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Extreme expectile estimation for heavy-tailed time series

Simone A. Padoan* and Gilles Stupfler�
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Abstract

Expectiles are a least squares analogue of quantiles which have lately received sub-
stantial attention in actuarial and financial risk management contexts. Unlike quan-
tiles, expectiles define coherent risk measures and are determined by tail expectations
rather than tail probabilities; unlike the Expected Shortfall, they define elicitable risk
measures. This has motivated recent studies of the behaviour and estimation of extreme
expectile-based risk measures. The case of stationary but weakly dependent observa-
tions has, however, been left largely untouched, even though correctly accounting for
the uncertainty present in typical financial applications requires the consideration of
dependent data. We investigate the estimation of, and construction of accurate confi-
dence intervals for, extreme expectiles and expectile-based Marginal Expected Shortfall
in a general β−mixing context, containing the classes of ARMA, ARCH and GARCH
models with heavy-tailed innovations that are of interest in financial applications. The
methods are showcased in a numerical simulation study and on real financial data.

Keywords: Asymmetric least squares, Expectiles, Extremal dependence, Heavy tails,
Marginal Expected Shortfall, Mixing, Tail copula, Weak dependence.

1 Introduction

A major problem in econometrics and statistical finance is to quantify the risk associated
to a real-valued profit-loss variable Y . The best-known risk measure in the financial sector
is arguably Value-at-Risk (VaR) at a confidence level τ ∈ (0, 1), defined as the negative τth
quantile −qτ of the real-valued profit-loss distribution, with τ being close to zero represent-
ing the situations carrying the greatest risk. The quantile can be obtained by minimising
asymmetrically weighted mean absolute deviations (Koenker and Bassett, 1978):

qτ ∈ arg min
q∈R

E(ρτ (Y − q)− ρτ (Y )), (1)
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where ρτ (u) = |τ − 1{u ≤ 0}||u| is the quantile check function and 1{·} the indicator
function. The VaR suffers from certain serious drawbacks. It does not, in general, define
a coherent risk measure in the sense of Artzner et al. (1999), and thus does not abide by
the intuitive diversification principle. Besides, quantiles are often criticised for missing out
on important information since they only depend on the frequency of tail losses and not on
their actual values. Unlike the VaR, the popular quantile-based Expected Shortfall (ES, or
Conditional VaR), is coherent, takes into account the actual values of the risk variable on
the tail event, but is not elicitable in the sense of Gneiting (2011), and as such does not
benefit from the existence of a natural backtesting methodology.

An alternative risk measure which addresses these issues is given by the concept of ex-
pectiles, introduced by Newey and Powell (1987). Expectiles extend the mean in the way
quantiles extend the median and are found by substituting the absolute deviations in (1)
with squared deviations:

ξτ = arg min
θ∈R

E(ητ (Y − θ)− ητ (Y )), (2)

where ητ (u) = |τ − 1{u ≤ 0}|u2. For each τ ∈ (0, 1), the τth expectile exists, is uniquely
defined by its convex problem, and satisfies τ = E[|Y − ξτ |1{Y ≤ ξτ}]/E|Y − ξτ |. This
property of expectiles is intimately connected to the notion of gain-loss ratio, which is a
popular performance measure in portfolio management (see Bellini and Di Bernardino, 2017,
and references therein). It implies that, unlike the VaR, the τth expectile is determined by
tail expectations rather than tail probabilities and thus depends on tail realisations of the
loss variable and their probability. This motivated Kuan et al. (2009) to introduce a notion of
expectile-based Value-at-Risk as −ξτ for real-valued profit-loss distributions. The advantages
of the expectile include that it induces a law-invariant, coherent and elicitable risk measure,
see Bellini et al. (2014) and Ziegel (2016). It is actually the only risk measure, apart from
the simple expectation, satisfying these three properties. Further results, both theoretical
and numerical, obtained by Ehm et al. (2016) and Bellini and Di Bernardino (2017) among
others, indicate that expectiles define sensible alternatives to the standard VaR and ES.

Expectile estimation has recently regained interest in a wide range of complex models,
see for example Sobotka and Kneib (2012) and the references therein, as well as Holzmann
and Klar (2016) and Krätschmer and Zähle (2017) for advanced theoretical results. However,
a theory for extreme expectiles is still in full development. Probabilistic aspects of extreme
expectiles, with τ ↑ 1, have been examined by Bellini et al. (2014) and Bellini and Di
Bernardino (2017). Inference on extreme expectiles has been considered even more recently
in Daouia et al. (2018, 2019, 2020). This literature on extreme expectile estimation has
been restricted to independent and identically distributed (i.i.d.) data or, in Daouia et al.
(2019), to strictly stationary φ−mixing time series. This extension is, in fact, only of minor
interest because standard processes in financial and econometric modelling, such as ARCH
and GARCH processes, are not in general φ−mixing. Asymptotic results currently available
on extreme expectile estimation thus cannot reasonably be used in typical financial contexts
to produce accurate confidence intervals. This is a serious gap, to be addressed if expectiles
are to be used widely in financial risk management.
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This paper contributes to filling that gap in the following way. In a general framework
of β−mixing and heavy-tailed strictly stationary time series, we first rigorously investigate
the convergence of several estimation techniques for extreme expectile-based risk measures.
We start by, given a strictly stationary, β−mixing time series (Yt) having a one-dimensional
marginal heavy-tailed distribution that satisfies general conditions, considering the estima-
tion of an intermediate tail expectile of order τn → 1 such that n(1 − τn) → ∞ as n → ∞,
where n is the available sample size. This framework makes it possible to consider a wide
class of processes, such as ARMA, ARCH and GARCH processes under reasonably mild con-
ditions. We focus on two estimation methods: the Least Asymmetrically Weighted Squares
(LAWS) estimator, defined as the direct empirical counterpart of the expectile in (2), and
the indirect Quantile-Based (QB) estimator obtained using an asymptotic proportionality
relationship that links high expectiles to their quantile counterparts. The resulting estimates
are extrapolated to proper extreme levels τ ′n converging to 1 at an arbitrarily fast rate in the
sense that n(1− τ ′n)→ c as n→∞, for some nonnegative constant c. We then expand our
statistical model to include the bivariate β−mixing time series framework (Xt, Yt), with the
goal of establishing a general theory for the estimation of the Marginal Expected Shortfall
(MES). This risk measure has been argued to be important in the assessment of systemic
financial risk by, among others, Engle et al. (2015), Acharya et al. (2017) and Brownlees and
Engle (2017). In this context, X := X1 and Y := Y1 respectively stand for the marginal losses
on the return of a financial firm and that of the entire market, and the MES is E(X|Y > u),
where u is large to reflect a substantial market downturn. Our results apply not only to the
estimation of the expectile-based form of the extreme MES, where u is taken to be a high
expectile of Y , but also to its quantile-based counterpart. As an application of our results,
we then discuss the important problem of constructing accurate yet readily implementable
asymptotic confidence intervals for extreme expectile-based risk measure, that take into ac-
count the dependence between observations. They are compared, on simulated and real
data, to the naive intervals obtained via the asymptotic theory of i.i.d. observations, to show
the importance of accounting for the dependence structure of typical financial time series.

The outline of the paper is the following. Section 2 explains in detail our statistical con-
text. Section 3 considers first intermediate and then extreme expectile estimation. Section 4
then introduces a more general bivariate time series context within which general MES esti-
mators at extreme levels are investigated. Section 5 explores the implications of our results
on asymptotic confidence interval construction. Section 6 discusses the important question
of the selection of expectile level in practice. The finite-sample performance of the methods
is examined on simulated data sets in Section 7 and on real financial data in Section 8.
The methods and data considered in this article have been incorporated into the R package
ExtremeRisks, freely available on CRAN. The R code for the simulation study and real
data analysis is available in the “Software” Section of S. Padoan’s personal webpage at the
URL http://mypage.unibocconi.it/simonepadoan/. A Supplementary Material
document discusses in more depth our technical conditions, gives all necessary mathematical
proofs, and contains further finite-sample results.
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2 Statistical model and time series framework

Let (Yt, t ≥ 1) be a strictly stationary time series having a continuous marginal heavy-tailed
distribution F : in other words, F is the distribution function of Y := Y1 and of each Yt. Let
F := 1− F and U : s 7→ inf{y ∈ R | 1/F (y) ≥ s} be its survival and tail quantile functions.
Throughout, Y should be seen as the negative of a generic financial position, so that large
positive values of Y represent extreme losses associated to this position.

Motivated by applications to financial risk management, our target is the estimation of
extreme expectiles of Y , having order tending to 1. To this end, we focus on heavy-tailed
distributions, which are found to represent the tail structure of many financial data examples
quite well and therefore are ubiquitous in the modelling of extreme actuarial and financial
losses, as argued on p.9 of Embrechts et al. (1997). Mathematically, we assume that

∀y > 0, lim
s→∞

F (sy)

F (s)
= y−1/γ or equivalently lim

s→∞

U(sy)

U(s)
= yγ. (3)

The tail index γ specifies the tail heaviness of F : the tail of F gets heavier as γ increases.
Together with condition E|Y−| < ∞, where Y− := min(Y, 0), the assumption γ < 1 then
ensures that the first moment of Y exists, which entails that expectiles of Y of any order are
well-defined. These conditions shall therefore be part of our minimal assumptions.

An extension of the results of Daouia et al. (2018), on extreme expectile estimation for
heavy tails in the i.i.d. setup, is given in Daouia et al. (2019) in a φ−mixing dependence
framework. To the best of our knowledge, the latter is the only work in the literature
considering the estimation of extreme expectiles in heavy-tailed models for weakly dependent
data. The φ−mixing framework is the following. For any m ≥ 1, let F1,m = σ(Y1, . . . , Ym)
and Fm,∞ = σ(Ym, Ym+1, . . .) denote the past and future σ-fields generated by the sequence
(Yt). The φ−mixing coefficients of this sequence are then defined by

∀ l ≥ 1, φ(l) = sup
m≥1

sup
A∈F1,m

sup
B∈Fm+l,∞

|P(B|A)− P(B)|.

The time series (Yt) is said to be φ−mixing (or uniformly strongly mixing) if φ(l) → 0 as
l → ∞. This is in fact a very stringent assumption. For instance, even the simple AR(1)
process with heavy-tailed innovations is never φ−mixing (see the Introduction of Rio, 2017).
We work here in the more general context of β−mixing, defined through the coefficients

∀ l ≥ 1, β(l) = sup
m≥1

E

(
sup

B∈Fm+l,∞

|P(B|F1,m)− P(B)|

)
.

The time series (Yt) is then said to be β−mixing (or absolutely regular) if β(l) → 0 as
l → ∞. Roughly speaking, the β−mixing property brings a form of memorylessness much
weaker than its φ−mixing version: the β−mixing property is written in an L1 sense, while the
φ−mixing property is written in the much stronger L∞ sense. That β−mixing is weaker than
φ−mixing can be seen by noting that β(l) ≤ φ(l) for any l, see Doukhan (1994, Section 1.1).

4



Our motivation for making the β−mixing assumption is twofold. On the one hand,
β−mixing is satisfied in a much wider class of models than φ−mixing: for instance, Doukhan
(1994, Section 2.4) shows that a large class of Markov processes, among which ARMA pro-
cesses, nonlinear autoregressive processes, ARCH and GARCH models are in fact geometri-
cally β-mixing (i.e. there is a < 1 such that β(l) ≤ al for l large enough) under reasonably
mild conditions. On the other hand, there is a general theory of extremes for strictly sta-
tionary and β−mixing processes, developed in a series of papers by Drees (2000, 2002, 2003).
This important portion of the extreme value literature provides probabilistic tools for the
statistical analysis of extremes of strictly stationary and β−mixing observations through
a powerful approximation result for the tail quantile process by a Gaussian process. The
β−mixing condition has more generally played a substantial role in contemporary research on
the extremes of a time series: see among others de Haan et al. (2016) and Chavez-Demoulin
and Guillou (2018) for the development of bias-reduced estimators in the dependent setting,
and Drees and Rootzén (2010) for further theoretical contributions. The β−mixing assump-
tion thus strikes a good balance between theoretical applicability and modelling strength,
and as such constitutes a reasonable framework for our objective of estimating extreme
expectiles in heavy-tailed time series. This motivates our basic modelling assumption below.

Condition A. The time series (Yt) is strictly stationary, β−mixing and its one-dimensional
marginal distribution function F is continuous and heavy-tailed.

Condition A will be key to our development of an asymptotic theory for extreme expectile
estimation, which we provide in the next section.

3 Extreme expectile estimation in time series

Suppose that we observe a random sample (Y1, . . . , Yn) extracted from a time series (Yt)
satisfying Condition A. The objective in this section is to estimate a marginal, unconditional
extreme expectile ξτn of the random variable Y = Y1, where τn → 1 as n → ∞. Note that
this estimation problem is different from the prediction of extreme expectiles in dynamic
time series models, where the interest is in estimating conditional extreme expectile levels
for tomorrow given our knowledge of today.

We shall start by the case of an intermediate level τn, meaning that τn → 1 and n(1 −
τn)→∞ as n→∞. Intermediate expectile estimates will then be extrapolated to estimate
expectiles at properly extreme levels τ ′n, satisfying n(1 − τ ′n) → c > 0 as n → ∞, using a
semiparametric approach warranted by the heavy-tailed assumption.

3.1 At intermediate levels

Direct asymmetric least squares estimator Let τn be an intermediate level. We first
consider estimating the expectile ξτn of the marginal distribution F by its empirical estimator

ξ̃τn = arg min
θ∈R

n∑
t=1

ητn(Yt − θ).
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This LAWS estimator can easily be computed, for example using an iteratively reweighted
least squares minimisation procedure. To find the asymptotic distribution of ξ̃τn , we make
the following assumption on the dependence within the time series (Yt).

Condition B. For the time series (Yt), assume that

(i) There are sequences of integers (ln) and (rn) such that

ln →∞, rn →∞,
ln
rn
→ 0,

rn
n
→ 0 and

nβ(ln)

rn
→ 0 as n→∞.

(ii) For any t ≥ 1, there is a function Rt on [0,∞]2 \ {(∞,∞)} such that

∀(x, y) ∈ [0,∞]2 \ {(∞,∞)}, lim
s→∞

sP
(
F (Y1) ≤

x

s
, F (Yt+1) ≤

y

s

)
= Rt(x, y).

(iii) There exist D ≥ 0 and a nonnegative sequence ρ(t) satisfying
∑

t≥1 ρ(t) <∞ and such
that, for s large enough, we have

sP
(
u′

s
< F (Y1) ≤

u

s
,
v′

s
< F (Yt+1) ≤

v

s

)
≤ ρ(t)

√
(u− u′)(v − v′)+

D

s
(u−u′)(v−v′),

for any t ≥ 1 and all u, u′, v, v′ ∈ [0, 1] with u′ < u and v′ < v.

Condition B(i) and B(ii) are standard in the emerging literature on extreme value analysis
with mixing conditions, see e.g. Drees (2002, 2003) and Drees and Rootzén (2010) (we thank
Holger Drees for pointing out in private communication that there is a typo in the first
term of condition (C1) in Drees, 2003). In Assumption B(i), the sequences (ln) and (rn)
are small-block and big-block sequences used to develop the kind of “big blocks separated
by small blocks” arguments that are succesfully employed in the literature on mixing time
series. Condition B(iii) is slightly more precise than condition (C3) in Drees (2003).

We now state our first main result on the asymptotic normality of the estimator ξ̃τn .

Theorem 3.1. Assume that Conditions A and B are satisfied. Assume further that there is
δ > 0 such that E|Y−|2+δ < ∞, 0 < γ < 1/(2 + δ) and

∑
l≥1[β(l)]δ/(2+δ) < ∞. Let τn ↑ 1 be

such that n(1− τn)→∞, rn(1− τn)→ 0 and rn(rn/
√
n(1− τn))δ → 0 as n→∞. Then,

√
n(1− τn)

(
ξ̃τn
ξτn
− 1

)
d−→ N

(
0,

2γ3

1− 2γ
(1 + σ2(γ,R))

)
,

with σ2(γ,R) :=
(1− γ)(1− 2γ)

γ2

∫∫
[1,∞)2

∞∑
t=1

Rt(x
−1/γ, y−1/γ) dx dy.
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The family of functions Rt specifies the extremal dependence within the time series
between different time points; when Rt ≡ 0 for any t ≥ 1, which is for instance the case
when (Yt) is an i.i.d. sequence, the asymptotic variance is 2γ3/(1−2γ). The quantity σ2(γ,R)
represents the proportion of increase of this asymptotic variance due to the mixing setting.
The conditions E|Y−|2+δ <∞ and 0 < γ < 1/(2 + δ) already appear in Theorem 2 of Daouia
et al. (2018) for the i.i.d. case, of which the present result can be considered a generalisation.
In addition, our Theorem 3.1 represents a substantial theoretical step compared to Theorem 1
of Daouia et al. (2019) in the φ−mixing case. While the latter is shown by simply updating
a couple of correlation calculations in the proof of Theorem 2 of Daouia et al. (2018), the
proof of Theorem 3.1 uses some rather delicate arguments involving a tailored central limit
theory for tail array sums in the time-dependent setting, developed by Rootzén et al. (1998).

An exhaustive discussion of our hypotheses is somewhat involved. However, our as-
sumptions are very mild when β(l) converges to 0 geometrically fast as l→∞. In that case,
condition

∑
l≥1[β(l)]δ/(2+δ) <∞ is satisfied for any δ > 0, and one may choose ln = bC log nc,

rn = blog2(n)c and τn = 1−n−τ , for any τ ∈ (0, 1) and sufficiently large C (where b·c denotes
the floor function). The case of geometrically strong β−mixing covers many cases widely
used in the modelling of financial time series, such as ARMA processes, ARCH/GARCH
processes and solutions of stochastic difference equations (see Doukhan, 1994; Drees, 2000,
2003; Francq et al., 2006; Boussama et al., 2011). The following corollary summarises that
discussion in this important geometrically mixing case.

Corollary 3.2. Assume that Conditions A and B(ii)-(iii) are satisfied, and that β(l) = O(al)
for some a ∈ (0, 1). Assume further that there is δ > 0 such that E|Y |2+δ < ∞. Let
τn = 1− n−τ , for some τ ∈ (0, 1). Then

√
n(1− τn)

(
ξ̃τn
ξτn
− 1

)
d−→ N

(
0,

2γ3

1− 2γ
(1 + σ2(γ,R))

)
,

with the notation of Theorem 3.1.

We turn to the consideration of a different estimator, built on the asymptotic propor-
tionality between high expectiles and their quantile counterparts.

Indirect quantile-based estimator A competitor is obtained by exploiting an asymp-
totic proportionality relationship between high expectiles and quantiles: within our heavy-
tailed model,

ξτ
qτ
→ (γ−1 − 1)−γ as τ ↑ 1. (4)

This was first noted by Bellini et al. (2014). An indirect QB estimator of ξτn can then be
obtained through the asymptotic proportionality relationship (4):

ξ̂τn = (γ̂−1n − 1)−γ̂n q̂τn ,

where q̂τn = Yn−bn(1−τn)c,n is the empirical counterpart of qτn (where Y1,n ≤ · · · ≤ Yn,n are
the ascending order statistics of (Y1, . . . , Yn)) and γ̂n is a consistent estimator of γ.
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Our next main contribution is to give, in our mixing time series framework, two examples
of estimators γ̂n for which the asymptotic distribution of ξ̂τn can rigorously be established.
We start by the Hill estimator (Hill, 1975), which is also the maximum likelihood estimator
in a purely Pareto model and is arguably the most popular semiparametric estimator in the
analysis of heavy tails:

γ̂Hn =
1

bn(1− τn)c

bn(1−τn)c∑
i=1

log

(
Yn−i+1,n

Yn−bn(1−τn)c,n

)
.

The crucial result in this case, which is of interest in its own right, consists in a joint Gaussian
approximation of the processes s 7→ q̂1−(1−τn)s = Yn−bn(1−τn)sc,n and s 7→ log q̂1−(1−τn)s (that
is, the tail empirical quantile process and its logarithm) in our mixing framework. We do so
under the classical second-order condition below, which controls the gap between the right
tail of F and a purely Pareto tail.

Condition C. The function F is second-order regularly varying in a neighbourhood of +∞
with index −1/γ < 0, second-order parameter ρ ≤ 0 and an auxiliary measurable function
A having constant sign and converging to 0 at infinity. Precisely,

∀ y > 0, lim
s→∞

1

A(1/F (s))

[
F (sy)

F (s)
− y−1/γ

]
= y−1/γ

yρ/γ − 1

γρ
,

where the right-hand side should be read as y−1/γ log(y)/γ2 when ρ = 0.

Further interpretation of this assumption can be found in Beirlant et al. (2004) and de
Haan and Ferreira (2006) along with numerous examples of commonly used continuous dis-
tributions satisfying this condition. We are now ready to state our general result on the
process q̂. See also Theorem 2.4.8 in de Haan and Ferreira (2006) for an analogue result in
the independent case, as well as Proposition A.1 in de Haan et al. (2016) and Proposition 1
in Chavez-Demoulin and Guillou (2018) for related statements.

Theorem 3.3. Assume that Conditions A, B and C are satisfied. Assume that τn ↑ 1,
n(1− τn)→∞, rn(1− τn)→ 0, rn log2(n(1− τn))/

√
n(1− τn)→ 0 and

√
n(1− τn)A((1−

τn)−1) = O(1) as n → ∞. Suppose finally that n(1 − τn) is a sequence of integers and pick
s0 > 0. Then there exist appropriate versions of the process s 7→ q̂1−(1−τn)s and a continuous,
centred Gaussian process W having covariance function

r(x, y) := min(x, y) +
∞∑
t=1

Rt(x, y) +Rt(y, x)

such that, for any ε > 0 sufficiently small, we have, uniformly in s ∈ (0, s0],

q̂1−(1−τn)s
qτn

= s−γ

(
1 +

1√
n(1− τn)

γs−1W (s) +
s−ρ − 1

ρ
A((1− τn)−1) + oP

(
s−1/2−ε√
n(1− τn)

))
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and

log
q̂1−(1−τn)s

qτn
= −γ log s+

1√
n(1− τn)

γs−1W (s)+
s−ρ − 1

ρ
A((1−τn)−1)+oP

(
s−1/2−ε√
n(1− τn)

)
.

Note that Condition B is assumed in Theorem 3.3 for the sake of consistency with our
framework; an inspection of the proof shows that Condition B(iii) can be replaced by its ver-
sion with u = u′ = 0. As a consequence of Theorem 3.3, one may determine the asymptotic
behaviour of the pair (γ̂Hn , q̂τn), which we then use in the following corollary to establish the

limiting distribution of the estimator ξ̂τn constructed using γ̂Hn as the tail index estimator.

Corollary 3.4. Assume that Conditions A, B and C are satisfied, with E|Y−| < ∞ and
0 < γ < 1. Let τn ↑ 1 be such that n(1 − τn) → ∞, rn(1 − τn) → 0, rn log2(n(1 −
τn))/

√
n(1− τn)→ 0,

√
n(1− τn)A((1− τn)−1)→ λ1 ∈ R and

√
n(1− τn)q−1τn → λ2 ∈ R as

n→∞. Then, for γ̂n = γ̂Hn in the estimator ξ̂τn, one has√
n(1− τn)

(
ξ̂τn
ξτn
− 1

)
d−→ N

(
m(γ)

1− ρ
λ1 − λ, γ2 vH(γ,R)

)
with

λ :=

(
(γ−1 − 1)−ρ

1− γ − ρ
+

(γ−1 − 1)−ρ − 1

ρ

)
λ1 + γ(γ−1 − 1)γE(Y )λ2

and vH(γ,R) := (1 + [m(γ)]2)

(
1 + 2

∞∑
t=1

Rt(1, 1)

)

+ 2m(γ)

∫ 1

0

∞∑
t=1

[
Rt(s, 1) +Rt(1, s)

s
− 2Rt(1, 1)

]
ds.

Corollary 3.4 is, to the best of our knowledge, the first result on the QB estimator at
intermediate levels under weak dependence assumptions. This result contains Corollary 2
in Daouia et al. (2018), restricted to the i.i.d. setup, in which case the asymptotic variance

of ξ̂τn is γ2(1 + [m(γ)]2), as our result indeed shows by taking Rt ≡ 0 for any t ≥ 1.
There are of course many other ways to estimate the tail index γ. We briefly present

here an alternative estimator based on the use of intermediate expectiles. The asymptotic
proportionality relationship (4) can be equivalently rephrased as F (ξτ )/(1 − τ) → γ−1 − 1
as τ ↑ 1, which implies

γ = lim
τ↑1

(
1 +

F (ξτ )

1− τ

)−1
.

Taking τ = τn → 1, and estimating F (ξτ ) by F̂ n(ξ̃τn), where F̂ n(u) = n−1
∑n

t=1 1{Yt > u}
is the empirical survival function, suggests the Expectile-Based (EB) estimator

γ̂En =

(
1 +

F̂ n(ξ̃τn)

1− τn

)−1
.
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It can be seen that, due to asymptotic variance considerations, this estimator will tend to
be less variable than the Hill estimator (in the i.i.d. case, when γ < 0.38). This may make
it a valuable device in the construction of confidence intervals requiring an estimate of γ.

3.2 At extreme levels

We now consider the important problem of the estimation of extreme expectiles ξτ ′n , whose
level τ ′n → 1 satisfies n(1 − τ ′n) → c ∈ [0,∞) as n → ∞. A typical choice in applications
is τ ′n = 1 − pn for an exceedance probability pn not greater than 1/n, see e.g. Cai et al.
(2015). The idea of the semiparametric approach we present here is to define an estimator
of an extreme expectile through a Weissman-type construction (Weissman, 1978). This is
motivated by a combination of the heavy-tailed assumption with Equation (4), resulting in

ξτ ′n
ξτn
≈
qτ ′n
qτn

=
U((1− τ ′n)−1)

U((1− τn)−1)
≈
(

1− τ ′n
1− τn

)−γ
as n→∞. (5)

This suggests to consider the following class of plug-in estimators of ξτ ′n :

ξ
?

τ ′n
≡ ξ

?

τ ′n
(τn) :=

(
1− τ ′n
1− τn

)−γ̂n
ξτn

where γ̂n and ξτn are consistent estimators of γ and of the intermediate expectile ξτn , respec-

tively. We say that ξ
?

τ ′n
is the extrapolating LAWS estimator when ξτn = ξ̃τn , and we denote

it by ξ̃?τ ′n . We call it the extrapolating QB estimator when ξτn = ξ̂τn , and we denote it by ξ̂?τ ′n .

When γ̂n is chosen to be the Hill estimator γ̂Hn , we have the following asymptotic normality
result.

Theorem 3.5. Assume that E|Y−| < ∞, and that Conditions A, B and C are satisfied
with 0 < γ < 1 and ρ < 0. Let τn, τ

′
n ↑ 1 with n(1 − τn) → ∞, n(1 − τ ′n) → c ∈

[0,∞) and
√
n(1− τn)/ log[(1 − τn)/(1 − τ ′n)] → ∞ as n → ∞. Assume also that rn(1 −

τn) → 0, rn log2(n(1 − τn))/
√
n(1− τn) → 0,

√
n(1− τn)A((1 − τn)−1) → λ1 ∈ R and√

n(1− τn)q−1τn → λ2 ∈ R as n→∞. Suppose finally that

√
n(1− τn)

(
ξτn
ξτn
− 1

)
d−→ ∆.

Then, if γ̂n = γ̂Hn in ξ
?

τ ′n
, one has√

n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ
?

τ ′n

ξτ ′n
− 1

)
d−→ N

(
λ1

1− ρ
, γ2

[
1 + 2

∞∑
t=1

Rt(1, 1)

])
.

Theorem 3.5 makes it possible to construct confidence intervals for our extreme expectile
estimators, and, in view of Theorem 3.1 and Corollary 3.2, applies indifferently to the esti-
mators extrapolated from the direct and indirect intermediate expectile estimators. When
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Rt ≡ 0 for any t ≥ 1, the asymptotic variance is γ2. The quantity 2
∑∞

t=1Rt(1, 1) represents
the proportion of increase of this asymptotic variance, compared to the i.i.d. case, due to
the temporal dependence. An analogue result is of course possible for the EB estimator γ̂En ,
although we shall not pursue this for the sake of brevity.

4 Marginal expected shortfall estimation

When working with actuarial and financial data, it is also important to assess a global form
of risk, for instance by considering several lines of business of an insurance company or
several stock market indices simultaneously. The theory we have developed so far is written
for univariate time series. As such, it cannot account for dependence between multiple risk
variables and therefore cannot be used to produce more insightful global risk estimates.

A prominent way of measuring systemic risk is via the Marginal Expected Shortfall
(MES), defined in the econometric literature by, among others, Acharya et al. (2017), Engle
et al. (2015) and Brownlees and Engle (2017) as the propensity of a financial institution
to be undercapitalised when the financial system as a whole is undercapitalised. These
authors measure the contribution of an individual firm, with loss return X, to systemic risk,
represented by a loss Y in the aggregated return of the market, using the quantile-based
MES

QMESX,τ = E(X|Y > qY,τ ), τ ∈ (0, 1), (6)

where qY,τ is the τth quantile of Y . A systemic crisis typically corresponds to the case when
τ is extremely high and potentially larger than 1−1/n, where n is the sample size of available
historical data. Daouia et al. (2018) study instead the expectile-based MES

XMESX,τ = E(X|Y > ξY,τ ), τ ∈ (0, 1), (7)

with ξY,τ denoting the τth expectile of Y . The estimation of QMESX,τ and XMESX,τ at
extreme levels τ = τn ↑ 1 is considered in Cai et al. (2015) and Daouia et al. (2018), respec-
tively, without recourse to the parametric specification and limited time horizon of Acharya
et al. (2017), or the restrictions of the methods of Engle et al. (2015) and Brownlees and En-
gle (2017) that cannot handle extreme events with 1− τ = O(1/n). The results of Cai et al.
(2015) and Daouia et al. (2018) are, however, limited to i.i.d. data, making inference about
the QMES and XMES difficult in financial settings unless one works with low-frequency
data.

Our goal here is to extend the theory of Section 3 to derive an inferential framework
for these notions of MES at extreme levels in the weakly dependent setting. Suppose
that the data comes from a strictly stationary bivariate time series (Xt, Yt, t ≥ 1); for
instance, Xt and Yt could be respectively the daily loss returns on a specific stock and
on an aggregated market index. For any m ≥ 1, let F1,m = σ(X1, Y1, . . . , Xm, Ym) and
Fm,∞ = σ(Xm, Ym, Xm+1, Ym+1, . . .) denote the past and future σ-fields generated by the
sequence (Xt, Yt). Then, the β−mixing coefficients of the sequence (Xt, Yt) can be defined
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as

∀ l ≥ 1, b(l) = sup
m≥1

E

(
sup

B∈Fm+l,∞

|P(B|F1,m)− P(B)|

)
.

The sequence (Xt, Yt) is then said to be β−mixing if b(l) → 0 as l → ∞. Note that if
(Xt, Yt) is β−mixing in this sense, then (Yt) is also β−mixing in the sense of Section 2. Our
modelling condition below on (Xt, Yt) similarly extends Conditions A and B.

Condition D. For the bivariate time series (Xt, Yt), assume that

(i) The time series (Xt, Yt) is strictly stationary, β−mixing and the one-dimensional
marginal distribution functions FX and FY of (Xt) and (Yt) are both continuous and
heavy-tailed with respective tail indices γX and γY .

(ii) There are sequences of integers (ln) and (rn) such that

ln →∞, rn →∞,
ln
rn
→ 0,

rn
n
→ 0 and

n b(ln)

rn
→ 0 as n→∞.

(iii) For any t ≥ 1, there is a function rt on [0,∞]4 \ {(∞,∞,∞,∞)} such that

lim
s→∞

sP
(
FX(X1) ≤

x1
s
, FX(Xt+1) ≤

xt+1

s
, F Y (Y1) ≤

y1
s
, F Y (Yt+1) ≤

yt+1

s

)
= rt(x1, xt+1, y1, yt+1) for any (x1, xt+1, y1, yt+1) ∈ [0,∞]4 \ {(∞,∞,∞,∞)}.

(iv) There exist D ≥ 0 and a nonnegative sequence ρ(t) satisfying
∑

t≥1 ρ(t) < ∞ such
that we have, if s is large enough,

sP
(
FX(X1) ≤

x1
s
, FX(Xt+1) ≤

xt+1

s
,
u′

s
< F Y (Y1) ≤

u

s
,
v′

s
< F Y (Yt+1) ≤

v

s

)
≤ ρ(t)

√
min(x1, u− u′) min(xt+1, v − v′) +

D

s
min(x1, u− u′) min(xt+1, v − v′),

for any t ≥ 1, all x1, xt+1 ∈ [0,∞], and all u, u′, v, v′ ∈ [0, 1] with u′ < u and v′ < v.

If the bivariate time series (Xt, Yt) satisfies Condition D, then the univariate time series
(Yt) automatically satisfies Conditions A and B (by taking x1 = xt+1 = ∞, the function
Rt ≡ RY,t is obtained as RY,t(y1, yt+1) := rt(∞,∞, y1, yt+1)). In this sense, Condition D is a
sensible yet novel generalisation of our setup of Section 3 to the bivariate time series case.

We now introduce two estimators of the QMES and XMES at an extreme level τ ′n → 1
satisfying n(1− τ ′n)→ c ∈ [0,∞) as n→∞. The estimators are defined by

Q̂MES
?

X,τ ′n
≡ Q̂MES

?

X,τ ′n
(τn) :=

(
1− τ ′n
1− τn

)−γ̂X,n ∑n
t=1Xt1{Xt > 0, Yt > q̂Y,τn}∑n

t=1 1{Yt > q̂Y,τn}

and X̃MES
?

X,τ ′n
≡ X̃MES

?

X,τ ′n
(τn) :=

(
1− τ ′n
1− τn

)−γ̂X,n ∑n
t=1Xt1{Xt > 0, Yt > ξ̃Y,τn}∑n

t=1 1{Yt > ξ̃Y,τn}
.

12



The construction of Q̂MES
?

X,τ ′n
and X̃MES

?

X,τ ′n
is based on the extrapolation relationships

QMESX,τ ′n
QMESX,τn

≈ UX((1− τ ′n)−1)

UX((1− τn)−1)
and

XMESX,τ ′n
XMESX,τn

≈
UX(1/F Y (ξY,τ ′n))

UX(1/F Y (ξY,τn))

and the positive extremal dependence between X and Y . The QMES and XMES of (6)
and (7) can actually be embedded in a more general MES framework. Define

MESX,τ = E(X|Y > zY,τ ), τ ∈ (0, 1),

where zY,τ is a risk measure on Y such that F (zY,τ )/(1− τ)→ z = z(γY ) ∈ (0,∞) as τ ↑ 1.

Assuming that a
√
n(1− τn)−relatively consistent estimator zY,τn of zY,τn is available (at

the intermediate level τn), then one may define an estimator of MESX,τ ′n = E(X|Y > zY,τ ′n)
by

MES
?

X,τ ′n
≡ MES

?

X,τ ′n
(τn) :=

(
1− τ ′n
1− τn

)−γ̂X,n ∑n
t=1Xt1{Xt > 0, Yt > zY,τn}∑n

t=1 1{Yt > zY,τn}
.

This does not seem to have been appreciated in earlier literature. To quantify the bias
incurred in the construction of this estimator, the following bias condition is key.

Condition E. Assume that Conditions D(i) and D(iii) hold, and that there exist β > γX
and κ < 0 such that the function R(X,Y ) defined by R(X,Y )(x, y) := r1(x,∞, y,∞) satisfies
R(X,Y )(1, 1) > 0 and

sup
x∈(0,∞)

∣∣∣∣∣sP(FX(X1) ≤ x/s, F Y (Y1) ≤ y/s)−R(X,Y )(x, y)

min(xβ, 1)

∣∣∣∣∣ = O(sκ) as s→∞

locally uniformly in y ∈ (0,∞).

This is another version, compatible with our assumptions, of condition (a) in Cai et
al. (2015) and condition J C2(R, β, κ) in Daouia et al. (2018), under which extrapolating
estimators of QMESX,τ ′n and XMESX,τ ′n converge to a Gaussian distribution in the i.i.d. data
setting. The following generic theorem gives high-level conditions to obtain the asymptotic
distribution of MES

?

X,τ ′n
.

Theorem 4.1. Suppose that X := X1 and Y := Y1 satisfy Condition C with respective
parameters (γX , ρX , AX) and (γY , ρY , AY ), and that Conditions D and E hold. Suppose also
that ρX < 0, and that there is δ > 0 such that 0 < γX < 1/(2 + δ). Assume further that

(i) τn, τ ′n ↑ 1, with n(1− τn)→∞, n(1− τ ′n)→ c <∞ and
√
n(1− τn)/ log[(1− τn)/(1−

τ ′n)]→∞ as n→∞;

(ii) rn(1− τn)→ 0 and rn(rn/
√
n(1− τn))δ → 0 as n→∞;

(iii) There is ε > 0 such that
√
n(1− τn)|AX((1 − τn)−1)|γX/(1−ρX)−ε → 0, and n(1 −

τn)1−2κ → 0 as n→∞;
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(iv) One has E|X−|1/γX <∞ and n(1− τn)× (1− τ ′n)−2κ(1−γX) → 0 as n→∞;

(v) The following bias conditions hold:

√
n(1− τn)

(
F Y (zY,τn)

1− τn
− z
)

= o(1) and
√
n(1− τn)

(
F Y (zY,τ ′n)

1− τ ′n
− z

)
= o(1);

(vi) One has

√
n(1− τn)

(
zY,τn
zY,τn

− 1

)
= OP(1) and

√
n(1− τn)(γ̂X,n − γX)

d−→ Γ,

where Γ is a nondegenerate random variable.

If in addition
√
n(1− τn)AY ((1− τn)−1)→ 0 as n→∞, then√

n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
MES

?

X,τ ′n

MESX,τ ′n
− 1

)
d−→ Γ.

[Condition (iv) above is unnecessary if X > 0 with probability 1.]

Condition (i) is already standard in the i.i.d. case and is assumed in Corollary 3.2, for
instance. Condition (ii) is used to deal with serial dependence, as in Theorem 3.1. Con-
dition (iii) is a slightly weaker assumption than condition (d) of Cai et al. (2015), while
Condition (iv) is taken from Theorem 2 therein. Condition (v) is a bias condition used to
control the error made in the use of the extrapolation relationship for the construction of
MES

?

X,τ ′n
, while Condition (vi) ensures that all estimators appearing in the construction of

this estimator converge at the appropriate rate.
Using Theorem 4.1, we obtain the following three important corollaries on our QMES

and XMES estimators. We state first a corollary on QMES estimation at extreme levels.

Corollary 4.2. Work under the conditions of Theorem 4.1 (apart from (v) and (vi)), assume
also that rn log2(n(1 − τn))/

√
n(1− τn) → 0 as n → ∞ and let γ̂X,n = γ̂HX,n be the Hill

estimator of X. Then, letting RX,t(x1, xt+1) := rt(x1, xt+1,∞,∞),√
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
Q̂MES

?

X,τ ′n

QMESX,τ ′n
− 1

)
d−→ N

(
0, γ2X

[
1 + 2

∞∑
t=1

RX,t(1, 1)

])
.

Under further assumptions that ensure the asymptotic normality of the LAWS extreme
expectile estimator, we also obtain a corollary on the asymptotic normality of the LAWS-

based extreme expectile estimator X̃MES
?

X,τ ′n
.
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Corollary 4.3. Work under the conditions of Theorem 4.1 (apart from (v) and (vi)) and
let γ̂X,n = γ̂HX,n be the Hill estimator of X. Suppose further that, with the notation of

Theorem 4.1, E|Y−|2+δ < ∞ and 0 < γY < 1/(2 + δ), that
∑

l≥1[b(l)]
δ/(2+δ) < ∞, and that

rn log2(n(1 − τn))/
√
n(1− τn) → 0 and

√
n(1− τn)q−1Y,τn → 0 as n → ∞. Then, letting

RX,t(x1, xt+1) := rt(x1, xt+1,∞,∞),√
n(1− τn)

log[(1− τn)/(1− τ ′n)]

X̃MES
?

X,τ ′n

XMESX,τ ′n
− 1

 d−→ N

(
0, γ2X

[
1 + 2

∞∑
t=1

RX,t(1, 1)

])
.

We finally have the following asymptotic normality result on the indirect, QB estimator
of the XMES defined as

X̂MES
?

X,τ ′n
:= (γ̂−1Y,n − 1)−γ̂X,nQ̂MES

?

X,τ ′n

where γ̂Y,n is a
√
n(1− τn)−consistent estimator of γY .

Corollary 4.4. Work under the conditions of Theorem 4.1 (apart from (v) and (vi)) and
let γ̂X,n = γ̂HX,n be the Hill estimator of X. Suppose further that, with the notation of

Theorem 4.1, E|Y−| <∞ and 0 < γY < 1, and that rn log2(n(1− τn))/
√
n(1− τn)→ 0 and√

n(1− τn)q−1Y,τn → 0 as n→∞. Assume finally that
√
n(1− τn)(γ̂Y,n−γY ) = OP(1). Then,

letting RX,t(x1, xt+1) := rt(x1, xt+1,∞,∞),√
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
X̂MES

?

X,τ ′n

XMESX,τ ′n
− 1

)
d−→ N

(
0, γ2X

[
1 + 2

∞∑
t=1

RX,t(1, 1)

])
.

These results extend Theorems 1 and 2 of Cai et al. (2015) and Theorems 4 and 5
of Daouia et al. (2018) to our time series context. Like Corollary 3.2, they provide the
appropriate theory for the construction of asymptotic confidence intervals about extreme
MES, which take into account the serial dependence of some of the typical time series contexts
in financial applications.

5 Asymptotic confidence interval construction

On the basis of the theory developed in Sections 3 and 4, we propose here asymptotic
confidence interval estimators for inferring extreme expectiles and XMES.

First, we recall that with the notation of Section 3, an estimator of the expectile of Y1 at
the extreme level τ ′n is given by

ξ
?

τ ′n
=

(
1− τ ′n
1− τn

)−γ̂Hn
ξτn , (8)

where γ̂Hn is the Hill estimator of Y1 and ξτn is an estimator of the expectile of Y1 at the
intermediate level τn. Second, for the asymptotic variance of the estimator in (8), deduced

15



in Theorem 3.5 and denoted hereafter by w(γ,R), we propose the following estimator. By
Proposition 2.1 in Drees (2003) we have, when n(1− τn)→∞, rn →∞ and rn(1− τn)→ 0,

1

rn(1− τn)
Var

(
rn∑
i=1

1{F (Yi) > τn}

)
→ 1 + 2

∞∑
t=1

Rt(1, 1) as n→∞.

We then adopt a “big-block/small-block” technique where we split the data into big blocks

of size rn separated by small blocks of size ln, and we define Zj =
∑rn+j`n

t=1+j`n
1{F̂n(Yt) > τn}

for j = 0, 1, . . . ,mn − 1, where mn = bn/`nc and `n = rn + ln, and F̂n is the empiri-
cal distribution function of all the observations. We compute the sample variance Σn of
the sequence (Z0, . . . , Zmn−1) and obtain an empirical estimator of the asymptotic variance
w(γ,R) := γ2 [1 + 2

∑∞
t=1Rt(1, 1)] as

ŵn(γ,R) =
(γ̂Hn )2

rn(1− τn)
Σn. (9)

Next, note that Theorem 3.5 is equivalent to its (in practice more accurate) log-scale version√
n(1− τn)

log[(1− τn)/(1− τ ′n)]
log

ξ
?

τ ′n

ξτ ′n

d−→ N
(

λ1
1− ρ

, w(γ,R)

)
as n→∞.

Hence, we propose the following interval estimatorξ?τ ′n (1− τn
1− τ ′n

)zα/2√ŵn(γ,R)/[n(1−τn)]

, ξ
?

τ ′n

(
1− τn
1− τ ′n

)z1−α/2√ŵn(γ,R)/[n(1−τn)]
 , (10)

where ξ
?

τ ′n
is the estimator in (8), ŵn(γ,R) is the estimator in (9), zα/2 and z1−α/2 are the

(α/2)th and (1− α/2)th quantiles of the standard normal distribution, with α ∈ (0, 1). For
simplicity we have ignored the bias term λ1/(1−ρ). We call the estimator in (10) the LAWS-

D-based estimator when ξτn = ξ̃τn in (8), and QB-D-based estimator when ξτn = ξ̂τn . Finally,
and for comparison purposes, the asymptotic variance in the i.i.d. case is γ2, estimated by
(γ̂Hn )2. In this case, an interval estimator is simplyξ?τ ′n (1− τn

1− τ ′n

)zα/2γ̂Hn /√n(1−τn)

, ξ
?

τ ′n

(
1− τn
1− τ ′n

)z1−α/2γ̂Hn /√n(1−τn)
 (11)

and we call it the LAWS-IID-based estimator or QB-IID-based estimator depending on
whether ξτn = ξ̃τn or ξτn = ξ̂τn .

A similar construction is of course feasible for XMES and is entirely similar, by sub-
stituting Xt for Yt in both the Zj and the Hill estimator, and by replacing ξ

?

τ ′n
by either

X̃MES
?

X,τ ′n
or X̂MES

?

X,τ ′n
, giving rise to respectively LAWS-D-based confidence intervals and

QB-D-based confidence intervals. Their simpler i.i.d. counterparts are likewise called LAWS-
IID-based confidence intervals and QB-IID-based confidence intervals.
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6 Extreme expectile level selection

A crucial practical question in actuarial and financial risk management is the choice of
the level of prudentiality of the risk measure under consideration. When working with
quantile-based risk measures, one usually chooses extreme tail probabilities αn ↑ 1 with
n(1 − αn) → c, a finite constant, as n → ∞, to allow for more prudent risk management.
When expectiles are of interest, a reasonable idea is to, with the notation of Section 3, select
τ ′n so that ξτ ′n ≡ qαn for a given αn. This was suggested by Bellini and Di Bernardino (2017)
for normally distributed Y . For heavy-tailed and i.i.d. data, Daouia et al. (2018) instead
suggested a nonparametric estimator of the level τ ′n = τ ′n(αn) that satisfies ξτ ′n ≡ qαn . They
find that this extreme expectile level satisfies (1− τ ′n(αn))/(1− αn)→ γ/(1− γ) as n→∞.
If γ̂n is a consistent estimator of γ, one can then define a natural estimator of τ ′n(αn) as

τ̂ ′n(αn) = 1− (1− αn)
γ̂n

1− γ̂n
.

By substituting this estimated value in place of τ ′n in the extrapolating LAWS estimator ξ̃?τ ′n
and in the extrapolating QB estimator ξ̂?τ ′n , we obtain composite estimators of ξτ ′n(αn) ≡ qαn .
It is interesting to note that if one uses the exact same estimator γ̂n in the extrapolation
step and the calculation of τ̂ ′n(αn), the composite extrapolating LAWS estimator is

ξ̃?τ̂ ′n(αn) =

(
1− τ̂ ′n(αn)

1− τn

)−γ̂n
ξ̃τn = (γ̂−1n − 1)γ̂n ξ̃?αn .

In other words, rewriting Equation (4) as qαn ≡ ξτ ′n(αn) ≈ (γ−1 − 1)γξαn , the composite
extrapolating LAWS estimator can be constructed by plugging in an estimator γ̂n and the
extrapolating LAWS estimator at level αn in the right-hand side of this approximation. This
had not, to the best of our knowledge, been noted in the literature.

The available theory of the composite LAWS and QB estimators in Daouia et al. (2018)
is limited to i.i.d. data. We give below a result showing their asymptotic normality in our
dependent setting, when γ̂n is the Hill estimator.

Theorem 6.1. Suppose the conditions of Theorem 3.5 hold with αn in place of τ ′n. Then, if

γ̂n = γ̂Hn and ξ
?

is either ξ̂? or ξ̃?, we have√
n(1− τn)

log[(1− τn)/(1− αn)]

(
ξ
?

τ̂ ′n(αn)

qαn
− 1

)
d−→ N

(
λ1

1− ρ
, γ2

[
1 + 2

∞∑
t=1

Rt(1, 1)

])
.

An analogue construction is of course possible in the bivariate case and gives rise to

composite estimators X̃MES
?

X,τ̂ ′n(αn)
and X̂MES

?

X,τ̂ ′n(αn)
of QMESX,αn . The following result

provides their asymptotic normality.

Theorem 6.2. Suppose the conditions of Corollary 4.3 (resp. Corollary 4.4) hold with αn

in place of τ ′n. Then, if γ̂X,n = γ̂HX,n and XMES
?

= X̃MES
?

(resp. XMES
?

= X̂MES
?
), then√

n(1− τn)

log[(1− τn)/(1− αn)]

(
XMES

?

X,τ̂ ′n(αn)

QMESX,αn
− 1

)
d−→ N

(
0, γ2X

[
1 + 2

∞∑
t=1

RX,t(1, 1)

])
.
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7 Simulation experiments

7.1 Extreme expectile estimation

Here we investigate the finite-sample performance of the point and interval expectile estima-
tors at extreme levels. We consider the following models:

(a) The AR(1) model Yt+1 = 0.8Yt + εt+1, where the innovations εt are i.i.d. and have a
common Student-t distribution with ν = 3 degrees of freedom.

(b) The ARMA(1,1) model Yt+1 = 0.95Yt + εt+1 + 0.9 εt, where the innovations εt are i.i.d.
and have a common symmetric Pareto distribution with shape parameter ζ = 3.

(c) The ARCH(1) model Yt+1 = σt+1εt+1, where σ2
t+1 = 0.4+0.6Y 2

t , and (εt) is a sequence
of i.i.d. standard Gaussian innovations.

(d) The GARCH(1,1) model Yt+1 = σt+1εt+1, where σ2
t+1 = 0.1 + 0.4Y 2

t + 0.4σ2
t , and (εt)

is a sequence of i.i.d. standard Gaussian innovations.

Strong linear dependence is present in models (a) and (b), while quadratic serial dependence
is present in models (c) and (d). Recall that for standard linear time series with heavy-tailed
innovations having balanced tails, which is the case for models (a) and (b), the tail index
of the time series is the tail index of the innovations, so that the tail index of Y is 1/3 in
models (a) and (b). In models (c) and (d), the marginal distribution is heavy-tailed, and
the value of the tail index can be calculated numerically using e.g. Theorem 2.1 in Mikosch
and Stărică (2000). It is found to be 0.262 and 0.239 in models (c) and (d) respectively.

For each model, we simulate 104 samples of size n = 2500 and consider the extreme level
τ ′n = 0.9995 ≈ 1 − 1/n. On each simulated dataset, we calculate the extrapolating LAWS
and QB estimators using the intermediate level τn = 1− k/n for k ∈ {6, 8, . . . , 700}. Then,
we estimate an asymptotic confidence interval using the LAWS-D-based interval estimator
in (10), with 95% nominal coverage probability. The big- and small-block sequences are
chosen as rn = blog2(n)c and ln = bC log nc where C is selected such that ln is greater than
or equal to a lag after which the value of the sample autocorrelation is small, e.g. smaller
than 0.1. Checking if it contains the true expectile value allows us to compute a Monte Carlo
approximation of the coverage probability. We do the same exercise for the QB-D-based,
QB-IID-based and LAWS-IID-based procedures. Results are reported in Figure 1 (results
at level τ ′n = 0.9999 > 1− 1/n are similar).

It is readily seen that our proposed confidence intervals, derived from the theory of serial
dependent data, behave far better in terms of coverage than the previously available i.i.d.-
based intervals that are overall far too permissive. Even in the difficult ARCH and GARCH
cases, our intervals represent significant improvement, by bringing down the non-coverage
probability by about a half to around 15% in the ARCH cases, and by getting very close to
the nominal level when k is in a neighbourhood of approximatively 60.
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7.2 Extreme MES estimation

We consider the finite-sample performance of the point and interval MES estimators at
extreme levels. We work with four models derived from models (a)-(d) in Section 7.1.

(e) Xt+1 = 0.8Xt+εX,t+1 and Yt+1 = 0.8Yt+εY,t+1 where the pairs of innovations (εX,t, εY,t)
are i.i.d. For any t, the innovation εX,t is distributed as Z1{Z > 0} −

√
−Z1{Z < 0},

where Z has a Student-t distribution with 3 degrees of freedom, and εY,t is itself
Student-t distributed with 3 degrees of freedom. The dependence structure of the pair
(εX,t, εY,t) is given by a Student-t copula with correlation parameter ρ = 0.8 and 3
degrees of freedom.

(f) Xt+1 = 0.95Xt + εX,t+1 + 0.9 εX,t, and Yt+1 = 0.95Yt + εY,t+1 + 0.9 εY,t, where the
pairs of innovations (εX,t, εY,t) are i.i.d. For any t, the innovation εX,t is distributed as
Z1{Z > 0}−

√
−Z1{Z < 0}, where Z has a symmetric Pareto distribution with shape

parameter ζ = 3, and εY,t is itself symmetric Pareto distributed with shape parameter
ζ = 3. The dependence structure of the pair (εX,t, εY,t) is given by a Gumbel copula
with parameter θ = 2.

(g) Xt+1 = σX,t+1εX,t+1, where σ2
X,t+1 = 0.4 + 0.6X2

t , and Yt+1 = σY,t+1εY,t+1, where
σ2
Y,t+1 = 0.4 + 0.6Y 2

t , where the pairs of innovations (εX,t, εY,t) are i.i.d. For any t,
the innovation εX,t has density h(z) = 0.51{−1 < z ≤ 0} + 0.5 e−z1{z > 0} and εY,t
is standard Gaussian. The dependence structure of the pair (εX,t, εY,t) is given by a
Student-t copula with correlation parameter ρ = 0.8 and 3 degrees of freedom.

(h) Xt+1 = σX,t+1εX,t+1, where σ2
X,t+1 = 0.1 + 0.4X2

t + 0.4σ2
X,t, and Yt+1 = σY,t+1εY,t+1,

where σ2
Y,t+1 = 0.1+0.4Y 2

t +0.4σ2
Y,t, where the pairs of innovations (εX,t, εY,t) are i.i.d.

For any t, the innovation εX,t has density h(z) = 0.51{−1 < z ≤ 0}+ 0.5 e−z1{z > 0}
and εY,t is standard Gaussian. The dependence structure of the pair (εX,t, εY,t) is given
by a Gumbel copula with parameter θ = 5.

The Yt components of models (e), (f), (g) and (h) are distributed according to models (a),
(b), (c) and (d) respectively, so that the models considered here extend those of Section 7.1.

We simulate 104 samples of size n = 2500 for each model. Differently to Section 7.1, we
consider the problem of estimating QMES(αn) at levels αn such that τ ′n(αn) = 0.9995 and

0.9999, using our composite estimators X̃MES
?

X,τ̂ ′n(αn)
and X̂MES

?

X,τ̂ ′n(αn)
. In each model,

the level αn is first found theoretically using the asymptotic proportionality relationship
(1−αn) ≈ (γ−1Y −1)(1−τ ′n(αn)) of Section 6. The true value of QMES(αn) ≡ XMES(τ ′n(αn))
is determined by intensive Monte-Carlo simulation, with the true value of ξY,τ ′n(αn) ≡ qY,αn
taken from our earlier investigations in Section 7.1. Estimating a QMES at this level αn
allows us to get an idea of the performance of our composite QMES estimation method,
in a problem comparable in difficulty to that of Section 7.1 (as far as the Y component is
concerned). The construction of our confidence intervals follows the procedure described in

Section 7.1, applied to the Xt component. In the QB composite estimator X̂MES
?

X,τ̂ ′n(αn)
,

the Hill estimators of γX and γY are used, at the same level k for the sake of simplicity.
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Results are reported in Figure 1 at level τ ′n(αn) = 0.9995 (results at level τ ′n(αn) = 0.9999
are broadly similar). We see again with these results that our proposed confidence intervals
are overall satisfactory, especially compared to the IID-based intervals, whose non-coverage
probability is high in each case. Even in the substantially more difficult ARCH and GARCH
cases, our intervals represent significant improvement compared to the i.i.d. method. We
have also observed during our simulation experiments that our estimation procedure appears
to be much more accurate than that of Daouia et al. (2018), whose bias and MSE were
disturbingly high (see Figures 5 and 6 therein).

8 Real data analysis

Stock market index data. We consider here daily negative log-returns of the S&P
500 (GSPC) and Dow Jones Industrial Average (DJIA) indices from January 29, 1985 to
December 12, 2019 (available from Yahoo! Finance). These samples of size n = 8,785 are
plotted on the rightmost panels of Figure 2. They show evidence of the stylised facts such as
heteroscedasticity and fat-tailedness found in financial time series (Embrechts et al., 1997).
Throughout this section, we use the Hill estimator in our estimates and confidence intervals.

In the literature, the analysis of tail risk of loss returns is typically based on VaR at
the 99.9% level (see e.g. Drees, 2003; de Haan et al., 2016) or on using a quantile at level
αn = 1− pn where pn is not larger than 1/n. Bellini and Di Bernardino (2017) showed that
expectile-based forecasts provide capital requirements similar to those obtained with VaR as
long as the extreme level τ ′n of the expectile is appropriately selected, as a larger value than
the level of the pre-specified extreme VaR. For this selection, we use the method of Section 6
which, contrary to the method of Bellini and Di Bernardino (2017), does not depend on a
specific parametric model. Precisely, here we fix pn = 1/n and αn = 1 − pn = 0.9998862,
and according to Section 6 we estimate first τ ′n(αn) = τ ′n(0.9998862). Then we compute
an estimate of the expectile at the extreme level τ̂ ′n(αn) using the composite extrapolating

LAWS estimator ξ̃?τ ′n and the composite extrapolating QB estimator ξ̂?τ ′n for τ ′n = τ̂ ′n(αn). This
accordingly produces estimators of ξτ ′n(αn), which is also the quantile-VaR qαn = q1−1/n. Let
us reiterate here that our focus is the estimation of an extreme marginal expectile, rather
than the completely different problem of dynamically predicting extreme expectiles.

The first panels of Figure 2 display τ̂ ′n(αn) against k for k ≤ 700, where as before τn =
1 − k/n. After large fluctuations, the estimates stabilise around a (close for both series)
common value, and then drift away due to bias from the centre of the distribution. The choice
k = 200 seems to be a reasonable compromise. We further confirm this choice by calculating
the composite extrapolating LAWS and composite extrapolating QB estimators, and the
corresponding LAWS-D and QB-D confidence intervals of Section 5 at level τ ′n = τ̂ ′n(αn).
The choice k = 200 once again seems sensible and is therefore adopted. It can be seen
that our confidence intervals taking the dependence into account are indeed wider than the
i.i.d.-based estimators, as a way to reflect better the uncertainty about the estimation. With
k = 200, we find τ̂ ′n(αn) ≈ 0.9999423 for the S&P 500 data, and 0.9999402 for the Dow Jones
data. These levels are indeed larger than the original αn = 1− pn = 0.9998862.
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We compare our extrapolating LAWS and QB methods with the traditional Weissman
extreme quantile estimator at level αn. This is

q̂?αn =

(
1− αn
1− τn

)−γ̂Hn
q̂τn =

(
1− αn
1− τn

)−γ̂Hn
Xn−bn(1−τn)c,n.

Confidence intervals can also be constructed for the extreme quantile qαn using this estimator:
here we use a method developed by Drees (2003) which, contrary to ours, does not rely on
a big-block/small-block argument, see Formula (33) therein. The estimates are reported
in Table 1 and can be visualised in the rightmost panel of Figure 2. Quite reassuringly
the methods give point estimates that are similar: note that the composite extrapolating
QB point estimator is indeed nothing but q̂?αn . However, on the third and fourth panels of
Figure 2, it can be seen that the confidence intervals constructed on the basis of q̂?αn and the
method of Drees (2003) are in general much more volatile than the LAWS-D-based interval;
moreover, in a neighbourhood of our selected value of k, they are very close to the intervals
based on i.i.d. theory. For our selected k = 200, according to the fourth panels of Figure 2,
they do not contain the maximum observation in the sample, even though one is estimating
qαn = q1−1/n, whereas the LAWS-D-based interval does contain this maximum value.

Financial returns of individual banks. We carry out an analysis of the financial
returns of Goldman Sachs and Morgan Stanley, in the context of systemic risk. We consider
the daily negative log-returns (Xt) on their equity prices from July 3, 2000, to June 30,
2010, along with, for the same time period, daily loss returns (Yt) of a value-weighted market
index aggregating three markets: the New York Stock Exchange, American Express Stock
Exchange and the National Association of Securities Dealers Automated Quotation system.
These samples of data, of size n = 2,513, were already considered in Cai et al. (2015)
and Daouia et al. (2018). Choosing αn = 1− 1/n = 0.9996021, we display τ̂ ′n(αn) against k,
as well as the composite extrapolating LAWS and composite extrapolating QB estimators
of QMESX,αn , and the corresponding LAWS-D and QB-D confidence intervals at level τ ′n =
τ̂ ′n(αn), on the first three panels of Figure 3. The choice k = 150 seems reasonable here and
we then find τ̂ ′n(αn) ≈ 0.9997239 for the Goldman Sachs data, and 0.9996626 for the Morgan
Stanley data. We compare our estimates to the Weissman-type extreme QMES estimator

Q̂MES
∗
X,αn . All estimates are reported in Table 2 and the LAWS estimates can be visualised

in the rightmost panels of Figure 3. Like on our stock market index data, it can be seen
that the confidence intervals constructed with the method of Drees (2003) are more volatile
than ours. In addition, for our selected value of k = n(1 − τn), they give similar results on
the Goldman Sachs data, and somewhat shorter confidence intervals on the Morgan Stanley
data.
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Table 1: Estimates for the negative daily log-returns of the S&P 500 and Dow Jones indices,
obtained with k = 200. Here αn = 1− 1/n = 0.9998862.

Estimator S&P 500 Dow Jones

γ̂n = γ̂Hn 0.3364 [0.2198, 0.4530] 0.3442 [0.2219, 0.4665]

ξ̃?τ̂ ′n(αn) 0.1358 [0.0676, 0.2727] 0.1360 [0.0657, 0.2813]

ξ̂?τ̂ ′n(αn) 0.1398 [0.0696, 0.2807] 0.1394 [0.0674, 0.2884]

q̂?αn 0.1398 [0.1124, 0.1739] 0.1394 [0.1025, 0.1896]

Table 2: Estimates for the loss returns of Goldman Sachs and Morgan Stanley, obtained
with k = 150. Here αn = 1− 1/n = 0.9996021.

Estimator Goldman Sachs Morgan Stanley

γ̂X,n = γ̂HX,n 0.4096 [0.2815, 0.5377] 0.4589 [0.2966, 0.6212]

X̃MES
?

X,τ̂ ′n(αn)
0.3419 [0.1705, 0.6853] 0.5901 [0.2445, 1.4238]

X̂MES
?

X,τ̂ ′n(αn)
0.3448 [0.1720, 0.6912] 0.6032 [0.2500, 1.4554]

Q̂MES
?

X,αn 0.3448 [0.2158, 0.5509] 0.6032 [0.2944, 1.2359]
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