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Stability of a wave and Klein-Gordon system
with mixed coupling

Shijie Dong ∗

April 14, 2020

Abstract

We are interested in establishing stability results for a system of semilinear wave
and Klein-Gordon equations with mixed coupling nonlinearities, that is, we consider
all of the possible quadratic nonlinear terms of the type of wave and Klein-Gordon
interactions. The main difficulties are due to the absence of derivatives on the wave
component in the nonlinearities. By doing a transformation on the wave equation,
we reveal a hidden null structure. Next by using the scaling vector field on the wave
component only, which was generally avoided, we are able to get very good L2–type
estimates on the wave component. Then we distinguish high order and low order
energies of both wave and Klein-Gordon components, which allows us to close the
bootstrap argument.

MSC code. 35L05, 35L52, 35L71.
Keywords. Wave and Klein-Gordon system; global existence; sharp pointwise decay; null
condition; hyperboloidal foliation method.

1 Introduction

Model problem. We are interested in studying the following coupled wave and Klein-
Gordon system

−2u = Qu0(u; v, ∂v) +Qu1(∂u; v, ∂v),

−2v + v = Qv0(u; v, ∂v) +Qv1(∂u; v, ∂v),

Qu0(u; v, ∂v) = Muuv+Mα
u u∂αv, Qu1(∂u; v, ∂v) = Nα

u ∂αuv +Nαβ
u ∂αu∂βv,

Qv0(u; v, ∂v) = Mvuv+Mα
v u∂αv, Qv1(∂u; v, ∂v) = Nα

v ∂αuv +Nαβ
v ∂αu∂βv,

(1.1)

∗Laboratoire Jacques-Louis Lions, Centre National de la Recherche Scientifique, Sorbonne Université,
4, Place Jussieu, 75252 Paris, France. Email: dongs@ljll.math.upmc.fr, shijiedong1991@hotmail.com.
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whose initial data are prescribed on the time slice t = t0 (we always take t0 = 2)(
u, ∂tu

)
(t0, ·) =

(
u0, u1

)
,(

v, ∂tv
)
(t0, ·) =

(
v0, v1

)
.

(1.2)

In the above, Mu,Mv,M
α
u ,M

α
v , N

α
u , N

α
v , N

αβ
u , Nαβ

v are constants, and no null conditions
are assumed. Throughout, Roman letters take values within {0, 1, 2, 3} and Latin let-
ters take values in {1, 2, 3}, and Einstein summation convention is adopted unless oth-
erwise mentioned. The wave operator is denoted by 2 = ηαβ∂α∂β, with the metric
η = diag(−1, 1, 1, 1). We note that the system (1.1) takes into account all of the pos-
sible semilinear nonlinearities of wave and Klein-Gordon interactions.

Motivated by the work [7, 13, 4, 5], we want to establish the small data global existence
result for the model problem (1.1), with physical models (like Dirac-Proca model etc.)
behind. Recall the remark in [4] that the main difficulty is that the nonlinearities are
critical. That is, even if the solution (u, v) behaves very nicely, we still have the following
critical non-integrable quantities∥∥Qu0(u; v, ∂v) +Qu1(∂u; v, ∂v)

∥∥
L2(R3)

∼ t−1,∥∥Qv0(u; v, ∂v) +Qv1(∂u; v, ∂v)
∥∥
L2(R3)

∼ t−1,
(1.3)

which are due to the fact that in some terms in the nonlinearities of (1.1) there are no
derivatives on the wave component u. Since the standard energy for the wave equation can-
not directly control norms like ‖u‖L2(R3), we regard the presence of u in the nonlinearities
as a bad indication.

This problem was proposed in [19], where the authors were not sure whether the nonlin-
earties uv, u∂v lead to global solutions or finite time blowup, and then was partially solved
in [4] with positive result. In this article, we will also be able to deal with the nonlinearities
of the type u∂v in the Klein-Gordon equation, which was not treated in [4].

Brief history. We first very briefly revisit some previous work in the study of pure
wave or pure Klein-Gordon equations, and then recall the history on the study of coupled
wave and Klein-Gordon systems. In the work by John [11, 12], it was prove that general
quadratic nonlinearities in the wave equation cannot ensure global-in-time solutions. Later
on, Klainerman [17] and Christodoulou [3] independently proved that wave equations admit
global-in-time solutions if the nonlinearities satisfy null condition. One refers to [23, 24]
and [29] for the study on the generalisation of the null condition. As for the Klein-Gordon
equations, we only recall here the breakthrough by Klainerman [15] and Shatah [30].

The study of the coupled wave and Klein-Gordon systems has attracted people’s atten-
tion since decades ago. It is very important to study such coupled systems, not only because
they are of great interest in the view of pure PDE, but also for the reason that the coupled
wave and Klein-Gordon systems can be derived from many important physical models,
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like the Dirac-Proca model and Klein-Gordon-Zakharov model, the Maxwell-Klein-Gordon
model, the Einstein-Klein-Gordon model and many others. As far as we know, the study
on this subjects was initiated by Bachelot [2] on the Dirac-Klein-Gordon system. Later on
Georgiev [7] proved the global existence result for the nonlinearities satisfying the strong
null condition (i.e. ∂αu∂βv − ∂βu∂αv, α, β ∈ {0, 1, 2, 3}), which are compatible with the
vector fields excluding the scaling vector field. Then Tsutsumi and his collaborators proved
Klein-Gordon-Zakharov system in [26], Dirac-Proca system in [32], and the Maxwell-Higgs
system in [33]. In the similar time, Psarelli studied the Maxwell-Klein-Gordon equations
in [27, 28], and as far as we know this is the first time people considered bad (with on
derivaties on the wave component u) nonlinearities of the type u∂v. Long time after that,
Katayama [13, 14] proved a large class of coupled wave and Klein-Gordon equations. In
[13], for example, Katayama considered the bad nonlinearities of the type uv, u∂v, but with
the assumption that the nonlinearities in the wave equation of u have divergence form, and
this means that the bad nonlinearities are essentially of the type ∂uv, ∂u∂v, which are
not very bad. Later on, LeFloch and Ma also tackled a large class of the coupled wave
and Klein-Gordon equations with compactly supported initial data in [19] using the hy-
perboloidal foliation method, which is essentially the Klainerman’s vector field method on
hyperboloids. Soon after that, LeFloch and Ma proved the nonlinear stability result of the
Einstein-Klein-Gordon system in [20], where they considered the bad nonlinearities of the
type u∂∂v. Later on, Wang [34] and Ionescu-Pausader [9] also proved global existence of
the Einstein-Klein-Gordon system. Recently, part of the nonlinearities of the type uv, u∂v
was considered in [4] for a coupled wave and Klein-Gorodn system. Besides, we also men-
tion the recent work [21, 22, 18, 6, 10] on coupled wave and Klein-Gordon equations, where
no compactness assumption on the initial data are needed.

Main result. Our goal is to prove the existence of global-in-time solution to the model
problem (1.1), and to further investigate the pointwise decay result of the solution.

Theorem 1.1 (Nonlinear stability of the system of wave and Klein-Gordon equations with
compact support). Consider the system (1.1) with initial data supported in {(t0, x) : |x| ≤
t0/2} and let N ≥ 12 be an integer. Then there exists ε0 > 0, and the initial value problem
(1.1)–(1.2) admits a global-in-time solution (u, v) for all compactly supported initial data
(u0, u1, v0, v1) satisfying the smallness condition

‖u0, v0‖HN+1(R3) + ‖u1, v1‖HN (R3) ≤ ε, ε ∈ (0, ε0). (1.4)

Furthermore, we have the following sharp pointwise decay results

|u(t, x)| . t−1(t− |x|)−1/2, |v(t, x)| . t−3/2. (1.5)

Note that the nonlinearities Qu1(∂u; v, ∂v), Qv1(∂u; v, ∂v) are regarded as good ones,
and the main difficulties are caused by the nonlinearities Qu0(u; v, ∂v), Qv0(u; v, ∂v) in
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which there are no derivatives on the u part. Recall that in [4], the nonlinearitiesQu0(u; v, ∂v)
can be treated by doing a transformation and revealing the hidden null structure of the
nonlinearities Qu0(u; v, ∂v) which is inspired by the work of Tsutsumi in [32]. As for the
uv term appearing in Qv0(u; v, ∂v) of the Klein-Gordon equation, the novel idea in [4] is
that we move this term to the left hand side and regard it as a small pertubation of the
mass of the Klein-Gordon equation, and then apply the techniques in [20] to treat the
Klein-Gordon equation with mass m =

√
1− u. But the u∂v term in the Qv0(u; v, ∂v)

cannot be treated in [4].
Due to the point of view that the null form ∂αu∂αv is regarded to be not consistent with

the Klein-Gordon equations, on one hand the notion of strong null form ∂αu∂βv− ∂βu∂αv
was come up with in [7], and on the other hand the way using the semi-hyperboloidal
frame to estimate ∂αu∂αv was introduced in [19]. However, we find that we can still gain
some decay by treating the null forms ∂αu∂αv in the classical manner, which relies on the
following observations: (1) in the estimate of

∂αu∂αv =
1

t

(
∂tvL0u− Lav∂au

)
,

we are able to move the scaling vector field L0 to the wave component u only, and we always
take L2–type estimate on L0u; (2) the conformal energy estimates allow us to bound the
L2–type norm of the term L0u; (3) we are able to obtain pointwise decay results of u or v
by avoiding using the scaling vector field L0 (twice).

Of independent interest, we find a surprising phenomena, but let us recall some existing
results before we provide the statement. In [1, 20], the authors proved independently the
following pointwise decay results for wave equations, which can be roughly described as:
let w solve the wave equation

−2w = f,

w(t0, x) = ∂tw(t0, x) = 0,
(1.6)

with f spatially compactly supported and satisfying

|f | ≤ Cf t−2−ν(t− r)−1+µ, (1.7)

for 0 < µ ≤ 1/2 and 0 < ν ≤ 1/2 with Cf some constant, and then one has

|w(t, x)| .
Cf
νµ

(t− r)µ−νt−1. (1.8)

This result shows that if the homogeneity (total power) of the decay rate of the source term
f is −3−ν+µ, then the homogeneity of the decay rate of the solution w is −1−ν+µ. Now
we are ready to state the surprising phenomena: recall the nonlinearities Qu0(u; v, ∂v) +
Qu1(∂u; v, ∂v) in the wave equation of u, the best pointwise decay we can expect for it is∣∣Qu0(u; v, ∂v) +Qu1(∂u; v, ∂v)

∣∣ ∼ t−5/2(t− |x|)−1/2,
4



whose homogeneity is −3, but we can prove in Theorem 1.1 the following strong pointwise
decay of u

|u(t, x)| . t−1(t− |x|)−1/2,
whose homogeneity is −3/2 instead of −1 = −3 + 2 which is what we predict.

Remark 1.2. In Theorem 1.1 we assumed that the initial data are compactly supported,
which is due to using the hyperboloidal foliation. But we believe this restriction can be
removed either by the ways used in [21, 22, 18], or by using the Sobolev inequalities proposed
in [16] and [8] to get the pointwise decay for the wave and Klein-Gordon components
respectively.

Outline

The rest of this article is organised as follows.
In Section 2, we revisit some preliminaries on the wave equations, the hyperboloidal

foliation method, and some important inequalities. Then we prove Theorem 1.1 relying on
the bootstrap method in Section 3.

2 Preliminaries

2.1 Hyperboloidal foliation of Minkowski spacetime

We first recall some basic notations in [19] about the hyperboloidal foliation method, so
that we can introduce the energy functional for wave or Klein-Gordon components on hy-
perboloids. We work in the (3 + 1)– dimensional Minkowski spacetime, whose signature
is taken to be (−,+,+,+). We write a point (t, x) = (x0, x1, x2, x3) in Cartesion coordi-
nates, and its spatial radius is denoted by r := |x| =

√
(x1)2 + (x2)2 + (x3)2. The partial

derivatives are denoted by
∂α = ∂xα , α = 0, 1, 2, 3,

and might be abbreviated to ∂, while the Lorentz boosts are represented by

La := xa∂t + t∂a, a = 1, 2, 3,

and might be abbreviated to L. Throughout, all functions are supported in the interior of
the future light cone K := {(t, x) : r < t − 1} with vertex (1, 0, 0, 0). The hyperboloidal
hypersurfaces are denoted by Hs := {(t, x) : t2 − r2 = s2} with hyperbolic time s ≥ 2. We
note that for any point (t, x) within the cone K, the following relation holds

r < t, s < t < s2.

The semi-hyperboloidal frame we will use is defined by

∂0 := ∂t, ∂a :=
La
t

=
xa

t
∂t + ∂a. (2.1)
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The vectors ∂a are tangent to the hyperboloids. Besides we also note that the vector field
∂⊥ := ∂t + (xa/t)∂a is orthogonal to the hyperboloids. The semi-hyperboloidal frame and
the natural Cartesian frame can be transformed to each other by the following relations

∂t = ∂0, ∂a = −x
a

t
∂t + ∂a. (2.2)

On the other hand, the hyperboloidal frame is defined by

∂0 := ∂s =
s

t
∂t, ∂a := ∂a =

xa

t
∂t + ∂a, (2.3)

and its relation with the Cartesian frame reads

∂t =
t

s
∂s, ∂a = −x

a

s
∂s + ∂a. (2.4)

2.2 Energy estimates on hyperboloids

Following [20] and for a function φ defined on a hyperboloid Hs, we define its energy Em
by

Em(s, φ) :=

∫
Hs

((
∂tφ
)2

+
∑
a

(
∂aφ

)2
+ 2(xa/t)∂tφ∂aφ+m2φ2

)
dx

=

∫
Hs

((
(s/t)∂tφ

)2
+
∑
a

(
∂aφ

)2
+m2φ2

)
dx

=

∫
Hs

((
∂⊥φ

)2
+
∑
a

(
(s/t)∂aφ

)2
+
∑
a<b

(
t−1Ωabφ

)2
+m2φ2

)
dx,

(2.5)

and in the above Ωab := xa∂b − xb∂a represent the rotational vector fields, and ∂⊥ =
∂t+(xa/t)∂a is the orthogonal vector field. For simplicity we will denote E(s, φ) := E0(s, φ).
The integral above in L1(Hs) is defined by

‖φ‖L1
f (Hs)

:=

∫
Hs
|φ| dx =

∫
R3

∣∣φ(
√
s2 + r2, x)

∣∣ dx. (2.6)

We remind one that it holds∥∥(s/t)∂φ
∥∥
L2
f (Hs)

+
∑
α

∥∥∂αφ∥∥L2
f (Hs)

. Em(s, φ)1/2.

Next, we demonstrate the energy estimates to the hyperboloidal setting.

Proposition 2.1 (Energy estimates for wave-Klein-Gordon equations). For m ≥ 0 and
for s ≥ s0 (with s0 = 2), it holds that

Em(s, u)1/2 ≤ Em(s0, u)1/2 +

∫ s

2

∥∥−2u+m2u
∥∥
L2
f (Hs′ )

ds′ (2.7)

for all sufficiently regular functions u, which are defined and supported in K[s0,s].

One refers to [20] for the proof.
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2.3 Sobolev-type and Hardy-type inequality

We now state a Sobolev-type inequality adapted to the hyperboloidal setting, which will
be used to obtain sup-norm estimates for both wave and Klein-Gordon components. The
Sobolev-type inequalities on hyperboloids have been proved by Klainerman, Hörmander,
and LeFloch-Ma. For the proof of the one given right below, one refers to either [31] or
[19, 20] for details.

Lemma 2.2. Let u = u(t, x) be sufficient smooth and be supported in {(t, x) : |x| < t− 1}
and let s ≥ 2, then it holds

sup
Hs

∣∣t3/2u(t, x)
∣∣ . ∑

|J |≤2

∥∥LJu∥∥
L2
f (Hs)

, (2.8)

with L the Lorentz boosts and J the multi-index. As a consequence, we also have

sup
Hs

∣∣st1/2u(t, x)
∣∣ . ∑

|J |≤2

∥∥(s/t)LJu
∥∥
L2
f (Hs)

, (2.9)

The following Hardy-type inequality adapted to the hyperboloidal foliation is used to
estimate the L2–type of norm for the wave component u. For the proof, one refers to [19]
for instance.

Lemma 2.3. For all sufficiently regular functions u defined and supported in the cone
K = {(t, x) : |x| < t− 1}, and for all s ≥ s0, one has∥∥r−1u∥∥

L2
f (Hs)

.
∑
a

∥∥∂au∥∥L2
f (Hs)

. (2.10)

2.4 Conformal-type energy estimates on hyperboloids

We now recall a conformal-type energy, introduced in [25], which is adapted to the hyper-
boloidal foliation setting. This lemma allows us to obtain a robust estimate of the L2-type
norm for the wave component u.

Lemma 2.4. Define the conformal-type energy for a sufficiently regular function u, which
is supported in the cone K = {(t, x) : |x| < t− 1}, by

Econ(s, u) :=

∫
Hs

(∑
a

(
s∂au

)2
+
(
Ku+ 2u

)2)
dx, (2.11)

where we used the notation
Ku :=

(
s∂s + 2xa∂a

)
u.

Then we have

Econ(s, u)1/2 ≤ Econ(s0, u)1/2 + 2

∫ s

s0

s′
∥∥2u∥∥

L2
f (Hs′ )

ds′. (2.12)
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Lemma 2.5. We have in the cone K that∥∥(s/t)u
∥∥
L2
f (Hs)

+
∥∥(s/t)L0u

∥∥
L2
f (Hs)

+
∑
a

∥∥(s/t)Lau
∥∥
L2
f (Hs)

. Econ(s, u)1/2. (2.13)

Proof. First, by the definition of the conformal energy it is obvious to see that∑
a

∥∥(s/t)Lau
∥∥
L2
f (Hs)

≤ Econ(s, u)1/2.

Second, the Hardy inequality (2.10) gives∥∥(1/r)u
∥∥
L2
f (Hs)

.
∑
a

∥∥∂au∥∥L2
f (Hs)

,

which further yields∥∥(s/r)u
∥∥
L2
f (Hs)

.
∑
a

∥∥s∂au∥∥L2
f (Hs)

. Econ(s, u)1/2.

Since the relation r < t holds within the cone K, we thus obtain∥∥(s/t)u
∥∥
L2
f (Hs)

. Econ(s, u)1/2.

In order to take into account the scaling vector field L0, we next express the scaling
vector field in the semi-hyperboloidal frame

L0 = t∂t + xa∂a = s∂s + xa∂a.

Recall that
Ku =

(
s∂s + 2xa∂a

)
u = L0u+ xa∂au.

Hence the triangle inequality implies that∥∥(s/t)L0u
∥∥
L2
f (Hs)

≤
∥∥(s/t)Ku

∥∥
L2
f (Hs)

+
∥∥(s/t)xa∂au

∥∥
L2
f (Hs)

=
∥∥(s/t)Ku

∥∥
L2
f (Hs)

+
∥∥(s/t)(xa/t)Lau

∥∥
L2
f (Hs)

.

Finally the facts that s < t, |xa| < t in the cone K indicates that∥∥(s/t)L0u
∥∥
L2
f (Hs)

. Econ(s, u)1/2.

The proof is complete.

8



2.5 Estimates for commutators and null forms

We recall the following standard estimates for null forms, which can be found in [31].

Lemma 2.6. It holds

∂αu∂
αv = −1

t

(
∂tvL0u− Lav∂au

)
. (2.14)

Next, we revisit the following commutation relations from [31].

Lemma 2.7. For all nice functions u, v we have

∂α
(
∂γu∂

γv
)

= ∂γ∂αu∂
γv + ∂γu∂

γ∂αv,

La
(
∂γu∂

γv
)

= ∂γLau∂
γv + ∂γu∂

γLav.
(2.15)

The following estimates for commutators will also be frequently used, and one refers to
[19] for the proof.

Lemma 2.8. Within the cone K it holds for any nice function u that∣∣∂αLau∣∣ . ∣∣La∂αu∣∣+
∑
β

∣∣∂βu∣∣,
∣∣LaLbu∣∣ . ∣∣LbLau∣∣+

∑
m

∣∣Lmu∣∣,∣∣La(u s/t)∣∣ . ∣∣(s/t)Lau∣∣+
∣∣(s/t)u∣∣,∣∣LbLa(u s/t)∣∣ . ∣∣(s/t)LbLau∣∣+
∣∣(s/t)u∣∣+

∑
m

∣∣(s/t)Lmu∣∣.
(2.16)

3 Bootstrap argument

3.1 Bootstrap assumptions and its consequences

Our goal in this section is to prove Theorem 1.1 by relying on a standard bootstrap argu-
ment.

According to the local well-posedness result of wave and Klein-Gordon equations and
the continuation of the energies, we assume that the following bounds are true for all
s ∈ [s0, T ) (with s0 = 2):

Econ(s, ∂ILJu)1/2 ≤ C1εs
1/2+δ, |I|+ |J | ≤ N − 1,

Econ(s, ∂ILJu)1/2 ≤ C1εs
δ, |I|+ |J | = N − 3,

Econ(s, ∂ILJu)1/2 ≤ C1ε, |I|+ |J | ≤ N − 4,

E(s, ∂ILJu)1/2 ≤ C1εs
δ, |I|+ |J | = N,

E(s, ∂ILJu)1/2 ≤ C1ε, |I|+ |J | ≤ N − 1,

E1(s, ∂
ILJv)1/2 ≤ C1εs

δ, |I|+ |J | = N,

E1(s, ∂
ILJv)1/2 ≤ C1ε, |I|+ |J | ≤ N − 1.

(3.1)
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In the above, the constant C1 > 1 is some large number to be determined, δ > 0 is a small
constant, and the time T is defined by

T := sup{s > s0 : (3.1) holds}.

We want to prove the following refined estimates (with T < +∞)

Econ(s, ∂ILJu)1/2 ≤ 1

2
C1εs

1/2+δ, |I|+ |J | ≤ N − 1,

Econ(s, ∂ILJu)1/2 ≤ 1

2
C1εs

δ, |I|+ |J | = N − 3,

Econ(s, ∂ILJu)1/2 ≤ 1

2
C1ε, |I|+ |J | ≤ N − 4,

E(s, ∂ILJu)1/2 ≤ 1

2
C1εs

δ, |I|+ |J | = N,

E(s, ∂ILJu)1/2 ≤ 1

2
C1ε, |I|+ |J | ≤ N − 1,

E1(s, ∂
ILJv)1/2 ≤ 1

2
C1εs

δ, |I|+ |J | = N,

E1(s, ∂
ILJv)1/2 ≤ 1

2
C1ε, |I|+ |J | ≤ N − 1,

(3.2)

which immediately imply the global existence in Theorem 1.1.
By recalling the Sobolev inequalities and the estimates for commutators, we have the

following set of estimates from the bootstrap assumptions (3.1).

Proposition 3.1. Under the assumptions in (3.1), it holds for all s ∈ [s0, T ) that

• L2–type estimates:∥∥(s/t)∂∂ILJu, (s/t)∂ILJ∂u, (s/t)∂∂ILJv, (s/t)∂ILJ∂v, ∂ILJv
∥∥
L2
f (Hs)

.C1εs
δ, |I|+ |J | = N,∥∥(s/t)∂∂ILJu, (s/t)∂ILJ∂u, (s/t)∂∂ILJv, (s/t)∂ILJ∂v, ∂ILJv

∥∥
L2
f (Hs)

.C1ε, |I|+ |J | ≤ N − 1.

(3.3)

• L∞–type estimates:∥∥st1/2∂∂ILJu, st1/2∂ILJ∂u, st1/2∂∂ILJv, st1/2∂ILJ∂v, t3/2∂ILJv∥∥
L∞(Hs)

.C1εs
δ, |I|+ |J | = N − 2,∥∥st1/2∂∂ILJu, st1/2∂ILJ∂u, st1/2∂∂ILJv, st1/2∂ILJ∂v, t3/2∂ILJv∥∥

L∞(Hs)

.C1ε, |I|+ |J | ≤ N − 3.

(3.4)
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If we further utilise the estimates in Lemma 2.5, then we are led to the set of estimates
right below.

Proposition 3.2. We have

• L2–type estimates:∥∥(s/t)∂ILJu
∥∥
L2
f (Hs)

+
∥∥(s/t)L0∂

ILJu
∥∥
L2
f (Hs)

+
∑
a

∥∥(s/t)La∂
ILJu

∥∥
L2
f (Hs)

.C1εs
1/2+δ, |I|+ |J | ≤ N − 1,∥∥(s/t)∂ILJu

∥∥
L2
f (Hs)

+
∥∥(s/t)L0∂

ILJu
∥∥
L2
f (Hs)

+
∑
a

∥∥(s/t)La∂
ILJu

∥∥
L2
f (Hs)

.C1εs
δ, |I|+ |J | ≤ N − 3,∥∥(s/t)∂ILJu

∥∥
L2
f (Hs)

+
∥∥(s/t)L0∂

ILJu
∥∥
L2
f (Hs)

+
∑
a

∥∥(s/t)La∂
ILJu

∥∥
L2
f (Hs)

.C1ε, |I|+ |J | ≤ N − 4.

(3.5)

• L∞–type estimates:∥∥st1/2∂ILJu∥∥
L∞(Hs) +

∑
a

∥∥st1/2La∂ILJu∥∥L∞(Hs) . C1ε, |I|+ |J | ≤ N − 6.

(3.6)

3.2 Improved estimates for the wave component u

In this part, we will prove the improved estimates for the wave component u, including its
energy estimates E(s, ∂ILJu)1/2 as well as its conformal energy estimates Econ(s, ∂ILJu)1/2.
This part is the main part of Section 3.

Recall the wave equation in (1.1), and we act ∂ILJ on it to get

−2∂ILJu = ∂ILJQu0(u; v, ∂v) + ∂ILJQu1(∂u; v, ∂v), (3.7)

and this will be used to obtain improved estimates on ∂ILJu.

Proposition 3.3. The following refined estimates are true

E(s, ∂ILJu)1/2 ≤ ε+ (C1ε)
2sδ, |I|+ |J | = N,

E(s, ∂ILJu)1/2 ≤ ε+ (C1ε)
2, |I|+ |J | ≤ N − 1.

(3.8)

Proof. Based on (3.7) as well as the energy estimates, we have

E(s, ∂ILJu)1/2

≤E(s0, ∂
ILJu)1/2 +

∫ s

s0

∥∥∥∂ILJQu0(u; v, ∂v) + ∂ILJQu1(∂u; v, ∂v)
∥∥∥
L2
f (Hs′ )

ds′.
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We first take into account the cases of |I|+ |J | ≤ N − 1, and by the product rule (with
two nice functions f, g)

∂ILJ(fg) =
∑

I1+I2=I,J1+J2=J

∂I1LJ1f ∂I2LJ2g,

we get ∥∥∥∂ILJQu0(u; v, ∂v) + ∂ILJQu1(∂u; v, ∂v)
∥∥∥
L2
f (Hs′ )

.
∑

|I1|+|J1|≤N−1
|I2|+|J2|≤N/2

(∥∥(s′/t)∂I1LJ1u
∥∥
L2
f (Hs′ )

+
∥∥(s′/t)∂∂I1LJ1u

∥∥
L2
f (Hs′ )

)
(∥∥(t/s′)∂I2LJ2v

∥∥
L∞(Hs′ )

+
∥∥(t/s′)∂∂I2LJ2v

∥∥
L∞(Hs′ )

)
+

∑
|I1|+|J1|≤N/2
|I2|+|J2|≤N−1

(∥∥∂I1LJ1u∥∥
L∞(Hs′ )

+
∥∥∂∂I1LJ1u∥∥

L∞(Hs′ )

)
(∥∥∂I2LJ2v∥∥

L2(Hs′ )
+
∥∥∂∂I2LJ2v∥∥

L2(Hs′ )

)
.(C1ε)

2s′−3/2+δ,

which yields that

E(s, ∂ILJu)1/2 .E(s0, ∂
ILJu)1/2 + (C1ε)

2

∫ s

s0

s′−3/2+δ ds′

.ε+ (C1ε)
2.

Similarly, for the cases of |I|+ |J | = N , we find that∥∥∥∂ILJQu0(u; v, ∂v) + ∂ILJQu1(∂u; v, ∂v)
∥∥∥
L2
f (Hs′ )

.
∑

|I1|+|J1|≤N
|I2|+|J2|≤N/2

(∥∥(s′/t)∂I1LJ1u
∥∥
L2
f (Hs′ )

+
∥∥(s′/t)∂∂I1LJ1u

∥∥
L2
f (Hs′ )

)
(∥∥(t/s′)∂I2LJ2v

∥∥
L∞(Hs′ )

+
∥∥(t/s′)∂∂I2LJ2v

∥∥
L∞(Hs′ )

)
+

∑
|I1|+|J1|≤N/2
|I2|+|J2|≤N

(∥∥(t/s′)∂I1LJ1u
∥∥
L∞(Hs′ )

+
∥∥(t/s′)∂∂I1LJ1u

∥∥
L∞(Hs′ )

)
(∥∥∂I2LJ2v∥∥

L2(Hs′ )
+
∥∥(s′/t)∂∂I2LJ2v

∥∥
L2(Hs′ )

)
.(C1ε)

2s′−1+δ,

and this gives us
E1(s, ∂

ILJu)1/2 . ε+ (C1ε)
2sδ.
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We thus complete the proof.

As for the refined estimates for the conformal energy, we first prove the easy cases of
|I|+ |J | ≤ N − 1, in which we do not need to do any transformation of the wave equation
or need any null structure.

Proposition 3.4. We have

Econ(s, ∂ILJu)1/2 ≤ ε+ (C1ε)
2s1/2+δ, |I|+ |J | ≤ N − 1. (3.9)

Proof. In the case of |I|+ |J | ≤ N − 1, recall the equation (3.7), and the conformal energy
estimates in Lemma 2.4 gives us

Econ(s, ∂ILJu)1/2

≤Econ(s0, ∂
ILJu)1/2 +

∫ s

s0

s′
∥∥∥∂ILJQu0(u; v, ∂v) + ∂ILJQu1(∂u; v, ∂v)

∥∥∥
L2
f (Hs′ )

ds′.

The estimates in Proposition 3.3 have shown that∥∥∥∂ILJQu0(u; v, ∂v) + ∂ILJQu1(∂u; v, ∂v)
∥∥∥
L2
f (Hs′ )

. (C1ε)
2s′−3/2+δ,

and we thus have

Econ(s, ∂ILJu)1/2 . ε+ (C1ε)
2

∫ s

s0

s′−1/2+δ ds′ . ε+ (C1ε)
2s1/2+δ.

The proof is done.

Next, we turn to prove the refined estimates for the conformal energy in the cases of
|I| + |J | = N − 3, |I| + |J | ≤ N − 4, but this does not seem to be possible with those
seemingly bad nonlinearities Qu0(u; v, ∂v) + Qu1(∂u; v, ∂v). Fortunately, we find that we
can reveal a null structure by doing a transformation on the wave equation. And then the
L2–type estimates involving the scaling vector field L0 in Lemma 2.5 provide us with very
good bounds of the null forms.

In order to achieve our goal, we first do a transformation on the wave equation in (1.1).

Lemma 3.5. Let
U = u+Qu0(u; v, ∂v) +Qu1(∂u; v, ∂v),

then U solves the following wave equation

−2U = N(u, v) +H(u, v),(
U, ∂tU

)
(s0, ·) =

(
U0, U1

)
,

(3.10)

13



in which N(u, v) represents the quadratic null terms

N(u, v) = −Mu∂γu∂
γv −Mα

u ∂γu∂
γ∂αv −Nα

u ∂γ∂αu∂
γv −Nαβ

u ∂γ∂αu∂
γ∂βv, (3.11)

and H(u, v) represents the negligible cubic terms of the form

H(u, v) = Mu(−2u)v +Muu(−2v + v) +Mα
u (−2u)∂αv +Mα

u u(−2∂αv + ∂αv)

+Nα
u (−2∂αu)v +Nα

u ∂αu(−2v + v) +Nαβ
u (−2∂αu)∂βv +Nαβ

u ∂αu(−2∂βv + ∂βv),
(3.12)

and the initial data are(
U0, U1

)
=
(
u+Qu0(u; v, ∂v) +Qu1(∂u; v, ∂v), ∂tu+ ∂tQu0(u; v, ∂v) + ∂tQu1(∂u; v, ∂v)

)
(s0, ·).

(3.13)

Since we work in R3+1 and there exists at least one factor of Klein-Gordon component
in the cubic nonlinearities of H(u, v), we know H(u, v) behaves very nicely, and we will not
pay extra attention to the cubic terms in H(u, v). We will next derive estimates for the
new variable U , and then in turn deduce the wanted estimates for the original unknown u
by the simple observation that the difference between u and U is a quadratic term.

Lemma 3.6. The following estimates for U hold

Econ(s, ∂ILJU)1/2 ≤ ε+ (C1ε)
2sδ, |I|+ |J | = N − 3,

Econ(s, ∂ILJU)1/2 ≤ ε+ (C1ε)
2, |I|+ |J | ≤ N − 4.

(3.14)

Proof. We act ∂ILJ on the U equation (3.10) to obtain

−2∂ILJU = ∂ILJN(u, v) + ∂ILJH(u, v),

in which N(u, v) represents the quadratic null terms

N(u, v) = −Mu∂γu∂
γv −Mα

u ∂γu∂
γ∂αv −Nα

u ∂γ∂αu∂
γv −Nαβ

u ∂γ∂αu∂
γ∂βv,

and H(u, v) is the negligible cubic nonlinearities.
By Lemma 2.7, it is not hard to see that

∂ILJN(u, v) =
∑

I1+I2=I,J1+J2=J

N(∂I1LJ1u, ∂I2LJ2v).

Then by Lemma 2.6, we have

N(∂I1LJ1u, ∂I2LJ2v) =
1

t

(
Mu

(
∂t∂

I2LJ2vL0∂
I1LJ1u− La∂I2LJ2v∂a∂I1LJ1u

)
+Mα

u

(
∂t∂

I2LJ2∂αvL0∂
I1LJ1u− La∂I2LJ2∂αv∂a∂I1LJ1u

)
+Nα

u

(
∂t∂

I2LJ2vL0∂
I1LJ1∂αu− La∂I2LJ2v∂a∂I1LJ1∂αu

)
+Nαβ

u

(
∂t∂

I2LJ2∂βvL0∂
I1LJ1∂αu− La∂I2LJ2∂βv∂a∂I1LJ1∂αu

))
.

14



We are now ready to estimate∥∥N(∂I1LJ1u, ∂I2LJ2v)
∥∥
L2
f (Hs′ )

,

and we will always take L2–type norms on the wave component. We proceed by

s′
∥∥N(∂I1LJ1u, ∂I2LJ2v)

∥∥
L2
f (Hs′ )

.
∥∥∂t∂I2LJ2v∥∥L∞(Hs′ )

∥∥(s′/t)L0∂
I1LJ1u

∥∥
L2
f (Hs′ )

+
∥∥La∂I2LJ2v∥∥L∞(Hs′ )

∥∥(s′/t)∂a∂I1LJ1u
∥∥
L2
f (Hs′ )

+
∥∥∂t∂I2LJ2∂v∥∥L∞(Hs′ )

∥∥(s′/t)L0∂
I1LJ1u

∥∥
L2
f (Hs′ )

+
∥∥La∂I2LJ2∂v∥∥L∞(Hs′ )

∥∥(s′/t)∂a∂I1LJ1u
∥∥
L2
f (Hs′ )

+
∥∥∂t∂I2LJ2v∥∥L∞(Hs′ )

∥∥(s′/t)L0∂
I1LJ1∂u

∥∥
L2
f (Hs′ )

+
∥∥La∂I2LJ2v∥∥L∞(Hs′ )

∥∥(s′/t)∂a∂I1LJ1∂u
∥∥
L2
f (Hs′ )

+
∥∥∂t∂I2LJ2∂v∥∥L∞(Hs′ )

∥∥(s′/t)L0∂
I1LJ1∂u

∥∥
L2
f (Hs′ )

+
∥∥La∂I2LJ2∂v∥∥L∞(Hs′ )

∥∥(s′/t)∂a∂I1LJ1∂u
∥∥
L2
f (Hs′ )

.

By inserting the estimates in Proposition 3.1 and Proposition 3.2, we obtain

s′
∥∥N(∂I1LJ1u, ∂I2LJ2v)

∥∥
L2
f (Hs′ )

.

{
(C1ε)

2s′−1+δ, |I|+ |J | = N − 3, I1 + I2 = I, J1 + J2 = J,

(C1ε)
2s′−3/2+2δ, |I|+ |J | ≤ N − 4, I1 + I2 = I, J1 + J2 = J.

(3.15)

Easily we can also get such estimates for the negligible cubic term ∂ILJH(u, v) which read

s′
∥∥∂ILJH(u, v)

∥∥
L2
f (Hs′ )

.

{
(C1ε)

2s′−1+δ, |I|+ |J | = N − 3, I1 + I2 = I, J1 + J2 = J,

(C1ε)
2s′−3/2+2δ, |I|+ |J | ≤ N − 4, I1 + I2 = I, J1 + J2 = J.

(3.16)

Finally we recall the conformal energy estimate

Econ(s, ∂ILJU)1/2

≤Econ(s0, ∂
ILJU)1/2 +

∫ s

s0

s′
∥∥∥∂ILJN(u, v) + ∂ILJH(u, v)

∥∥∥
L2
f (Hs′ )

ds′,

which implies

Econ(s, ∂ILJU)1/2 . ε+

{
(C1ε)

2
∫ s
s0
s′−1+δ ds′, |I|+ |J | = N − 3,

(C1ε)
2
∫ s
s0
s′−3/2+2δ ds′, |I|+ |J | ≤ N − 4,

.

{
ε+ (C1ε)

2sδ, |I|+ |J | = N − 3,
ε+ (C1ε)

2, |I|+ |J | ≤ N − 4,

and this completes the proof.
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Proposition 3.7. The following improved estimates are valid

Econ(s, ∂ILJu)1/2 ≤ ε+ (C1ε)
2sδ, |I|+ |J | = N − 3,

Econ(s, ∂ILJu)1/2 ≤ ε+ (C1ε)
2, |I|+ |J | ≤ N − 4.

(3.17)

Proof. Recall the relation between u and U reads

U = u+Qu0(u; v, ∂v) +Qu1(∂u; v, ∂v),

hence we are led to

Econ(s, ∂ILJu)1/2

.Econ(s, ∂ILJU)1/2 + Econ(s, ∂ILJQu0(u; v, ∂v))1/2 + Econ(s, ∂ILJQu1(u; v, ∂v))1/2.

Since Qu0(u; v, ∂v), Qu1(u; v, ∂v) are quadratic terms, we easily obtain

Econ(s, ∂ILJQu0(u; v, ∂v))1/2 + Econ(s, ∂ILJQu1(u; v, ∂v))1/2 . (C1ε)
2,

which finishes the proof.

3.3 Improved estimates for the Klein-Gordon component v

We now turn to improve the estimates for the Klein-Gordon component v, which are more
straightforward.

Proposition 3.8. It holds

E1(s, ∂
ILJv)1/2 ≤ ε+ (C1ε)

2sδ, |I|+ |J | = N,

E1(s, ∂
ILJv)1/2 ≤ ε+ (C1ε)

2, |I|+ |J | ≤ N − 1.
(3.18)

Proof. We act the operator ∂ILJ to the Klein-Gordon equation in (1.1) to have

−2∂ILJv + ∂ILJv = ∂ILJQv0(u; v, ∂v) + ∂ILJQv1(∂u; v, ∂v).

By the energy estimates we have

E1(s, ∂
ILJv)1/2

≤E1(s0, ∂
ILJv)1/2 +

∫ s

s0

∥∥∥∂ILJQv0(u; v, ∂v) + ∂ILJQv1(∂u; v, ∂v)
∥∥∥
L2
f (Hs′ )

ds′.
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We then start with the cases of |I|+ |J | ≤ N − 1, and it is easy to find that∥∥∥∂ILJQv0(u; v, ∂v) + ∂ILJQv1(∂u; v, ∂v)
∥∥∥
L2
f (Hs′ )

.
∑

|I1|+|J1|≤N−1
|I2|+|J2|≤N/2

(∥∥(s′/t)∂I1LJ1u
∥∥
L2
f (Hs′ )

+
∥∥(s′/t)∂∂I1LJ1u

∥∥
L2
f (Hs′ )

)
(∥∥(t/s′)∂I2LJ2v

∥∥
L∞(Hs′ )

+
∥∥(t/s′)∂∂I2LJ2v

∥∥
L∞(Hs′ )

)
+

∑
|I1|+|J1|≤N/2
|I2|+|J2|≤N−1

(∥∥∂I1LJ1u∥∥
L∞(Hs′ )

+
∥∥∂∂I1LJ1u∥∥

L∞(Hs′ )

)
(∥∥∂I2LJ2v∥∥

L2(Hs′ )
+
∥∥∂∂I2LJ2v∥∥

L2(Hs′ )

)
.(C1ε)

2s′−3/2+δ,

which is integrable, and this leads us to

E1(s, ∂
ILJv)1/2 . ε+ (C1ε)

2, |I|+ |J | ≤ N − 1.

Next, we consider the cases of |I|+ |J | = N , and we find similarly that∥∥∥∂ILJQv0(u; v, ∂v) + ∂ILJQv1(∂u; v, ∂v)
∥∥∥
L2
f (Hs′ )

.
∑

|I1|+|J1|≤N
|I2|+|J2|≤N/2

(∥∥(s′/t)∂I1LJ1u
∥∥
L2
f (Hs′ )

+
∥∥(s′/t)∂∂I1LJ1u

∥∥
L2
f (Hs′ )

)
(∥∥(t/s′)∂I2LJ2v

∥∥
L∞(Hs′ )

+
∥∥(t/s′)∂∂I2LJ2v

∥∥
L∞(Hs′ )

)
+

∑
|I1|+|J1|≤N/2
|I2|+|J2|≤N

(∥∥(t/s′)∂I1LJ1u
∥∥
L∞(Hs′ )

+
∥∥(t/s′)∂∂I1LJ1u

∥∥
L∞(Hs′ )

)
(∥∥∂I2LJ2v∥∥

L2(Hs′ )
+
∥∥(s′/t)∂∂I2LJ2v

∥∥
L2(Hs′ )

)
.(C1ε)

2s′−1+δ,

and this yields
E1(s, ∂

ILJv)1/2 . ε+ (C1ε)
2sδ, |I|+ |J | ≤ N.

Hence the proof is done.
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3.4 Proof of Theorem 1.1

By gathering the refined estimates we derived above, we are ready to give the proof of
Theorem 1.1.

Proof of Theorem 1.1. Recall the estimates obtained in propositions 3.3, 3.4, 3.7, and 3.8,
and we first choose C1 very large so that . ε gives ≤ 1

4C1ε, and then choose ε sufficiently
small so that . (C1ε)

2 gives ≤ 1
4C1ε. By this choice, we easily have all of the wanted

refined estimates in (3.2). Thus if s0 < T < +∞ is some finite number, then we can extend
it a littile bit, but this contradicts its definition. This means T must be +∞ which gives us
the global existence result. The sharp pointwise decay results in (1.5) immediately follows
the estimates in Section 3.1.
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