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Abstract We report on the first analysis of magnetospheric cusp observations at Saturn by multiple in
situ instruments onboard the Cassini spacecraft. Using this we infer the process of reconnection was
occurring at Saturn’s magnetopause. This agrees with remote observations that showed the associated
auroral signatures of reconnection. Cassini crossed the northern cusp around noon local time along a
poleward trajectory. The spacecraft observed ion energy-latitude dispersions—a characteristic signature of
the terrestrial cusp. This ion dispersion is “stepped,” which shows that the reconnection is pulsed. The ion
energy-pitch angle dispersions suggest that the field-aligned distance from the cusp to the reconnection
site varies between ∼27 and 51 RS. An intensification of lower frequencies of the Saturn kilometric
radiation emissions suggests the prior arrival of a solar wind shock front, compressing the magnetosphere
and providing more favorable conditions for magnetopause reconnection.

1. Introduction
The magnetospheric cusp is a permanent funnel-shaped region which is present in any magnetosphere
[e.g., Russell, 2000]. Solar wind plasma can flow into the cusp via diffusive processes since the magnetic
field strength is weak, or through the process of reconnection. Reconnection between interplanetary mag-
netic field (IMF) and closed magnetospheric field lines results in solar wind (SW) plasma flowing into the
magnetosphere along the open field lines, through the cusp [Smith and Lockwood, 1996].

Reconnection at Saturn is a highly debated topic. McAndrews et al. [2008] presented magnetopause
crossings which suggested the presence of reconnection signatures. Auroral evidence of consecutive
reconnection events at Saturn’s magnetopause were reported by Radioti et al. [2011]. Badman et al. [2013]
reported in situ evidence for reconnection simultaneously with signatures of reconnection in auroral obser-
vations. On the other hand, Masters et al. [2012] showed that dayside reconnection may not be as common
at Saturn as at Earth due to the typically high magnetosheath beta; moreover, the consequences of recon-
nection apparently differ, with no evidence of flux transfer events [Lai et al., 2012] or low-latitude boundary
layer response to the IMF seen at Saturn [Masters et al., 2011]. Diffusive processes can also cause plasma
entry into the magnetosphere. Studying the cusp is important as it can provide remote evidence for dayside
reconnection and magnetically maps to a large area of the magnetopause, providing more information to
the ongoing debate of the nature of reconnection at Saturn.

At Earth, the ionospheric cusp footprint is usually observed near 1200 local time (LT). Cowley et al. [2005]
showed that due to Saturn’s fast rotation, a newly open flux tube can have a significant azimuthal motion,
and therefore, the cusp may be observed after 1200 LT. The first evidence of Saturn’s auroral cusp footprint
came from observations made by the Hubble Space Telescope [Gérard et al., 2005]. It was observed as a spot
at 1200 LT and was inferred to be due to reconnection occurring in the lobes.

In this paper we report on in situ observations and analysis of the cusp for the first time. The associated char-
acteristics of the cusp are Earth-like with similar dispersions observed. From the analysis the field-aligned
distance from the cusp to the site of reconnection is shown to change. Details of instrumentation, observa-
tions, and methods are discussed in the supporting information.
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Figure 1. Observations from the 21 January 2009. In the top panel are three polar projections of Saturn’s northern
aurora, obtained with the FUV channel of Ultraviolet Imaging Spectrograph (UVIS), taken at 1801, 1848, and 2012 UT.
The grid shows latitudes at intervals of 10◦ and meridians of 30◦. Noon is to the bottom and dawn to the left. The times
at which the images are taken in comparison to the in situ observations are indicated by black arrows (i–iii). Below the
auroral observations: (a) omnidirectional electrons from the Electron Spectrometer (ELS)-CAPS, (b) ions from the Ion
Mass Spectrometer (IMS)-CAPS presented in counts/accumulation, (c) high-energy electron data from LEMMS, (d) the
three KRTP components of the magnetic field, and (e) Radio and Plasma Wave Science (RPWS) electric field spectrogram.
The stepped ion structure is underlined in the CAP-IMS data. The polar cap is labeled as “PC.”

2. Observations
2.1. Overview
The cusp was observed on the 21 January 2009 when Cassini was at ∼1135–1205 LT, at a radial distance of
∼15 RS from Saturn, a magnetic latitude of ∼45◦, and an L shell of ∼31 RS.

In Figure 1 we present in situ and remote-sensing observations obtained during and just prior to the cusp
crossing. From 0700 to 0800 UT Cassini was in Saturn’s magnetosphere, traveling poleward. In Figure 1a,
CAPS (Cassini Plasma Spectrometer) data show high-energy, tenuous electrons and in Figure 1b very low ion
fluxes, observations which are typical of the high-latitude magnetosphere. In Figure 1c, LEMMS (Low-Energy
Magnetospheric Measurement System) data show increases in flux of high-energy electrons when the
spacecraft is in the magnetosphere.

From just before 0900 until 1100 UT, CAPS observed intermittent magnetospheric high-energy tenuous
plasma, and more dense cool plasma. At the same time, Figure 1d shows that MAG (Dual Technique
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Figure 2. Average electron energy distributions of the cusp at 1110–1820 UT (blue), magnetosphere 0200–0700 UT (red)
and magnetosheath (green) taken from the most recent observation on 12 November 2008 1400–1900 UT.

Magnetometer) observed rotations in the B𝜙 component of the magnetic field, which are indicative of
field-aligned currents (FACs) [e.g., Bunce et al., 2008]. It has been shown that FACs coincide with observations
of whistler mode radio emission. During this event, the FACs derived from B𝜙 are found to be consistent
with past observations, and whistler mode emission was observed (Figure 1e) by RPWS (Radio and Plasma
Wave Science) instrument. When the ELS (Electron Spectrometer) observed colder electrons, IMS (ion mass
spectrometer) observed significant increases in ion fluxes.

From 1100 to almost 1900 UT, Cassini observed the cusp, which is marked by the dashed vertical lines. ELS
observed steadier fluxes of cold dense electrons, similar to magnetosheath plasma. At ∼1500 UT, Cassini
observed a large change in the electron flux. The observed electrons had a slightly higher energy (an
increase of ∼100 eV) and there was an increase in flux from 1600 UT for ∼2 h. From 1100 UT onward, IMS
observed ions which had a “stepped” energy-time dispersion structure (underlined in Figure 1). This step
structure in the ions and the changes in the electron parameters suggests that Cassini was traversing differ-
ent reconnected magnetic flux tubes in the cusp attributed to “bursts” or “pulses” of reconnection occurring
at different areas along the magnetopause [Lockwood and Smith, 1994; Lockwood et al., 2001].

At ∼1900 UT, Cassini entered the polar cap (PC), which are also open field lines, where electron and ion
fluxes were at or below the noise level, and auroral hiss appears in the RPWS data (indicative of open field
lines in the polar cap which are devoid of detectable plasma). Also presented are three images of the aurora
taken after and at the end of the in situ observations presented. They show the existence of bifurcations of
the main auroral emission (marked with white arrows).

Our identification of the region from ∼1100 to almost 1900 as cusp is supported by two strong pieces of evi-
dence from CAPS observations: (1) As described in greater detail in the supporting information, composition
measurements indicate that the ions are of solar wind origin (H+ and m/q = 2 ions were in the ratio 25–100
[see supporting information for more details], with no appreciable W+,); and (2) the electron energy
spectra are much more characteristic of typical magnetosheath measurements than of magnetospheric
electron spectra.

Figure 2 shows a comparison of the average energy distribution of the electrons from 1100 to 1900 UT
to those of the magnetosphere and the most recent magnetosheath observation. The magnetosheath
observation took place at 1400–1900 UT on 12 November 2008. The electrons up to 10 eV are due to
spacecraft charging. From 10 eV, the cusp electrons are more similar in energy distribution to the magne-
tosheath than to the magnetosphere, showing that the plasma is therefore more likely of SW origin and
not magnetosphere.

In addition, we show angular distribution plots (see Figure 3) of the ions at selected energies and times (note
that the viewing perspective in Figure 3a is reversed compared to the others; see the description in the cap-
tion). The angular distributions (in Figure 3a) of the ions in the magnetosphere (0625–0700 UT) show they
are coming primarily along the field line (black dot) from the direction of the subsolar point. However, the
ions in the cusp in Figures 3b–3d are not field aligned. The ions in the cusp are arriving from the direction of
the equatorial plane between 1245 and 1715 UT, with the ions strongly convecting from the direction of the
equatorial plane at 1525–1715 UT, which is consistent with reconnection occurring at low latitudes, followed
by subsequent poleward convection through the cusp. In none of the distributions in Figure 3 is
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Figure 3. Angular distributions of ions at an average energy near the peak count rate at four different times: (a)
0625–0700, (b) 1240–1244, (c) 1525–1529, and (d) 1712–1718 UT on 21 January 2009. In Figure 3a the center of the plot
corresponds to the look direction directly away from Saturn, while the entire outer circle corresponds to the look direc-
tion toward Saturn. The dashed circle midway between the center and the outer edge corresponds to the look direction
90◦ away from Saturn, with the northward-viewing direction at an azimuth (labels around the outer circle) of 0◦. The look
direction to see corotation lies on the dotted circle at an azimuth of 270◦, as indicated by the triangle. For Figures 3b–3d,
the viewing perspective is reversed, with the look direction to Saturn now in the center of the plot. The other directions
remain as described for Figure 3a. In particular, the corotation look direction is still marked by a triangle and flows from
north of the spacecraft would be seen in the upper half of the plots. The solid black dots show the orientation of the
magnetic field (both the parallel and antiparallel directions).
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Figure 4. An example of an ion pitch angle dispersion observed by IMS. Also shown is the modeled curve created from
the Burch et al. [1982] method, which estimates the distance (D) to the reconnection site to be 39 ± 23 RS . Unlike Table 1,
this is not an average.
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Table 1. The Field-Aligned Distances From Cassini to
the Site of Reconnection Calculated From Ion Pitch
Angle-Energy Dispersionsa

Time Mean Distance Standard
(UT) (RS) Deviation (RS)

11:00–11:50 27 ± 12 8
11:50–12:45 39 ± 17 7
12:45–15:00 49 ± 21 6
15:00–17:00 51 ± 12 5
17:00–18:00 46 ± 12 10

aThe mean distances are shown with their propa-
gated standard errors, as well as the standard devia-
tion from the mean.

there evidence for a peak near the corotation
direction (triangle), which is in or near the field of
view for all except the 1240–1244 interval.

The ions during this period also display
energy-latitude and energy-pitch angle dis-
persions (discussed below) which are typical
characteristics of the terrestrial cusp [e.g., Hill and
Reiff, 1977]. Therefore, the evidence confirms that
this is an observation of Saturn’s cusp.

2.2. Upstream Conditions
The upstream SW conditions are characterized
from the Saturn Kilometric Radiation (SKR) obser-

vations made by RPWS, and model data from ENLIL which is a 3-D magnetohydrodynamic model of the
heliosphere [Odstrcil, 2003] (see supporting information).

The increase of SKR intensity and subsequent extension toward low frequencies has been shown to often
derive from interplanetary shocks [Desch and Rucker, 1983, 1985; Badman et al., 2008], but also more recently
from internal processes as well [Lamy et al., 2013]. The comparison of RPWS observations with ENLIL simula-
tions over an extended period of time shows intensified emission (observed by RPWS) close to the predicted
arrival (from ENLIL) of SW dynamic pressure enhancements (e.g., around the time of our cusp observations
on day of year (DOY) 19–20 and other time periods on DOY 29–30 and 39–40), as well as at times seem-
ingly unrelated to solar wind parameters. The first of the ENLIL-predicted solar wind pressure enhancement
events matches the interval investigated in this paper within the uncertainty of ENLIL propagation. The
arrival time uncertainty of the model at 5.4 AU can be at least 4 days and maybe larger at 9 AU [Jian et al.,
2011]. This supports the possibility that the magnetosphere was in a compressed state during the interval
examined here, which would provide more favorable conditions for dayside reconnection [e.g., Jackman et
al., 2004; Masters et al., 2012].

3. Calculating the Field-Aligned Distance to the Reconnection Site

Burch et al. [1982] showed that ions in the cusp display an energy-pitch angle dispersion, whereby the gra-
dient of the dispersion is dependent on the distance to the reconnection site. Following Burch et al. [1982],
model dispersions can be calculated using a magnetic field model [Khurana et al., 2006] and compared to
observed dispersions to calculate the distance to the reconnection site (see Figure 4). The data were divided
into five intervals due to the presence of the five clear energy-latitude dispersions. Table 1 shows results of
this analysis, where we find the reconnection site distance ranged from 27 to 51 RS.

4. Discussion and Conclusions

Just after the time interval during which Cassini was traversing Saturn’s magnetospheric cusp, the UVIS
observations show bifurcations (marked with white arrows in Figure 1) which have been suggested to occur
due to the opening of closed magnetospheric field lines at the magnetopause [Radioti et al., 2013]. Previous
studies [Radioti et al., 2011] have shown that during the presence of bifurcations, the main auroral emission
expands with time to lower latitudes, which is indicative of opening of flux. The expansion of the main emis-
sion is equal to the area occupied by the bifurcations, suggesting that the bifurcations represent the amount
of newly open flux and thus are signatures of magnetopause reconnection. Radioti et al. [2013] suggested
that the consecutive brightenings of the auroral bifurcations are due to multiple reconnection along the
same magnetic flux tube. We are unable to infer whether this is happening; however, we conclude that both
the in situ data and the UVIS observations imply reconnection occurring on this day.

The overall plasma observations show that Cassini passed from the magnetosphere through field-aligned
currents (observed in the B𝜙 component of the magnetic field) and then the spacecraft entered open field
lines where it observed cusp plasma. The last two FACs were present in the equatorward region of the cusp.
These two FACs might represent layers that moved toward and away from the spacecraft without com-
pletely passing over it, meaning we observed the FAC magnetic signature of the FAC without fully traversing
it. This study focuses on the cusp observations, and therefore, we do not explore the FACs further.
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While in the cusp, IMS observed ion energy-latitude dispersions: the effect of magnetopause reconnection,
poleward convection of open field lines, and possible azimuthal dispersion. The angular distributions of
the ions show that they are coming from below the spacecraft, which is consistent with convection of a
newly opened magnetospheric field line. The changes in the plasma regime while in the cusp, as well as
“step-like” energy-latitude dispersions in the ion observations suggest that reconnection is pulsed at the
magnetopause, and not steady.

Also observed are ion pitch angle-energy dispersions, which have been used to calculate the variable
field-aligned distance to the reconnection site (Table 1). The results indicate that reconnection is occurring
along the magnetopause, and is probably not occurring in a steady manner.

We conclude that Cassini did cross the Saturnian cusp. The characteristics of the cusp at Saturn are very sim-
ilar to the terrestrial cusp, with the presence of two types of dispersions: energy-latitude and energy-pitch
angle. Multiple ion energy-latitude dispersions are likely due to temporal variations, as studied previously
at Earth. As we do see changes in the electron flux and energy at the edges of the dispersions, this is not
a spatial feature. The duration of the cusp crossing was large in comparison to Earth (hours as opposed to
minutes at Earth) [e.g., Pitout et al., 2009]. This study thus confirms that although dayside magnetopause
reconnection at Saturn is often suppressed [Masters et al., 2012], there are instances when it does occur.
Comparison with ENLIL predictions of the solar wind environment suggest that Saturn’s magnetosphere
may have been in a compressed state during this cusp crossing, a condition that is known to be more
conducive to magnetopause reconnection.

A future statistical study of the cusp will help describe the debated nature and overall rate of reconnection
at Saturn. In order to describe Saturn’s rotational effect on the cusp, further investigations are necessary,
as well as a detailed model of the Saturnian cusp. One would expect to see similar SW interaction with the
magnetopause at Jupiter. Future modeling will also allow us to predict the nature of reconnection at Jupiter.
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