2

2
r2.

Since the Hamiltonian does not explicitly depend on time, the
canonical system has the first integral

F = α1,

where α1 is an arbitrary constant. Hence, we have

α1 = 1

2
V 2 − μ

r
− H 2

2
r2, (2)

where V is the modulus of the velocity.
In the particular case of circular motion we have V = Vc, r =

rc, and the constants Vc, rc, and α1 are interrelated in the following
way:

V 2
c = μ

rc

− H 2r2
c , α1 = −1

2

μ

rc

− H 2r2
c .

The corresponding Hamilton–Jacobi equation is

∂S

∂t
+ 1

2

[(
∂S

∂r

)2

+ 1

r2

(
∂S

∂λ

)2
]

− μ

r
− H 2

2
r2,

and its full integral can be expressed in the form

S(t, r, λ) = −α1t + α2λ +
∫ r

r0

√
2α1r2 + 2μr + H 2r4 − α2

2

1

r
dr,

where α1, α2 are arbitrary constants, r0 is the minimum value of the
distance r in any particular solution. Then the full integral can be
defined using the relationships

∂S

∂α1
= β1,

∂S

∂α2
= β2, (3)

∂S

∂r
= pr,

∂S

∂λ
= pλ. (4)

where β1, β2 are two more arbitrary constants.
The first two relationships give us∫ r

r0

r dr√
2α1r2 + 2μr + H 2r4 − α2

2

= t + β1,

α2

∫ r

r0

1√
2α1r2 + 2μr + H 2r4 − α2

2

1

r
dr = λ − β2.

Here the dependence of coordinates on time is given by quadra-
tures, so that it is impossible to directly calculate coordinates at
given instances using these formulae. The deduction of coordinates
as explicit functions of time from these relationships is called inver-
sion of quadratures. The integrals given above are expressed using
incomplete elliptic integrals of the third kind. The inversion of such
integrals via known functions is impossible.

To carry out inversion of quadratures, we introduce auxiliary
variable u using the differential relationship

dr√
2α1r2 + 2μr + H 2r4 − α2

2

= du.

Then, we have

dt = r du , dλ = α2 du

r
.

First, we should make inversion of the quadrature∫ r

r0

dr√
2α1r2 + 2μr + H 2r4 − α2

2

= u − u0, (5)

where u0 is an arbitrary constant. In result, we obtain the function
r(u).
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After that, we obtain the function u(t) via inversion of the integral

t − t0 =
∫ u

u0

r(u) du,

and the function λ(u) is found by integrating the relationship

λ − λ0 =
∫ u

u0

α2

r(u)
du,

where λ0 is an arbitrary constant. If t = t0, we have u = u0, λ = λ0.
Inversion of the quadrature (5) can be performed using elliptic

functions. We rewrite this relationship in the form∫ r

r0

dr√
W (r)

= u′ − u′
0,

where

W (r) = r4 + 2
α1

H 2
r2 + 2

μ

H 2
r − α2

2

H 2
, u′ = Hu.

Obviously, motions are possible only if W(r) ≥ 0. Hence the roots of
the equation W(r) = 0 define areas of possible motions. The roots
depend on parameters μ and H as well as on arbitrary constants
α1 and α2, that is, on initial conditions. Analysis of the areas of
possible motions is made further.

The fact that such differential equations can be integrated is not a
new result. Moreover, these equations turn out to be particular case
of a more general type of equations examined by Poleshchikov &
Zhubr (2008). Not only did these authors demonstrate that the equa-
tions admit integration but they also carried out inversion of quadra-
tures. The potential function of the problem solved by Poleshchikov
& Zhubr (2008) has the form

U = μ

r
+ 1

r

N∑
k=1

[
Ak(r + bT x)k + Bk(r − bT x)k

]
,

where x = {x, y, z} is the position vector of a particle, b is an
arbitrary constant unit vector, Ak, Bk (k = 1, 2, . . . , N) are arbitrary
constants. This potential function is reduced to that of our problem
if we put b = 0, A3 = B3 = H2/4 and turn the remaining constants
Ak, Bk (k = 1, 2, 4, . . . , N) to zero. Poleshchikov & Zhubr (2008)
have proved that the equations admit integration for any value of
N and carried out the inversion of quadratures for N ≤ 3, which
includes our particular case.

There is a principal possibility to use the results of Poleshchikov
& Zhubr (2008) to solve our problem. But their formulae represent-
ing coordinates as functions of time have rather general and lengthy
form, so that one cannot deduce from them all the features of the
motions. Their reduction to the particular case of our problem is
rather complicated task. So we carried out inversion of quadratures
and obtained the sought formulae directly from our equations of
motion. This way seems to be more simple and illustrative.

3 EX A M I NATI O N O F TH E A R E A S
OF POSSIBLE M OTIONS

Before solving the equations of motion, we can examine some
important features of possible motions in our problem. For this,
suffice it to make analysis of the roots of the equation

W (r) = 0.

The values of the roots are necessary when constructing solution by
inversion of quadratures.

It is easy to demonstrate that the roots admit two possibilities.
The first one is the case of four real roots, the second one is that

Figure 1. Two variants of the function W(r). For the function W1(r), the
equation W1(r) = 0 has four real roots. The function W2(r) has two real
roots and two complex conjugate roots.

when two roots are real and another two are complex conjugate.
If all four roots are real, only one of them is negative. Moreover,
multiple roots are also possible. Fig. 1 shows two variants of the
function W(r). The first one, W1(r), demonstrates the case when all
four roots are real, while the function W2(r) has only two real roots.

3.1 The case of four real roots

Let us first consider the case of four real roots. We designate them
as r−1, r0, r1, r2 (r−1 ≤ r0 ≤ r1 ≤ r2).

As was noticed earlier, we exclude from consideration the case
of rectilinear motion when α2 = 0 and the case when two bodies
collide. Then it is obvious that r−1 < 0 and 0 < r0 ≤ r1 ≤ r2. The
motions are possible only if r0 ≤ r ≤ r1 and if r ≥ r2. In the first case
we have finite motions, in the second case the particle can move
away at infinite distance.

The relationship between the roots of the equation W(r) = 0 and
constants α1, α2 can be obtained from the expression

r4 + 2
α1

H 2
r2 + 2

μ

H 2
r − α2

2

H 2
= (r − r−1)(r − r0)(r − r1)(r − r2).

Since the polynomial W(r) has no terms of the third degree, we have
a simple formula describing the relationship of the roots:

r−1 + r0 + r1 + r2 = 0.

If only finite motions are considered, the roots r0 and r1, which
set the limits of possible values of the distance, can be taken as
initial arbitrary constants instead of α1 and α2. Then α1 and α2 are
defined through r0 and r1 using the formulae

α1 = −1

2
H 2

(
r2

0 + r2
1

)
− μ

r0 + r1
, (6)

α2
2 = 2μr0r1

r0 + r1
− H 2r2

0 r2
1 . (7)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/429/4/3477/1019620 by guest on 28 January 2022



Two-body problem against the cosmic vacuum 3481

In addition, we have

α1 = −1

2
H 2

(
r2

1 + r2
2

)
− μ

r1 + r2
. (8)

The roots r−1, r2 are defined through r0, r1 using the relationships:

r−1 = −1

2
(r0 + r1) −

√
2μ

H 2(r0 + r1)
+ 1

4
(r1 − r0)2,

r2 = −1

2
(r0 + r1) +

√
2μ

H 2(r0 + r1)
+ 1

4
(r1 − r0)2.

In finite motions, when the distance r reaches either the minimum
value r0 or the maximum value r1, the velocity of the particle is
directed perpendicular to the position vector. For our investigation
it is necessary to define the velocities at these points of the trajectory
with the given values r0 and r1. The velocity V0 at the instances when
the distance is at its minimum value r0 can be calculated using the
relationship

V 2
0 = 2μ

r1

r0(r0 + r1)
− H 2r2

1 .

Likewise, the velocity V1 corresponding to the maximum distance
r1 can be obtained from the relationship

V 2
1 = 2μ

r0

r1(r0 + r1)
− H 2r2

0 .

For further analysis it is convenient to introduce the designations:

r =
( μ

H 2

) 1
3
, r∗ =

( μ

4H 2

) 1
3
.

Possible values of r0 are confined to the interval

0 < r0 ≤ r∗.

Possible values of the root r1 are defined by the inequalities

r0 ≤ r1 ≤ rmax(r0),

where rmax(r0) is obtained from the cubic equation

rmax

(
r2

0 + 2r0rmax + r2
max

)
= r.

The value rmax(r0) turns out to be the lower limit of the values of
the root r2 which is reached if r1 = r2. In any case, r∗ ≤ r2.

Let us examine the cases of the multiple roots. Let r1 = r0. Then,

r2 =
√

μ

H 2r1
− r1.

In this case, from the obvious condition r2 ≥ r1 we have

r3
1 ≤ μ

4H 2
= r∗3

,

which means that the multiple root r1 = r0 can take values only in
the range

0 < r1 = r0 < r∗.

Now we suppose that r1 = r2. In this case, the relationship be-
tween r1 and r0 is defined by equation

r1

(
r2

0 + 2r0r1 + r2
1

)
= r3.

The multiple root r1 = r2 can take values only in the range [r∗, r].
In the case of three equal roots, we have

r0 = r1 = r2 = r∗.

Figure 2. Plots of the function W(r) in the case of circular motion when
r1 = r0, and in the case when motion is close to circular when the distance
varies in a small interval.

Let us now consider the case of circular motions. Here, we have

α1 = −1

2

μ

rc

− H 2r2
c ,

where rc is the radius of the circular orbit. Taking into consideration
the equality (6) we conclude that the circular motions take place
under the condition

r0 = r1 = rc,

where

0 < r0 = r1 = rc ≤ r∗.

Likewise, from the equality (8) we conclude that the circular mo-
tions can also take place if

r1 = r2 = rc,

where

r∗ ≤ r1 = r2 = rc < r.

Depending on the values of the radius rc belonging either to the
interval (0, r∗) or to the interval (r∗, r), the circular motions have
essentially different features. Let us first consider the case where
0 < rc ≤ r∗. Fig. 2 shows the plot of the function W(r) for one
particular instance of the circular motion and for the instance which
is sufficiently close to this circular motion. When r0 ≤ r ≤ r1, but
the difference r1 − r0 is small enough, the motion does not too much
differ from the circular. It takes place between two close circles with
the radii r0 and r1.

Let us now consider the circular motions where r∗ < rc ≤ r .
We show in Fig. 3 the plot of the function W(r) corresponding to
the circular motion with r1 = r2 = rc as well as the plot quite
close to the former corresponding to the non-circular motion for
which r1 < r2. The plots demonstrate that the area of the motions
previously restricted to the circle with the radius r = rc now has
split into two areas. The first of them contains finite motions with
quite differing minimum and maximum distances. The second one
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Figure 3. Plots of the function W(r) in the case of circular motion when
r2 = r1, and in the case close to the latter when the difference r2 − r1 is
small and two types of motions are possible: the first is finite with a great
range of variations in the distance, the second is infinite.

is infinite. Thus, we can conclude that, in this case, the slightest
variation in arbitrary constants leads to significant transformation
of circular motion into non-circular, i.e. circular motions in the area
r∗ < rc ≤ r are orbitally unstable.

If all the roots of the equation W(r) = 0 are real, infinite motions
are possible for r > r2.

3.2 The case of two real and two complex conjugate roots

If two roots are complex conjugates, only infinite motions are possi-
ble. In these motions, the minimum distance is equal to the real root
r2. It is easy to show that at the instance when r = r2 the velocity
vector is perpendicular to the position vector. Let V2 be the value
of this velocity. Then, to simplify the process of the examination of
solutions, we set initial conditions via arbitrary constants r2 and V2.

Later (see below), we shall examine the way in which the pa-
rameters r2 and V2 can be obtained on the basis of arbitrary initial
conditions, when the particle, at initial moment of time, has arbitrary
values of distance and velocity.

If r2 and V2 are given, the constant α1 can be calculated using
(2). If we know the values of α1 and of one of the real roots of the
equation (let it be the root r2), other roots can be obtained using the
cubic equation

r3
x + r2r

2
x +

(
r2

2 + 2

H 2
α1

)
rx + r3

2 + 2

H 2
α1r2 + 2μ

H 2
= 0, (9)

where rx is the sought root of the equation W(r) = 0. This cubic
equation can have one or three real roots. If it has one real root, it
is the root r−1. If there are three roots, they are r−1, r0, r1.

Let us assume that we know two roots: r2, which is given, and
r−1, which was obtained as a single real solution of the cubic equa-
tion (9). Then, representing the two complex conjugate roots of the
equation W(r) = 0 in the form

a + √−1 b, a − √−1 b,

where a and b are real, we find:

a = −1

2
(r−1 + r2), b =

√
− 2μ

H 2(r−1 + r2)
− 1

4
(r−1 + r2)2.

In this case, we have the following expression for the polynomial
W(r):

W (r) = (r − r−1)(r − r2)[(r − a)2 + b2].

4 IN V E R S I O N O F QUA D R AT U R E S A N D
O B TA I N I N G A NA LY T I C A L S O L U T I O N

Before we proceed to obtain analytical solution, it is to be recalled
that we exclude from consideration the cases of rectilinear motion,
collision and circular motions where the roots r1 and r2 are equal.
In these particular cases, the formulae to be deduced can turn out to
be pointless. The analysis of these types of solutions may become
the subject of a special investigation and is not considered here.

The processes of obtaining the analytical solution of the equations
of motion and ultimate formulae differ essentially in the following
three cases: finite motions, infinite motions with four real roots of
the equation W(r) = 0, and infinite motions with two real and two
complex conjugate roots of the same equation. Let us consider all
these cases separately.

4.1 Finite motions

Finite motions can take place only if all four roots of the equation
W(r) = 0 are real. The relationship between the variables r and u is
expressed by the quadrature (5). We pass to the variable u′ = Hu. To
simplify our calculations without loosing general character of the
solution, we assume that the arbitrary constant u′

0 is equal to zero.
Then, the function r(u′) can be expressed by the quadrature∫ r

r0

dr√
(r2 − r)(r1 − r)(r − r0)(r − r−1)

= u′.

To inverse this integral, we use formula (254.00) from Gradshteyn
& Ryzhik (1963, see p. 256). Hence, we have

gF (ϕ, k) = u′,

where F(ϕ, k) is an elliptic integral of the first kind, k is the modulus
of the elliptic integral,

sin ϕ =
√

(r1 − r−1)(r − r0)

(r1 − r0)(r − r−1)
,

g = 2√
(r2 − r0)(r1 − r−1)

. (10)

The modulus of the elliptic integral k is defined by the formula

k =
√

(r1 − r0)(r2 − r−1)

(r2 − r0)(r1 − r−1)
.

We make the change of variables

u′′ = u′

g
. (11)

Then, we have

F (ϕ, k) = u′′.

Now, using Jacobi elliptic function, we get the relationship:

(r1 − r−1)(r − r0)

(r1 − r0)(r − r−1)
= sn2u′′.
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To simplify the calculations, we choose arbitrary constants in such
a manner that if u′ ′ = 0 we have r = r0. Later (see below), we
consider the way in which the parameters of motion are calculated
in the case of arbitrary initial conditions.

From the previous formula, we obtain

r = r0(r1 − r−1) − r−1(r1 − r0)sn2u′′

(r1 − r−1) − (r1 − r0)sn2u′′ .

Now we look for the relationship between the variable u and time
t. The variable u was introduced by the relationship

dt = r(u) du.

Taking into consideration the relation between u and u′ ′ and substi-
tuting here the earlier found function r(u′′), we get

dt = g

H

r0(r1 − r−1) − r−1(r1 − r0)sn2u′′

(r1 − r−1) − (r1 − r0)sn2u′′ du′′.

For better interpretation of the relations to be obtained, we make
the change of variables

u′′ = v

2
and transform the previous relationship in the following way:

dt = g

2H

[
r−1 + (r0 − r−1)

1

1 − f sn2 v
2

]
dv,

where

f = r1 − r0

r1 − r−1

satisfies the inequality 0 < f < 1.
Subsequent transformations using the obvious equality

1

1 − f sn2 v
2

= 1 + f sn2 v
2

1 − f sn2 v
2

give us

dt = g

2H

[
r−1 + (r0 − r−1)

(
1 + f sn2 v

2

1 − f sn2 v
2

)]
dv,

and then

dt = gr0

2H

(
1 + γ

sn2 v
2

1 − f sn2 v
2

)
dv, (12)

where

γ = f
r0 − r−1

r0
= r1 − r0

r1 − r−1

r0 − r−1

r0
.

Let us consider the function

�1(v) = sn2 v
2

1 − f sn2 v
2

.

It follows from the properties of the Jacobi elliptic functions that
�1(v) is a periodic function with a period 4K, where K is a complete
elliptic integral of the first kind with the modulus k. The function
�1(v) takes on only non-negative values. Let P be the mean value
of the function �1(v) at the interval (0, 4K), that is

P = 1

4K

∫ 4K

0

sn2 v
2

1 − f sn2 v
2

dv. (13)

It is clear that the mean value of the function �1(v) − P at any
interval with the length 4K is equal to zero.

Now we examine the integral∫ v

0
(�1(v) − P ) dv

and represent its upper limit in the form

v = 4 Kn + v′ , where v′ = mod(v, 4K) ,

and n is an integer. Then, the following relationships are valid:∫ v

0
(�1(v) − P ) dv =

∫ v′

0
(�1(v) − P ) dv,

∣∣∣∣∣
∫ v′

0
(�1(v) − P ) dv

∣∣∣∣∣ ≤ 1

1 − f
4K.

Now we reduce the equation under consideration (12) to the form

nvdt =
[

1 + γ

1 + γP

(
sn2 v

2

1 − f sn2 v
2

− P

)]
dv,

where

nv = 2H

gr0(1 + γP )
.

Without loss of generality, we assume that the variable v at the
instance t = 0 takes on a value of zero. Then, integrating the equation
in view of the previous relationships, we obtain

nvt = v + γ

1 + γP

∫ v′

0

(
sn2 v

2

1 − f sn2 v
2

− P

)
dv.

Let us introduce the function

	v(v) = γ

1 + γP

∫ mod(v,4K)

0

(
sn2 v

2

1 − f sn2 v
2

− P

)
dv. (14)

Hence, we have

nvt = v + 	v(v). (15)

Obviously, the function 	v(v) is periodic with the period 4K.
The integrals appearing in (13) and (14) are expressed via elliptic

functions using the relationship∫ v

0

sn2 v
2

1 − f sn2 v
2

dv = 2

f



(
am

( v

2
, k

)
, f , k

)
− 1

f
v,

where 
(x, f, k) is an incomplete elliptic integral of the third kind
according to its definition:


(x, f , k) =
∫ x

0

1

(1 − f sin2 t)
√

1 − k2 sin2 t
dt,

and am(u, k) is the Jacobi elliptic function. Thus, the function 	v(v)
can be expressed in the form

	v(v) = γ

1 + γP

[
2

f



(
am

(
v′

2
, k

)
, f , k

)
− 1

f
v′ − Pv′

]
,

(16)

and the constant P can be calculated using the formula

P = 1

2Kf
[
 (π, f , k) − 2K] .

We consider equation (15) as transcendental for v. It is clear that

|	v(v)| ≤ 4K
γ

1 + γP

1

1 − f
.

Numerical solution of the equation for v can be obtained with any
pre-given accuracy by means of successive approximations method
using the iterative formula

v(n+1) = nvt − 	v(v(n)) (n = 0, 1, 2, . . .).
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Let us now return to the examination of the dependence of the
distance r on time. The formulae given above permit us to write

r = r0 − r−1f sn2 v
2

1 − f sn2 v
2

.

Taking into account the properties of the Jacobi elliptic func-
tions, it is easy to show that the function r(v) is periodic with
the period 4K. In addition, we have r(0) = r0, r(2K) = r1. To
calculate r(t), it is necessary at first to calculate v(t), as pointed
above. Substituting this function into the obtained function r(v),
we get r(t).

Let us examine now how to calculate the longitude λ at any
instance of time. Earlier, we have obtained

dλ = α2

r(u)
du.

In view of the changes of variables that were made and the expres-
sion for r(u′ ′), the latter equality can be written in the form

dλ = gα2

2Hr0

[
1 + γ ′ sn2 v

2

1 + f ′ sn2 v
2

]
dv, (17)

where

f ′ = − r−1(r1 − r0)

r0(r1 − r−1)
, γ ′ = r0 − r−1

r−1
f ′.

Now we examine the function

�2(v) = sn2 v
2

1 + f ′ sn2 v
2

.

From the properties of the Jacobi elliptic functions, it follows
that �2(v) is a periodic function with the period 4K, where K
is complete elliptic integral of the first kind with the modulus
k. The function �2(v) takes on only non-negative values. Let Q
be the mean value of the function �2(v) at the interval (0, 4K),
that is

Q = 1

4K

∫ 4K

0

sn2 v
2

1 + f ′ sn2 v
2

dv. (18)

Obviously, the mean value of the function �2(v) − Q at any interval
with the length 4K is equal to zero.

Without loosing the general character of our examination, we
may assume that if v = 0 the longitude λ = 0. Then, integration of
equation (17) gives us

λ = gα2

2Hr0
(1 + γ ′Q)v

+ gα2

2Hr0
γ ′

∫ v′

0

(
sn2 v

2

1 + f ′ sn2 v
2

− Q

)
dv, (19)

where, as earlier, v′ = mod(v, 4K).
The integrals appearing in the formula for Q (18) and in equa-

tion (19), expressing the relation of λ and v, are expressed via
elliptic functions by means of the relationship∫ v

0

sn2 v
2

1 + f ′ sn2 v
2

dv = v

f ′ − 2

f ′ 

(
am

( v

2
, k

)
, −f ′, k

)
,

where 
(x, −f′, k) is incomplete elliptic integral of the third kind.
The constant Q can be calculated using the formula

Q = 1

2Kf ′
[



(
π, −f ′, k

) − 2K
]
, (20)

and the relation between λ and v takes the form

λ = nλv + 	λ(v), (21)

where

nλ = gα2

2Hr0
(1 + γ ′Q),

	λ(v) = gα2

2Hr0
γ ′

[
v′

f ′ − 2

f ′ 

(

am

(
v′

2
, k

)
, −f ′, k

)
− Qv′

]
.(22)

It is clear that the function 	λ(v) is periodic with the period 4K.
When calculating the incomplete elliptic integral in (20) and (22),

it is necessary to take into account that f′ can take on values more
than 1, while the integral’s parameter can take on any negative val-
ues. In this case, one should use the formulae reducing incomplete
elliptic integrals to the parameter assuming values in the range from
k2 to 1. For this we use formulae (17.7.15), (17.7.16), and (17.7.17)
from Abramovitz & Stigan (1979). To give a complete picture, we
reprint these formulae here using the designations adopted in this
paper:


(ϕ,−f ′, k) =
{[

(1 − N0)

(
1 − k2

N0

)]1/2


 (ϕ, N0, k)

+ k2

p0
F (ϕ, k)

+ arctan

[
p0 sin 2ϕ

2	0(ϕ)

]}[
(1+f ′)

(
1+ k2

f ′

)]− 1
2

,

where

N0 = k2 + f ′

1 + f ′ , p0 =
√

f ′(k2 + f ′)
1 + f ′ ,

ϕ = am

(
v′

2
, k

)
, 	0(ϕ) = dn

(
v′

2
, k

)
.

Calculation of the longitude λ(t) is carried out in the following
way. First, for a given instance of time t, v(t) is calculated in the way
pointed above. Then, substituting this value into (21), we obtain the
longitude λ(t).

4.2 Properties of analytical solution for finite motions

The particle’s position in a plane of motion is defined by polar
coordinates r (radius) and λ (longitude). Let us examine as to how
they depend on time.

If time varies by the value Tv = 4K
nv

, the variable v varies by 4K.
In its turn, r assumes its previous value. Hence, it is clear that r is a
periodic function of time with the period Tv . The longitude λ is non-
linear in time. The particle’s complete revolution around the central
body can take differing periods of time. An average rate of the
longitude’s change in time is defined by an angular velocity nvnλ.
However, at any period of time Tv , the longitude λ gets the same
increase by nλ4 K, where K is, as pointed above, complete elliptic
integral of the first kind with the modulus k which is obtained from
initial conditions by the formulae given above.

From the formulae deduced in the previous subsection, it can
be concluded that the motion under consideration is conditionally
periodic with two frequencies. The first frequency, equal to 2π/Tv ,
determines the rate of change of the distance r. The second one,
equal to nvnλ, determines the rate of the particle’s revolutions around
the central body. If the frequencies are commensurable, that is

2π

4K
n1 = n2 nλ,

where n1 and n2 are positive integers, we get periodic motion.
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4.3 Analytical solution for infinite motions in the case
of four real roots

We use the same way of building solution as we have used for the
case of finite motions. Let us take the relationship between r and u′

in the form∫ r

r2

dr√
(r2 − r)(r1 − r)(r − r0)(r − r−1)

= u′.

In the case of infinite motions the variable r takes on values r > r2.
To inverse the integral, we use formula (258.00) from Gradshteyn
& Ryzhik (1963, see p. 256). Hence, we have

gF (ϕ, k) = u′,

where F(φ, k) is an elliptic integral of the first kind and k is its
modulus,

sin ϕ =
√

(r1 − r−1)(r − r2)

(r2 − r−1)(r − r1)
,

g = 2√
(r2 − r0)(r1 − r−1)

. (23)

The elliptic integral’s modulus k is defined by the relation

k =
√

(r1 − r0)(r2 − r−1)

(r2 − r0)(r1 − r−1)
.

Note that the formulae for g and k are the same as in the case of
finite motions.

Let us apply here the change of variables (11). We get

F (ϕ, k) = u′′, (24)

Now, using Jacobi elliptic functions, we can write

(r1 − r−1)(r − r2)

(r2 − r−1)(r − r1)
= sn2u′′.

We choose arbitrary constants in the way that if u′ ′ = 0 the variable
r = r2. From the previous formula, we find

r = r2 − r1s sn2u′′

1 − s sn2u′′ , (25)

where

s = r2 − r−1

r1 − r−1

and it is obvious that s > 1.
Now we must find the relation between the variable u and time t.

The variable u was introduced by the relationship

dt = r(u) du.

Afterwards, we also introduced the variables u′′ = u′
g

and u′ = uH.
Making the change of variables and taking into account (25), we
obtain

dt = g

H

r2 − r1s sn2u′′

1 − s sn2u′′ du′′.

Integrating this equation, after some transformations we find

t = gr1

H
u′′ + g(r2 − r1)

H

∫ u′′

0

du′′

1 − s sn2u′′ .

From here we get

nνt = u′′ + ν

∫ u′′

0

du′′

1 − s sn2u′′ ,

where

nν = H

gr1
, ν = r2 − r1

r1
,

where arbitrary constants are chosen so that if t = 0 the variable u′ ′

takes on zero value.
The found relationship between t and u′ ′ contains an integral that

can be expressed via incomplete elliptic integral of the third kind in
the following way:∫ u′′

0

du′′

1 − s sn2u′′ = 
(am(u′′, k), s, k).

Then, we have

nνt = u′′ + ν
(am(u′′, k), s, k). (26)

Since the latter elliptic integral involves parameter s greater
than 1, for its calculation we should use the formula of reduc-
tion of incomplete elliptic integral of the third kind to the parameter
with the value less than 1. For this, we use formulae (17.7.7) and
(17.7.8) from Abramovitz & Stigan (1979). In our notations, we
have


(ϕ, s, k) = −
(ϕ,N, k) + F (ϕ, k) + 1

2p1
ln

	(ϕ) + p1 tan ϕ

	(ϕ) − p1 tan ϕ
,

where

ϕ = am(u′′, k), 	(ϕ) = dn(u′′, k),

N = k2

s
, p1 =

√
(s − 1)

(
1 − k2

s

)
.

It turns out that N < 1. Here F(ϕ, k) is incomplete elliptic integral
of the first kind, and dn(u′′, k) is Jacobi elliptic function.

Using the latter formulae, we express the relation between the
variable ϕ and time t in the form

ln
	(ϕ) + p1 tan ϕ

	(ϕ) − p1 tan ϕ
= E1(t, ϕ),

where

E1(t, ϕ) = 2p1

[
nνt

ν
−

(
1 + 1

ν

)
F (ϕ, k) + 
(ϕ,N, k)

]
.

From here we can deduce the relationship

ϕ = arctan

(
	(ϕ)

p1

eE1(t,ϕ) − 1

eE1(t,ϕ) + 1

)
,

which can be used to calculate ϕ at a given instance t by the
method of successive approximations. However, in this case con-
vergence of successive approximations cannot be ensured. Con-
vergence is provided if we reduce the latter relationship to the
form

ϕ = arctan

[
1

1 + 	(ϕ)
ν

(
	(ϕ)

p1

eE1(t,ϕ) − 1

eE1(t,ϕ) + 1
+ 	(ϕ)

ν

)]
.

Taking in the right-hand side ϕ = 0 as zero-order approximation,
we obtain the first-order approximation ϕ. Substituting it into the
right-hand side of the latter relationship again, we get next order of
approximation and so on. After ϕ is obtained, we find u′ ′ from the
formula

u′′ = F (ϕ, k).

Having got relation between t and u′ ′, the function r(t) can be
obtained by substituting u′ ′(t) into (25).
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Now let us find the dependence of the longitude λ on time t. From
the general form of integral, we have

dλ = α2

r
du.

Substituting the expression (25) for r(u′ ′) and changing u to g

H
u′′,

we obtain

dλ = gα2

H

1 − s sn2u′′

r2 − r1s sn2u′′ du′′

or, after some simple transformations,

dλ = gα2

Hr1
du′′ − gα2

Hr1

r2 − r1

r2

du′′

1 − s ′ sn2u′′ du′′,

where

s ′ = r1

r2
.

It is easy to prove that 0 < s′ ≤ 1.
Integrating the latter equation in assumption that λ = 0 when v =

0, we obtain

λ = nlu
′′ − nl

r2 − r1

r2

∫ u′′

0

du′′

1 − s ′ sn2u′′ du′′,

where

nl = gα2

Hr1
.

Expressing the integral contained herein via incomplete elliptic
integral of the third kind, we find

λ = nlu
′′ − nl

r2 − r1

r2



(
am(u′′), s ′, k

)
.

Substituting the earlier found function u′ ′(t), we obtain the desired
dependence of λ on time t.

4.4 Analytical solution for infinite motions in the case of two
real and two complex conjugate roots

Let us carry out the inversion of quadratures in the case when the
equation

W (r) = 0

has two real and two complex conjugate roots. We denote the
real roots as r−1 and r2. It is clear that r−1 < 0 and r2 > 0.
We have already denoted the complex conjugate roots earlier as
a + √−1 b and a − √−1 b, where a and b are real numbers. Then,
we can write the quadrature relating the variables r and u′ in the
form∫ r

r2

dr√
(r − r−1)(r − r2)[(r − a)2 + b2]

= u′.

Here, as earlier, arbitrary constants are chosen in the way that if
u′ = 0 the variable r takes on the value r2.

In the case of infinite motions the variable r assumes val-
ues satisfying the inequality r > r2. Hence, to inverse the inte-
gral, we use formula (260.0) from Byrd & Friedman (1954). We
have

g1F (ϕ, k1) = u′,

where

cos ϕ = A(r − r−1) − B(r − r2)

A(r − r−1) + B(r − r2)
,

g1 = 1√
AB

,

k1 =
√

(A + B)2 − (r2 − r−1)2

4AB
. (27)

In these formulae, we use notations:

A =
√

(r2 − a)2 + b2, B =
√

(r−1 − a)2 + b2.

F(ϕ, k1) is incomplete elliptic integral of the first kind, so we have

F (ϕ, k1) = H

g1
u = u′′, cos ϕ = cn(u′′, k1). (28)

Now we can write the function r(u′′) in the following way:

r = Br2 − Ar−1 + (Ar−1 + Br2)cnu′′

B − A + (A + B)cnu′′ .

The variable u was introduced by the differential relationship
dt = r du. Changing over to the variable u′ ′ and carrying out inte-
gration in assumption that u′ ′ = 0 if t = 0, we find

t = g1

H

∫ u′′

0
r(u′′) du′′.

We substitute the earlier found function r(u′′) into this relation-
ship and, after some transformations, obtain:

n′
ν t = u′′ + η

∫ u′′

0

1

1 + β cn u′′ du′′, (29)

where

n′
ν = H

g1

A + B

Br2 + Ar−1
, β = A + B

B − A
,

η = 2AB(r2 − r−1)

(Br2 + Ar−1)(B − A)
.

Here, it turns out that β > 1.
Calculation of the integral in (29) is carried out using the formula

∫ u′′

0

1

1 + β cn u′′ du′′ = −
(ϕ, p, k1)

β2 − 1

+ 1

2

β√
β2 − 1

ln

√
β2 − 1 	1(ϕ) + m1 sin ϕ√
β2 − 1 	1(ϕ) − m1 sin ϕ

,

where

p = β2

β2 − 1
, m1 =

√
k2

1 + β2 − k2
1β

2,

u′′ = F (ϕ, k1), 	1(ϕ) = dn(u′′, k1).

Since the incomplete elliptic integral of the third kind contained
herein involves parameter p greater than 1, we should reduce it to
the parameter N1 < 1 using formulae (17.7.7) and (17.7.8) from
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Abramovitz & Stigan (1979) in the following way:


(ϕ, p, k1) = −
(ϕ,N1, k1) + F (ϕ, k1)

+ 1

2p′
1

ln
	1(ϕ) + p′

1 tan ϕ

	1(ϕ) − p′
1 tan ϕ

, (29)

where

N1 = k2
1

p
, p′

1 =
√

(p − 1)

(
1 − k2

1

p

)
.

In addition, it turns out that

p′
1 =

√
k2

1 + β2 − k2
1β

2

β
√

β2 − 1
= m1

β
√

β2 − 1
.

Now the relationship between the variable ϕ and time t can be
represented in the form

(	(ϕ) − p′
1 tan ϕ)(	1(ϕ) + p2 sin ϕ)

(	(ϕ) + p′
1 tan ϕ)(	1(ϕ) − p2 sin ϕ)

= eE2 , (30)

where

E2 = 2p′
1(β2 − 1)

[
n′

ν t

η
+

(
1

β2 − 1
− 1

η

)
F (ϕ, k1)

− 1

β2 − 1

(ϕ,N1, k1)

]
. (31)

Here, we have introduced the notation

p2 = m1√
β2 − 1

and used the relationships

u′′ = F (ϕ, k1), sin ϕ = sn u′′.

For a given time t, we have obtained transcendental equation for
ϕ. It can be solved numerically by the successive approximations
method. However, convergence of iterations can be assured only if
the above relationships have specific forms. Thus, when ϕ assumes
values satisfying the condition

ϕ ≤ arcsin
	1(ϕ)

p2
,

to perform iterations, we should use the relationship

ϕ = arcsin

[
	1(ϕ)

p2

C2eE2 − 1

C2eE2 + 1

]
,

where C2 is calculated by the formula

C2 = 	1(ϕ) + p′
1 tan ϕ

	1(ϕ) − p′
1 tan ϕ

.

In the case when

ϕ > arcsin
	1(ϕ)

p2
,

we should use the relationship

ϕ = arctan

[
	1(ϕ)

p′
1

1 − C3eE2

1 + C3eE2

]
,

where C3 is calculated by the formula

C3 = 	1(ϕ) − p2 sin ϕ

	1(ϕ) + p2 sin ϕ
.

Since, for an arbitrarily given t, we do not know in advance which
values of ϕ we will get during iterations, we should at first assume

ϕ = 0 and start iterations using the first formula. If, performing
iterations, we get negative value for C2, we should set the initial
value for ϕ to be equal to π/2 and resume iterations using the
second formula.

Our calculations show that convergence of iterations in the pro-
posed methods for numerically solving the considered transcenden-
tal equations can be very slow. For some values of initial parameters,
these iterations do not converge at all. However, what appears to
be more effective and reliable is dichotomy method (method of
division in halves) of solving the transcendental equations. Let us
consider as to how this method can be applied in our problem.

The equation for ϕ at a given instance of time should be written
in the form

G(ϕ) = eE2 − (	1(ϕ) − p′
1 tan ϕ)(	1(ϕ) + p2 sin ϕ)

(	1(ϕ) + p′
1 tan ϕ)(	1(ϕ) − p2 sin ϕ)

= 0.

The sole root of this equation is to be searched for at the interval
(0, ϕ), where ϕ is to be calculated using the relationships

sin ϕ =
1 + p′

1
2 + k2

1 −
√

(1 + p′
1

2 + k2
1)2 − 4k2

1

2k2
1

,

cos ϕ = −
√

1 − sin2 ϕ.

If t > 0, we have G(0) > 0, and if ϕ = ϕ, the function G(ϕ) turns
into infinity. However, this does not lead to insuperable problem
of calculations because the dichotomy method should be used to
calculate the value of the function at the middle of the interval. For
the values of ϕ less than but sufficiently close to ϕ, the value of
G(ϕ) is considerably negative. The number of necessary iterations
in the dichotomy method can be easily evaluated by the formula

Niter = − log2 ε,

where ε is a preset accuracy with which the equation’s root is
defined. For instance, if accuracy is 10−10, we need 34 iterations.

Now we proceed to derive the dependence of the second co-
ordinate, the longitude λ, on ϕ. We start out with the differential
relationship

dλ = α2

r
du = α2g1

rH
du′′.

We substitute here the earlier obtained relation r(u′ ′) and integrate
the above relationship assuming that λ = 0 if u′ ′ = 0. After some
simple transformations, we obtain

λ = n′
l

(
u′′ + q

∫ u′′

0

u′′

1 + β ′cn u′′

)
,

where

n′
l = α2g

H

A + B

Br2 + Ar−1
, q = 2AB(r−1 − r2)

(A + B)(Br2 − Ar−1)
,

β ′ = Br2 + Ar−1

Br2 − Ar−1
.

The integral contained herein is expressed via elliptic functions.
In result, we get the final expression for the coordinate λ in the
following form:

λ = n′
lF (ϕ, k1) + q

[
1

1 − β ′2 
(ϕ, p′, k1)

− β ′

2m2

√
1 − β ′2

ln
	1(ϕ) + p′

2 sin ϕ

	1(ϕ) − p′
2 sin ϕ

]
,
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where

p′ = β ′2

β ′2 − 1
, m2 =

√
β ′2 + k2

1 − β ′2k2
1,

p′
2 = m2√

1 − β ′2
.

4.5 Calculation of the particle’s coordinates in the case
of arbitrary initial conditions

So far we chose arbitrary constants in a way that was convenient to
carry out calculations and obtain the solutions. Let us now consider
the way in which the parameters of motion are calculated if we have
arbitrary initial conditions.

Suppose that for the initial moment of time t0 = 0, the values of
the following parameters are given: initial distance r(0), initial radial
velocity ṙ (0), initial longitude λ(0) and initial angular velocity λ̇(0).

First, we calculate the initial velocity

V (0) =
√

(ṙ (0))2 + (r (0)λ̇(0))2,

and, after that, the constants α1 and α2 are calculated using the
formulae

α1 = 1

2
(V (0))2 − μ

r (0)
− H 2

2
(r (0))2, α2 = (r (0))2 λ̇(0).

Then, we should find the only negative root r−1 of the equation:

r4 + 2
α1

H 2
r2 + 2

μ

H 2
r − α2

2

H 2
= 0.

This can be done using the dichotomy method. After that, we find
the solution of the cubic equation:

r3
x + r−1r

2
x + (r2

−1 + 2

H 2
α1)rx + r3

−1 + 2

H 2
α1r−1 + 2μ

H 2
= 0,

(32)

where rx is the unknown. If we obtain three real roots r0, r1, r2, it is
necessary to check if r(0) ≤ r1.

If the latter condition is satisfied, we have the case of finite
motion. Then, we calculate ϕ using the relationship (10) where we
put r = r(0). Note that the value of ϕ should be taken in the interval
(0,π/2) if ṙ (0) > 0, and in the interval (π/2, π) if ṙ (0) < 0. Having
calculated necessary constants, we obtain the value of v′ from the
relationship

v′ = 2F (ϕ, k),

where F(ϕ, k) is incomplete elliptic integral of the first kind. Next,
we calculate 	v(v) using (16) and obtain the moment t0 from re-
lationship (15) where we put v′ = v, t = t0. Now, to calculate the
particle’s coordinates for any given moment of time t, one can use
the above formulae beginning from relationship (15) where t should
be replaced by t + t0.

Otherwise, if the condition r(0) ≤ r1 is not satisfied, the inequality
r(0) ≥ r2 is true, and we have the case of infinite motion with for
real roots r−1, r0, r1, r2. To define the coordinates in this case, we
first find ϕ from relationship (23), where r is replaced by r(0), and
u′ ′ using (24). Then t0 is calculated from relationship (26) with t =
t0. Hence, for any given moment of time t, the coordinates can be
calculated using the above formulae beginning from relationship
(26) where t should be replaced by t + t0.

If, solving equation (32), only one real root r2 is obtained, we
have the case of infinite motion. In this case, the complex roots

should be defined in such a manner as it was specified in Section
3.2. Then, calculations are carried out in the way similar to that in
the previous case, using formulae (27), (28), (30) and (31).

5 E X A M P L E S O F T R A J E C TO R I E S

To perform calculations by the formulae of analytical solution of
the equations of motion, a calculating program in C programming
language was written. The program works without using additional
subroutine libraries and has been compiled by Visual Studio 2008.

To demonstrate the properties of the trajectory characteristic of
this problem and the possibility to do calculations by using the de-
duced formulae, we offer a number of examples. In these examples,
the units for measuring distance and time were chosen so that μ = 1
and H = 1. Then, it turns out that r = 1 and r∗ = 0.629 960 524 947.

It is quite natural in our problem to divide all possible trajecto-
ries into typical families. First, we consider the family of the finite
trajectories where the motions are such that the particle revolves
around the attracting centre. In these motions, the distance reaches
periodically its maximum and minimum values, and it is at these
instances when velocity vector is perpendicular to the position vec-
tor. In the given examples, all trajectories begin in the point where
the distance is minimum. The trajectories of this family are shown
in Figs 4–6. In Fig. 6, we see the commensurability between the
period of the longitude and that of the distance’s variations between
the minimum and maximum values.

The next three families are segments of the infinite trajectories.
In all cases, the motion begins at the point where the distance has
its minimum value r2 and initial velocity vector is perpendicular
to the position vector. In the first family of the infinite trajectories,
initial point has minimum distance r2 = 0.5 < r∗. In our examples,
the particle starts with differing values of initial velocities. These
examples are shown in Fig. 7. In the second family, shown in Fig. 8,
the minimum distance satisfies the inequality r∗ < r2 = 0.9 < r .

Figure 4. Example of a trajectory of finite motion. The value of r was taken
as a unit of distance. The distance varies in the range 0.1–0.6. The dotted
line marks the circle with the radius r∗.
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Figure 5. Example of a trajectory of finite motion. The value of r was taken
as a unit of distance. The distance varies in the range 0.01−0.8. The dotted
line marks the circle with the radius r∗.

Figure 6. Example of a trajectory of finite motion in the case of the com-
mensurability between the frequency of the longitude and that of the dis-
tance’s variation: when the particle makes six revolutions around central
body, it reaches minimum distance five times. The value of r was taken as
a unit of distance. The dotted line marks the circle with the radius r∗.

In the third family, the particle starts with the minimum distance
r2 = 1.2 > r . These examples are shown in Fig. 9.

The calculation program and files containing examples of calcu-
lations may be obtained via e-mail. For this, send your request to
the first author at the address emelia@sai.msu.ru.

Figure 7. Examples of trajectories of infinite motion. The value of r was
taken as a unit of distance. The time unit was chosen so that μ = 1 and H =
1. In each instance, the particle is starting off from the x-axis at a distance 0.5
from the origin of coordinates, perpendicular to the x-axis. Initial velocities
for each instance are given near the plots. The circle corresponds to the
distance r = 1.

Figure 8. Examples of trajectories of infinite motion. The value of r was
taken as a unit of distance. The time unit was chosen so that μ = 1 and H =
1. In each instance, the particle is starting off from the x-axis at a distance 0.9
from the origin of coordinates, perpendicular to the x-axis. Initial velocities
for these instances were taken as follows: 0.64, 0.8, 1.36, 2.20. The circle
corresponds to the distance r = 1.
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Figure 9. Examples of trajectories of infinite motion. The value of r was
taken as a unit of distance. The time unit was chosen so that μ = 1 and H =
1. In each instance, the particle is starting off from the x-axis at a distance 1.2
from the origin of coordinates, perpendicular to the x-axis. Initial velocities
for each instance are given near the plots. The circle corresponds to the
distance r = 1.

6 N U M E R I C A L I N T E G R AT I O N O F T H E
E QUAT I O N S O F MOTI O N A N D T E S T I N G T H E
VA L I D I T Y O F T H E A NA LY T I C A L S O L U T I O N

Equations (1) can be solved by numerical integration methods.
This can be done to get particular solutions with different initial
conditions if the time interval is not big and if we do not need
high accuracy of the solution. We have carried out numerical in-
tegration of the equations to test the obtained analytical solution.
Among available methods and corresponding calculating programs,
we have chosen the method of Everhart (1974), which is widely and
successfully applied in celestial mechanics.

First attempts to integrate equations (1), straightforwardly re-
sulted in obviously wrong solutions in the cases when the particle
passes close to the zero acceleration circle. These failed attempts
can be explained by the analysis of the right-hand sides of equa-
tions (1): the right-hand sides contain the factor H2 − μ/r3 which
is equal to zero at the zero acceleration circle. At every step of the
numerical integration, the right-hand sides are calculated with the
given value of r. The calculations are always performed with lim-
ited accuracy with which numbers are stored in computer memory.
Any number is represented in exponential form as mantissa and
exponent. Suppose that, for any number, computer memory stores
M decimal places of mantissa. Close to the zero acceleration circle,
calculation of the factor H2 − μ/r3 is done by subtraction of two
close positive numbers, and if their first M1 decimal places coincide,
the subtraction gives the number for which only M − M1 decimal
places are correct. Thus, accuracy of calculations sharply decreases.
Since coordinates obtained at every previous step of integration are
used at following steps, calculation errors are accumulated. As a
result, after the particle passes close to the zero acceleration circle,
the solution has significant errors.

To overcome this difficulty, we should express the equations of
motion in other variables. We choose as sought-for functions the
variables ξ , λ related to rectangular coordinates in the following
way:

x = r cos λ, y = r sin λ, ξ = r − r.

We also use the first integral of the equations of motion:

x
dy

dt
− y

dx

dt
= r2 dλ

dt
= M,

where arbitrary constant M can be calculated from initial conditions.
Then, the equations of motions expressed in the new variables are
as follows:

dλ

dt
= M

(r + ξ )2
,

d2ξ

dt2
= ξH 2

[
1 + r

r + ξ
+

(
r

r + ξ

)2
]

+ M2

(r + ξ )3
.

Numerical integration of these equations does not result in the loss
of accuracy when motion takes place close to the zero acceleration
circle.

In our examples of calculations initial conditions were defined
by the parameters r0, V0 in the case of finite motions and by the
parameters r2, V2 in that of infinite motions. Hence, for the variables
ξ , λ, initial conditions are calculated by the formulae

ξ0 = r0 − r,
dξ0

dt
= 0, λ0 = 0, M = (ξ0 + r)V0

in the case of finite motions. For infinite motions, the formulae are
similar.

For every example of calculations by the formulae of analytical
solution, comparison has been made with the results of numerical
integration. The comparison has shown that each time the results
coincide with the accuracy 10−9. The analysis of the calculations
has shown that the accuracy is mainly restricted by the program for
calculations of incomplete elliptic integrals of the third kind.

7 C O N C L U S I O N

In this paper, we have examined the properties of motions in the
two-body problem against the cosmic vacuum background. It is
shown that finite motions take place only within a circle with the
radius r = (μ/H 2)1/3 centred in the attracting body. The minimum
distance in finite motions cannot exceed the value r∗ = (μ/4H2)1/3.
Circular motions can take place in the area of finite motions. The
circular motions with the radii in the range (r∗, r) are orbitally
unstable. This means that slightest variations in the initial conditions
turn circular motion either into finite motion with a great amplitude
of distance’s variation or into infinite motion. There are also infinite
motions which can have any value of the minimum distance.

The principal result of our examination is the precise analyti-
cal solution of the two-body problem against the cosmic vacuum
background. We have deduced formulae for the calculation of a
moving point’s coordinates at any moment of time for given ini-
tial conditions. First, we reduced the solution to quadratures, then
the quadratures were inversed using Jacobi elliptic functions. The
resulting formulae contain incomplete elliptic integrals of the first
and third kind. The chain of the calculation formulae includes a
transcendental equation analogous to that of Kepler in the Kep-
lerian motion but containing elliptic integrals. This equation can
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be numerically solved with any pre-given accuracy. The calcula-
tion formulae are programmed using C programming language. A
number of examples of calculations have been made, and the corre-
sponding plots are shown in the figures. The calculation programs
and files containing examples of calculations may be sent by the
first author of the paper at request.

We have also composed a program for numerical integration of
the equations of motion. It is shown that numerical integration of
the equations of motion expressed in rectangular coordinates can
result in sharp loss of accuracy when the point passes close to the
circle with the radius r . However, a change in variables has been
found leading to the equations which, when numerically integrated,
give no loss of accuracy. By comparing the calculation results by
the formulae of the analytical solution with those of numerical
integration, we have proven that the deduced formulae are correct.

In order to save space, when deducing the formulae, we have ex-
cluded from consideration the case of rectilinear motions as well as
some cases of circular motions, because they would require special
attention and analysis.
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