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Abstract

Brittle and ductile dynamic fracture in solids is a complex mechanical phenomenon which attracted
much attention from both engineers and scientists due to its technological interests. Modeling cracks
in dynamic cases based on a discontinuous description is difficult because it needs additional criteria
for branching and widening. Due to the very short time scales and the spatial complexity of the
dynamic problem, its experimental analysis is still very difficult. Therefore, researchers still have to
rely on numerical simulations to find a deeper explanation for many observed phenomena. This study
is set out to investigate the effect of plasticity on dynamic fracture propagation. On the other hand,
the diffuse phase-field formulation makes it possible to initiate, propagate, arrest or even branch
cracks while satisfying the basic principles of thermodynamics. An implicit, staggered elastoplastic
version of the phase-field approach was implemented in the commercial finite element code Abaqus
through the UEL option. By means of simple examples we show that localized ductile deformations
first increase both resistance and toughness. Then, after a maximum value, the resistance starts to
decrease with a significant increment in energy dissipation. By favoring shear deformation over tensile
failure the fracture pattern changes. First the branching disappears, then the crack propagation angle
changes and becomes a shear band. Finally, we observed the increment of the instantaneous dynamic
stress intensity factor during the acceleration stage of the crack without introducing a rate dependent
critical fracture energy. We explained this phenomenon with the increasing roughness of the fracture
surface.

Keywords: Dynamic fracture, Ductile fracture, Phase-field, Abaqus UEL, Dynamic stress intensity
factor

1. Introduction

Fracture is the most feared failure mode in solids and structures. Both brittle and ductile crack
propagation can lead to life threatening and devastating financial consequences. Therefore, a predic-
tive description of the phenomenon is of great importance to both scientists and engineers equally.
One of the earliest successful descriptions were proposed by Griffith [1]. The criterion was based on
an energy balance equation. Griffith postulated that if the release rate of the strain energy is higher
than a critical value, the preexisting crack propagates. The theory became very popular because the
critical energy release rate was found to be a material constant for measuring the fracture toughness
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of brittle materials. The original description did not consider the actual motion and the dynamics of
these events. Since then, considerable experimental [2, 3, 4, 5] and theoretical studies [6, 7, 8, 9] were
dedicated to understanding the underlying physics and mechanics. However, due to the complexity
of the problem, dynamic fracture is still an active area of research.

Beyond a few theoretical cases, practical engineering examples are usually too complex to be
solved using analytical techniques. Therefore, numerical methods play a key role in fracture analysis.
To model cracks both discrete and continuum methods can be utilized. Molecular dynamics [10,
11] provide a valuable insight into the physics of crack initiation, however neither the length nor
the time scales is sufficient for practical applications. Discrete element simulations [12] solve the
scaling problem, however their use is mostly limited to highly inhomogeneous materials (e.g. granular
mater or rocks). Nevertheless, even if discrete techniques propose some advantages, the continuum
description is the most commonly used approach. The finite element method was shown to be able
to model dynamic fracture with the help of various enrichments. The cohesive zones method [13, 14]
is based on the separation of predefined surfaces assuming a finite process zone located at the front
of the fracture. The so-called strong discontinuity approach [15] adds a finite displacement step at
the crack front. In more recent years the eXtended finite element method [16] was successfully used
to follow dynamic crack propagation in elastic [17] and ductile [18] cases. Generally, branching was
identified as an instability and the loss of hyperbolicity [19, 20] of the acoustic matrix. The above
mentioned methods represent fracture as discrete discontinuities. Therefore, initiation or branching
of cracks were proven to be a complicated task and often needed a special criteria.

Nonlocal damage models [21, 22, 23, 24] provide an alternative description. The thick level set
approach determines the crack path based on the damage evolution at the crack tip, and the dis-
continuity is introduced explicitly. While in other smeared models, such as the phase-field approach,
discontinuities are not used directly. Instead, a smooth transition characterizes the effect of the crack.
A single damage variable connects the fully damaged region to the intact material. The application
of nonlocal damage models to Griffith’s theory is based on the variational formulation of Francfort
and Marigo [25, 26] and the phase-field implementation of Bourdin [27].

The reversibility of the damage field [28] was first enforced by prohibiting the crack from healing.
This formulation leads to a minimization principle with inequality constraints, which is challenging
to implement in most finite element methods [29]. Departing from the original idea, Miehe et al. [30]
proposed a prevalent approach by introducing a new field variable, the history of the maxima of the
elastic (undamaged) energy.

Two main numerical techniques are used in practice to solve the mechanical problem and find the
phase-field topology: the monolithic (fully coupled) [31, 32, 33, 34, 35, 36] and the staggered (weakly
coupled) [27, 30, 37, 38, 39] scheme. Monolithic algorithms usually converge when the initial estimate
is close to the equilibrium solution. However, in the case of e.g., unstable crack initiation, they fail
to find a definitive solution. This problem is due to the convexity of the global energy and the jumps
in the solution [40]. Various modifications [40, 41, 34] were proposed to circumvent these issues.

The staggered scheme is based on the alternating minimization algorithm of Bourdin et al. [27].
Two well-posed, convex problems are solved independently. While the damage and the elastic strain
energy is passed between the two equations only at the beginning of the time step. This iterative
process was proven to be very robust, even in unstable cases [38]. The only disadvantage of the
method that it requires a relatively small time step [39]. In this work, a common variant is used
[30, 42, 43], when the iteration around the two decoupled problems is not performed. In quasi-static
cases, for unstable propagation, this could violate the energy conservation of the system. Therefore,
we controlled the time step automatically to detect unstable propagation and reduce the change in the
external loading. Since the first introduction of the method, numerous open-source implementations
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were proposed [32, 44, 39, 33]. For a detailed overview on the history the reader is referred to the
work of Bourdin [45].

Since the method was originally introduced, it became surprisingly popular in the fracture science
community. Several implementations were proposed to follow dynamic [46, 47, 48, 49, 50, 51, 52] and
ductile [53, 54, 55, 56, 57, 58, 59, 60] fracture. Surprisingly, formulations concentrating on the effect
of plasticity on the dynamic crack propagation is still scarce. Only two implementations [61, 62]
exist with details on the development of the theory and some examples. Despite the benefits, the
use of phase-fields is still limited in practice because none of the commonly available finite element
software provide it as a built-in option. Recently Liu et al. [63] published a dynamic phase-field model
using Abaqus, however their subroutine is still reserved for private use. A smart implementation was
proposed recently by Azinpour et al. [64], who used the built-in thermal module of the software and
used the temperature field as damage. Furthermore, hydrogen induced cracking [65] and a coupled
cohesive zone model [35] was implemented in Abaqus using either UMATs or UELs. Both authors
provide an open-source version of their codes.

Crack propagates in an unstable or dynamic manner if the energy release rate increases with
crack growth. Therefore, the surplus of released energy can be transformed into kinetic energy. The
difference between the fracture toughness and the additional energy release determines how much
energy becomes available as kinetic energy and consequently governs the speed at which the crack
propagates. Finally, if the energy release exceeds twice the critical value, the crack branches. It is
commonly assumed that very close to the crack tip a so-called process zone forms. In this region the
material starts dissipating energy (e.g. by plasticity) to regularize the stress singularity. As a result,
the macroscopic fracture resistance is higher for more ductile materials. These properties are known
to depend upon strain rate. For example at higher deformation rates, the yield strength is higher
as well. It was postulated theoretically [2] and observed experimentally [66], that the instantaneous
fracture toughness (stress intensity factor in this case) of most materials (even in brittle ones) increases
when the crack accelerates. The magnitude of this increment is of course different for brittle and
ductile materials. In general, strain rate sensitive materials, such as ferritic steels will show larger
variations in the measured stress intensity factor than rate insensitive ones such as high strength
steel of aluminum alloys [67]. The uniqueness of the relation between crack velocity and macroscopic
fracture toughness is questioned by several authors [68, 66]. However, there is still no theoretical
study which explains if this phenomenon is a geometrical effect, or if there should be a unique law to
describe the rate dependent fracture surface energy for each material. It would be crucial to clarify
this question, as most engineering guidelines [67] and numerical methods (e.g. XFEM [69]) use the
law of Kanninen [2] to decide if the crack can propagate and at which speed it runs.

Motivated by the popularity [60] of our recent open-source Abaqus phase-field implementation
for static cases [70], we wish to extend the subroutine to dynamic, ductile and coupled cases in both
2D and 3D. The new implementation contains all options and proposes switch variables to the user
to decide which option should be used. We implemented the popular staggered time integration
scheme [30] for rectangular and triangular (tetrahedral in 3D) elements. Presently, a von Mises [71]
type plastic criterion is implemented, which is gradually degraded with damage. This allows us to
directly take the plastic energy into account when calculating the fracture topology. Optionally, a
penalty function is included if only an ultimate strain value is available for the user.

Through simple examples the validity of the implementation is proved by comparison to analytic
solutions and results from literature. Finally, with the help of the newly formulated element we
study the impact of plasticity on the fragmentation patterns, the crack velocity and the macroscopic
fracture toughness in dynamic crack propagation.

As a summary, we propose a robust and versatile open-source subroutine for practical engineers
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as well as research scientists in a widely available commercial finite element code Abaqus. The
implementation can be used to study both brittle and ductile static and dynamic fracture.

The paper is structured as follows: Section 2 presents the theory of the elasto-plastic dynamic
phase-field formulation. Section 3 asses the effect of the yield parameters in the quasi-static case.
While section 4 shows 2D and 3D dynamic crack topologies, and section 5 presents the instantaneous
fracture toughness obtained using the Abaqus implementation. Finally, Section 6 concludes the paper.

2. Methods

2.1. Phase-field approximation of the fracture surface

The principal idea of the phase-field formulation for fracture is the introduction of an internal
length scale (lc). Thus, this method diffuses the sharp crack into the volume of the elastoplastic solid
as illustrated in Fig. 1.

By introducing damage variable (d), a smooth transition is created from undamaged (d = 0) to
broken material (d = 1). Miehe [31] introduced the crack surface density:

γ (d,∇d) =
1

2lc
d2 +

lc
2
|∇d|2. (1)

This approximation uses the spatial gradient of the damage field to describe the crack topology.
The volume integral of eq. (2) on the whole body gives the theoretical fracture surface:

Γ =

∫
Ω

γ (d,∇d) dΩ. (2)

Our previous work [70] provides further details about the theory of the basic phase-field formula-
tions.

2.2. Energy functional

The energy functional of the elastoplastic dynamic problem involves the following Lagrangian
function:

L = D (u̇)− Π (u, d) , (3)

where D (u̇) is the kinetic energy:

D (u̇) =
1

2

∫
Ω

u̇T u̇ρdΩ, (4)

and Π (u, d) is the potential energy:

Π (u, d) = E (u, d) + P (u, d) +W (d) . (5)

In eq. (4) u̇ contains components of the velocity vector, while ρ is the mass density. The potential
energy is constructed from three components: the (i) elastic strain energy (E), (ii) plastic strain
energy (P ) and the (iii) fracture energy (W ). All components depend on either the phase-field (d)
or the displacement field (u). The following sections are dedicated to discuss the details of theory
behind each energy component.
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2.2.1. Elastic strain energy

Classically the elastic strain energy density is composed of a tensile (ψ+
0 ) and a compression

components (ψ−0 ):

E (u, d) =

∫
Ω

ψel (u, d) dΩ, (6)

ψel (u, d) = g (d)ψ+
0

(
εel (u)

)
+ ψ−0

(
εel (u)

)
. (7)

The decomposition of the elastic strain energy [24] is meant to account for degradation upon
tension, while the material remains intact upon compression. g (d) is the degradation function:

g (d) = (1− d)2 + k, (8)

where k is a small 10−8 number responsible for numerical stability.
Depending on the implementation, the definition of the positive and negative energy parts can

vary. In our case for brittle materials, we consider:

ψel (ε, d) = µ
3∑
i=1

[
〈εi〉2− + g (d) 〈εi〉2+

]
+
λ

2

[
g (d) 〈tr (ε)〉2+ + 〈tr (ε)〉2−

]
. (9)

While for the ductile case, we assume that the material is damaged equally under the shear in
compression and extension [37, 72]:

ψel (ε, d) = g (d)

[
µ

3∑
i=1

ε2
i +

λ

2
〈tr (ε)〉2+

]
+
λ

2
〈tr (ε)〉2− . (10)

The overall strain field is divided into elastic (εel) and plastic parts (εpl):

ε = εel + εpl. (11)

While assuming small deformations, where the strains are defined by the symmetric part of the
deformation gradient:

ε = ∇Su. (12)

Details considering the elastic stress and stiffness calculation can be found in Appendix A.
We note that in the ductile case, if the shear is applied under severe hydrostatic compression,

volumetric locking can spoil the final results [73]. As in this paper, we use fracture cases mostly in
extension we did not have to deal with the phenomenon published recently for purely shear driven
cracks. However, if the end-user wants to apply the program for compression fracture cases, this
should be tackled appropriately [74, 75, 56].

2.2.2. Plastic strain energy

The plastic energy can be expressed as:

P (u, d) =

∫
Ω

g (d)ψpl0

(
εpl (u)

)
dΩ =

∫
Ω

∫
t

(
ε̇pl : σ

)
dtdΩ, (13)
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where σ is the damage degraded Cauchy stress tensor (see eq. (A.3)). Present implementation
supports the von Mises [71] yield criterion:

f (σ) = σeq − g (d)
[
σlim +Hεpleq

]
, (14)

with σeq as the von Mises stress (calculated equally from the degraded Cauchy stress). As there
is no permanent volume change, the ductile part of the energy history can be expressed as a function
of the yield stress and the energy equivalent plastic shear strain [76]:

ψpl0

(
εpleq (u)

)
= εpleq (u)

[
σlim +

1

2
Hεpleq (u)

]
+

1

2
Iε
〈
εpleq − εcreq

〉2
, (15)

where σlim is the von Mises yield strength, H is the hardening modulus and εpleq is the energy
equivalent plastic shear strain. The last term in eq. (15) with the positive part function1 is a penalty
component which assures that the material breaks at a given critical strain. Iε is chosen according
to the considerations discussed in Appendix C.

It can be noticed that with the evolution of the damage the yield strength of the material gradually
becomes zero, allowing plasticity to initiate and guide fracture. Additionally, the UEL option allows
the user to implement any desired yield criterion. Current formulation allows us to treat the plastic
problem as a classical von Mises type model, for which details can be found in various textbooks [77,
76].

If the plastic option is active, plastic deformation under axial ompression and tension contributes
the same way to damage. Thus, the switch variables in the energy decomposition are αi=1,2,3 = 1
independently of the sign of the principal strains. Details can be found in Appendix A. An anisotropic
Hill yield criterion [78] could be an alternative treatment for this problem. Furthermore, we consider
the effect of stress triaxiality [62] on the yield function essential to reproduce the experimentally
observed crack nucleation in plastic materials. However, the implementation of such approach is
beyond the scope of present paper.

2.2.3. Fracture energy

The main idea of the phase-field approach is that the discontinuity is smeared and treated as
a continuous field between damaged and intact materials. Therefore, the fracture energy can be
expressed from eq. (2) as a function of the damage variable (d) itself:

W 0 (d) =

∫
Γ

gcdΓ ≈
∫
Ω

gcγ (d,∇d) dΩ =

∫
Ω

gc
2lc

[
d2 + l2c |∇d|

2] dΩ, (16)

where γ is the fracture energy density, gc is the surface energy needed to create a unit fracture
surface and lc is the length scale parameter which measures the scale of the damage diffusion.

Interestingly, a slightly different fracture energy density was proposed by Fremond [79] which
provides an elastic threshold:

W (d) =

∫
Ω

ψc
[
2d+ l2c |∇d|

2] dΩ. (17)

Note that compared to eq. (16), in eq. (17) d enters the formulation by a linear term.

1〈•〉 = (•+ |•|)/2
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After certain algebraic manipulations Miehe [55] achieved a very similar form to their original
formulation:

W (d) =

∫
Ω

t (d) + w0 (d) dΩ, (18)

where t (d) will act as a threshold energy in the staggered formulation (see later):

t (d) = ψc − g (d)ψc. (19)

ψc = gc/2lc was chosen, as a result w0 became identical to eq. (16):

w0 (d) = 2lcψcγ (d,∇d) =
gc
2lc

[
d2 + l2c |∇d|

2] (20)

This equation remains fixed. However, to switch between the classic solution [30] and the elastic
threshold the user can set ψc to zero in t (d). Thus omitting the initial change in the energy history.

2.3. Staggered time-integration algorithm

There is an ongoing discussion whether the monolithic or the staggered scheme should be used
in practice. In the case of unstable crack propagation, the monolithic solution [31] tends to become
numerically unstable as the algorithm needs to find the fully formed crack path in only one iteration,
which is of-course impossible. There are various techniques, such as viscous regularization [40], path
following algorithms [41], or even globalization [34], which can improve the solution. However, none
of them are suitable for the code implemented in Abaqus. Therefore, present the paper focuses on
the staggered scheme with the history variable proposed by Miehe et al. [30]. This method solved
the topological problem and provided incredible robustness to the technique.

The basic idea is that the displacement and the phase-field problems are coupled only weakly.
In each iteration they are independent and interact only through a so-called history field. In Fig. 1
the schematic illustration of the staggered algorithm is shown. The sharp crack is regularized by
the phase-field which is calculated based on the energy history. Then, the damage field is used to
recalculate the displacement distribution.

The energy of the displacement problem is formulated as follows:

Πu = D (u̇)− E (u, d)− P (u, d) + Πext (21)

where Πext is the external work done by the body (γ) and boundary (t) forces:

Πext =

∫
Ω

γ · udV −
∫
∂Ω

t · udA. (22)

By taking the variation of eq. (21), the corresponding strong form can be obtained:

δΠu = 0 ∀δu→ ∇σ − γ = ρü in Ω
σ · n = t on ΓN
u = u on ΓD.

(23)

This is then solved for u, assuming d is constant.
Similarly, the Lagrangian equation of the phase-field problem is written as:

Πd =

∫
Ω

[gcγ (d,∇d) + g (d)H]dΩ, (24)
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Figure 1: Illustration of the staggered scheme for solving the phase-field problem in elastoplastic solids. lc controls the
approximate width of the damaged zone.

where the potential energy from the displacement problem is replaced by the history field2:

H0 = 0

Hn+1 = max

{
ψ+

0 + ψpl0 − ψc
Hn

}
.

(25)

Furthermore, this formulation enforces the irreversibility of the damage (ḋ ≥ 0). Thus, the
history field satisfies the Karush–Kuhn–Tucker conditions. Finally, the corresponding strong form
can be expressed as:

δΠd = 0 ∀δd→ gc
lc

(d− l2c∆d) = 2 (1− d)H in Ω

∇d · n = 0 on Γd
. (26)

Due to the limitations of the UEL option of Abaqus, the two problems are solved at the same
time independently based on the variables obtained in the previous iteration. In Fig. 2 a flowchart
shows the basic iteration process.

The staggered scheme is implemented so that the two elements are connected through only the
common block. For dynamic cases Abaqus uses the Hilber-Hughes-Taylor (HHT) [80] method to
obtain equilibrium. HHT solves the linearized equilibrium problem applying the following Newton-
Raphson iteration: [

Sun 0
0 (1 + α) Kd

n

] [
un+∆t

dn+∆t

]
= −

[
run

αrdn−1 − (1 + α) rdn

]
, (27)

where run and rdn are the residues, Ku
n and Kd

n are the elementary stiffness matrices of the dis-
placement and phase-field problems at time tn. un+∆t and dn+∆t are the new nodal solutions at

2If the energy decomposition is not used, both tension (ψ+
0 ) and compression (ψ−

0 ) energy densities contribute to
H.
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Figure 2: Flowchart of the staggered solution used to implement the coupled displacement phase-field solution in
Abaqus.

tn + ∆t.
For details about the static calculations, the reader is referred to our previous paper [70].
In the dynamic case the displacement residue contains an inertial component as well (f inen ) and

can be expressed as:

run = (1 + α) f int
n − αf int

n−1 + f inen − f extn , (28)

where f extn is the external and f int
n is the internal force vector. Parameter α is a damping coefficient,

which by default is set to α = −0.05.
The tangent matrix of the displacement problem contains both materials stiffness (Ku

n) and mass
(M) matrices:

Sun = M
dü

du
+ (1 + α) Ku

n, (29)

where the acceleration derivative is assumed to take the following form with β = (1− α)2/4:

dü

du
=

1

β∆t2
. (30)

All the corresponding residue vectors and stiffness matrices can be found either in Appendix B or
in our previous paper [70].

3. Effect of yield parameters

In this section, through simple static examples the effect of each yield parameter will be explained.
Our aim is to demonstrate, how plasticity can dominate the fracture process and sometimes alter the
crack path.

3.1. Yield strength

A single 2D plane strain element is the simplest case, where the phase-field model can be un-
derstood. A rectangular plate with dimensions of 1 mm × 1 mm is subjected to simple shear by
moving its top side in the x direction while constraining its bottom. The shear modulus was set to
µ = 80.77 GPa with H = 5 GPa, gc = 5 · 10−3 J/mm2, lc = 0.1 mm and Iε = 0. Fig. 3 shows the
corresponding von Mises stress as a function of the applied strain for different yield strength values.
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Figure 3: (a) Equivalent stress-strain curves for elastic and plastic solutions for different yield strength values. (b)
Phase-field damage as a function of equivalent strain for elastic solution and different yield strength values.

It can be seen, that the brittle case (blue line) is elastic until the maximum stress. This is due to
the elastic threshold (ψc) introduced in the fracture energy description.

When the yield strength is reduced, the material plastifies and and the stress increases with a
reduced slope (µt) related to the hardening constant H:

H =
µt

1− µt/µ
, (31)

where µ is the elastic shear modulus. When reversing the deformation and relaxing the stresses
the stiffness of the material is unaffected in the plastic stage, but starts to decrease when the material
sustains damage.

3.2. Damage enhanced plastic deformation

By applying the damage function directly on the plastic energy, we reduce the yield strength
gradually. This creates a smooth transition from elastoplastic to fully damaged response. However,
during this transformation additional plastic deformation can occur. In order to demonstrate this
phenomenon, consider the same homogeneous problem as shown in section 3.1 with a yield strength
of σlim = 5 GPa (H = 0). In Fig. 4 the stress strain curves are shown for analytic (a) and staggered
solutions (b). In part (a) it can be seen that the yield strength is initially higher than the analytic
elastic limit stress (σeq = 3.47 GPa). However, when the material is damaged the relative order of
the two curves change. If the damaged elastic stress is higher then the damaged yield strength plastic
deformations is induced.

The theoretical reason behind the phenomenon can be explained by writing the yield criterion as:

σeq = g (d)σeleq = g (d) 3µεeq ≤ g (d)σlim. (32)

10



Figure 4: Shear stress and yield strength as a function of applied deformation: (a) analytic solution, (b) staggered
solution with relatively large strain increments.

This equation can be simplified by g (d), and it can be shown that plastic deformation becomes
independent of damage. Thus, when the elastic (undamaged) stress crosses the initial yield strength,
plasticity takes over. The macroscopic response will be affected slightly due to this phenomenon
as the degradation function is quadratic and the absolute difference is negligible compared to the
maximum stress value. Nevertheless, caution is advised when analyzing plastic strain fields around
the crack path.

The increased plastic deformation originates from comparing a local (stress based plasticity) to a
nonlocal quantity (damage). To improve the description Miehe [81] used a gradient plasticity model,
where the equivalent plastic multiplier was treated as an independent degree of freedom. However,
in our implementation, to remain general and to allow the end users to implement any desired yield
criterion, we kept the local description of the plastic material model.

Fig. 4(b) shows the staggered solution of the same problem. The strain steps are intentionally
enlarged to demonstrate the issue at hand. When they are decreased, the stress result converges
to the analytic one. Due to the solution scheme explained in Fig. 2, the damage is delayed by 2
time steps. This way, the elastic stress can sometimes overcome the theoretical damage threshold.
Evidently, to avoid this problem it is recommended to perform a convergence analysis on the time
step size, however there are cases when the reduction of the macroscopic time step will not affect the
local strain increments. One well known example is the departure of an unstable crack propagation.

3.3. Complex static problem

To demonstrate the effect of the yield strength on the static fracture topology the classic single
edge notched specimen is used. In Fig. 5a the geometry of the model is depicted. The bottom side
is constrained in both x and y directions, while the top is extended in the y direction maintaining
ux = 0. The Young’s modulus was set to 210 GPa with a Poisson’s ratio of 0.3. No hardening
was applied, and the penalty term was also omitted (Iε = 0). The fracture properties were set to
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Figure 5: Single edge notched specimen: (a) geometry; (b) horizontal fracture for high yield strength; (c) shear band
for low yield strength cases; (d) reaction force as a function of the top side displacement.

gc = 2.7 · 10−3 J/mm2 and lc = 6 · 10−3 mm. The right hand side of the model, where the fracture is
expected, was meshed in an unstructured manner with hFEM = 3 · 10−3 mm size elements.

To control the time step an automatic integration scheme is used. The increment of the history
field was limited to dH = ψc. However, in case of an unstable crack initiation the increment of H
becomes independent of the time step. When this phenomenon is detected, the step is limited to a
minimum of ∆uminy = 10−12 mm. This way, the unstable crack propagation is identified precisely.
However, we note that this problem is not present in dynamic cases.

Fig. 5(b) and (c) show the fracture pattern as a function of the yield strength. It can be seen,
that if σlim is sufficiently low, the fracture favors a tilted angle and the propagation is led by plastic
shear deformation. This kind of shear localization is called shear banding [82].

In Fig. 5(d) the reaction force is shown as a function of the top side’s displacement. It can be
seen, that for high yield strength cases (brittle, σlim = 3, 4 GPa) the crack initiates and propagates
in an unstable manner. While for lower σlim values it remains stable and a plateau is present. These
results show how the addition of plasticity increases the fracture toughness of the configuration. In-
terestingly, by adding a small amount of plastic yield (σlim = 4 GPa) not only the toughness but the
resistance of the material becomes higher. However, by further reducing σlim the resistance decreases
significantly with the increment of the energy dissipation.

4. Fracture pattern

To determine the effect of plasticity on the dynamic crack propagation patterns, as well as to
validate our implementation, two well-known benchmark examples are used. First, a 2D plate is
loaded with an instantaneous traction stress on the top and bottom boundaries. Secondly, a 3D
slab is pre-extended statically (without damage), then the dynamic fracture is followed using the
phase-field method.

4.1. 2D dynamic branching

The geometry of the 2D test is shown in Fig. 6(a). Two different finite element tessellations were
tested: (i) an irregular one shown in Fig. 6(b) with ∼92 000 elements, where the right hand side of the
model is densified randomly with hFEM = 0.125 mm size rectangular elements; and (ii) a structured

12



Figure 6: Rectangular plate subjected to uniform unidirectional dynamic traction: (a) Geometry with dimensions in
mm; (b) random finite element mesh with a refined zone (hFEM = 0.125 mm) in the expected propagation zone.

one, where all sides are partitioned equally with the same hFEM , creating a 256 000 element model.
The Young’s modulus is set to 32 GPa with a Poisson’s ratio of 0.2. The density is 2450 kg/m2, with
fracture properties gc = 3 J/m2 and lc = 0.5 mm. Neither hardening (H = 0), nor strain penalty
(Iε = 0) is applied. The time step was set to ∆t = 10−8 s.

In the following sections the obtained results are discussed as a function of the yield strength: (i)
fracture topology, (ii) crack velocity and finally in section 5 (iii) the instantaneous stress intensity
factor .

First, to verify our implementation, we compared our fracture pattern to ones obtained in Ref. [48]
. When the elastic threshold was suppressed (ψc = 0) the fracture patterns were in agreement.
However, when the elastic threshold option was used, the crack started to propagate later as well as
the branching occurred after a longer crack path. This is due to the fact that the material became
more resistant with ψc. Fig. 7(a) and (b) also shows that in the elastic case the crack is confined,
while in Borden’s work it can diffuse more into the material.

Our next comparison will focus on the difference between structured and unstructured mesh. It can
be seen in Fig. 7(b) and (c) that the mesh has a significant effect on the branching. Unfortunately, in
dynamic calculation the wave propagation is significantly affected by the uniformity of the mesh [83].
Thus, when an instability occurs (like a branching) it will be influenced by the symmetry of the
velocity field. Note, that this phenomenon was already observed in static calculations [70].

Finally, the effect of the yield strength can be seen in Fig. 7(c-e). By reducing the yield strength
the branching disappears as the local kinetic energy is being consumed by plasticity. Then, if σlim is
decreased further, similarly to the static case, the crack starts to propagate in the direction of shear
rather than the tensile mode.

Fig. 7(f) shows the equivalent plastic shear strain along the shear band in the case of σlim = 2 GPa.
It can be seen that the plastic deformation has localized around the damaged zone to a band-like
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shape. However, as highlighted in section 3.2, the actual value of the plastic strain should be treated
with caution because of the enhancing effect of the phase-field formulation. The leaking shown in part
(e) is present in almost all dynamic phase-field models if the simulation is conducted long enough, as
the kinetic energy is not entirely dissipated when the crack reaches the boundaries. Therefore, the
remaining waves concentrate usually at the damaged outer region.

For quantitative comparison, the crack tip velocity is shown in Fig. 8. The position of the crack
tip was calculated as the largest extension of the phase-field where its value is larger then d > 0.9 in
the lower half of the model (y < 0). An agreement was found between our work and Borden’s [48]. It
can be seen, that adding an elastic threshold the fracture initiates and branches later, but reaches the
same maximum velocity. This velocity limit is in good correspondence with the theoretical limit [84]
related to the Rayleigh wave speed (vR).

It can be observed that the velocity at the initiation of the crack slows down by reducing the plastic
yield strength which is mostly due to the loss of rigidity around the crack tip. For σlim = 2 GPa,
when a shear localization occurs, the maximum velocity cannot really be defined as damage develops
at the same time along the shear band.

4.2. Effect of plane stress state

All techniques which are used to distinguish between tensile and compression energies are based
on the decomposition of a 3D stiffness tensor. While by omitting the third directional strain this can
be simplified for plane strain cases, in the plane stress state εz is not zero. Therefore, in elasticity the
components of the stiffness matrix is modified to reproduce a σz = 0 state.

Unfortunately, the energy decomposition routines used for phase-field simulations are not suited
for plane stress cases. Therefore, to analyze the effects of σz being zero, a simple 3D trick is applied.
The same geometry is created as shown in Fig. 6, however the plate is extruded in the z direction
and the thickness is meshed with one element. To achieve the plane stress state all the nodes were
left free in the perpendicular (z) direction.

In Fig. 9 the crack tip velocity is shown for different yield strength as a function of time. The
same phenomenon is visible as in plane strain cases, the crack tip slows down as the yield strength
decreases. For the brittle material we did not observe a significant difference between the plane
strain and plane stress cases. Unfortunately, neither the temporal nor the spatial resolution of the
simulation is high enough to capture the difference caused by the 2 % decrease in the dilatational
wave speed.

On the other hand, the fracture pattern shows a significant difference for the ductile cases. In the
plane stress case the straight fracture (as seen in Fig. 7(d)) never appears. After the branching, the
shear band forms between the main branch and the side of the specimen. Finally, at σlim = 1.5 MPa
the fracture pattern is identical to Fig. 7(e).

4.3. Pre-stressed 3D slab

In the previous two cases, when an instantaneous traction is applied on the two opposite surfaces,
the shock wave traveled in a relatively homogeneous manner, therefore the 3D effect of the crack
tip [67] was not visible.

Recently, Henry & Adda-Bedia [50] and Bleyer & Molinari [85] showed that initiation, propagation
and branching of a crack is a truly 3D phenomenon. In this paper our aim is to partially reproduce
their results in order to validate our implementation, however due to the demanding computational
cost we concentrate on simple examples where the asymmetric energy degradation has a significant
effect.
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Figure 7: Fracture pattern as a function of the yield strength and mesh uniformity. Comparison of part (a) should be
made with the work of Borden et al. [48].
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Figure 8: Crack tip velocity as a function of time for different yield strength. For the purpose of verification with
dashed line a threshold free (ψc = 0) data is compared to the work of Borden et al. [48]. The crack velocity was
calculated by taking the time derivative of the positions of the crack tip. The position of the crack tip was calculated
as the largest extension of the the phase-field where its value is larger then d > 0.9.

Figure 9: Crack tip velocity as a function of time for different yield strength under plane stress conditions. The figure
shows the fully formed fracture patterns for each case, expect for the brittle one, which was recorded at t = 100 µs.
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Figure 10: Geometry and boundary conditions of the 3D tensile test.

Two models with different W/lc ratios are considered: 5 and 50. We note here, that Ref. [50]
showed that the undulating fracture pattern appears at a higher value with the addition of local
imperfections to the crack tip.

Fig. 10 shows the geometry of the model. The slab was first extended (∆ûy) in the y direction
without any constraints in the x or the z translations. This was done statically without damage
(all damage degrees of freedom were set to zero in the mechanical simulation). Then we switched
to a dynamic calculation and the fracture propagation was followed using the staggered phase-field
approach. The Young’s modulus was set to 3.09 GPa with a Poisson’s ratio of 0.35. The penalty
term in the plastic energy was omitted. The fracture properties were set to gc = 300 · 10−6 J/mm2

and lc was varied between 0.2 mm and 0.03 mm for W/lc = 5 and 50 respectively. A finite element
size of hFEM = lc/2 was used with a randomly generated mesh.

In Fig. 11(a), the fracture pattern is shown for the brittle case. The micro branching instabilities
compare well to the results showed in Ref. [85]. However, when switching to plasticity (even with
an infinite σlim), the pattern stabilizes. This is due to the difference in the energy degradation.
Present implementation uses isotropic degradation (αi = 1) if the plastic option is used. This result
is consistent with the fact that the instabilities were not present in the 2D simulation of Bleyer &
Molinari [86] either. Furthermore, when the plastic yield strength is reduced a localization appears
at the crack tip due to the pre-plastified state. This can be reduced by increasing the hardening
coefficient.

These results show that the complete anisotropic degradation function is necessary to reproduce
the local instabilities. This problem raises a question: is it valid to apply the degradation function
on the plastic energy in eq. (14)?

By increasing the W/lc ratio, more details can be seen. Fig. 12 shows the evolution of the fracture
pattern as a function of time for the brittle case. It is interesting to see that the crack starts to
propagate with a microscopic branching which then coalesces creating a chip. Then, it propagates
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Figure 11: Fracture pattern for the 3D large scale test with different formulations.

Figure 12: Fracture pattern for the 3D small scale test.

straight until it branches macroscopically. This phenomenon is indeed due to the effect of the local
elastic contraction at the crack tip [67].

After the analysis of the fracture patterns, the instantaneous stress intensity factor is calculated
to investigate the issue of the velocity toughening mechanism of the crack propagation.

5. Instantaneous fracture toughness

The correlation between dynamic (instantaneous) fracture toughness (KID) and crack tip velocity
(vcr) is a well documented phenomenon [66]. It was shown that most materials exhibit an increment
in KID when the crack accelerates. Kanninen [2] proposed the following a generalized description:

KID (vcr) =
KIC

1−
(
vcr
vl

)m , (33)

where KIC is the static fracture toughness in mode I opening, vl is the maximum propagation
velocity and m is a material constant. It was shown that not only the material but also the geometry
of the experiment has a significant effect on the observed results [66]. Therefore, the relationship can
hardly be considered a unique material property. This is a significant problem, because when using
other simulation techniques (e.g. XFEM [69]) the kinetics of the crack is determined by the above
relationship which is assumed to be a material property.
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Figure 13: Effective fracture toughness measured using the dynamic stress intensity factor as a function of the crack
tip velocity. The simulated data are fitted using eq. (33).

In this section, we calculate KID for the 2D surface traction case (see results in section 4.1). This
toughness value then will be correlated with the crack tip velocity. Our aim was to show how the
mechanism leading to branching effects the measured macroscopic toughness. gc is kept constant
independently of the deformation rate.

The macroscopic fracture toughness is determined using the dynamic J integral [87, 88] for tensile
opening mode:

JI =

∫
S

(
Πεnx − t

∂u

∂x

)
dS +

∫
A

ρü
∂u

∂x
dA, (34)

where Πε is the overall strain energy: Πε = g (d)
(
ψ+

0 + ψpl0

)
+ ψ−0 . The surface traction vector

t can be calculated as: t = σ · n, where n is the external normal unit vector to path S which is a
closed contour of area (A) around the crack tip. The second surface integral term takes the dynamic
effect into account. We assume no body forces in our case.

The stress intensity factor is then calculated using the following assumption [89]:

KI =

√
8µJI
1 + κ

, (35)

where µ is the shear modulus and κ = 3− 4ν for plane strain cases and ν is Poisson’s ratio.
Fig. 13 shows the instantaneous stress intensity factor calculated between the initiation and the

branching for different yield strength values. The dispersion observed around 700-800 m/s is at-
tributed to the fluctuation of the crack velocity at t = 30− 40 µs. A clear increment can be observed
as a function of the propagation velocity. With solid lines eq. (33) is fitted on the simulated data.
Furthermore, by decreasing the yield strength from brittle to 5 GPa, a gradual increase in macro-
scopic fracture toughness was found This is in good qualitative correspondence with the static results
as well as with experiments conducted on ship steel at different temperatures [2].

The observed increment in the fracture toughness is approximately 50%. This is smaller than
the experimentally measured value [90]. However, Kalthoff [68] showed for Araldite B and Ravi-
Chandar [91] for Homalite that based on the geometry this increment can vary between 30-110% for
the same material.
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Figure 14: Dynamic stress intensity factor as a function of normalized dissipation rate for the elastic/brittle case. To
obtain the dissipation rate the fracture energy increment was normalized by gc.

To find a theoretical explanation for the increment in KID without the change in gc we looked at
the dissipation rate:

Γ′ =
1

h

dΓ

da
, (36)

where Γ is the fracture surface (see eq. (2)), h is the thickness of the 2D elements and a represents
the length of the crack. This quantity basically describes the relative amount of fracture surface
opening with a unit increment of the crack length. Fig. 14 shows KID as a function of the dissipation
rate. A linear relationship was found between the two quantities, which signifies that the increment
of the instantaneous stress intensity factor is a result of the crack’s widening.

This explanation might be considered as a particular case for the 2D phase-field model. How-
ever, several authors [50, 85] showed using 3D phase-field simulations, that when the local dissipation
rate exceeds Γ′ ≈ 2 micro-branching occurs even before the macroscopic branching phenomenon.
Unfortunately, the mentioned 3D nature of the crack propagation cannot be captured using 2D sim-
ulations [86]. Nevertheless, our observation shows that the phase-field approximation, independently
from its limitations, can explain a very important physical phenomenon even in 2D.

The findings shown in Fig. 14 are supported by the experimental observations [92, 93, 94] who
established a similar correlation between the roughness of the cracks surface, fracture velocity and
the instantaneously measured stress intensity factor.

The increment of the process zone size can distort the displacement field and create a larger
shadow in the caustic measurement [95], which can explain the generally higher KID in macroscopic
experiments [66]. However, depending on the rate sensitivity of the material (e.g. martensitic steel [5])
a rate dependent gc would be necessary to recreate the experimental measurement. Fortunately, the
phase-field formulation is capable of handling the task [96].

It is a long lasting debate if the internal length scale (lc) has a physical interpretation. Initially lc
was only a numerical trick to solve the fracture mechanics problem with partial differential equation.
However, recently it was suggested [42, 97] that lc can be correlated to the materials microstructure.
Therefore, it is an important question that simply taking an lc close to zero is the real solution or by
doing so we introduce another phenomenon which distorts the mechanical interpretation. Reducing lc
to zero suggest that the material has no micro-structure and that it can be considered homogeneous
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at any scale. As soon as, real experiments are analyzed, it is clear that there is a lower limit for lc
bellow which the material has to be considered heterogeneous. The analysis, presented in Ref. [42, 97],
relying on a heterogeneous materials could maybe estimate this lower bound.

Furthermore, based on atomic scale simulations [98, 99] and nanoscopic experiments [100, 101] we
question the formulation of the plastic energy. Due to the small separation of the atomic bonds at
the micro-scale they can easily reform, leading to response where plasticity does not induce neither
damaged nor cracks. The behavior of the material remains plastic and a continuous flow stress
is observed. However, the void growth mechanism observed in experiments [102], that leads to
macroscopic coalescence and fracture propagation, indicates that locally the material is in tension.
Therefore, we argue that the degradation function in eq. (14) should be different or it should be
omitted based on the analyzed scale and the triaxiality [48] of the stress state. This would respond to
the problem of the anisotropic versus only hydrostatic energy degradation mechanism implemented
in the present case. Another option would be to use porous plastic models such as the Gurson-
Tvergaard-Needleman criterion [56, 103].

6. Conclusion

This study is set out to investigate the effect of plasticity on dynamic fracture propagation. An
elastoplastic version of the phase-field approach was implemented in the framework of a staggered
implicit dynamic time integration scheme. We chose to use the commercial finite element code Abaqus
with the UEL option because it is widely available in both industrial workspaces and in academic
laboratories. Therefore, this 2D and 3D implementation enables practicing engineers and scientists
to simulate easily not only static but dynamic and ductile crack propagation with the same UEL
subroutine.

With the help of this novel approach we studied the fracture patterns, the crack tip velocity and
the instantaneous stress intensity factor (KID) during dynamic fracture for various elastic and ductile
cases .

We have observed an abrupt shift between tensile and shear crack initiation as a function of the
shear strength and fracture toughness ratio. For static cases the presence of local ductile deformation
was clearly observable in the reaction force. With an optimal shear strength both resistance and
toughness can be increased. In dynamic crack propagation a similar phenomenon was observed.
Using an optimal value no branching was found, the crack propagated straight.

In both static and dynamic tests a high yield strength resulted in a perpendicular (mode I) tensile
fracture, while for low values the crack favored a tilted angle (mode II).

Without changing the materials fracture toughness (gc) we observed an increment in the dynamic
stress intensity factor as a function of the crack velocity. This phenomenon is in agreement with
experimental results [66].

We explained this phenomenon by correlating the macroscopic fracture toughness to the relative
dissipation rate (Γ′). We found a linear correlation between the additional crack surface created in
a unit advancement and KID. This is also in agreement with past experimental measurements [93].
In case of a brittle calculation, when the dissipation rate exceeded Γ′ = 2.0, the crack branched. The
mechanism of the local surface roughness was explained formerly by Bleyer [85], who showed that
in 3D conditions Γ′ can reach 2.0 locally creating a micro-branch before the macroscopic instability.
This way increasing the dissipated energy locally.

However, this is still not enough to reproduce experimental results conducted on materials sen-
sitive to strain rate. Therefore, it would be advantageous to include both viscoelasticity, a rate

21



dependent gc or delayed damage [104] to further extend the analysis to these rate dependent mate-
rials. Furthermore, to fully understand the effect of the length scale it would be advantageous to
compare phase-field simulations to other techniques such as molecular dynamics, eXtended FEM [69]
or finite fracture mechanics [105]. The Abaqus implementation should be extended in the future to
treat the phase-field problem with a simpler UMAT model using finite strains [106].
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[17] J. Réthoré, A. Gravouil, A. Combescure, An energy-conserving scheme for dynamic crack
growth using the extended finite element method, International Journal for Numerical Methods
in Engineering 63 (5) (2005) 631–659.

[18] B. Prabel, A. Combescure, A. Gravouil, S. Marie, Level set X-FEM non-matching meshes:
application to dynamic crack propagation in elastic–plastic media, International Journal for
Numerical Methods in Engineering 69 (8) (2007) 1553–1569.

[19] E. Sharon, S. P. Gross, J. Fineberg, Local crack branching as a mechanism for instability in
dynamic fracture, Physical Review Letters 74 (25) (1995) 5096.

[20] T. Belytschko, H. Chen, J. Xu, G. Zi, Dynamic crack propagation based on loss of hyperbolicity
and a new discontinuous enrichment, International journal for numerical methods in engineering
58 (12) (2003) 1873–1905.
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Appendix A. Asymmetric energy decomposition

Tensile and compression energies were decomposed by using the method developed in Ref. [24].
For practical reasons the calculation of the stress tensor and the tangent matrix is shown using
Einstein notation.

The potential energy density of an elastic body is written in eq. (7), which equation is practically
expressed as:

ψel (u, d) =
3∑
i=1

g (d · αi)µε2
i +

λ

2
g (d · α) tr(ε)2, (A.1)

where constants α and αi control whether the potential energy and thus the stiffness is degraded:

αi = 0 if εi < 0,
1 if εi ≥ 0,

α = 0 if tr (ε) < 0,
1 if tr (ε) ≥ 0.

. (A.2)

Thus, if the elastic principal strain value (εi) is positive (in tension) the related potential energy
is degraded by function g (see eq. (8)), otherwise the damage has no effect.

From the potential energy the elastic stress is obtained by:

σij =
∂ψel

∂εij
=
∂ψel

∂εk

∂εk
∂εij

= Lknεn
∂εk
∂εij

, (A.3)

where εn are the eigenvalues and εij are the original components of the elastic strain tensor. The
elementary stiffness of the material is calculated as follows:

Lkn =
∂2ψel

∂εk∂εn
. (A.4)

The eigenvalues are the roots of the characteristic polynomial expressed with the matrix invariants:

ε̂3 − i1ε̂2 + i2ε̂− i3 = 0. (A.5)

This equation was solved with Cardano’s method. The derivatives in eq. (A.3) can be expressed
as follows:

∂εk
∂εij

=
∂εk
∂in

∂in
∂εij

. (A.6)

The derivatives of the eigenvalues with respect to the tensor invariants are obtained through
implicit differentiation, e.g.:

∂εk
∂i1

=
ε2
k

3ε2
k − 2i1εk + i2

. (A.7)

The elastic tangent matrix can be calculated by applying further derivation:

Hijkl =
∂σij
∂εkl

=
∂

∂εkl

[
Lmnεm

∂εn
∂εij

]
=
∂εn
∂εkl

Lmn
∂εm
∂εij

+ Lmnεm
∂2εn

∂εij∂εkl
. (A.8)

The second order derivatives of the elastic principal strains are calculated similarly to the first
order components:
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Figure A.15: Relative difference in the decomposed and theoretical stiffness matrix as a function of the discriminant
of polynomial equation (A.5).

∂2εn
∂εij∂εkl

=
∂

∂εkl

[
∂εn
∂im

∂im
∂εij

]
=
∂εn
∂im

∂2im
∂εij∂εkl

+
∂2εn
∂im∂ip

∂ip
∂εkl

∂im
∂εij

. (A.9)

Following the manipulations in eq (A.7), one example of a second order derivative is:

∂2εk
∂i21

=
2εk∂εk/∂i1

3ε2
k − 2i1εk + i2

− ε2
k (6εk∂εk/∂i1 − 2i1∂εk/∂i1 − 2εk)

(3ε2
k − 2i1εk + i2)

2 . (A.10)

We note that due to the symmetry in the deformation tensor, Voigt notation was used. Thus, 3
by 3 matrices were substituted with a 6 element vector. This way, for example, eq. (A.6) resulted in
a 3 by 6, or eq. (A.9) in a (3× 6× 6) array.

Numerical issues. As it was reported previously by [24] the asymmetric energy degradation
introduces a non-smooth transition in the stiffness matrix during iteration. Therefore, in present
implementation the update of the stiffness matrix H is limited to the first four Newton-Raphson cycles.
To further simplify the calculation, if all eigenvalues had the same sign or d = 0, no decomposition
was applied.

The above algorithm becomes unreliable in case of double roots when the discriminant (∆) of
eq. (A.5) approaches zero. In this case the denominator of eq. (A.7) becomes also zero and the
results become incorrect. To demonstrate this, a simple experiment is carried out. Let us consider
the following strain state: εx = 1 + δ, εy = −εz = 1 and γxy = γxz = γyz = 0. δ is a small
perturbation, which can be used to increase the discriminant, if δ = 0 → ∆ = 0. Assuming that
d = 0 the stiffness matrix was calculated and compared to the theoretical one (non-decomposed, C):
η = max (|H−C|) /max (C).

Fig. A.15 shows the relative error as a function of the calculated discriminant. A power law
relationship can be observed which decreases significantly if the discriminant increases.

As it was suggested by [24], when ∆ = 0 a small perturbation should be added to ε. To analyze
the effect of this modification a matrix with three well separated eigenvalues will be studied. During
the calculation the second eigenvalue is going to be modified by δ, and the resulting stiffness matrices
will be compared to the undisturbed one similarly as it was done previously. Fig. A.16 shows the
difference introduced by the perturbation as a function of damage. It can be seen, that when the
material is undamaged the perturbation causes no error, while at d = 1 the difference saturates almost
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Figure A.16: Relative difference in the stiffness matrices introduced by the perturbation as a function of the damage
variable. Without correction (solid symbols) and with the recalculation of the strain tensor shown in eq. (A.11).

to δ. While, this value can be reduced to δ/10 by recalculating the strain tensor based on the new
eigenvalues and the original eigenvectors:

ε′ = Vε̂′VT (A.11)

where ε′ is the modified strain tensor, ε̂ is a diagonal matrix containing the eigenvalues (with
ε̂′2 = (1 + δ) ε̂2) and V is a matrix containing the eigenvectors of ε.

As a result of these two tests, in the published implementation a small δ = 10 % perturbation is
applied on the second eigenvalue if ∆ ≤ 10−7.

Appendix B. Details of the implementation in Abaqus/UEL

To implement the solution in Abaqus two element types are used in a layered manner. Each layer
connects to the same nodes, but contributes to the stiffness of different degrees of freedom (DOF).
A schematic illustration is depicted in Fig. B.17. The first element type solves the displacement
problems, hence it has 2 or 3 translational DOFs. While the second element determines the fracture
topology and has only one DOF, the phase-field.

In 2D both four-node isoparametric and three-node triangular elements are implemented. Simi-
larly in 3D we considered eight-node brick and the four-node tetrahedral formulations.

In order to visualize the calculated quantities in Abaqus a third layer is added with infinitesimally
small stiffness made from a UMAT (user defined material model). It is used to transfer informa-
tion from the common block and interpolate between integration points. The internal variables are
summarized in Table B.1 for both 2D plane strain and 3D elements.

Additionally, as global history output the kinetic energy (ALLKE), the elastic strain energy
(ALLIE), the plastic strain energy (ALLPD) and the fracture energy (ALLEE) is available.

The UEL option in Abaqus requires the definition of the elementary stiffness matrix and the
residue vector. In eq. (27) we gave the elementary linear equation system which is used to solve the
problem iteratively. The d’Alambert force term can be calculated as:

f ine = f inei =

∫
Ω

ρNu
ijüidΩ, (B.1)
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Figure B.17: 2D representation of three layered finite element structure in Abaqus. All nodes have three (or in 3D
four) degrees of freedom (DOF). The first element contributes to the stiffness of the displacement DOFs, the second
element to the damage DOF. For post processing purposes a third layer is included made as a UMAT model, which
allows to display state dependent variables (SDVs).

Variable Number of SDV in Abaqus

2D (x, y) 3D (x, y, z)

displacement - ux, uy, uz SDV1-SDV2 SDV1-SDV3
axial strains - εx, εy, εz SDV3-SDV4 SDV4-SDV6
engineering shear strains - γxy, γxz, γyz SDV5 SDV7-SDV9
elastic strains - εel SDV6-SDV9 SDV10-SDV15
plastic strains - εpl SDV10-SDV13 SDV16-SDV21

equivalent plastic strain - εpleq SDV14 SDV22
stresses - σ SDV15-SDV18 SDV23-SDV28
hydrostatic stress - tr (σ) /3 SDV19 SDV29
von Mises stress - σeq SDV20 SDV30

plastic energy - ψpl0 SDV21 SDV31
elastic tensile energy - ψ+

0 SDV22 SDV32
potential energy - Πε SDV23 SDV33
phase-field - d SDV24 SDV34

Table B.1: Solution dependent variables (SDV) used to plot the results in two and three dimensions.
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Figure C.18: Equivalent stress-strain curve for a perfectly plastic case with different Iε values. With different colors,
the different deformation states are highlighted: elastic (green), plastic (blue), critical (orange) and fracturing (red).

where ρ is the density, üi are the nodal accelerations and Nu
ij is the matrix containing the shape

functions for the displacement problem. The ”lumped” (diagonal) mass matrix is:

M = Mkk =

∫
Ω

ρNu
ikN

u
ildΩ. (B.2)

While, the definitions of variables: rd, Kd, f ext, f int
n and Ku

n can be found in Ref. [70].

Appendix C. Critical plastic strain

In the literature two major groups of ductile phase-field implementations exist. The first group [107,
62, 108, 59] uses the energy of the plastic deformation to sustain damage evolution, while the
other [109, 54, 110] defines a critical strain and a penalty function to achieve fracture. The ad-
vantage of the first method is that the strain energy function satisfies the laws of thermodynamics,
however in plasticity if the material heals it can maintain part of its resistance independently of the
plastic strain [98]. On the other hand it is much easier to measure a macroscopic strain at failure,
than the energy necessary to open a unit crack surface in ductile cases.

Therefore, in the present implementation both methods are included. As it is shown in eq. (15)
the plastic energy is degraded by the damage function, thus in the energy history both elastic and
plastic energies are included. Nevertheless, a penalty function is added which induces fracture if a
critical plastic strain is achieved. This section is dedicated to the definition of Iε.

The stress-strain curve of an elastic, perfectly plastic solid is shown in Fig. C.18. With differ-
ent colors we highlighted the elastic (ψmaxel ), plastic (ψmaxpl ), penalty (ψmaxcr ) and fracturing energy
components:

ψmax
el =

1

6G

[
σlim +

1

2
H
(
εcreq + ∆εcreq

)]2

, (C.1)

ψmax
pl = σlim

(
εcreq + ∆εcreq

)
+

1

2
H
(
εcreq + ∆εcreq

)2
, (C.2)

ψmax
cr =

1

2
Iε
〈
εpleq − εcreq

〉2
=

1

2
Iε
(
∆εcreq

)2
. (C.3)
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It can be seen, that even with a large Iε there is an additional deformation component to εcreq. For
simplicity ∆εcreq is set to 10% of εcreq. Thus, Iε is calculated as follows:

Iε =
2
〈
ψc − ψmax

el − ψmax
pl

〉(
∆εcreq

)2 . (C.4)

This can, of course, be changed in the UEL script when needed.
Note, that if the user desires not to use the penalty function εcreq must be set to 0.

Appendix D. Recommendation for using the UEL

Abaqus proposes an alternative way, where the user can define its own element. This is called the
UEL option. This section is dedicated to explain the built in options of the UEL subroutine included
in supplementary materials. With the paper a 2D plane strain and a 3D example is published.

The basic construction of the model should look like a layered finite element; where the first layer
is made of elements (U1 (triangular) or U2 (square)) with translational degrees of freedom. This
should be followed by layer with phase-field elements (U3 (triangular) and U4 (square)) defined on
the same nodes. Finally a third layer of UMAT is recommended, which simplifies post-processing.

For the elements solving the displacement problem there are several options to consider. The
element properties should be added in the following order: Young’s modulus (E), Poisson’s ratio (ν),
yield strength (σlim), hardening modulus (H), critical strain (εcreq), thickness (only for 2D), density
(ρ), asymmetric energy switch, plasticity switch, fracture surface energy (gc), internal length scale
(lc). For every switch variable, the value 1 should be set if the option is used, while 0 is the it should
be omitted.

• Asymmetric energy switch: If the option is used, the energy is decomposed into tensile
and compression parts. However, if the plastic option is applied parallel, only the hydrostatic
components are decomposed.

• Plastic switch: If it is used, a von Mises yield criterion is applied.

• Critical strain: If the penalty function needs to be turned off, the critical strain should be set
to zero.

The fracture properties (lc and gc) are added to this element as well to control the history energy
increment and the time step.

For the phase-field element, the properties are: fracture surface energy (gc), internal length scale
(lc), thickness (only for 2D), elastic threshold switch. If the elastic threshold is used ψc = gc/2lc ,
else it is zero.

The element chooses automatically, if static or dynamic step integration is requested.
The implemented UEL Fortran code is governed by the CeCILL-B license. The code is chosen to

be published open-source to facilitate the distribution and the ease of use of the phase-field technique
among Abaqus users. While on the personal website of the corresponding author (address shown in
the Fortran file), regular updates and conversion scripts are available through elaborate tutorials.

Appendix E. Supplementary data

Supplementary data associated with this article can be found in the online version at URL.
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