
HAL Id: hal-02542133
https://hal.science/hal-02542133v1

Preprint submitted on 14 Apr 2020 (v1), last revised 30 Aug 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning fast is painful
Theo Bouganim, Andrea Araldo, Antoine Lavignotte, Nessim Oussedik,

Gabriel Guez

To cite this version:
Theo Bouganim, Andrea Araldo, Antoine Lavignotte, Nessim Oussedik, Gabriel Guez. Learning fast
is painful: reinforcement learning for edge computing allocation. 2020. �hal-02542133v1�

https://hal.science/hal-02542133v1
https://hal.archives-ouvertes.fr


Learning Fast is Painful:
Reinforcement Learning for Edge Computing Allocation

Theo Bouganim, Andrea Araldo, Antoine Lavignotte, Nessim Oussedik, Gabriel Guez
Télécom SudParis - Institut Polytechnique de Paris

Palaiseau - France
firstname.lastname@telecom-sudparis.eu

Abstract—We study the problem of data-driven resource allo-
cation in Multi-Tenant Edge Computing: a Network Operator
(NO) owns resources at the Edge and dynamically allocates
them to third party application Service Providers (SPs). The
objective of the NO is to reduce its operational cost. Since SPs’
traffic is encrypted, NO’s allocation strategy is based solely on
the amount of traffic measured.

In this exploratory work, we solve this problem via Re-
inforcement Learning (RL). RL has mainly been intended to
be trained in simulation, before applying it in real scenarios.
We instead employ RL online, training it directly while opti-
mizing resource allocation. An important factor, which we call
perturbation cost, emerges in this case: in order to learn how
to optimize a system, we need to perturb it and measure its
reaction. While this perturbation cost has no physical meaning
when training RL in simulation, it cannot be ignored when it is
paid by the real system. We explore in this work the trade-off
between perturbing a lot the system to learn faster to optimize
the allocation, or learning slower to reduce the perturbation
cost. In our case study, the resource we allocate is storage.
We show results from simulation and make the entire code
available as open-source.1

1. Introduction

In Multi-tenant Edge Computing (EC) [3] resources are
scarce, thus the NO has to carefully allocate them among
SPs in order to obtain potential benefits. Such allocation
is challenging, since application resource usage may be
complex and unknown to the NO, obfuscated behind end-
to-end encryption and memory encryption. In other words,
SPs are black boxes for the NO. In such scenario, Ma-
chine Learning data-driven (as opposed to model-based)
approaches, solely based on monitored measurements, are
the only viable option for resource allocation.

RL algorithms are usually intended to be trained in simu-
lation, but writing a simulation can be time-consuming and
difficult. Recently, some authors have trained RL directly
on real systems [1]. However, in our scenario, the only
way to learn the optimal allocation (or at least a good-
enough allocation) is to perturb it and measure how the

1. https:github.com/Ressource-Allocation/Cache-Allocation-Project

system changes. This perturbation inherently represents a
cost (perturbation cost), which during simulation can be
neglected, but that can be detrimental when training is
performed in the real system.

In this work, we apply RL to allocate storage in or-
der to minimize the inter-domain traffic for the NO. The
perturbation cost is due to the fact that whenever new
space is given to a SP, some traffic must be generated to
place some content there. We show that the “learn as fast
as possible” goal of generic machine learning approaches
is not valid when applying data-driven optimization to a
real system. On the contrary, a delicate trade-off between
learning a good optimization strategy while avoiding large
system perturbations must be pursued.

2. System model

A NO owns storage resources in an edge cluster [2]
and aims to minimize the downstream traffic arriving from
other Autonomous Systems (ASes). To do so, it allocates
a total storage of K slots among P Service Providers
(SPs). Each SP is a video streaming service, which caches
its most popular objects (videos) in its allotted slots. As
usual in the literature, one slot can store an object. The
allocation is a vector θθθ = (θ1, . . . , θP ), where each θp is
the number of slots given to SP p and

∑P
p=1 θp ≤ K.

The time is slotted and at any time intervals the NO may
change allocation, giving ∆ slots to one SP and −∆ slots
to another. We assume that whenever SP p is given θp slots,
it will cache there its most popular θp objects. We assume
there are no other caches outside the edge, as advocated
by previous work [4]. A user request for an object withing
those popular ones is served directly by the edge, otherwise
the object must arrive from another AS, constituting inter-
domain traffic. At any time interval, we measure the nominal
cost Cnom and the perturbation cost Cpert. The former is the
miss stream, i.e., the amount of requests for objects that are
not in the cache. Cpert occurs when an SP had θp and then it
is given θp+ ∆ slots. In this case, it has to download the ∆
new objects. In this case, Cpert = ∆. In our future work, we
will consider smarter strategies, in which new objects are
downloaded only after they are requested for the 1st time.
We define the total cost as Ctot = Cnom + Cpert.



3. Reinforcement Learning Formulation

The main parameter of our formulation is ∆ ∈ N,
i.e., the number of slots by which we dynamically modify
the storage allocation. Following Q-learning notation, the
system is described by a set of states, which correspond to
all the possible allocation vectors, i.e.,

S =

{
θθθ = (θ1, . . . , θP )|

P∑
p=1

θp ≤ K, θp multiple of ∆

}
Note that only when K is a multiple of ∆ we can exploit all
the slots. At any time interval, based on the measured Cnom,
the NO takes an action to modify the allocation. When in
state θθθ, the space of possible actions for the NO is:

Aθθθ = {a = ∆ · ep −∆ · ep′ |θθθ + a ∈ S, p, p′ = 1, . . . , P}
where ep is the p-th element of the standard basis of Rp. To
choose the action, we resort to a simple ε-greedy policy and
SARSA algorithm. Following the notation in §5.4 and §6.4
of [5], we set ε = 0.2, γ = 0.4, α = 0.9. We set SARSA’s
“instantaneous reward” equal to −Cnom, measured at each
time interval (using −Ctot instead of −Cnom, convergence
was too slow). Note that the more ∆, the more aggressive
is learning: Cnom may converge faster, thanks to the reduced
granularity of actions, but suffering higher Cpert.

4. Performance Evaluation
We consider 3 SPs. In line with the literature, users gen-

erate 103 requests/sec, each directed to SP p with probability
qp. The catalog of any SP p contains 106 videos, whose
popularity follows a Zipf law with exponent sp. The total
cache storage at the Edge is K = 103 slots, each containing
one video. The values for qp, sp are:

SP p = 1 SP p = 2 SP p = 3
qp 0.7 0.25 0.05
sp 0.8 1.0 1.2

The RL action modifying the allocation is taken every 1 sec.
In Fig. 1, we compare the costs from the RL allocation
to two static allocations: (i) the optimal cost-minimizing
allocation hypothetically computed by an oracle who can
observe and predict all the requests and an (ii) initial allo-
cation, which we choose purposely far from the optimum, to
verify that RL is able to dynamically correct it. Obviously,
there is no perturbation cost for static allocations. Curves are
smoothed with 10-minutes windows and normalized by the
total amount of requests. Observe that with ∆ = 100, Cnom
converge fast, but we impose large perturbations, resulting
in a high Ctot. Note that we purposely avoid to decrease
the ∆ during time, as we want our policy to be responsive
to exogenous changes (for instance of content popularity, of
overall request load, etc.). It is preferable instead to choose a
perturbation ∆ which is small enough to avoid high Cpert and
large enough to allow for fast convergence, and thus prompt
adaptivity to exogenous changes. Unfortunately, there is no
value of ∆ that fits best all the cases: Fig. 2 shows that the
impact of Cpert is exacerbated when the system load is lower
than 103req/sec, requiring even smaller perturbations.

Figure 1. Cost over time.

Figure 2. Cost Breakdown, with ∆ = 40.

5. Future work

Since this is a preliminary work, we make the assump-
tions and the limitations explicit. (i) The request load is
stationary, i.e., the object popularity distribution does not
change with time. We will need to extend the definition of
state if we want to apply RL to a general case. (ii) Under
convexity assumptions, the storage allocation problem can
be solved by Stochastic Optimization (SO) algorithms [2],
which we plan to compare against. However, we plan to
apply RL to more complex scenario, where we will allocate
memory, CPU, bandwidth and the objective function will
also include quality of service or quality of experience indi-
cators. In such complex cases, convexity cannot be assumed,
which justifies resorting to RL. (iii) The results of this work
come from simulation. We are currently working obtaining
them on a real testbed.

References

[1] Mirhoseini A. et al. “Device placement optimization
with reinforcement learning”. In: ICML. 2017.

[2] A. Araldo et al. “Caching Encrypted Content Via
Stochastic Cache Partitioning”. In: IEEE/ACM Trans-
actions on Networking 26.1 (2018), pp. 548–561.

[3] A. Araldo et al. “Resource Allocation for Edge
Computing with Multiple Tenant Configurations”. In:
ACM/SIGAPP SAC. 2020.

[4] Fayazbakhsh et al. “Less Pain Most of the Gain: Incre-
mentally Deployable ICN”. In: ACM Sigcomm. 2013.

[5] Sutton R. et al. Reinforcement Learning: An Introduc-
tion. MIT Press, 2017.


