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Robust Contact and Friction Model

for the Fatigue Estimate of a Wire Rope

in the Mooring Line of a Floating Offshore

Wind Turbine

F. Bussolati, P.-A. Guidault, M. L. E. Guiton, O. Allix and P. Wriggers

Abstract Station keeping of Floating Wind Turbine (FOWT) is ensured by mooring
lines. They may be composed of steel wire ropes, which are particularly difficult to
design against the Fatigue Limit State, because the standard Tension-Tension rules
cannot capture accurately the influence of the frictional contact interactions between
the wires when the rope is bent. We propose here a new model linking the tension
and curvature time series computed by a global scale model to a micro-scale model
simulating the fretting fatigue at an inter-wire contact location. This new model of
a detailed part of rope relies on the use of a new contact element, which allows to
gain robustness and CPU time. This is of crucial importance for the large number of
simulations required by a fatigue life estimate. A case study is presented considering
a FOWT equipped with three pairs of catenary mooring lines. The computed tension
and curvature obtained for a severe sea state are transferred to the detailed model of
the wire rope, with periodic boundary conditions representing the rope continuity.
The time series of sliding and contact forces are finally reported at different locations
within the rope, providing possible input data for a fretting fatigue analysis.
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1 Introduction

Floating Offshore Wind Turbines (FOWT) have been developed in recent years, to
participate to the energy transition challenge. Similarly to any floating structure,
their station keeping relies on mooring lines anchored to the seabed. The mooring
lines can be constituted by chains, steel wire ropes and synthetic rope. Synthetic
ropes have been proposed very recently in FOWT applications, while wire ropes
have been extensively employed in the oil and gas industry for many decades. They
indeed offer a large tensile strength, with considerable less weight than chains. Even
if they have been extensively studied, the wire rope fatigue is still difficult to estimate
when they are exposed to free bending [1]. Indeed, many studies [2, 3] show that
bending contribution may reduce dramatically the fatigue life of the component. This
effect is linked to fretting contact interactions at the wire scale, with crack initiations
located near the wire rope neutral axis where the slidings are the largest [3, 4]. Such
phenomena are not taken into account in the usual tension-tension fatigue laws of
the design standards (e.g. [5]) which could contribute to explain the high number of
mooring failures reported by oil and gas industry [6].

Some analytical models have been developed in order to characterize the wire
interactions and the mechanical properties of a wire rope. In [7, 8] each wire layer is
modeled as an orthotropic cylinder, while in [9–11] wires are considered as curved
beams.

In more recent years, researchers developed Finite Element models of wire ropes,
employing 3D solid [12, 13] or beam elements [14]. However, wire ropes used in
offshore mooring systems have large diameters, typically greater than 50 mm, which
limits the interest of 3D solid elements models because of a too large CPU time. In
[14], a first way to reduce this computational cost is proposed with the use of beam
elements. The mechanical behavior of a multi-layer wire rope is reproduced with an
acceptable approximation, as demonstrated by the results of a tension-bending test.
Such models rely on many publications which have been devoted to the specific case
of beam-to-beam contact [15] then extended to friction [16], generalized to include
possible rectangular sections [17, 18]. Recent work in this domain have also proposed
alternative formulations improving the geometric accuracy. For instance, [19] and
[20, 21] can take into account the rotation interaction between the contact beams,
with a parametrization based on the Frenet-Serret basis for the prior and convected
coordinates for the latters. Also, [22] uses an intermediary integrating surface which
contributes to smooth the functional for Newton algorithm.

In this paper we propose a new contact and friction model which offers a con-
siderably larger time saving by exploiting the small inter-wire sliding [23, 24]. The
potential of this model is demonstrated by applying it to the same FOWT study
case than in [25]. It is composed of a semi-submersible floater supporting a 3.6
MW downsized version of the NREL 5 MW wind turbine and equipped with cate-
nary mooring lines. We follow here the same methodology used in [25], with the
following differences.
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• The contact kinematics is enriched here by additional sliding terms along the
circumferences of the wire beam elements.

• The initialization of the loading considers here the bending before the tension, in
order to reduce the tangential contact force influence.

• The lay angle of the internal wire layer is greater.
• Kinematic coupling relations within the detailed wire rope model have been elim-

inated as it has been recognized to introduce numerical artifacts. They were added
in order to impose the correct kinematics to a reference wire at each layer, but
actually in [23] it is shown that they are not needed.

2 Detailed Wire Rope Model

The wire rope model has been implemented in Abaqus/Standard® and is represen-
tative of a part of a longer wire rope. We first begin this section by presenting the
new contact and friction element. After introducing the basic principles, we show
the comparison of the results on a simple benchmark of a simplified rope, to analytic
solutions and to results obtained with a large-sliding algorithm employing surface
elements to track the position of the wire surfaces. The second part of this section
illustrates the boundary conditions of the detailed wire rope model, from which
periodicity is imposed to represent the wire rope continuity.

2.1 A New Contact and Friction Element for Wire Rope

Resuming the beam-to-beam strategy of [14] with linear beam elements, we use here
a different contact and friction algorithm with a higher computational efficiency,
assuming small sliding between the wires. Only the basic principles of the model are
presented here. The reader could find more details on this model in [23, 24].

The user-element is a two-node contact element for non parallel beams. Note that
we do not consider the lateral contact between wires of a same layer. Its connectivity
is defined initially and the contact pairing is fixed along the analysis. Considering
a wire rope, the initial contact positions can be determined by trivial geometrical
operations.

Let us consider at the initial state, the contact among two nodes at positions X1

and X2 located on two wires in adjacent layers (Fig. 1). The wires have circular
cross sections of radius r1 and r2 respectively, and we neglect the Poisson effect,
which seems reasonable for standard steel wires. The initial beam tangent vectors
are denoted T1 and T2. As usual in contact algorithms among non parallel beams
[15, 16, 22], the contact normal is defined as the normalized vectorial product of the
beam tangents.

In the deformed configuration, the position vectors of the nodes are respectively
x1 and x2. In general they are no more coincident with the points on the beam axes
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Fig. 1 Beam-to-beam contact kinematics: initial and deformed configurations

that minimize the distance among the beams, i.e. the points x̂1 and x̂2 in Fig. 1. If the
relative sliding is small, we can reasonably state

x̂1 ≈ x1 + ξ 1t1(x1) x̂2 ≈ x2 − ξ 2t2(x2) (1)

which basically consists in assuming that the beams are straight in proximity of the
initial contact position. Accordingly, for the normal contact vector we have

n =
t1(x̂1) ∧ t2(x̂2)

‖t1(x̂1) ∧ t2(x̂2)‖
≈

t1(x1) ∧ t2(x2)

‖t1(x1) ∧ t2(x2)‖
(2)

Finally the normal gap can be defined as

gN = (x2 − x1) · n − (r1 + r2) (3)

A particular difference with [25] concerns the definition of the tangential gap
increment g�

T , which is the relative displacement experienced by the material points
x̄1 and x̄2 that were in contact in configuration at tn , projected on the new tangential
plane in configuration tn+1.

Firstly, x̄1 and x̄2 are mapped in the new configuration at tn+1 (Fig. 1). These new
positions are denoted respectively x̄1,(n,n+1) and x̄2,(n,n+1), where first index n refers
to the fact that they were the material points in contact at configuration n and second
index n + 1 refers to the configuration where the material points are mapped. The
new material points in contact are simply denoted by x̄1,(n+1) and x̄2,(n+1).

For each beam, on time increment �tn+1 = tn+1 − tn , the distance between the
previous material point in contact in configuration n and the current material point
in contact at configuration n + 1 can be defined for each beam as

{

d�
1 = x̄1,(n,n+1) − x̄1,(n+1)

d�
2 = x̄2,(n,n+1) − x̄2,(n+1)

(4)
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The normal direction changes in the new configuration and is defined by:

n(n+1)
de f
=

t1,(n+1) ∧ t2,(n+1)

‖t1,(n+1) ∧ t2,(n+1)‖

where t i,(n+1) = t i (xi,(n+1)) denotes the current director of beam i at the node xi,(n+1).
The increment of tangential gap g�

T is defined as the projection of the difference
between d�

2 and d�
1 in the current tangent contact plane at configuration n + 1. To

alleviate the notation, the subscript (n + 1) to indicate a quantity referred to the
current time increment will be discarded from now on. One has:

g�
T = (Id − n ⊗ n)(d�

2 − d�
1 ) (5)

with

d�
1 = x1 + ξ 1

(n) t1 + r1n1 − (x1 + ξ 1 t1 + r1n)

= −(ξ 1 − ξ 1
(n))t1 + r1(n1 − n)

d�
2 = x2 − ξ 2

(n) t2 − r2n2 − (x2 − ξ 2 t1 − r2n)

= (ξ 2 − ξ 2
(n))t2 − r2(n2 − n)

(6)

n1 = R�
1 n(n); R�

1 = R(��
1 ) (7)

n2 = R�
2 n(n); R�

2 = R(��
2 ) (8)

and in which �
�
i is the rotation in the current increment of beam i . Therefore one

gets

g�
T = (Id − n ⊗ n)[(ξ i − ξ i

(n))t i − ri ni ]

= (ξ i − ξ i
(n))t i − (Id − n ⊗ n)ri ni

(9)

This definition of g�
T is equivalent of quantifying the amount of relative sliding

by approximating the actual movement histories by straight lines projected on the
contact tangent plane at configuration n + 1. It is clear that the more the time step
decreases, the better the approximation of the theoretical path of the contact material
point on each beam is. It can be noted that with this definition of g�

T also relative
movements generated by rolling are taken into account.

First terms
(

ξ i − ξ i
(n)

)

t i reflect the relative sliding in the beam axes direction and

the term (Id − n ⊗ n) (r1n1 + r2n2) is associated with sliding along the circumfer-
ential directions of each beam. This second term is not considered when the contact
problem between beams is treated as contact between curves, as occurs in [16]. In
other words, the sliding between curves can be described by the evolution of the
parameters ξ i , while the characterization of the sliding between the beam surfaces,
being two-dimensional, requires two components. This has been done for instance
in [21], where the beam surfaces are described by couples of convective coordinates.

5



The tangential gap function at configuration n + 1 can now be defined by:

gT = g�
T + gT,(n,n+1) (10)

with gT,(n,n+1) the elastic part of the tangential sliding at increment n mapped in the
current configuration n + 1. Namely, provided that the angle between beams (i.e.
scalar product t1 · t2) does not change to much during a time-step, this mapping is
performed as follows:

gT,(n) = ξ e
(n) t i,(n) −→ gT,(n,n+1) = ξ e

(n) t i (11)

Friction satisfies a classical Coulomb’s law with a return mapping procedure to
compute the increment when the sliding criterion is reached.

The contact forces are obtained by applying a penalty method. The penalty coef-
ficients are chosen in order to limit the penetration of the contacting bodies, which
specifically in wire rope modeling can have an important influence on the quantities
estimated. A high penetration would in fact cause an artificial compression of the
wires, and consequently also lower normal contact forces. Similarly, the disconti-
nuity of the Coulomb friction law is regularized by an elastic slip. In choosing the
regularization value, one should also take care that too high values could lead to
bad conditioning of the tangent matrix to be inverted in the linearized balance of
momentum equation. Nevertheless, the elastic slip value can significantly influence
the results when small variations of curvature of the rope axis are involved.

The complete expressions of the variational formulation of this model and of its
linearization are detailed in [23].

2.2 Comparison to Analytical and Surface to Surface

Solutions

We now propose to check the approximation of the small sliding assumption in the
contact and friction model by applying it to a simplified rope model. The model is
composed of a central wire, a layer of six helical wires and a single helical wire
wrapped around (Fig. 2). All the wires are identical, with radius r = 2.15 mm and
linear elastic material properties E = 210 GPa and ν = 0.3. The friction coefficient
is set to 0.5. The lay angle is 12◦ for both layers, with opposite laying orientations.
The length of the model corresponds to two times the lay length of external helix,
i.e. 254.2 mm.

The end nodes of the helical wires are linked via a kinematic coupling to the end
nodes of the central wire. In particular, a plane end section kinematics is imposed,
but the displacement and the rotation respectively in and around the radial direction
are left free. The central wire kinematics is fully controlled in such a way to impose
a constant axial strain ε = 1.e − 3 and constant curvature κ with no change of the
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Fig. 2 Benchmark test used to validate the wire rope model

bending axis. For symmetry reason (see e.g. [11]), the sliding of a wire relative to the
underneath layer should be zero at the outer and inner-arc. One should note that the
external helix ends are located at the outer-arc, therefore the boundary conditions are
correct for this helix kinematic, but could introduce a small error for the kinematics
of the underneath layer. This problem will be addressed with a periodic condition in
the next section.

The axial force in the external helix obtained with the new beam-to-beam friction-
al contact element are compared to analytical solutions assuming negligible radial
displacement, sliding with respect to the underneath layer along the helix, and a
complete stick or a complete slip state [11]. The amplitude of displacement of the
same helix are compared to that obtained with a model representing the contact and
friction between surface elements meshing the wire surface. These surface elements
are rigidly linked to the node in the same wire section, on the wire beam.

The regularization of the contact law and the Coulomb friction law are achieved
by a penalty coefficient εN and an elastic slip γe, respectively. For the comparison
to the numerical surface-to-surface, γe = 1.e − 2 mm and εN = 2.e3 N/mm for the
beam-to-beam and εN = 1.e4 N/mm for the surface-to-surface. For the comparison
with the analytical solution, we select a higher contact stiffness both in normal and
in tangential direction, using εN = 2.e5 N/mm and γe = 1.e − 4 mm.

Figure 4 reports the axial force in the external helical wire, for a stick and slip
states [(a) and (b), respectively]. The difference in amplitude for the stick state can
be explained by the penalty regularization of contact, and the under-constrained
nodes which are not in contact. This localized property of contact in trellis contact
is a marked difference with the line contact assumption of the analytical model, as
illustrated in Fig. 3.

Figure 5 shows the Euclidean norm of the sliding of the external helix for the new
beam-to-beam and the surface-to-surface algorithms. This sliding is determined with
respect to a reference cylinder, whose axis is the one of the rope, its radius is the
one of the external helix and whose cross sections follow the Euler-Bernoulli beam
kinematics. The results compare successfully for the slip state. Small differences are
however visible in the stick state. They could be explained by considering that the
beam-to-beam algorithm neglects a rigidity of the surface-to-surface friction with
respect to a relative rotation of the beams around the contact normal. This is linked
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Fig. 3 Contact areas displayed for the benchmark 2 in the surface-to-surface model

Fig. 4 Axial force distribution in the helix of the second layer for (a) κ = 1.e − 5 mm−1 and (b)
κ = 1.e − 3 mm−1

Fig. 5 Total slip comparison: (a) κ = 5.e − 5 mm−1 (b) κ = 1.e − 3 mm−1
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to the pointwise contact approximation, while in the surface-to-surface model the
contact is spread on finite surfaces (Fig. 3).

In view of these results, we can see that the new beam-to-beam element produces
an acceptable approximation of the large sliding surface-to-surface contact and fric-
tion between the wires of a spiral strand wire rope. Since it does not update the contact
pairing, and also because the contact normal varies smoothly (it depends only on the
rotation of the wire sections), it facilitates the Newton convergence, and leads to a
gain in CPU time. Indeed, when comparing for this simplified case to a large sliding
beam-to-beam algorithm of Abaqus/Standard®, the CPU time reduction gives a ratio
of about 20.

The reader could find a more detailed comparison of the results obtained on
different test cases with this new contact and friction elements to the results obtained
with large sliding beam-to-beam algorithms available in legacy software or in the
literature in [23].

2.3 Boundary Conditions

In order to simulate the continuity of the rope, a strategy to impose properly the
boundary conditions has been developed. The kinematics of the central wire is fully
controlled, since constant axial strain and curvature are imposed to respect the output
of the FOWT model. The bending axis does not change along the analysis. It is
assumed that this simplifying hypothesis overestimates load variation on some wires
and is thus conservative for the fatigue.

The boundary conditions are imposed via a Multi-Point Constraint (MPC) user-
subroutine. An important result coming from the analytical models is here exploited.
When a wire rope is bent, relative displacements among the wires of adjacent layers
may occur according to the curvature, to the applied tension and to the friction
coefficient between the contacting wires [11]. Consequently, when sliding occurs,
initial plane cross sections are in general not plane anymore in the bent configuration.

When bent, a position along the wire can be parameterized by a circumferential
angle θ from π/2 at the outer-arc to −π/2 at the inner arc (Fig. 6). The analytical
axial force distribution in a helical wire of a bent wire rope geometrically depends on
sin(θ) in the stick state (Fig. 4a). Hence, positions at θ = ±π

2 are symmetry points
(with no relative displacement) which rotate with the rope cross section.

Let us consider a wire rope portion whose axis has constant axial deformation
and curvature. To facilitate the explanation, consider first the external layer for which
the lay length (i.e. the initial periodic length) defines the model length. A wire of
this layer, called reference wire, is set to have its extremities at outer-arc locations
θ = ±π

2 , for example Q in Fig. 7. The nodes at these extremities are linked to the
corresponding nodes of the central wire in such a way that they stay on the same wire
rope cross section in the bent configuration, meaning that we impose zero relative
displacement with respect to the central wire, and they keep the same position θ on
this cross section (we do not consider wire rope torsion). Because they are at outer-arc
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Fig. 6 The angle θ identifies
the position of a wire in the
cross section with respect to
the bending axis

Fig. 7 Points involved in a
MPC

locations, this kinematic link is not conflictual with the natural wire kinematics during
bending. Now consider another wire of the same external layer which extremity P

is not at the outer-arc. To model the rope continuity, the kinematic of P is defined by
the Abaqus/Standard Multi Point Constraint (MPC) as follows. The points involved
in each MPC are four and are represented in Fig. 7:

– the point P is the one to which the constraint is imposed (i.e. the slave node), since
θP �= ±π

2 ;
– the point CP is the node of the central wire in the cross section containing the

points Q and P;
– the point R is the node on the reference wire for which θR = θP

– the point CR is the node on the central wire in the cross section containing R.

Note that point Q (Fig. 7) is kinematically linked to CP to stay in the same cross
section and at the same angle θ . In general, points R and CR are arbitrary with respect
to the mesh nodes. The FEM interpolation however enables to relate the degrees of
freedom at these locations to that of the elements they belong.
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The constraint equation for displacement imposes that the relative sliding of point
P with respect to CP is the same that for point R with respect to CR . The relative
sliding of nodes P and R are set after rotating back the cross sections with respect
to the rotations at points CP and CR , respectively.

RT
CP

(x P − xCP
) = RT

CR
(x R − xCR

) (12)

where R indicates the rotation matrix and x the position vector.
For the rotation vectors we simply impose

�P = �CP
(13)

See [23] for the detailed linearization. Now consider the case of an internal layer
for which only one wire end can be set at an outer-arc location. The other extremity
kinematics follows the same relationship that point P here above, meaning its master
point is on the same wire. In [25], if any point of a wire inside the model was at the
outer arc (note that for the wire rope considered in the next section, the model length
is greater than the lay length of the internal layers), we linked this point to the
central wire, as it is done for point Q here above. We noted that this introduced some
numerical artifacts, for reasons to be explained, and thus decided to constrain this
point only with contact and friction conditions.

From a study documented in [25] we have noted problems when considering the
full linearization terms which are avoided when omitting some terms related to points
CP and CR displacements. Keeping in mind this problem should be solved later,
we consider the partial linearization in the following, which obviously degrades the
Newton convergence. This strategy however enables to recover a periodic distribution
simulating the rope continuity, as indicated by the axial strain in Fig. 8.

Fig. 8 (a) Axial strain distribution along the wires and (b) 3D view
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Fig. 9 (a) Numerical model of the wire rope in Abaqus® and (b) cross section of the chosen wire
rope profile

2.4 Wire Rope Properties

The wire rope profile has been inspired from a sample provided by Baudin
Chateauneuf company which was designed for a stay-cable bridge. Note that its
properties may differ from that of an offshore mooring wire rope which service con-
ditions require specific care concerning the reduction of the tension-torsion coupling.
The bending and tensile stiffness of this cable are satisfying the Ultimate Limit State
[5] of the case study described in the next section. It is a six-layer steel wire rope
(Fig. 9) of 60.4 mm diameter. The layers have alternate lay angle directions and are
composed of 5, 11, 17, 23, 29 and 35 wires from the inner to the outer, respectively.
The model length is set to the longest pitch which is that of the external layer, i.e.
about 580 mm. We have five wires in line contact with the central wire and 5964
trellis contacts. For the steel, we assume a linear elastic behavior, with E = 210 GPa
and ν = 0.3. The friction coefficient has been set to 0.12, which is the value used in
[26] for this type of steel wire ropes after the application of grease.

3 Application to a FOWT Model

3.1 Global Hydrodynamic FOWT Model

The global model of the FOWT allows to obtain the mechanical states of the whole
mooring lines for each sea state to which the structure may be subjected during
the structural lifespan. It is implemented in the dedicated hydrodynamic software
DeeplinesTM.

We consider a generic case study of a cylinder-like shape floater, equipped with a
redundant mooring system of six catenary mooring lines (Fig. 10) and supporting a
downsized version of the NREL 5 MW wind turbine [27] to a 3.6 MW wind turbine.
The sea depth is uniform and equal to 100 m. The mooring lines are catenary-shaped
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Fig. 10 (a) Global scale model representation in DeeplinesTM; (b) top view of the global model,
representing the mooring line numbering and their position with respect to the wind direction (which
is collinear to the waves)

Table 1 Mooring lines discretization. Nele and Lele denote respectively the number of element
and the element length

Parts Nele Lele (m)

Chain-1 4 7.5

Wire rope-1 2 10.0

Wire rope-2 20 2.0

Wire rope-3 8 12.5

Chain-2 30 5.33

Chain-3 20 11.1

and attached to the floater in three pairs. Their projections on a horizontal plane are
equally spaced from one another. Each line has a total length of 572 m (Table 1).

The FOWT is subjected to the action of the environment, i.e. waves and wind.
Sea waves are modeled as the superposition of harmonic components, defined by
a JONSWAP spectrum [28, 29], fitting the observed Power Spectral Density. The
direction of propagation is considered parallel to the wind and does not change along
the analysis. We consider the long-term statistical distribution given by metocean
data gathered from an offshore site in the west of France, from which the Wave
Scatter Diagram (WSD) is reported in Fig. 11. Each block of the WSD represents
a sea state of three hours, assumed stationary, defined by two parameters of the
JONSWAP spectrum, with its percentage of occurrence. These two parameters are
the significant wave height (Hs), which is related to the integral of the spectrum, and
the period of the peak of the spectrum (Tp). A third parameter defining the spreading
of the JONSWAP spectrum, usually denoted γ , is fixed to 1.3.
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Fig. 11 Wave scatter diagram of a particular azimuthal sector. Rows represent bins of the significant
wave height Hs (m). Columns represent bins of the peak period Tp (s)

Fig. 12 Thrust and torque
on the rotor of the 3.6 MW
turbine as function of the
wind speed, computed by the
software DeeplinesWindTM

For the sake of simplicity and to focus on mooring modeling, aero-dynamic in-
fluence will be accounted for only by steady wind thrust applied on the tower and
torque applied on the nacelle, whose magnitudes depend on the mean wind speed as
shown in Fig. 12. This simplification could be supported if assuming a smaller wind
than wave influence on the mooring line tension, as suggested for example in [30]
for another semi-submersible floater.

Each mooring line is composed of three parts, with chains at the extremities and
spiral strand ropes in between.

Wire ropes are modeled by linear beam elements, whose formulation takes into
account large rotations [31]. We neglect the tension-torsion coupling, and consider a
high torsional stiffness of 1.e6 Nm2/rad. The modeling of the bending behavior has
been determined after preliminary computations, as will be detailed in Sect. 3.2.

One additional mass of 2 tons is distributed in the “Wire rope-2” part (see Table 1)
of each mooring line, in order to limit the floater movements and to keep the lines in
tension. Chains have no bending stiffness and are therefore modeled by bar elements.
The finite element discretization is reported in Table 1.
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Contact between mooring lines and seabed is assumed frictionless and it is mod-
eled according to [32]. A penalty regularization is used with a linear contact stiffness
of 1.e6 N/mm2.

The floater is considered as a rigid body. Its behavior is represented by Response
Amplitude Operators (RAO, i.e. transfer function with respect to wave period and
wave elevation) of its displacement and rotation degrees of freedom. The RAO are
computed in another software from linear hydrodynamic computations of diffraction
and radiation components. The forces and moments acting on the floater are com-
puted by the superposition of the RAO of the different harmonic components of the
stochastic realization of the sea state.

The main hydrodynamic loading on the mooring lines are the drag forces, which
are represented by the classical Morison’s equation. This approach is an approxima-
tion justified by the fact that the line diameter is much smaller than the wavelength
[33, 34].

3.2 Global Model Results

As explained in analytical approaches [9–11], wire rope bending stiffness depends
on the applied tension, this dependency being disregarded in the FOWT simulation.
To investigate its influence on the computed tension and curvature, we consider a
non-linear bending stiffness analytically computed according to the methodology
given by [10, 11], for an axial strain of 5e − 4 (Fig. 13).

Analyses with an extreme sea state (representative of the Ultimate Limit State
condition with JONSWAP parameters Hs = 10 m and Tp = 14 s) have been con-
ducted by choosing either a constant bending stiffness E I = E Imax , i.e. considering
the wires completely adherent on each other, or the nonlinear bending stiffness of
Fig. 13. The differences in tension and curvature time series are shown in Fig. 14.
The tension values are very similar. One notes an offset for the curvature which is

Fig. 13 Hysteretic bending behavior implemented in DeeplinesTM, which has been obtained by
fitting the bending behavior for ε = 0.50/00. Dots show the analytical points
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Fig. 14 Difference of time domain evolution of tension and curvature obtained with E I = E Imax

and the nonlinear bending behavior of Fig. 13, for an extreme sea state. These plots are referred to
the section most subjected to bending of the lines, which is at s = 79 m

not so important for fatigue by contrast to the amplitude of the variation, for which a
difference is observed for very rare high wave amplitudes. Considering this extreme
sea state has wave amplitudes noticeably larger than the sea states for the fatigue
(Fig. 11), we will assume in the following the global tension and curvature indepen-
dent on the bending stiffness. In other words, we can adopt a top-down approach
uncoupling the global model and the local one.

To simplify the global scale computation, the simulations for all the sea states of
the scatter diagram of Fig. 11 have been computed with a constant bending stiffness
corresponding to the stick state of wires. Note that we consider simulations of 1000 s
only, disregarding the initial 50 s with numerical transient loading. We assume this
duration to be long enough to obtain the stationarity of the fatigue damage per
unit time. Figures 15 and 16 report the extreme over time of the tension and of the
curvature respectively, along the downstream mooring line 1 (Fig. 10b). From them,
one can appreciate the range of curvature and tension to which the line is submitted.
In particular, we can identify at s = 79 m the most critical zones for what concerns
the rope curvature, at the end of the additional mass zones, which will be analyzed
with the detailed wire rope model.

3.3 Results of the Detailed Wire Rope Model

From Fig. 16, we selected the position at 79 m from the top, along the mooring line 1,
to be simulated with the detailed wire rope model. Input tension and curvature have
been computed for a severe fatigue sea state with Hs = 8.75 m and Tp = 16.5 s wave
parameters (see Fig. 11) and are shown in Fig. 17. The corresponding wave elevation
time series is shown in Fig. 18. The initialization of the loading could not consider
the previous history of the wire rope, because of the scatter diagram decomposition.
To limit the magnitude of the initial interwire contact forces, we chose to apply the
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Fig. 15 (a) Min over time and (b) max over time of tension along the mooring line 1

Fig. 16 (a) Min over time and (b) max over time of absolute curvature along the mooring line 1

Fig. 17 Time evolution of (a) tension and (b) curvature of the portion of mooring line studied with
the detailed wire rope model
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Fig. 18 Wave elevation history considered for the fatigue analysis

Fig. 19 Time evolution of wire axial force in the proximity of (a) neutral axis and (b) outer arc at
each layer

loading in 3 steps: a small tension, a small tension and the initial curvature, and
finally the initial tension and curvature.

In Figs. 19, 20 and 21, we report the time evolution of axial force, normal and
tangential contact forces at fixed position, in correspondence of the neutral axis and
of the outer arc for each layer. For what concern the contact forces, we do not report
the values for the first layer, since it is in line contact with the central wire while the
others are in contact with the layer underneath at localized positions.

The normal contact forces are higher moving from the external to the internal
layers (see Fig. 20). This was expected, since the external layers exert a pressure on
the internal ones. At higher normal forces correspond greater tangential forces as
well (see Fig. 21).

Because of the lower normal forces, the inter-wire slip is higher for the external
layers (Fig. 22). Moreover, the sliding is higher in correspondence of the neutral
axis, confirming the experimental evidences [26]. One can see that the wire rope
reaches a stabilized state after a time t ≈ 100 s, where shift in the sliding is observed
at all the interfaces, except the most internal one. By looking at Fig. 18, this time
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Fig. 20 Time evolution of normal contact force between two crossing wires in the proximity of (a)
neutral axis and (b) outer arc

Fig. 21 Time evolution of tangential contact force between two crossing wires in the proximity of
(a) neutral axis and (b) outer arc

Fig. 22 Time evolution of inter-wire slip between two crossing wires in the proximity of (a) neutral
axis and (b) outer arc
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instant does not correspond to a particularly high wave. The inter-wire slip profile
could provide an indicator to reveal whether the wire rope response is stabilized or
not. Consequently, in this analysis one does not have to rely on the first 100 s. Note
that the slip magnitude, for the most external interface, is in the range that activates
fretting fatigue (see e.g. [35, 36]). Nevertheless, other analyses have to be performed
on less severe sea states to check if the number of fretting cycles can be sufficient to
generate fatigue cracks.

4 Conclusion

This paper presents a new Finite Element model for simulating the stress at the wire
scale of a wire rope in a mooring line of a Floating Offshore Wind Turbine (FOWT).
This model is a two-node contact element conceived for the simulation of frictional
contact of non-parallel beams. It differs from other models in the literature, as it
assumes small sliding of the wires, while updating the contact normal with rope
bending. We shown comparison on a simplified case to analytical solutions and
a numerical surface-to-surface solution which validate the model approximation.
This formulation results in a considerable gain in robustness and CPU times when
compared to standard large sliding contact algorithm, which makes this model very
interesting for fatigue life estimates, which requires a large number of simulations.
This model is implemented as a user subroutine in Abaqus/Standard®. A Multi-
Point-Constraint (MPC) defines appropriate periodic boundary conditions which are
able to simulate the rope continuity.

We present an application for an example of a semi-submersible floater supporting
a 3.6 MW wind turbine, equipped with three pairs of catenary mooring lines including
six-layer spiral strand wire ropes. The global scale hydrodynamic response of the
FOWT is simulated with the software DeeplinesTM, with steady wind and irregular
wave loading. The largest curvature are computed at the bottom of the mooring line
portions where additional masses are placed to keep the line in tension. We noted that
the nonlinear bending stiffness of the wire rope varying with curvature has a small
influence on the resulting tension and curvature, justifying a top-down approach
uncoupling the global scale model and the local detailed mechanical model of the
wire rope.

Finally the detailed wire rope model has been used to model 1000 s of tension
and bending of a severe sea state, showing the potentiality of this model. Further
investigations are required in order to validate the obtained results.

Additional work should be necessary to correct the linearization of the periodic
boundary conditions. Also, a smaller-scale fretting fatigue analysis should be studied
in a future work, including material and corrosion influences, in order to provide the
designer a better physically-assessed fatigue constraint.
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