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Shijie Dong∗

April 14, 2020

Abstract

We will show that in R2+1 semilinear wave equations of the form −�u =
uQ(∂u; ∂u) possess global-in-time solutions if the null condition on Q(∂u; ∂u) is
assumed. As a consequence, we also provide a new proof, after [24], on the small
data global solutions to the wave map equation in R2+1 and no compactness
assumptions on the initial data are needed.
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1 Introduction

Brief history The study of nonlinear wave equations has been an active research
field since decades ago, and tremendous results have been obtained in R3+1. It is
well-known, for example see the examples by John [7, 8], that wave equations with
quadratic nonlinearities might not have global-in-time solutions. Later on, the cele-
brated breakthrough by Klainerman [10, 13, 11] relying on the vector field method
and Christodoulou [4] relying on the conformal method, showed that global-in-time
solutions exist for wave equations with null nonlinearities. We also recall other work
on the three dimensional wave equations [15, 16] and [21], which generalise the notion
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of null forms. As an application, many physical models, like Dirac equations, Maxwell
equations, Einstein equations, are proved to be stable under small perturbations.

Due to the fact that waves in R2+1 do not decay fast enough, the classical null
condition cannot guarantee that semilinear wave equations in R2+1 with null quadratic
nonlinearities have global-in-time solutions. The existence results of global-in-time
solutions to quadratic nonlinear wave equations in R2+1 was first obtained by Godin
[6] in the semi linear case and by Alinhac [1, 2] in the quasilinear case, where the author
showed that a class of quasilinear wave equations of the form −�u+ gαβγ∂γu∂αβu = 0
satisfying the null condition are stable under the assumption that the initial data are
small and compactly supported. Later on Zha [25] had a thorough study on a large
class of wave equations in R2+1. We also remind one the study of the system of coupled
quasilinear wave and Klein-Gordon equations in R2+1 by Ma [19, 20, 18], using the
hyperboloidal foliation method [14] which dates back to [12]. But the compactness
assumption on the initial data is needed in all of the above results.

Without the compactness restriction on the initial data, Katayama [9] obtained
the global solutions to a class of semilinear wave equations in R2+1. Later on, Cai,
Lei, and Masmoudi [3] removed the compactness assumption on the initial data after
[1], and obtained the global well-posedness result for the scalar wave equation which
is fully nonlinear.

There is a large literature on the study of wave maps, we are not going to be
exhaustive. We only mention the work [23, 24] on wave maps in R2+1.

Model of interest and the main difficulties We will consider the following sys-
tem of semilinear wave equations

−�ui = Rjkl
i ujQ0(uk, ul),

ui(t0, ·) =ui0, ∂tui(t0, ·) = ui1,
(1.1)

in which � = ∂α∂
α = −∂t∂t + ∂a∂

a, and Q0(v, w) := −∂αv∂αw or ∂αv∂βw − ∂αw∂βv
is the null form. In the above, t0 is the initial time taken to be 0, and i, j, k, l ∈
{1, 2, · · · , n0} with n0 ≥ 1 the number of unknowns (equations). Greek indices
α, β, · · · run in {0, 1, 2}, Latin letters a, b, · · · run in {1, 2}, and the Einstein sum-
mation convention is adopted unless specified. Besides, we use A . B to denote
A ≤ CB with C a generic constant.

Compared to the existing results in [1, 2, 3, 19, 20], the main difference is that the
nonlinearities in the model problem (1.1) include the potential uk (with no derivatives),
instead of only ∂uk and ∂∂uj. Recall the standard energy of wave equation is of the
form ∑

i,α

∫
R2

|∂αui|2 dx,

which does not include the L2 norm of the potential∑
i

∫
R2

|ui|2 dx.

Thus it requires us to bound ‖u‖L2(R2).
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The Hardy inequality ∥∥∥w
r

∥∥∥
L2(Rn)

≤ C‖∇w‖L2(Rn)

is only true for n ≥ 3, and the L2 norm of the potential can be bounded by the
conformal energy only when n ≥ 3, see the remark in [24]. The L2 estimates (possibly
with weight) for waves in R2+1 were obtained in [24, 17, 18], but the compact support
assumption on the initial data is required.

In order to conquer that difficulty and bound
∑

i

∫
R2 |ui|2 dx, we write the wave

equations in the Fourier space, and derive the formulation for ui by solving the ordinary
differential equation (see for example [5]), then a careful treatment on each terms in
the formulation gives us the desired result, see Lemma 3.1. However, there is a ”loss
of derivative” problem occurring when we estimate the highest order energy, see the
proof of Proposition 4.2 for example. We find that this ”loss of derivative” problem
can be overcome by an observation on the estimates of the null forms and by the aid
of the ghost weight energy estimates [1].

Main theorem Our goal is to obtain global-in-time solutions to the system (1.1),
which is stated now.

Theorem 1.1. Consider the system of coupled wave equations (1.1), and let N ≥ 1
be a sufficiently large integer. The parameters Rjkl

i are taken to be constants. Then
there exists a small ε0 > 0, such that the Cauchy problem (1.1) admits a global-in-time
solution (ui) as long as the initial data (ui0, ui1) satisfy the smallness condition∑

|I|≤N+1

‖ΛIui0‖L2(R2) +
∑
|J |≤N

‖ΛJui1‖L2(R2)∩L1(R2) < ε, for any ε ∈ (0, ε0),

with Λ = ∂a, r∂r,Ωab. Moreover, the solution decays almost sharply with

|u(t, x)| . (1 + t+ |x|)−1/2(1 + |t− |x||)−1/2 log(1 + t). (1.2)

In general the smallness condition on ‖ΛJui1‖L1(R2) is not assumed, but it will be
used in the proof of Lemma 3.1.

Organisation In Section 2, we revisit some preliminaries of the wave equations and
the vector field method. Next in Section 3, we prove the L2 norm of the potential
solving the linear wave equation. Then we give the proof to Theorem 1.1 in Section 4.

2 Preliminaries

We work in the (2 + 1) dimensional spacetime with signature (−,+,+). A point
in R2+1 is denoted by (x0, x1, x2) = (t, x1, x2), and its spacial radius is denoted by
r =

√
x2

1 + x2
2. We will use

E(w, t) :=

∫
R2

(
|∂tw|2 +

∑
a

|∂aw|2
)
dx (2.1)
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to denote the energy of a sufficiently nice function w = w(t, x) on the constant time
slice.

The vector fields we will use in the following analysis include:

• Translations: ∂α, α = 0, 1, 2.

• Rotations: Ωab = xa∂b − xb∂a, a, b = 1, 2.

• Lorentz boosts: La = xa∂t + t∂a, a = 1, 2.

• Scaling vector field: L0 = t∂t + r∂r.

We will use Γ to denote the vector fields in

V := {∂α,Ωab, La, L0}.

The following well-known results of commutators will be also frequently used.

Lemma 2.1. For any Γ′,Γ′′ ∈ V we have

[�,Γ′] = C�, [Γ′,Γ′′] =
∑

Γ∈V,CΓ

CΓΓ, (2.2)

with C,CΓ some constants.

In order to estimate null forms and to overcome the problem of ”loss of derivative”,
we need the following lemma which gives very detailed estimates on the null forms
and can be found in [22] for example.

Lemma 2.2. It holds that

(1 + t)|Q0(v, w)| .
∑
|I|=1

|ΓIv|
∑
a,α

(
|Law|+ |∂αw|

)
. (2.3)

Besides, if we act the vector field ΓI on the null form Q0(v, w), a similar result holds

(1 + t)|ΓIQ0(v, w)| .
∑

|I1|≤|I|,a,α

(
|ΓI1v|+ |LaΓI1v|+ |∂αΓI1v|

) ∑
1≤|I2|≤|I|/2+1

|ΓI2w|

+
∑

|I1|≤|I|,a,α

(
|ΓI1w|+ |LaΓI1w|+ |∂αΓI1w|

) ∑
1≤|I2|≤|I|/2+1

|ΓI2v|.

(2.4)

We next recall the Klainerman-Sobolev inequality (see [22] for example) in R2+1.

Proposition 2.3. It holds that

〈t+ r〉1/2〈t− r〉1/2|u| .
∑
|I|≤2

‖ΓIu‖L2(R2), (2.5)

with 〈a〉 =
√

1 + |a|2.

The following energy estimates of the ghost weight method by Alinhac [1] will play
a vital role in compensating the ”loss of derivative” issue.
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Proposition 2.4. Let w be the solution to

−�w = f,

then it holds

Egst1(w, t) ≤
∫
R2

eq
(
|∂tw|2 +

∑
a

|∂aw|2
)
dx(0) + 2

∫ t

0

∫
R2

f∂twe
q dxdt, (2.6)

in which q = arctan(r − t), and

Egst1(w, t) =

∫
R2

eq
(
|∂tw|2+

∑
a

|∂aw|2
)
dx(t)+

∑
a

∫ t

0

∫
R2

eq

r2〈r − t〉2
∣∣(xa∂t+r∂a)w∣∣2 dxdt.

(2.7)

Since −π/2 ≤ q ≤ π/2, we equivalently have

Egst2(w, t) .
∫
R2

(
|∂tw|2 +

∑
a

|∂aw|2
)
dx(0) +

∫ t

0

∫
R2

f∂tw dxdt, (2.8)

with

Egst2(w, t) =

∫
R2

(
|∂tw|2+

∑
a

|∂aw|2
)
dx(t)+

∑
a

∫ t

0

∫
R2

1

r2〈r − t〉2
∣∣(xa∂t+r∂a)w∣∣2 dxdt.

(2.9)

3 L2 estimates on wave equation

We have the following lemmas which help bound the L2 norm of the solution (with
no derivatives in front) to wave equations.

Lemma 3.1. Let w be the solution to the linear wave equation

−�w = f,

w(1, ·) =w0, ∂tw(1, ·) = w1.
(3.1)

We assume that
‖w0‖L2(R2) + ‖w1‖L2(R2)∩L1(R2) < +∞, (3.2)

as well as either

‖f(t, ·)‖L2(R2)∩L1(R2) < Cf (1 + t)−1+β, β ∈ (−∞, 1), (3.3)

or ∫ t

0

‖f(t′, ·)‖L2(R2)∩L1(R2) dt
′ . Cf (1 + t)β, β ∈ [0, 1). (3.4)

Then the following L2 norm bound is valid

‖u‖L2(R2) .


‖w0‖L2(R2) + log1/2(2 + t)‖w1‖L2(R2)∩L1(R2) + log1/2(2 + t)Cf , β < 0,

‖w0‖L2(R2) + log1/2(2 + t)‖w1‖L2(R2)∩L1(R2) + log3/2(2 + t)Cf , β = 0,

‖w0‖L2(R2) + log1/2(2 + t)‖w1‖L2(R2)∩L1(R2) + (1 + t)β log1/2(2 + t)Cf , 0 < β < 1.

(3.5)
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Proof. Step 1. Expressing the solution in Fourier space.
We write the equation (3.1) in the Fourier space to get

∂ttŵ(t, ξ) + |ξ|2ŵ(t, ξ) = f̂(t, ξ),

ŵ(1, ·) = ŵ0, ∂tŵ(1, ·) = ŵ1.

We solve the ordinary differential equation in t to arrive at the expression of the
solution w in Fourier space

ŵ(t, ξ) = cos(t|ξ|)ŵ0 +
sin(t|ξ|)
|ξ|

ŵ1 +

∫ t

0

sin
(
(t− t′)|ξ|

)
|ξ|

f̂(t′) dt′.

Thus the L2 norm of w can be bounded by the following three terms

‖w‖L2(R2) . ‖w0‖L2(R2) +
∥∥∥sin(t|ξ|)
|ξ|

ŵ1

∥∥∥
L2(R2)

+

∫ t

0

∥∥∥sin
(
(t− t′)|ξ|

)
|ξ|

f̂(t′)
∥∥∥
L2(R2)

dt′

=: ‖w0‖L2(R2) + A1 + A2.
(3.6)

The last two terms A1, A2 needs a more careful treatment.
Step 2. Estimating the term A1.
We first bound the term A2

1

A2
1 =

∫
{ξ:|ξ|≤1}

sin2(t|ξ|)
|ξ|2

|ŵ1|2 dξ +

∫
{ξ:|ξ|≥1}

sin2(t|ξ|)
|ξ|2

|ŵ1|2 dξ

≤ ||ŵ1||2L∞(R2)

∫
{ξ:|ξ|≤1}

sin2(t|ξ|)
|ξ|2

dξ + ‖ŵ1‖2
L2(R2).

Next we proceed by estimating∫
{ξ:|ξ|≤1}

sin2(t|ξ|)
|ξ|2

dξ =

∫
S1

dS1

∫ 1

0

sin2(t|ξ|)
|ξ|

d|ξ|

.
∫ t

0

sin2 p

p
dp

.
∫ 1

0

1 dp+

∫ t+2

1

1

p
dp,

where we used the simple fact that sin |p| ≤ |p| and sin p ≤ 1. By gathering the above
results, we obtain

A2
1 . log(2 + t)‖w1‖2

L2(R2)∩L1(R2),

which gives us
A1 . log1/2(2 + t)‖w1‖L2(R2)∩L1(R2). (3.7)

Step 3. Estimating the term A2.
By the analysis in Step 2, we have∥∥∥sin

(
(t− t′)|ξ|

)
|ξ|

f̂(t′)
∥∥∥
L2(R2)

. log1/2(2 + t− t′)‖f(t′)‖L2(R2)∩L1(R2)

≤ Cf log1/2(2 + t− t′) (1 + t′)−1+β,
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in which we used the decay assumption on ‖f(t′)‖L2(R2)∩L1(R2) in the last step. Hence
we have

A2 . log1/2(2 + t)

∫ t

0

(1 + t′)−1+β dt′.

By calculating the integral in terms of the values of β, and gathering the results in
the previous steps, we thus complete the proof.

This lemma is of vital importance in the proof of Theorem 1.1. Recall that the
L2 norm estimates on solutions to wave equations in R2+1 have been obtained before
[24, 17, 18], but the compactness assumption on the initial data is needed (although
the compactness assumption can be removed in the theorem in [24]). To the best of our
knowledge, the estimates in Lemma 3.1 is the first such result where no compactness
assumptions are imposed on the initial data.

In Lemma 3.1 there is a log or polynomial growth in the bounds of the L2 norms.
As far as we understand, such growth also exists in [24, 17, 18].

Remark 3.2. Recall that by using the conformal energy estimates in Rd+1 with d ≥ 3,
the energy ∑

|I|≤1

‖ΓIw‖L2(Rd)

can be bounded by the conformal energy. However we note that in Lemma 2.2, we only
have the upper bound for

‖w‖L2(R2),

which means we ”lose” one order of derivative, and that is what we interpret as the
issue of ”loss of derivative”.

4 Proof of the main theorem

Relying on a standard bootstrap argument, we are going to give the proof of Theorem
1.1.

According to the smallness of the initial data, we can assume the following bounds
hold in the time interval [t0, T ) with T > t0∑

i

Egst2(ΓIui, t)
1/2 ≤ C1ε, |I| ≤ N,∑

i

∥∥ΓIui
∥∥
L2(R2)

≤ C1ε log(1 + t), |I| ≤ N − 1,∑
i

∥∥ΓIui
∥∥
L2(R2)

≤ C1ε(1 + t)1/4+2δ, |I| = N.

(4.1)

In the above, δ > 0 is some small constant, C1 is some large constant (to ensure
T > t0) which is to be determined, and T is defined by

T := {t > t0 : (4.1) holds}. (4.2)
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Our goal is to show the following refined estimates

∑
i

Egst2(ΓIui, t)
1/2 ≤ 1

2
C1ε, |I| ≤ N,

∑
i

∥∥ΓIui
∥∥
L2(R2)

≤ 1

2
C1ε log(1 + t), |I| ≤ N − 1,

∑
i

∥∥ΓIui
∥∥
L2(R2)

≤ 1

2
C1ε(1 + t)1/4+2δ, |I| = N.

(4.3)

The time bound T has two kinds of possible values: +∞ or some finite number. If
T = +∞, then Theorem 1.1 is proved. If T < +∞ is some finite number and the
refined estimates in (4.3) are also established, then this contradicts the definition of
T in (4.2), which means T must be +∞. In either case, we are led to T = +∞, which
implies Theorem 1.1.

A direct result of the Sobolev-Klainerman inequality in Proposition 2.3 gives us
the following pointwise decay results.

Lemma 4.1. Let the bootstrap assumptions in (4.1) be true, then we have

〈t+ r〉1/2〈t− r〉1/2
∑
i

|∂ΓJui| . C1ε, |J | ≤ N − 3,

〈t+ r〉1/2〈t− r〉1/2
∑
i

|ΓJui| . C1ε log(1 + t), |J | ≤ N − 3.
(4.4)

Proposition 4.2 (Improved estimates on the energy norm E). Under the bootstrap
assumptions in (4.1), we have

∑
i

Egst2(ΓIui, t)
1/2 . ε+ (C1ε)

2, |I| ≤ N. (4.5)

Proof. Recall the system of equations (1.1), and we act the vector filed ΓI with I ≤
N − 1 to get

−�ΓIui =
∑

|I1|+|I2|≤N−1

Rjkl
i ΓI1ujΓ

I2Q0(uk, ul).

By using the ghost weight energy estimate (2.8), we have

∑
i

Egst2(ΓIui, t) .
∫
R2

(
|∂tΓIu|2 +

∑
a

|∂aΓIu|2
)
dx(0)

+
∑

|I1|+|I2|≤N−1

∫ t

0

∫
R2

∣∣∣Rjkl
i ΓI1ujΓ

I2Q0(uk, ul)∂tΓ
Iui

∣∣∣ dxdt′.
8



We proceed by estimating the last term∑
|I1|+|I2|≤N−1

∫ t

0

∫
R2

∣∣∣Rjkl
i ΓI1ujΓ

I2Q0(uk, ul)∂tΓ
Iui

∣∣∣ dxdt′
.

∑
|I1|+|I2|+|I3|≤N−1

∫ t

0

∫
R2

1

1 + t′
|ΓI1u||ΓI2u||ΓI3u||∂tΓIu| dxdt′

.
∑

|I1|≤N,|I2|≤N−3

∫ t

0

1

1 + t′
∥∥ΓI1u

∥∥2

L2(R2)

∥∥ΓI2u
∥∥2

L∞(R2)
dt′

.(C1ε)
4

∫ t

0

(1 + t′)−5/4 dt′ . (C1ε)
4.

Thus we easily get∑
i

Egst2(ΓIui, t)
1/2 . ε+ (C1ε)

2, |I| ≤ N − 1. (4.6)

Next, we look at the case of |I| = N , and we have∑
i

Egst2(ΓIui, t) .
∫
R2

(
|∂tΓIu|2 +

∑
a

|∂aΓIu|2
)
dx(0)

+
∑

|I1|+|I2|≤N

∫ t

0

∫
R2

∣∣∣Rjkl
i ΓI1ujΓ

I2Q0(uk, ul)∂tΓ
Iui

∣∣∣ dxdt′.
We first divide the last estimate into two parts∑

|I1|+|I2|≤N

∫ t

0

∫
R2

∣∣∣Rjkl
i ΓI1ujΓ

I2Q0(uk, ul)∂tΓ
Iui

∣∣∣ dxdt′
≤

∑
|I1|+|I2|≤N,|I2|≤N−1

∫ t

0

∫
R2

∣∣∣Rjkl
i ΓI1ujΓ

I2Q0(uk, ul)∂tΓ
Iui

∣∣∣ dxdt′
+
∑
|I2|=N

∫ t

0

∫
R2

∣∣∣Rjkl
i ujΓ

I2Q0(uk, ul)∂tΓ
Iui

∣∣∣ dxdt′ := P1 + P2.

We notice that the estimate of P1 part follows from what we have done for the case
of |I| ≤ N − 1 with

P1 . (C1ε)
4

so we only need to estimate J2. We split the space domain into two parts for each
fixed t

Sint := {x : |x| ≤ (1 + t)9/8}, Sext := {x : |x| ≥ (1 + t)9/8},

and the term P2 can be divided into two parts

P2 = P2(Sint) + P2(Sext),

P2(S) :=
∑
|I2|=N

∫ t

0

∫
S

∣∣∣Rjkl
i ujΓ

I2Q0(uk, ul)∂tΓ
Iui

∣∣∣ dxdt′.
9



In the region Sext, it holds (1 + t)1/8 . 〈r − t〉, and we do not even need the null
structure to have the bound

P2(Sext) .
∑

|I1|≤N,|I2|≤N−3

∫ t

0

∥∥ΓI1u
∥∥2

L2(R2)

∥∥ΓI2u
∥∥2

L∞(Sext)
dt′

. (C1ε)
4

∫ t

0

(1 + t′)−9/8 dt′ . (C1ε)
4.

Then we only need to estimate the term P2(Sint). By recalling the estimates for
null forms in Lemma 2.2, it holds

P2(Sint) .
∑
|I1|=N,a

∫ t

0

∫
Sint

1

1 + t′
|u|
∣∣LaΓI1u∣∣∣∣Γu∣∣∣∣∂tΓIu∣∣ dxdt′

+
∑
|I1|=N,α

∫ t

0

∫
Sint

1

1 + t′
|u|
∣∣∂αΓI1u

∣∣∣∣Γu∣∣∣∣∂tΓIu∣∣ dxdt′
+

∑
|I1|≤N,|I2|≤N
|I1|+|I2|≤N+2

∫ t

0

∫
Sint

1

1 + t′
|u|
∣∣ΓI1u∣∣∣∣ΓI2u∣∣∣∣∂tΓIu∣∣ dxdt′ := P21 + P22 + P23.

It is not hard to see that the terms P22, P23 can be estimated in the same fashion as
the term P1 with

P22 + P23 . (C1ε)
4,

so we only focus on the estimate of P21. We decompose the Lorentz boosts La as

La = xa∂t + t∂a =
(
xa∂t + r∂a

)
+ (t− r)∂a.

Hence we have

P21 .
∑
|I1|=N,a

∫ t

0

∫
Sint

1

1 + t′
|u|
∣∣(xa∂t + r∂a)Γ

I1u
∣∣∣∣Γu∣∣∣∣∂tΓIu∣∣ dxdt′

+
∑
|I1|=N,a

∫ t

0

∫
Sint

1

1 + t′
|u|
∣∣(t′ − r)∂aΓI1u∣∣∣∣Γu∣∣∣∣∂tΓIu∣∣ dxdt′

.
∑
|I1|=N,a

∫ t

0

∫
Sint

∣∣(xa∂t + r∂a)Γ
I1u
∣∣

(1 + t′)〈r − t′〉
〈r − t〉|u|

∣∣Γu∣∣∣∣∂tΓIu∣∣ dxdt′
+

∑
|I1|=N,a

∫ t

0

∫
Sint

〈r − t′〉
|u|
∣∣Γu∣∣

1 + t′
∣∣∂aΓI1u∣∣∣∣∂tΓIu∣∣ dxdt′

.
∑
|I1|=N,a

∫ t

0

∥∥∥∣∣(xa∂t + r∂a)Γ
I1u
∣∣

(1 + t′)9/8〈r − t′〉

∥∥∥
L2(Sint)

∥∥∂tΓIu∥∥L2(R2)
(1 + t′)1/8

∥∥〈r − t′〉|u|∣∣Γu∣∣∥∥
L∞(R2)

dt′

+
∑
|I1|=N,a

∫ t

0

∥∥∂aΓI1u∥∥2

L2(R2)

∥∥∥〈r − t′〉 |u|∣∣Γu∣∣
1 + t′

∥∥∥
L∞(R2)

dt′ =: P211 + P212.
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Successively, we deduce

P212 .
∑
|I1|=N

∫ t

0

(C1ε)
4(1 + t′)−3/2 dt′ . (C1ε)

4.

In order to estimate the term P211, we note that in the region Sint, it holds 1/(1+t)9/8 ≤
1/|x|, and we thus have

P211 .
∑
|I1|≤N,a

∫ t

0

∥∥∥∣∣(xa∂t + r∂a)Γ
I1u
∣∣

r〈r − t′〉

∥∥∥
L2(R2)

(C1ε)
3(1 + t′)−5/8 dt′

.
∑
|I1|≤N,a

(C1ε)
3
(∫ t

0

∥∥∥∣∣(xa∂t + r∂a)Γ
I1u
∣∣

r〈r − t′〉

∥∥∥2

L2(R2)
dt′
)1/2(∫ t

0

(1 + t′)−5/4 dt′
)1/2

. (C1ε)
4.

By gathering the estimates above, the proof is complete.

Proposition 4.3 (Improved estimates on the L2 norm). Under the bootstrap assump-
tions in (4.1), the following estimates hold∑

i

∥∥ΓIui
∥∥
L2(R2)

≤ ε log(1 + t) + (C1ε)
2 log(1 + t), |I| ≤ N − 1,∑

i

∥∥ΓIui
∥∥
L2(R2)

≤ ε(1 + t)1/4+2δ + (C1ε)
2(1 + t)1/4+2δ, |I| = N.

(4.7)

Proof. According to Lemma 3.1, in order to show the first improved estimate in (4.7)
it suffices to show for each i that∥∥∥ΓI

(
Rjkl
i ujQ0(uk, ul)

)∥∥∥
L2(R2)∩L1(R2)

. (C1ε)
2(1 + t)−9/8,

for all |I| ≤ N − 1. It is easy to see that∥∥∥ΓI
(
Rjkl
i ujQ0(uk, ul)

)∥∥∥
L2(R2)∩L1(R2)

.
1

1 + t

∑
i,|I1|≤N

∥∥ΓI1ui
∥∥2

L2(R2)

∑
|I2|≤N−3

‖ΓI2ui‖L∞(R2)

. (C1ε)
2t−5/4+4δ ≤ (C1ε)

2(1 + t)−9/8,

where we have used Lemma 2.2.
Next we consider the case of |I| = N , and the proof in Proposition 4.2 indicates

that it is easy to have∑
|I1|+|I2|≤N,|I2|≤N−1

∥∥∥(Rjkl
i ΓI1ujΓ

I2Q0(uk, ul)
)∥∥∥

L2(R2)∩L1(R2)
. (C1ε)

3(1 + t)−5/4,

which is integrable. Then in order to estimate the rest term∫ t

0

∥∥∥(Rjkl
i ujΓ

IQ0(uk, ul)
)∥∥∥

L2(R2)∩L1(R2)
dt′,

11



we split the space region into two parts

S1 := {x : 〈t− r〉 ≤ (1 + t)1/2}, S2 := {x : 〈t− r〉 ≥ (1 + t)1/2}.

We easily have in the region S2 that∫ t

0

∥∥∥Rjkl
i ujΓ

IQ0(uk, ul)
∥∥∥
L2(S2)∩L1(S2)

dt′

.
∑
|I1|≤N,α

∫ t

0

‖∂αΓI1u‖2
L2(R2)‖u‖L∞(S2) dt

′

.(C1ε)
3

∫ t

0

(1 + t′)−3/4 log(1 + t′) dt′ . (C1ε)
3(1 + t)1/4 log(1 + t).

We next estimate∫ t

0

∥∥∥Rjkl
i ujΓ

IQ0(uk, ul)
∥∥∥
L2(S1)∩L1(S1)

dt′

.
∑
|I1|≤N

∫ t

0

|u|
1 + t′

∥∥ΓI1u
∥∥2

L2(R2)
dt′ +

∑
|I1|=N,a

∫ t

0

∥∥∥ |u|
1 + t′

(
|LaΓI1u|

)∣∣Γu∣∣∥∥∥
L1(S1)

dt′

+
∑
|I1|=N,α

∫ t

0

∥∥∥ |u|
1 + t′

(
|∂αΓI1u|

)∣∣Γu∣∣∥∥∥
L1(S1)

dt′

. (C1ε)
3 +

∑
|I1|=N,a

∫ t

0

∥∥∥ |u|
1 + t′

(
|(t′∂a + r∂t)Γ

I1u|
)∣∣Γu∣∣∥∥∥

L1(S1)
dt′

+
∑
|I1|=N,α

∫ t

0

∥∥∥ |u|
1 + t′

(
〈r − t′〉|∂αΓI1u|

)∣∣Γu∣∣∥∥∥
L1(S1)

dt′.

Since it holds 〈r − t〉 ≤ (1 + t)1/2 in the region S1, we obtain

∑
|I1|=N,α

∫ t

0

∥∥∥ |u|
1 + t′

〈r − t′〉|∂αΓI1u|
∣∣Γu∣∣∥∥∥

L1(S1)
dt′ . (C1ε)

3.

We are left with the estimate∑
|I1|=N,a

∫ t

0

∥∥∥ |u|
1 + t′

(
|(t′∂a + r∂t)Γ

I1u|
)∣∣Γu∣∣∥∥∥

L1(S1)
dt′

=
∑
|I1|=N,a

∫ t

0

∥∥∥ |(t′∂a + r∂t)Γ
I1u|

〈r − t′〉(1 + t′)
〈r − t′〉|u|

∣∣Γu∣∣∥∥∥
L1(S1)

dt′

.
∑
|I1|=N,a

∫ t

0

∥∥∥(t′∂a + r∂t)Γ
I1u

〈r − t′〉r

∥∥∥
L2(R2)

(C1ε) log(1 + t′)
∥∥〈r − t′〉u∥∥

L∞(S1)
dt′

.
∑
|I1|=N,a

∫ t

0

∥∥∥(t′∂a + r∂t)Γ
I1u

〈r − t′〉r

∥∥∥
L2(R2)

(C1ε)(1 + t′)−1/4+δ dt′,
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where we have applied the fact that r ≤ 2(1 + t) within the region S1 in the second
step, and the simple relation log2(1 + t) . (1 + t)δ for t, δ > 0 in the last step, and
then Cauchy-Schwarz inequality gives us∑

|I1|=N,a

∫ t

0

∥∥∥ |u|
1 + t′

(
|(t∂a + r∂t)Γ

I1u|
)∣∣Γu∣∣∥∥∥

L1(S1)
dt . (C1ε)

3(1 + t)1/4+δ.

The proof is done.

With Proposition 4.2 and Proposition 4.3 prepared, we are now ready to give the
proof of Theorem 1.1.

Proof of Theorem 1.1. Recall the refined estimates in proposition 4.2 and 4.3, and if
we choose C1 very large (say three times larger than the implicit constant in .), and
ε small enough such that (C1ε)

2 ≤ ε, then we obtain the refined estimates in (4.3).
Then we know T > t0 cannot be finite, that is T must be +∞, and Theorem 1.1 is
thus verified.
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