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Using Generic Upper-Body Movement Strategies in
a Free Walking Setting to Detect Gait Initiation
Intention in a Lower-Limb Exoskeleton

Omar Mounir Alaoui, Fabien Expert, Guillaume Morel, Nathéndarrass

Abstract—In recent years, lower-limb exoskeletons have been Rex exoskeleton (Rex Bionics Ltd, Auckland, New Zealand),
marketed to become a possible alternative to wheelchairs for while being able to stabilize itself, still necessitates the use
people with walking impairments or paralysis. However, most ot 5 manyal joystick to be controlled [7]. In 2012, the french

assistive exoskeletons rely on constraining control strategies based tart Wand ft (Paris. F has tak
on remote controls or torso tilting events. One approach to build start-up company Wandercraft (Paris, France) has taken up

more intuitive control interfaces would be to exploit knowledge on the challenge to develop a dynamically stable lower-limb
human motor control, and the coordination between upper and exoskeleton for paraplegic patients [8], [9]. Their robot, named
lower limb movements during gait events, such as the anticipatory Atalante (Fig. 1), does not rely on crutches for stabilization,
postural adjustments that precede gait initiation. but still makes use of remote buttons to switch between its

In this study, it was hypothesized that generic trunk and arm . . .
movements preceding gait in a free walking setting in able-bodied different states, and an Inertial Measurement Unit (IMU) to

users can still be retrieved while wearing an assistive lower-limb trigger speci c movements based on upper-trunk kinematics.
exoskeleton that constrains their leg movements. This was eval- In a context where patients wish for such assistive devices

uated on a group of eight unimpaired participants, and analysis to become physical extensions of their own bodies, it is

of upper-body wearable IMU signals showed similarity of pos- nacessary to develop control interfaces that are not only
tural adjustments between the free and exoskeleton-constrained . L
robust, efcient, and safe, but feel natural and intuitive as

settings. Additionally, a classi cation architecture showed that .
the walking state of the robot can be correctly triggered based Well [10], [11]. Numerous studies have focused on the use
on free-walking data gathered from all participants with an of electrophysiological signals (such as electromyograms —
accuracy rate of 95%. This suggests that interlimb coordination EMGs — or electroencephalograms — ECGs) to decode human
still_exists in a constrained setting, and could pave the road po10r jntentions and provide an external device with input
towards the elaboration of more natural controls for assistive . - .
lower-limb exoskeletons. control signals [12]-[14]. But the variability of these signals,
and the lack of robustness of the decoding schemes make it
dif cult to apply such methods in an uncontrolled setting [15],
. INTRODUCTION [16].

Recent developments in the elds of robotics and mecha-A different approach consists in analyzing body movements

tronics have made it possible to design lower-limb assistif8@t can be predictive of speci c motor intentions, or to rely
devices, such as exoskeletons and active orthoses, that c&ld<inematic synergies between different parts of the body.
be used for physical augmentation or as an alternative € common paradigm currently adopted by the ReWalk
wheelchairs for physically impaired individuals and Spindl" Atalante exoskeletons is baseq on simple threshold-based
Cord Injury (SCI) patients [1], [2]. Although such devices stjlpPProaches that rely on the detection of prede ne(_j movements
face important challenges — many of which revolve arourjj@t néed to be learned, such as a high amplitude leaning
actuation, cost, weight, and human-machine interfaces [3]-fBPtion, or on simple button-mapped commands. However, by
— a certain number of companies have been able to market @KINg use of machine learning techniques, it can be possible

industrialize their own exoskeletons, with a focus on assistir'i% reverse the' adaptation pargdigm, a”‘?' build more natural
SCI patients, or helping with the rehabilitation of strok&ontrol strategies where supervised algorithms can learn from

patients. However, most of them still rely on constraininﬂatura”y exhibited human movements, instead of having the

control strategies that fail with providing the users with naturdSers adapt to prede ned control patterns. Such techniques
and intuitive interfaces. have already been widely used for IMU-based human activity

The ReWalk exoskeleton (ReWalk Robotics Ltd., Yoknearh€¢09nition [17]-{20], but they can also be applied to classify
Israel) makes use of a wrist-pad controller to control the stafdorter transitioning predictive movements. N
For example, the turning intention of healthy participants

of the robot, and a tilt sensor placed on the torso to trigger". ? ) e
its movements; but crutches are necessary to stabilize #i§ing gait can be predicted based on anticipatory movements

robot, which greatly impedes free arm movements [6]. THY the head, eyes, trunk, or shoulders [21]-{23]. Similarly,
stereotypical patterns of body movements are involved during

O.M. Alaoui, N. Jarrags, and G. Morel are with the Institute for Intelligent gait initiation as a planned compensation to the perturbation

Systems and Robotics, Sorbonne Univérsiearis 75006, France. (e-mail: jntroduced by the heel-off of the swing |eg_ This set of
alaoui@isir.upme. ) i - nticipatory postural adjustments (APAs) shifts the center of
O.M. Alaoui and F. Expert are with Wandercraft, Paris 75004, France. (@- p yp J

mail: fabien.expert@wandercraft.eu) mass by accelerating it forwards and laterally towards the



be used to elaborate more natural and robust control strate-

Control IMU gies for exoskeletal assistive devices based on classi cation
. techniques, with limited to no false positive detection.
N

Il. MATERIALS AND METHODS
O“' A. Experimental setup

The study consisted of two experiments. In the rst ex-
periment, there were two conditions in which ten participants
O___ (7 men and 3 women) took part, as gpproved by the I_Ethic_al
Committee on Research of the Paris Descartes University
(IRB number 00012019-47) according to the standards of the
Declaration of Helsinki. The participants were aged9294:3
Q “““ years old, with an average weight of:67 13:32 kg and an
average height of 174 9:70 cm (mean SD). They had
no physical or cognitive disabilities affecting gait, and were
Fig. 1. T?]e 12-DoF Is\\l/veglimb ?tss;l\stti\lle ?XQSKEK?“I)” A,taleamet ge}/elopeddmm aware of the study's focus on gait initiation. The rst
e French compary Wendercrlt, Nalate s iy smed ot beig eed inition was conducted in a Free Seting, with participants
device for stroke patients. outside of the Atalante exoskeleton (FS condition), and the
second one was conducted in a Constrained Setting, with
participants in the robot (CS condition). A second experiment
stance leg, and has been mainly investigated through foiggs conducted in the exoskeleton to assess the robustness of
sensors underneath the feet, optical motion trackers, and IMidg classi cation algorithm to False Positives (FP experiment).
placed on different upper and lower body parts [24], [25For both experiments, participants were equipped with three
More recently, research teams have focused on the automgiigitial measurement units (Next Generation IMUs, x-io Tech-
detection of APAs based on IMU signals from both th@ologies) placed on both arms and the back (Fig. 2-A).
upper and lower body, using various learning approaches [26]-The inertial units were placed so that their axes were aligned
[28]. However, these investigations were limited to unimpairagith the global frame formed by the Medio-Lateral (ML) and
participants walking freely in an unconstrained environmenintero-Posterior (AP) planes, as de ned in Fig. 2-A. The
This study focuses on gait initiation, and investigatg®ack-Front) and (Left-Right) axes in Fig. 2-A respectively
whether its precursor patterns can still be retrieved througépresent the AP and ML axes. The vertical axis is de ned
upper body kinematics when unimpaired participants apg the intersection of the ML and AP planes, and points
constrained by an assistive lower-limb exoskeletal structuig. In all following sections, AP accelerations will refer to
that prevents free leg movements. It was hypothesized thatcelerations along the AP axis, and ML accelerations will
generic upper limb movements during anticipatory posturgdfer to accelerations along the ML axis. Similarly, AP angular
adjustments preceding the rst heel-off event in a free-walkingelocities will refer to angular velocities contained in the AP
setting are preserved in the exoskeleton-constrained envirpiane around the ML axis, and ML angular velocities will refer
ment, and can therefore be used to predict the user's intentigrangular velocities contained in the ML plane around the AP
to initiate gait while in the robot. A comparison of IMU signalsaxis.
from the upper body during gait initiation between both the Accelerometer and gyroscope signals from all three sensors
free (out of the robot) and constrained (in the robot) settinggere sent wirelessly to a computer at 400 Hz through a Wi-Fi
was conducted on a group of healthy unimpaired participantsceiver using UDP protocol. In the free setting, participants
to validate this hypothesis. Additionally, data from the fregiere asked to remove their shoes, and were additionally
walking setting was used as a training set to build a lineatjuipped with a force sensitive resistor (FSR) placed under-
discriminant analysis (LDA) classi cation architecture that caneath the right heel. The FSR was connected to the back IMU
automatically detect gait initiation intention. This classi ethrough an analog channel, and the signal was transmitted at
was rst tested of ine for validation on the free walking datal0 Hz. It was used to segment the walking data into left and
and to assess intra and inter-subject variability. It was theight steps, and facilitate the training data labeling process.
implemented online as part of the exoskeleton's state machinel) First Experiment: Free Setting (FS) conditioimstruc-
This allowed to experimentally evaluate the possibility ofions were given to the participants after being equipped with
building natural and intuitive controls based on training datae IMUs and the FSR. The rst condition consisted of 20
gathered outside of the robot from the free condition. Byials, in which the participants performed a straight walk of
additionally recording typical everyday movements that orspproximately 4 m at their preferred pace. At the beginning
can perform while standing still in a lower-limb assistivef each trial, they were asked to stand still in a neutral
exoskeleton, the robustness of such a classi er against fafsesition behind a specied line on the ground, with their
walk-triggering positives was also investigated. Correctly trigarms alongside their body, and their head straight and gazing
gering the walking state of Atalante would con rm that uppeforwards (Fig. 2-A).
body movements that anticipate gait initiation are possibly The IMUs were initialized to set the reference frames at the
preserved between the free and constrained settings, and mantral position, after which the recording began. An audio
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Fig. 2. (A) lllustration of a subject during the FS condition. The IMUs were aligned so that#xés was pointing upwards (vertical axis), th@axis was

pointing towards the right (medio-lateral axis), and thaxis was pointing forwards (vertical axis). (B) lllustration of one trial from the FS condition. The
signal represents labeled ML acceleration data from the back IMU in [rad/s] after the last step was removed. Blue indicates the NM class, yellow indicates
the GllI class, green indicates the RS class, and red indicates the LS class.

cue was emitted after 3 s, indicating that the participantsly included eight participants. In 15 out of 20 trials, an

could start walking. To avoid any startle effects due tonline classi er based on linear discriminant analysis (LDA,

the emitted beep, participants were asked to start walkisge 1I-C) was used to detect gait intention using one of three
whenever they wanted to after hearing the sound cue. Thegining sets:

were also asked to use their right leg as the rst swing leg.
At the end of the 4 m walk, participants stood still in their

neutral position for approximately 2s, after which they were
instructed to go back to the starting position, and wait for the
beginning of the following trial (Fig. 2-B).

(@) same subject data from the FS condition (intra-
classi cation);

(b)  other participants data from the FS condition (inter-
classi cation);

(c) all participants data from the FS condition (global

' . i . » classi cation).
2) First Experiment: Constrained Setting (CS) condition:

In the second condition, 20 trials were conducted in which If gait intention was correctly detected, the walking state of
the participants were rst equipped with all three IMUsthe robot was triggered, in which case the participants were
then installed in the exoskeleton. The Atalante exoskeletdfiked to stop the robot using its remote control after a few
(Fig. 1) is a full-joint assistive device designed by the FrencHePs: In the remaining 5 trials, (d) the exoskeleton walk was
company Wandercraft. It has 12 actuated degrees of freedBff triggered at all. These four conditions were presented in
(3 at each hip, 1 at each knee, and 2 at each ankle), &fimpletely random order across all 20 trials.

is dynamically stable — meaning that it does not rely on 3) Second Experiment: False Positives (FP) experiment:
crutches for stabilization. Only two of the participants hath the second experiment, eight of the ten participants were
never been in the exoskeleton before. The robot was put imquipped with all three IMUs, and installed in the Atalante
its standard standstill position, and participants were instructexloskeleton. The robot was put into its standard standstill
to stay motionless with their arms alongside their body, ammbsition, and similarly to the CS condition, participants were
their heads straight and gazing forwards. Similarly to the F&ked to stay motionless with their arms alongside their body,
condition, the inertial devices were initialized at the beginningnd their heads straight and gazing forwards. They were then
of each trial to set the reference frames, and an audio cue wastructed to wait for an audio cue, after which they were asked
emitted 3 s after the beginning of the recording to indicate the perform a set of typical everyday movements: handshakes,
beginning of the walk. Subjects were asked to perform ampvering the mouth while coughing, and reaching an object
upper body movements they thought would initiate the robots different levels (below the waist, at torso level, and over
gait, as if they wanted to start walking using their right leghe head). Each movement was alternatively performed with
Since two participants did not correctly follow this rule, theieach arm, and repeated for 4 trials. Data recordings from this
results were discarded from the CS condition analysis, whielperiment were analyzed of ine.



B. Data processing and analysis The rst heel-off was used as the end of the Gll class. The
Data from the FS condition were processed of ine. Actemaining portions of signals, spanning from the beginning of

celerometer and gyroscope signals were low-pass Itered usiagch trial up to the GlI onset, were labeled as NM. A nal
a second-order Butterworth Iter with cutoff frequency of gstep consisted in manually z_idjustlng th_e class onsets if outputs
Hz, as used in [27]. Signals were also offset based on th&pm the above steps were incorrect. Fig. 2 shows an example

average over the rst second of recording, during which tH¢f labeled accelerometer data. -
participants were standing still in a neutral position. Similar FOr the second experiment, an additional class based on

ltering and offset were performed online for data duringMiscellaneous movements (MM) was added to evaluate the
the CS condition. Trials where indications were not correctf)2Ssi cation robustness. The MM class was constructed based
followed, or which signal waveforms differed signi cantlyOn recordings of typical everyday movements from the FP

from the average ones were considered outliers, and discardagperiment.

A total of 170 trials were retained for the subsequent analysis.3) Classi ers construction: Once accelerometer and gy-
roscope data from all trials and participants were correctly

o labeled, they were used as training sets to construct LDA
C. Data classi cation classi ers. Sliding windows with a 25% overlap were used to
1) Linear Discriminant Analysis:Data classi cation was divide the sensor signals into 500 ms time segments. Sliding
performed using Linear Discriminant Analysis (LDA) [29].windows are commonly used for activity classication [30]
LDA is a supervised learning algorithm which separatdg0]. The choice of window length was motivated by reported
labeled data in an input feature-space using optimally-de neslues for Anticipatory Postural Adjustments (APAS) duration
hyperplanes, by maximizing between-class covariance aind[24] [25] (350 - 550 ms). The overlap value was chosen
minimizing within-class covariance. New data points in th®o enhance the classi er reaction time. Each window was
feature-space are classi ed according to the highest signassociated with a given class if at least half of its signal
distance to the class hyperplanes, as generated by trainiegtent was labeled as so, based on the labeling step. A set
data. LDA can also be used as a dimensionality reductiofi optimally relevant features were then extracted from each
technique, by projecting data onto subspaces of dimensi@egment to compute labeled feature-space data points. They
at most equal to the number of classes minus one. This waare selected based on previous research [30] [20]. In order to
used in the scope of this work for visualization purposes. reduce the computational cost for features extraction in real-
time, and avoid over tting, further analyses were conducted
2) Training Data labeling: Accelerometer and gyroscopeto discard features which were not discriminative enough for
signals from the FS condition were segmented into fotine classication task. In particular, a single-factor ANOVA
different classes: No Movement (NM), Gait Initiation Intentiorbetween labels and features was conducted to only select
(GII), Right Step (RS), and Left Step (LS). Heel events of thieatures with high variance across the different classes. This
right foot were derived from the FSR data for step labelingllowed to de ne a subset of 11 features, which were computed
The FSR data during the rst three seconds of recordirffgom both the time and frequency domains: mean, standard
were averaged to set a standing still baseline for each tridéviation (sd), minimum (min), maximum (max), root mean
Heel-strike events were then set when the FSR signal weguare (rms); spectral energy, and the ve highest amplitudes
higher than the baseline plus one standard deviation, and heélthe frequency components in the frequency-domain. Since
off events were set when the FSR signal was lower thatl features were extracted from each of the 18 IMU signals,
the baseline minus one standard deviation. RS was de ntids resulted in a nal 198-dimensional feature space (see
as the class covering signal portions going from heel-off ftable I).
heel-strike, and LS was de ned as the class covering signal
portions going from heel-strike to heel-off. Data following the TABLE |
last heel-strike event were discarded, as last step dynamics  SET OF FEATURES USED IN CLASSIFIERS CONSTRUCTION
differed from steady-pace walking. The rst detected upper=

. Feature Number of dimensions
body movements on the IMU data were used to determine the _
onset timetonset for the Gl class. Detection was achieved''™Me-domain features o 1818
by setting movement thresholdB. sy and T i for each min 18
accelerometer and gyroscope sigsa2  X;V; Z, Wx; Wy; W, max 18
as: rms 18
o ) _ Frequency-domain features  spectral energy 18
T+ sig = Meig+ 10 Ssig 1) highest amplitudes 90
T sig= Msig 10 ssig Total 7 features 198

wheremsig (resp.ssig) is the average (resp. standard deviation) o _
of each signal over the 1.5 s preceding the audio cue. For each) Training and testing data:

signal, tminsig Was then de ned as the earliest time such that @) Free Setting (FS)condition
Sig6T .sig; T+ :sigl, @ndtonsetWas de ned as: Trial-based cross-validation schemes were used to assess

. data classication for the FS condition. In a rst setting,
tonset= r’gi'gn tmin;sig (2)  subject-speci ¢ data were classi ed according to a leave-one-



out rule: training sets were comprised of all but one trial Fig. 4 shows the average accelerations and angular velocities
from the same subject, which was then used for testing. (int@er the eight participants from the Constrained Setting (CS)
subject classi cation). This was done over all trials, and theondition for all three IMUs in the ML and AP planes. The
overall result was taken as the total average of all classi cati@ignals are represented from 0.5 s before the movement onset,
rates on the testing data. In a second setting, classi catiap to the rst zero-crossing of the angular velocity around the
was assessed across participants, by leaving one subject's tialsical axis.
from the training set, and using them as a testing set (inter-In both gures, the shaded areas represent the standard
subject classi cation). The overall result was taken as ttdeviations for the different signals. For waveform comparison
total average from testing the classi er on each of the lefpurposes, and to get rid of amplitude variability effects,
out subject's trials independently. individual trial results have been standardized and represented
Additionally, the Inter-class Distance Nearest Neighbars functions of time advancement (as a percentage value from
(IDNN) metric as proposed in [31] was used to compute to 100).
distances in the original 198-dimensional feature space formedsignals from the CS condition in Fig. 4 have been further
by the training data for each subject. For each cluster of pointsered with a low-pass Butterworth (2nd order, cutoff 0.5
it measures the product of its Mahalanobis distances with thie) to get rid of extraneous noise, and focus on global signal
other clusters in both directions, and normalizes it by thedvolution in time. This was only done to improve readability of
sum. The IDNN for a given cluster is then equal to the lowesite gure, but was not part of the data processing that occurred
value computed across all the other ones, and representsdheng the experiment. However, averaging and Itering tech-
distance to its nearest neighbor in a variance-normalized spatigues had a dampening effect on the representation of the
A low IDNN value for a given class indicates a larger chancgignals in Fig. 4. Fig. 5 shows an example of a typical AP
of confusion with its nearest neighbor. Equal IDNN values facceleration pro le exhibited by one subject on the right arm
two different classes indicate that they are necessarily closBdt during the CS condition without additional processing, as
to each other in the sense of the Mahalanobis distance. Detailss used by the classi ers. It shows that a short acceleration
on the computation of the IDNN are given in the appendix.phase immediately follows the movement onset, before the
b) Constrained Setting (CS) conditionn the CS con- acceleration direction changes.
dition, three classiers were constructed for each subject Average peak values for the acceleration phases in the ML
based on the training data from the FS condition: (a) omeéd AP planes for both conditions are reported in Table II, and
subject-speci ¢ classi er based on the subject's trials (intrahey are indicated for the FS condition on Fig. 3. Maximum
classi cation), (b) one classi er based on the other particemplitude during precursor movements for acceleration signals
pants' trials (inter-classi cation), (c) and an additional globais always reached before the heel-off event, except for the AP
classi er including all participants data, which was commoacceleration from the left arm, which is slightly delayed and
to all participants (global classi cation). These classi ers werbappens after heel-off. Additionally, average peak values of
tested online during the CS condition. gyroscope signals from the FS condition, and average peak
c) False Positives (FP) experimenData sets recorded gyroscope values from the CS signals as represented on Fig. 4
during the FP experiment were rst tested of ine using th@re also reported on Table II.
global classi er to test for the occurrence of false Gll positives During the CS condition, participants tilted forwards, and
when performing everyday movements. Half of the data webwisted their upper body towards the standing leg (Fig. 6).
then included with all the participants data from the F3hey mainly used their right arm to initiate the movement by
condition to construct an enriched 5-class global classi edccelerating it forwards, and rotating it towards the standing
which was tested of ine: leg around the vertical axis. The trunk rotated around the AP
and ML axes towards the standing leg, which induced forwards
@nd lateral accelerations in the same direction. The left arm
showed less repeatable patterns. Acceleration phases were
short and of low amplitude compared to the FS condition (see
Table 1), and were followed by a high-amplitude deceleration

on the remaining half of the FP experiment data;
and on the trials from the CS condition corresponding
the global classi er.

I1l. RESULTS phase, as shown in Fig. 5. However, subjects showed higher
A. Upper-body kinematics indicating Gait Initiation Intentionl""'vlngl;Iar velocities in both the AP and ML planes for all three

(GlI)

Fig. 3 shows the average accelerations and angular velocities | o , .
for all three IMUs in the medio-lateral (ML) and antero-B_' Ofine classi cation of the Free Setting (FS) condition
posterior (AP) planes over all participants from the Fredgnals
Setting (FS) condition. Signals are represented from 0.5 sTable Il shows the results from the LDA-based of ine
before the movement onset up to the rst heel strike everdlassi cation architecture on the FS condition signals, for
The green mark indicates the rst heel-off event, and the rdmbth the intra-subject and inter-subject evaluations. In order
one indicates the rst heel strike event. The average duratitm assess the classi er's ability to discriminate between all
( SD) between the movement onset and the heel-off is 5dBferent classes, including LS and RS, it was run over the

ms (132 ms) for this condition. entire walk for each trial (EW data). However, classi cation
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TABLE I
PEAK AVERAGE ( SD) GII ACCELERATIONS AND ANGULAR VELOCITIES IN THEML AND AP PLANES FOR ALLIMU PLACEMENTS IN BOTH THEFS
AND CSCONDITIONS.

Peak Accelerations [g] Peak Angular Velocities [deg/s]
AP Plane ML Plane AP Plane ML Plane
Trunk 005 003 005 002 215 71 95 65
FS Condition Right Arm 005 0:03 (006 002 231 88 103 53
Left Arm 0:1 0:.05 006 0:02 189 83 62 52
Trunk 001 001 001 002 307 127 192 96
CS Condition Right Arm  ¢03 0:03 004 0:.04 212 139 151 68
Left Arm 0:03 003 004 005 178 110 150 87
Right Arm
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Fig. 5. Typical AP acceleration pattern exhibited by one subject during ofidd- 7. The Inter-class Distance Nearest Neighbor (IDNN) metric computed
trial of the CS condition on the right arm IMU. The original signal is low-in the original 198-dimensional feature space for each class and each subject

pass ltered by a 2nd order Butterworth lter with a 3 Hz cutoff frequencyfor the intra classi ers. When the IDNN is the same for two classes, it means

The red zone indicates the precursor movements as de ned in sec.lll-A. Ty are closest to each other.
low-amplitude acceleration phase is distinguishable at the beginning of the
movement, and is followed by a strong deceleration phase.

accuracy over the rst signal windows spanning from the
beginning of each trial up to the end of the GII class was
also reported in the Table (Gll data). Overall, the average
classi cation accuracy for the entire walk was 94.7%, with a

£ maximum accuracy value reaching 97.9% for the intra-subject
g __/\ setting, and 91.9% with a maximum value of 96.5% for the
0 25 50 75 100 inter-subject setting. However, for all trials and all participants,
PP ———eT— gait intention was always correctly detected. Classication

velocity around the rates for the Gll data were less than 100% because of time

vertical axis lags, meaning that the GlI class was detected a few windows

early or late in some cases. The average time lag for intra-

a subject classi cation was 0.17 s, and 0.38 s for inter-subject
< classi cation, which explains the average loss of 2.5% in the
0 25 50 75 10

classi cation rate between both classi cation schemes for the
Gll data.

-
=

0

C. Online classi cation of the CS condition signals

Before movement Fig. 7 represents the Inte_r—class Distance Nearest Neighbor
&= IMU (IDNN) metric for each subject.
= exoskeletal structure Fig. 8 shows the subject-specic and overall results per
. - . _ _classi er used from the real-time classi cation of IMU signals
Fig. 6. General strategy exhibited by the participants during the CS Cond't'ﬂrﬂjring the CS condition. for all eight participants included in
to trigger the walking state of the robot. . ’ Y
the CS study. The “Other class detected rst” label represents
trials for which the Gait Initiation Intention (Gll) class was

Back IMU angular velocities
AP (top) and ML (bottom)



TABLE Ill
RESULTS FROM THE OFFLINE CLASSIFICATION BASED ON THES CONDITION DATA

Classi cation rate Classi cation rate
(EW data) (Gl data)
average ( SD) max min average ( SD) max min

Intra-subject classi cation  94.7% (1.5%) 97.9% 92.9% 97.6% (1.0%) 98.7% 96.4%
Inter-subject classi cation  91.9% (2.4%) 96.5% 87.8% 95.1% (3.5%) 98.3% 89.0%

100

50

percentage of trials [%]

Fig. 8. (A) Subject-speci c results from the CS condition. (B) Overall results from the real-time classi cation during the CS condition per classi er used

falls within the range of Anticipatory Postural Adjustments
(APASs) duration.

‘ D. Testing the classier for false Gait Initiation Intention
‘ (GII) positives induced by everyday movements

‘ Testing the global classi er on the Miscellaneous Move-

“ ments (MM) recordings showed that on average, 27.6% of

‘ the performed movements windows were classied as Gll,

‘ and only 7.2% as either Left Step (LS) or Right Step (RS).
64.6% of the windows were classied as No Movement
(NM), because of transition resting periods, and because the

performed movements implied that either one of the arms

Fig. 9. Representation of the three-dimensional LDA-generated projectiepuld be at rest — meaning that data points were likely to
subspace based on FS training data from all subjects (global classi er), wj

additional MM data recorded from eight subjects. W’?aximize the distance to the NM hyperplane in the LDA
features-based subspace.

By adding the MM label to the global classier training
detected after another class was detected rst. These trials wégda set using half of the MM recordings, and using the other
considered as false negatives, even if detection of gait intentiodlf as a testing set, there was an average of 98.5% windows
occurred afterwards. The only false positive detection occurrel@ssi ed as either MM or NM, with 1.5% windows falsely
during one intra trial (Subject 6 in Fig. 8-A). 64.3% of falseclassied as GlI. Fig. 9 shows a three-dimensional LDA-
negatives were due to another class being detected rst, eg@nerated projection subspace of this 5-class classi cation
the remaining ones all came from the same subject (Subjederpblem. As can be seen on the gure, the ve classes form
in Fig. 8-A). Overall, the robot's walk was correctly triggerechighly discriminated clusters of points with little overlap, and
in respectively 72.5% of the intra (a) trials, 95% of the intefhe MM and Gl class are well separated
(b) trials, and 95% of the global (c) trials. Additionally, the MM-enriched classi er was tested of ine

A Kruskall-Wallis test showed a statistically signi canton the trials from the CS condition corresponding to the global
difference between the three classi etd £ 6:35;p= 0:042). classi er (c) for the eight participants included in the CS study.
An additional post-hoc Dunn test showed that there was Adis showed that the GII class was consistently detected in all
statistical difference in the performance results between thls but one. The remaining trial was a False Negative where
inter and global classi ersg= 1:00). However, performance the MM class was detected instead.
of both classi ers were statistically different from that of the
intra classi er (p= 0:029 for both comparisons). IV. DISCUSSION

On average, the Gll class was detected 514 m378 ms A Qualitative analysis of upper-body kinematic signals
SD) after the movement onset, which approximately corre-1) Free Setting (FS):Results for the trunk IMU in the
sponds to the duration of one buffer window (500 ms), arfelS condition are consistent with previous studies [24], [26],




[27], showing that the upper body is accelerated forwards, aled)s (either positive or negative) during transitions between
towards the standing leg. Therefore, it was possible to validatéferent classes. Since the Gait Initiation Intention (GlI) class
our method to evaluate kinematic patterns that anticipate gaittonsistently and correctly detected for all trials, this evalua-
initiation based on inertial sensors placed on the upper bodipn also con rms that subject-speci ¢ kinematic patterns that
To our knowledge, there is no work investigating arnprecede gait initiation are repeatable in the FS condition, and
kinematics during Anticipatory Postural Adjustments (APAs}hat intra-subject classi ers based on FS data could be used
but shoulder movements have been studied before [24]. Guithe CS condition to check for similarities in these patterns
results suggest that both arms follow the same acceleratlmgtween both conditions.
patterns as the trunk, and that the arms also exhibit repeatablg) Inter-subject evaluationEvaluation of the inter-subject
precursor patterns before the heel-off. The overall movemesiassi ers on the Entire Walk data from the FS condition re-
is initiated by the side ipsilateral to the stepping leg (thtirned accuracy scores higher than 91%, showing that the LDA
right side in this study), since the contralateral arm exhibitsaachitecture is also capable of correctly discriminating between
delay in its forward acceleration, with a lower peak anguldhe different labeled classes based on data acquired from a
velocity in the Antero-Posterior (AP) plane. Therefore, thpool of subjects that does not contain the tested participant's
ipsilateral side of the upper body starts to shift forwards andals. However, loss of accuracy is higher on average than
towards the standing leg, and the contralateral arm follows ttiee intra-subject evaluation, since time lags can be longer.
general forwards movement before the heel leaves the grouAdain, the GIl class is consistently and correctly detected
Additionally, standard deviations for average acceleration pefdc all trials, which shows that the variability of kinematic
values reported in Table Il con rm that the amplitudes of armgatterns that precede gait initiation between participants in the
and trunk movements are highly variable between subjectsFS condition is low, and that inter-subject classi ers based
2) Constrained Setting (CSPuring the CS condition, the on FS data could be used in the CS condition as well. This
participants focused on using the side of their upper bodgnsistency is also supported by Fig 10 in the appendix,
ipsilateral to the stepping leg (the right side) to initiate gaitvhich illustrates the two-dimensional projections of the intra-
Since their legs were constrained by the exoskeleton, thegssi ers. The Inter-class Distance Nearest Neighbor (IDNN)
seemed to focus on upper body movements that they imagimaetric in Fig. 7 additionally con rms that the No Movement
would help lifting the robot's leg, and pushing it forwards(NM) and GllI clusters are consistently closest to each other,
This was achieved by rotating the upper body laterally, arhd that both step classes are closest to each other on average.
tilting it forwards, while strongly bringing their right shoulderThis supports the fact that anticipatory patterns preceding gait
towards the standing leg. Contrary to the FS condition, wheirgtiation exhibit low-amplitude dynamics that are separable
precursor patterns are unconscious, they actively engagedriom walking-related movements.
using the right side of their upper body to initiate gait, and
exhibited higher an.gular velocities in the Medio-Lateral (MLE. Experimental evaluation of gait initiation detection in the
and Antero-Posterior (AP) planes for the trunk IMU. The . L
hase of forwards acceleration was short and of low am "tu8>e<oskeleton based on a free setting training set
p p
compared to the FS condition, and was followed by a high Based on our experimental results, the LDA architecture
amplitude deceleration. This shows that all participants relieduld be successfully used to detect gait initiation intention
on a similar movement strategy that actively focused on usifey @ majority of the CS trials, even though subjects exhibited
the ipsilateral side of their upper body to bring the robatpper body patterns that did not correspond exactly with those
to start moving, and intuitively used their right arm in @f the FS condition, which provided the training data.
similar way that they naturally did during the FS condition, One of the main differences between both conditions lied in
with forwards accelerations that lasted for shorter duratioihe signal amplitudes and duration of the acceleration phases.
The left arm exhibited less repeatable movements that wekdditionally, the left arm IMU did not exhibit repeatable
mainly due to the dynamics of the right side, and to whethpatterns. However, it is hypothesized that the amplitude ranges
participants controlled their arm or not. Similarly to the F$emained closer to what can be exhibited by the trained
condition, standard deviations for average acceleration pe@K class, meaning that in the feature-based subspace formed
values reported in Table Il con rm that the amplitudes of armigy the LDA architecture, data points extracted from the
and trunk movements are highly variable between subjectsparticipants’ movements in the CS condition fell in the GlI
the CS condition as well. class region. This is illustrated in Fig 11 in the appendix.
Additionally, the IDNN metric was calculated between the
) o L . clusters formed by the data points classi ed as Gll in the CS
B. Evaluation of Gait Initiation detection in the Free Setting,,ition and the four labeled classes for the intra-classi er
(FS) based on an of ine classi cation architecture trials where Gait Initiation was correctly detected (see Table V
1) Intra-subject evaluationEvaluation of the intra-subject in the appendix). In 6 subjects out of 8, the IDNN for the
classi ers on the Entire Walk data from the FS conditiomlata points classi ed as Gll in the CS condition was equal
returned accuracy scores higher than 94%, showing thatthe distance to the GIl class, showing that the testing
the LDA architecture is capable of correctly discriminatingoints were on average closest to the GIl cluster. In the
between the different labeled classes in a subject-specremaining two subjects, the testing clusters were closest to
setting. Additionally, loss of accuracy is mainly due to timé¢he Left Step class, supporting the fact that the anticipatory



patterns preceding gait initiation exhibited stronger dynamistrengthen the statistical analysis. For example, by involving
when the participants were equipped with the exoskeletanore participants who have no previous experience in using
However, this did not affect the LDA output, which correctiithe exoskeleton, it would be possible to assess the in uence
classi ed the testing points as Gll, since the IDNN relies onf usage experience on both the movement strategies, and the
the Mahalanobis distance, which introduces a distortion of tletassi cation outcome. More trials could also be necessary
feature space through covariance-based normalization, whiteassess how strategies can evolve in time, and whether
the LDA classi es new data points by computing the signegarticipants are able to adapt to false classi cation negative
euclidean distances to the class hyperplanes. occurrences by performing sets of movements that are even
Alternatively, these results show that the constructed clasore specic, and with less variability.
sier might not be discriminative enough so that the GIl Additional feature selection steps should also be considered
class would actually be specic to gait initiation precursoto further reduce the high number of dimensions of the
patterns, and that similar low-amplitude movements, such festure space, and properly avoid the over tting that can occur
handshakes or reaching movements, could also be detectethasiore generic settings. This study systematically used all
Gll. Indeed, both the FS and CS conditions were conducté@ IMU signals to construct the LDA classi ers. However,
in a controlled setting, where the participants were asked rgifjnal-speci ¢ selection can be performed, and the possible
to move before the audio cue was heard. However, this risdundancies between both arm IMUs due to their symmetrical
not representative of the real-life use of an assistive lowgitacement can be exploited.
limb exoskeleton, in which the users would freely move their It is also important to note that lower-limb assistive devices
upper body while the robot is standing still in an uprightre aimed at being used with SCI patients with different
position. In the classi cation architecture that was developédjury levels. Therefore, it is necessary to evaluate how these
for this experimental work, such movements could possibjarious conditions can affect the upper-body movements. The
lead to false GlI positives, and a preliminary experiment wasalante exoskeleton was speci cally designed to be used by
conducted in order to assess the robustness of the classi eptgaplegic patients who still have mobility above the waist
such events. level. It is hypothesized that such a category of patients could
rely on similar movement strategies to express gait initiation

D. Experimental evaluation of the robustness of the globHitention than the able-bodied participants included in this

classi er to false Gait Initiation Intention (Gll) positives ~ study. Further experiments with paraplegic patients need to be
%)nducted to con rm this hypothesis. If it is not con rmed,

Testing the global classier on the recordings from th o ) ) .
9 g 9 e classi cation architecture could still be used by asking the

False Positives (FP) experiment showed that Miscellaneo ionts t : s th d intuitive o tri
Movements (MM) were prone to be classi ed as Gait Initiatio atients to perform any movements th€y nd intuitive to tgger

Intentions, rather than one of the other movement clas§ § walking state of the rOt.)Ot' Recording of SL.JC.h movements
(Left Step or Right Step). This shows that Miscellaneolz@" then be used as a basis to construct a training data set for
Movements exhibit features that are similar to the GlI clasg,"¢W patient-speci ¢ classi er.

and can induce false Gll positives if not taken into account

when training the classi ers. This is not a desired behaviour V. CONCLUSION

during the normal use of a lower-limb assistive exoskeleton..l.hiS work showed that subjects in a non-back drivable

However, when gddlng the FP rec_qrdlngs to the training Seté’)‘éoskeleton actively engaged in a gait initiation strategy
the global classi er, Gl false positives were reduced to onl

dimilar to the natural precursor patterns exhibited in a free
0 . ;
1.5%, most of which happened punctually (meaning that Onlewvironment, by shifting the right side of their upper body

window was classied as Gll in between correctly-classi e ; .
MM windows). This rate could be further reduced by addir:forwards and towards the standing leg. By building a standard

. S . s Blassi cation architecture using free walking data as a training
a Iter which would not initiate gait of the robot in such B ,
cases. Fio. 9 also shows that the classied movements ésret, gait initiation intention was then successfully detected
- ™9. Ren starting from an upright standstill position in the lower-

dlﬁerent|ablg, and con rms thg speci c!ty of the pa’gterns USEfimb assistive exoskeleton. Robustness of the classi er against
to detect gait initiation intention. Additionally testing the 5-]c Ise positives trigaered by evervday movements was assessed
class classi er on the CS condition con rms that the enriched - > 99 y ycay

o . ) | lementary experiment ing real lif r
classi cation architecture can be used to effectively preveq a suppieme tary e perme by adding real life _ges‘_tu es
0 the training set, which conrmed that the classi cation

false GlI positives, with limited false ngggtlve rates, and_ Mrchitecture could be made more robust to false gait initiation
loss of performance compared to the original global classi eﬁ'ositives.
o Further experiments need to be conducted for re nement
E. Limitations and prospects of the study and generalization of the results. Paraplegic patients can then
This study shows that anticipatory movements of the uppdre included in more ecological environments to assess the
body before gait initiation seem to be retrieved in able-bodid¢rhnsferability of these methods and the able-based classi ers
participants using a lower-limb exoskeleton. The participants more realistic mobility scenarios and real-life use cases.
exhibited a similar movement strategy to trigger gait in thEowever, this work is encouraging for future developments
robot. However, further experiments need to be conductéet machine-learning-based control strategies in lower limb

with more subjects to re ne and generalize these results, aaskistive exoskeletons.



Fig. 10. Representation of the intra classi ers in the two-dimensional LDA-generated projection subspace. The different colored regions represent the classi er
decision regions for each of the four labeled classes (NM, RS, LS, GlI).

TABLE IV
DISTANCE METRIC m;;j COMPUTED FOR ALL CLASSES AND ALL PARTICIPANTS BOLD VALUES REPRESENT THEEDNN FOR EACH CLASS AND EACH
PATIENT.
Classi Classj S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
NM LS 33.77 126.92 30.43 207.13 107.67 61.31 10.03 98.48 94.9 98.65
RS 26.1 38.57 1712 4571 33.87 29.65 33.38 36.6 53.89 26.7
Gll 6.35 4.3 4.22 6.11 6.2 4.75 4.43 3.83 11.34 3.48
LS NM 33.77 126.92 30.43 207.13 107.67 61.3110.03 98.48 949 98.65
RS 6.91 7.23 1181 17.29 14.79 15.8514.22 841 1192 20.12
Gl 1596 223 20.58  30.39 37.58 3477 1415 26.87 38.87 421
RS NM 26.1 38.57 1712  45.71 33.87 29.65 33.38 36.6 53.89 26.7
LS 6.91 7.23 11.81 17.29 14.79 15.85 14.22 841 11.92 20.12
Gll 9.18 13.23 10.23 17.83 14.48 1478 13.68 12.7 17.83 15.11
Gl NM 6.35 4.3 4.22 6.11 6.2 4.75 4.43 3.83 11.34 348
LS 1596 223 20.58  30.39 37.58 3477 1415 26.87 3887 421
RS 9.18 13.23 1023 17.83 14.48 1478 13.68 12.7 17.83 1511
TABLE V

DISTANCE METRICS USED FOR THE COMPUTATION OF THEDNN
BETWEEN THE TESTING POINTS CLUSTERS AND THE FOUR CLASS
CLUSTERS THE BOLD VALUES INDICATE THE IDNN VALUE FOR EACH

SUBJECT
S1 S2 S3 S4 S5 S6 S7 S8
NM 499 356 256 273 401 376 396 4.26
RS 544 413 206 161 252 6.60 514 6.47
LS 494 318 180 209 280 506 558 5.00
GIl 347 232 106 212 371 093 382 205
Fig. 11. Representation of the LDA-generated projection subspace based di dj
on FS data training from one subject. The black points represent projected IDNN = min j i @)
features from data windows which have been classi ed as Gll from CS trials = j2C;j6i di- T d-j
from the same subject. These data points, though far from the GII class ' | ]{z
centroid generated by the training data, are still closer to it than the other _mi -
i

classes.

whereC = f1;2;3;4qg is the set of labeled classes, adip
is the Mahalanobis distance from the cluster of clpss the
cluster of class, given the covariance matri® of clusteri,
and the centroid coordinates and m of clustersi and j:

q

2

APPENDIXA
COMPUTATION OF THEINTER-CLASS DISTANCE NEAREST
NEIGHBOR (IDNN)

The IDNN for classi is de ned as in [31]: (m mTSm m) (4)



Table IV shows the distance metrigs;; used for the [12] J. Lobo-Prat, A. Q. Keemink, A. H. Stienen, A. C. Schouten, P. H.
computation of the IDNN for all labeled classes and all

subjects in the intra-classi ers, as shown by Fig. 7 in IlI-C
Table V shows the distance metrics used for the computation

of the IDNN between the testing points clusters and the four
class cluster in IV-C.

[14]
APPENDIX B

REPRESENTATION OF THELDA GENERATED SUBSPACES

Fig. 10 shows the structure of the individual intra-classi erE™!
constructed from the Free Setting training data as projected on
the LDA-computed two-dimensional space. For all subjects,

the four class clusters seem well separated and organized in

the same fashion, with the GII cluster being closer to the NM
cluster, and appearing as a transition between the resting stetk J. Wolpaw and E. W. WolpawBrain-computer interfaces: principles
and the two walking states (Left and Right). This supports the and practice OUP USA, 2012.
consistency with which the classi ers are able to discriminaté’}
between the different classes.

Fig. 11 illustrates how data windows classied as Gaitg
Initiation Intentions in the Constrained Setting can fall in the

Gl

The study was nancially supported by the Wandercra
company and the French state funds through the CIF

region, but far from the class centroid. [19]
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