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Extreme expectile estimation for heavy-tailed time series

Simone A. Padoan∗ and Gilles Stupfler†

April 14, 2020

Abstract

Expectiles define a least squares analogue of quantiles. They have lately received
substantial attention in actuarial and financial risk management contexts. Unlike quan-
tiles, expectiles define coherent risk measures and are determined by tail expectations
rather than tail probabilities; unlike the popular Expected Shortfall, they define elic-
itable risk measures. This has motivated the study of the behaviour and estimation
of extreme expectiles in some of the recent statistical literature. The case of station-
ary but weakly dependent observations has, however, been left largely untouched, even
though correctly accounting for the uncertainty present in typical financial applications
requires the consideration of dependent data. We investigate here the theoretical and
practical behaviour of two classes of extreme expectile estimators in a strictly station-
ary β−mixing context, containing the classes of ARMA, ARCH and GARCH models
with heavy-tailed innovations that are of interest in financial applications. We put a
particular emphasis on the construction of asymptotic confidence intervals adapted to
the dependence framework, whose performance we contrast with that of the naive in-
tervals obtained from the theory of independent and identically distributed data. The
methods are showcased in a numerical simulation study and on real financial data.

Keywords: Asymmetric least squares, Expectiles, Extrapolation, Extremal depen-
dence, Heavy-tailed distribution, Mixing, Tail copula, Weak dependence.

1 Introduction

A major problem in econometrics and statistical finance is to quantify the risk associated to
a real-valued profit-loss variable X. The class of quantiles, which plays an essential role in
extreme value theory, is one of the basic tools in risk management. Arguably the best-known
quantile-based risk measure in banking, and the financial sector generally, is Value-at-Risk
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(VaR) at a confidence level τ ∈ (0, 1), defined as the negative τth quantile −q(τ) of the real-
valued profit-loss distribution, with τ being close to zero representing the situations carrying
the greatest risk. The quantile can be obtained by minimising asymmetrically weighted
mean absolute deviations (Koenker and Bassett, 1978):

qτ ∈ arg min
q∈R

E(ρτ (X − q)− ρτ (X)), (1)

where ρτ (x) = |τ − 1{x ≤ 0}||x| is the so-called quantile check function and 1{·} the
indicator function. This property is important in the context of evaluation and validation
of VaR forecasts, since it corresponds to the existence of a natural backtesting methodology.
The latter is formalised in Gneiting (2011), who introduced the general notion of elicitability
for a functional defined through the minimisation of a suitable loss function. The relevance
of this elicitability property for the backtesting problem has been extensively discussed,
including recently in Bellini and Di Bernardino (2017). The VaR, however, suffers from
certain serious drawbacks. It does not, in general, define a coherent risk measure in the sense
of the influential paper by Artzner et al. (1999), because it is not necessarily subadditive.
This means that it does not abide by the intuitive diversification principle. From the point
of view of extreme value theory, quantiles are often criticised for missing out on important
information about the tail of the underlying distribution, since they only depend on the
frequency of tail losses and not on their actual values. Unlike the VaR, the most popular
quantile-based risk measure, called Expected Shortfall (ES, or Conditional VaR), is coherent,
takes into account the actual values of the risk variable on the tail event, but is not elicitable.

An alternative risk measure which addresses these issues is given by the concept of ex-
pectiles, introduced by Newey and Powell (1987). Expectiles are found by substituting the
absolute deviations in (1) with squared deviations:

ξτ = arg min
θ∈R

E(ητ (X − θ)− ητ (X)), (2)

where ητ (x) = |τ − 1{x ≤ 0}|x2. The special case τ = 0.5 leads to the expectation of X as
its best L2−predictor. For each τ ∈ (0, 1), the τth expectile exists and is uniquely defined by
its convex problem, and satisfies τ = E[|X−ξτ |1{X ≤ ξτ}]/E|X−ξτ |. This interpretation of
expectiles is in fact intimately connected to the notion of gain-loss ratio, which is a popular
performance measure in portfolio management and is well-known in the literature on no good
deal valuation in incomplete markets (see Bellini and Di Bernardino, 2017, and references
therein). More generally, it implies that the τth expectile is determined by tail expectations
rather than tail probabilities and as such, unlike the VaR, it depends on tail realisations
of the loss variable and their probability. This motivated Kuan et al. (2009) to introduce
a notion of expectile-based Value-at-Risk as −ξ(τ) for real-valued profit-loss distributions.
From an axiomatic viewpoint, the advantages of the expectile include that it induces a law-
invariant, coherent and elicitable risk measure, see Bellini et al. (2014) and Ziegel (2016). It
is actually the only risk measure, apart from the simple expectation, satisfying these three
properties. Further results, both theoretical and numerical, obtained by Ehm et al. (2016)
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and Bellini and Di Bernardino (2017) among others, indicate that expectiles define sensible
alternatives to the standard VaR and ES.

On the statistical side, expectile estimation has recently regained growing interest in
the context of nonparametric, semiparametric and more complex models, see for exam-
ple Sobotka and Kneib (2012) and the references therein, as well as the two recent con-
tributions by Holzmann and Klar (2016) and Krätschmer and Zähle (2017) for advanced
theoretical results. However, a theory for extreme expectiles is still in full development.
The probabilistic aspects of extreme expectiles, with τ ↓ 0 or τ ↑ 1, have been examined
by Bellini et al. (2014) and Bellini and Di Bernardino (2017). Inference on extreme expectiles
has been considered even more recently in Daouia et al. (2018, 2019, 2020), where the case
τ = τn → 1, as the available sample size n goes to infinity, is considered. These estimation
methods are studied in the context of heavy-tailed distributions, which are ubiquitous in
the modelling of extreme actuarial and financial losses, as argued on p.9 of Embrechts et al.
(1997), as well as in Chavez-Demoulin et al. (2014) and the references therein.

This literature on extreme expectile estimation has so far mostly been restricted to in-
dependent and identically distributed (i.i.d.) data. The exception is Daouia et al. (2019),
which considers data coming from a strictly stationary φ−mixing time series. This exten-
sion is, in fact, only of minor interest in practice because standard processes in financial and
econometric modelling, such as ARCH and GARCH processes, are not in general φ−mixing.
This is a serious gap in the current theory, to be addressed if expectiles are to be used widely
in financial risk management. The derivation of the asymptotic distribution of extreme
expectile estimators, in a much more general stationary but weakly dependent context, is
therefore of great interest, as it would allow the construction of asymptotic confidence in-
tervals that take the weak dependence between observations into account. Note that this
problem is different from the prediction of extreme expectiles in dynamic time series models,
where the interest is in estimating conditional extreme expectile levels for tomorrow with
our knowledge of today, with a particular view on accommodating specific features of time
series data such as heteroscedasticity and volatility clustering. From a purely quantile-based
perspective, this other problem is tackled in, for instance, McNeil and Frey (2000) using a
combination of filtering techniques and standard extreme value theory.

This paper focuses on the rigorous study of estimation techniques for extreme expectiles in
the stationary and weakly dependent context, by working on two classes of extreme expectile
estimators whose convergence is mathematically shown within a framework of β−mixing
and heavy-tailed observations. Given a strictly stationary time series (Xt) having a one-
dimensional marginal heavy-tailed distribution, whose serial dependence satisfies suitable
general conditions, we begin by estimating an intermediate tail expectile of order τn → 1
such that n(1−τn)→∞ as n→∞. The resulting estimates are then extrapolated to proper
extreme levels τ ′n converging to 1 at an arbitrarily fast rate in the sense that n(1− τ ′n)→ c
as n → ∞, for some nonnegative constant c. Two estimation methods are considered: the
Least Asymmetrically Weighted Squares (LAWS) estimator, defined as the direct empirical
counterpart of the expectile through a minimisation formulation, and the indirect Quantile-
Based (QB) estimator obtained using an asymptotic proportionality relationship that links
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high expectiles to their quantile counterparts. We successfully develop their asymptotic
theory to a β−mixing framework considered in the context of extreme quantile estimation
by Drees (2003) (see also Drees, 2000, 2002), which provides probabilistic tools making it
possible to examine the asymptotic properties of a wide class of statistical indicators of
extremes of, among others, ARMA, ARCH and GARCH processes under reasonably general
and mild conditions. We then discuss the construction of asymptotic confidence intervals for
extreme expectiles that take into account the dependence between observations, and compare
these intervals to the naive intervals obtained via the asymptotic theory of i.i.d. observations,
as a way to illustrate the importance of accounting for dependence when extreme expectiles
of a financial time series are estimated.

The outline of the paper is the following. Section 2 explains in detail our statistical
context. Section 3 contains the main results of the paper, first on intermediate expectile
estimation and then on expectile estimation at extreme levels. Section 4 explores the impli-
cations of our results on asymptotic confidence interval construction. Section 5 discusses the
important question of the selection of expectile level in practice. The finite-sample perfor-
mance of the methods is examined on simulated data sets in Section 6 and on real financial
data in Section 7. Section 8 concludes with a short discussion.

The methods and data considered in this article have been incorporated into the R package
ExtremeRisks, freely available on CRAN. The R code for the simulation study and real
data analysis is available in the “Software” Section of S. Padoan’s personal webpage at the
URL http://mypage.unibocconi.it/simonepadoan/. A Supplementary Material
document discusses in more depth our technical conditions, gives all necessary mathematical
proofs, and contains further finite-sample results.

2 Statistical model and time series framework

Let (Xt, t ≥ 1) be a strictly stationary time series having a continuous one-dimensional
marginal heavy-tailed distribution F : in other words, F is the distribution function of X :=
X1 as well as of each Xt. Let F := 1 − F be the related survival function, and U : s 7→
inf{x ∈ R | 1/F (x) ≥ s} be its tail quantile function. Throughout, X should be seen as −Y ,
where Y denotes a generic financial position, so that large positive values of X represent
extreme losses associated to Y .

Our target in the present paper is the estimation of high and extreme expectiles of X
having order tending to 1, motivated by applications to financial risk management. To this
end, we focus on heavy-tailed distributions with tail index 0 < γ < 1, which are found to
model the tail structure of many financial data examples quite well. The survival function
of a heavy-tailed distribution can be expressed as F (x) = x−1/γL(x), for x > 0 large enough,
where L is a slowly varying function at infinity. In other words,

∀x > 0, lim
z→∞

F (zx)

F (z)
= x−1/γ or equivalently lim

z→∞

U(zx)

U(z)
= xγ. (3)

The tail index γ specifies the tail heaviness of F : the tail of F gets heavier as γ increases.
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Together with condition E|X−| < ∞, where X− := min(X, 0), the assumption γ < 1 then
ensures that the first moment of X exists, which entails that expectiles of X of any order
are well-defined. These conditions shall therefore be part of our minimal assumptions.

An extension of the results of Daouia et al. (2018), on extreme expectile estimation for
heavy tails in the i.i.d. setup, is given in Daouia et al. (2019) in a φ−mixing dependence
framework. To the best of our knowledge, the latter is the only work in the literature
considering the estimation of extreme expectiles in heavy-tailed models for weakly dependent
data. The φ−mixing framework is the following. For any m ≥ 1, let F1,m = σ(X1, . . . , Xm)
and Fm,∞ = σ(Xm, Xm+1, . . .) denote the past and future σ-fields generated by the sequence
(Xt). The φ−mixing coefficients of this sequence are then defined by:

∀l ≥ 1, φ(l) = sup
m≥1

sup
A∈F1,m

sup
B∈Fm+l,∞

|P(B|A)− P(B)|.

The time series (Xt) is said to be φ−mixing (or uniformly strongly mixing) if φ(l) → 0 as
l → ∞. This is in fact a very stringent assumption. For instance, even the simple AR(1)
process with heavy-tailed innovations is never φ−mixing (see the Introduction of Rio, 2017).
We work here in the more general context of β−mixing, defined through the coefficients

∀ l ≥ 1, β(l) = sup
m≥1

E

(
sup

B∈Fm+l,∞

|P(B|F1,m)− P(B)|

)
.

The time series (Xt) is then said to be β−mixing (or absolutely regular) if β(l) → 0 as
l → ∞. Roughly speaking, the β−mixing property brings a form of memorylessness much
weaker than its φ−mixing version: the β−mixing property is written in an L1 sense, while the
φ−mixing property is written in the much stronger L∞ sense. That β−mixing is weaker than
φ−mixing can be seen by noting that β(l) ≤ φ(l) for any l, see Doukhan (1994, Section 1.1).

Our motivation for making the β−mixing assumption is twofold. On the one hand,
β−mixing is satisfied in a much wider class of models than φ−mixing: for instance, Doukhan
(1994, Section 2.4) shows that a large class of Markov processes, among which ARMA pro-
cesses, nonlinear autoregressive processes, ARCH and GARCH models are in fact geometri-
cally β-mixing (i.e. there is a < 1 such that β(l) ≤ al for l large enough) under reasonably
general conditions. On the other hand, there is a general theory of extremes for strictly
stationary and β−mixing processes, developed in a series of papers by Drees (2000, 2002,
2003). This body of work provides probabilistic tools for the statistical analysis of extremes
of strictly stationary and β−mixing observations through a general approximation result
for the tail quantile process by a Gaussian process. Mixing conditions have more generally
played a substantial role in later research on the extremes of a time series: see among others
Robert (2008, 2009) who designed inference procedures for the clustering phenomenon in the
extremes of time series, de Haan et al. (2016) for the development of bias-reduced estimators
in the dependent setting, and Rootzén (2009) and Drees and Rootzén (2010) for comple-
ments to the asymptotic theory of extremes in mixing time series. The β−mixing assumption
thus strikes a good balance between theoretical applicability and modelling strength, and as
such constitutes a reasonable framework for our objective of estimating extreme expectiles
in heavy-tailed time series. This motivates our basic modelling assumption below.
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Condition A. The time series (Xt) is strictly stationary, β−mixing and its one-dimensional
marginal distribution function F is continuous and heavy-tailed.

Condition A will be key to our development of an asymptotic theory for extreme expectile
estimation, which we provide in the next section.

3 Extreme expectile estimation in time series

Suppose that we observe a random sample (X1, . . . , Xn) extracted from a time series (Xt)
satisfying Condition A. Denote by X1,n ≤ · · · ≤ Xn,n the ascending order statistics of
(X1, . . . , Xn). The objective in this section is to estimate a marginal, unconditional extreme
expectile ξτn of the random variable X, where τn → 1 as n → ∞. We shall start by the
case of an intermediate level τn, meaning that τn → 1 and n(1 − τn) → ∞ as n → ∞.
Intermediate expectile estimates will then be extrapolated to estimate expectiles at properly
extreme levels τ ′n, satisfying n(1− τ ′n)→ c > 0 as n→∞, using a semiparametric approach
warranted by the heavy-tailed assumption.

3.1 At intermediate levels

Direct asymmetric least squares estimator Let τn be an intermediate level. We first
consider estimating the expectile ξτn of the marginal distribution F by its direct empirical
estimator

ξ̃τn = arg min
θ∈R

n∑
t=1

ητn(Xt − θ). (4)

This LAWS estimator can easily be computed, for example using an iteratively reweighted
least squares minimisation procedure. To find the asymptotic distribution of ξ̃τn , we make
the following assumption on the dependence within the time series (Xt).

Condition B. For the time series (Xt), assume that

(i) There are sequences of integers (ln) and (rn) such that

ln →∞, rn →∞,
ln
rn
→ 0,

rn
n
→ 0 and

nβ(ln)

rn
→ 0 as n→∞.

(ii) For any t ≥ 1, there is a function Rt on D := [0,∞]2 \ {(∞,∞)} such that

∀(x, y) ∈ D, lim
s→∞

sP
(
F (X1) ≤

x

s
, F (Xt+1) ≤

y

s

)
= Rt(x, y).

(iii) There exist D ≥ 0 and a nonnegative sequence ρ(t) satisfying
∑

t≥1 ρ(t) <∞ and such
that, for s large enough, we have

sP
(
u′

s
< F (X1) ≤

u

s
,
v′

s
< F (Xt+1) ≤

v

s

)
≤ ρ(t)

√
(u− u′)(v − v′)+D

s
(u−u′)(v−v′),

for any t ≥ 1 and all u, u′, v, v′ ∈ [0, 1] with u′ < u and v′ < v.
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Condition B(i) and B(ii) are standard in the emerging literature on extreme value analysis
with mixing conditions, see e.g. Drees (2002, 2003), Rootzén (2009) and Drees and Rootzén
(2010) (we thank Holger Drees for pointing out in private communication that there is a
typo in the first term of condition (C1) in Drees, 2003). In Assumption B(i), the sequences
(ln) and (rn) are small-block and big-block sequences used to develop the kind of “big blocks
separated by small blocks” arguments that are succesfully employed in the literature on
mixing time series. Condition B(iii) is slightly more precise than condition (C3) in Drees
(2003).

Now, we state our first main result, on the asymptotic normality of the estimator ξ̃τn .
Recall the notation X− := min(X, 0) for the negative part of X.

Theorem 3.1. Assume that conditions A and B are satisfied. Assume further that there is
δ > 0 such that E|X−|2+δ <∞, 0 < γ < 1/(2 + δ) and

∑
l≥1[β(l)]δ/(2+δ) <∞. Let τn ↑ 1 be

such that n(1− τn)→∞, rn(1− τn)→ 0 and rn(rn/
√
n(1− τn))δ → 0 as n→∞. Then

√
n(1− τn)

(
ξ̃τn
ξτn
− 1

)
d−→ N

(
0,

2γ3

1− 2γ
(1 + σ2(γ,R))

)
,

with σ2(γ,R) := (1− γ)(1− 2γ)

∫∫
(0,1]2

∞∑
t=1

Rt(u, v)
du

uγ+1

dv

vγ+1
.

The family of functions Rt specifies the extremal dependence within the time series
between different time points; when Rt ≡ 0 for any t ≥ 1, which is for instance the case when
(Xt) is an i.i.d. sequence, the asymptotic variance is 2γ3/(1 − 2γ). The quantity σ2(γ,R)
represents the proportion of increase of this asymptotic variance due to the mixing setting.
The conditions E|X−|2+δ <∞ and 0 < γ < 1/(2+δ) already appear in Theorem 2 of Daouia
et al. (2018) for the i.i.d. case, of which the present result can be considered a generalisation.
Our Theorem 3.1 represents a substantial theoretical step compared to Theorem 1 of Daouia
et al. (2019) in the φ−mixing case. While the latter is essentially shown by simply updating
a couple of correlation calculations in the proof of Theorem 2 of Daouia et al. (2018), the
proof of Theorem 3.1 uses some rather delicate arguments involving a tailored central limit
theory for tail array sums in the time-dependent setting, developed by Rootzén et al. (1998).

Although an exhaustive discussion of our hypotheses is somewhat involved, our assump-
tions are in fact very mild when β(l) converges to 0 geometrically fast as l → ∞. In that
case, one may choose, for instance, ln = bC log nc, rn = blog2(n)c and τn = 1 − n−τ ,
for any τ ∈ (0, 1) and sufficiently large C. The case of geometrically strong β−mixing
covers many cases widely used in the modelling of financial time series, such as ARMA pro-
cesses, ARCH/GARCH processes and solutions of stochastic difference equations (we refer
to Doukhan, 1994; Drees, 2000, 2003; Francq et al., 2006; Boussama et al., 2011). Besides,
in this geometrically mixing case, condition

∑
l≥1[β(l)]δ/(2+δ) <∞ is satisfied for any δ > 0.

The following corollary of Theorem 3.1 can be viewed as a synthesis of this theoretical
discussion of our assumptions in this important geometrically mixing case.
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Corollary 3.2. Assume that conditions A and B(ii)-(iii) are satisfied, and that β(l) = O(al)
for some a ∈ (0, 1). Assume further that there is δ > 0 such that E|X|2+δ < ∞. Let
τn = 1− n−τ , for some τ ∈ (0, 1). Then

√
n(1− τn)

(
ξ̃τn
ξτn
− 1

)
d−→ N

(
0,

2γ3

1− 2γ
(1 + σ2(γ,R))

)
,

with the notation of Theorem 3.1.

We turn to the consideration of a different estimator, built on the asymptotic propor-
tionality between high expectiles and their quantile counterparts.

Indirect quantile-based estimator A competitor is obtained by exploiting an asymp-
totic proportionality relationship between high expectiles and quantiles: within our heavy-
tailed model,

ξτ
qτ
→ (γ−1 − 1)−γ as τ ↑ 1. (5)

This was first noted by Bellini et al. (2014). An indirect QB estimator of ξτn can then be
obtained through the asymptotic proportionality relationship (5):

ξ̂τn = (γ̂−1n − 1)−γ̂n q̂τn ,

where q̂τn = Xn−bn(1−τn)c,n is the empirical counterpart of qτn and γ̂n is a consistent estimator
of γ. We provide first, under the appropriate second-order condition below, a high-level result
making it possible to quantify the bias incurred by using convergence (5).

Condition C. The function F is second-order regularly varying in a neighbourhood of +∞
with index −1/γ < 0, second-order parameter ρ ≤ 0 and an auxiliary measurable function
A having constant sign and converging to 0 at infinity, that is,

∀x > 0, lim
t→∞

1

A(1/F (t))

[
F (tx)

F (t)
− x−1/γ

]
= x−1/γ

xρ/γ − 1

γρ
,

where the right-hand side should be read as x−1/γ log(x)/γ2 when ρ = 0.

This second-order condition on F controls the rate of convergence in the heavy-tailed as-
sumption (3). More precisely, the larger |ρ| is, the faster the function |A| converges to 0 (since
|A| is regularly varying with index ρ, see Theorems 2.3.3 and 2.3.9 in de Haan and Ferreira,
2006) and the smaller the error in the approximation of the tail of F by a purely Pareto
tail will be. Further interpretation of this assumption can be found in Beirlant et al. (2004)
and de Haan and Ferreira (2006) along with numerous examples of commonly used contin-
uous distributions satisfying this condition.
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Proposition 3.3. Assume that E|X−| <∞ and condition C holds with 0 < γ < 1. Assume
further that τn ↑ 1 and n(1−τn)→∞ as n→∞. Suppose also that there is a nondegenerate
limiting random pair (Γ,Θ) such that√

n(1− τn)

(
γ̂n − γ,

q̂τn
qτn
− 1

)
d−→ (Γ,Θ). (6)

If
√
n(1− τn)A((1− τn)−1)→ λ1 ∈ R and

√
n(1− τn)q−1τn → λ2 ∈ R as n→∞, then

√
n(1− τn)

(
ξ̂τn
ξτn
− 1

)
d−→ m(γ)Γ + Θ− λ

with m(γ) := (1− γ)−1 − log(γ−1 − 1) and

λ :=

(
(γ−1 − 1)−ρ

1− γ − ρ
+

(γ−1 − 1)−ρ − 1

ρ

)
λ1 + γ(γ−1 − 1)γE(X)λ2.

The above result does not make any assumption about the dependence within the time
series (Xt) and, contrary to the related Theorem 1 in Daouia et al. (2018), does not feature
the unnecessary assumption of an increasing distribution function F . In practice, conditions
on the type of dependence featured in the series (Xt) will of course be required to check this
high-level condition for given estimators.

Our next main contribution is to give, in our mixing time series framework, two examples
of estimators γ̂n for which Proposition 3.3 can be applied. We start by the Hill estimator (Hill,
1975), which is also the maximum likelihood estimator in a purely Pareto model and is
arguably the most popular semiparametric estimator in the analysis of heavy tails:

γ̂Hn =
1

bn(1− τn)c

bn(1−τn)c∑
i=1

log

(
Xn−i+1,n

Xn−bn(1−τn)c,n

)
.

The key result in this case, which is of interest in its own right, consists in a joint Gaussian
approximation of the processes s 7→ q̂1−(1−τn)s = Xn−bn(1−τn)sc,n and s 7→ log q̂1−(1−τn)s (that
is, the tail empirical quantile process and its logarithm) in our mixing framework. See
Theorem 2.4.8 in de Haan and Ferreira (2006) for an analogue result in the independent
case, as well as Proposition A.1 in de Haan et al. (2016) and Proposition 1 in Chavez-
Demoulin and Guillou (2018) for related statements on the tail empirical quantile process
with dependent observations.

Theorem 3.4. Assume that conditions A, B and C are satisfied. Assume that τn ↑ 1,
n(1− τn)→∞, rn(1− τn)→ 0, rn log2(n(1− τn))/

√
n(1− τn)→ 0 and

√
n(1− τn)A((1−

τn)−1) = O(1) as n → ∞. Suppose finally that n(1 − τn) is a sequence of integers and pick
s0 > 0. Then there exist appropriate versions of the process s 7→ q̂1−(1−τn)s and a continuous,
centred Gaussian process W having covariance function

r(x, y) := min(x, y) +
∞∑
t=1

Rt(x, y) +Rt(y, x)
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such that, for any ε > 0 sufficiently small, we have, uniformly in s ∈ (0, s0],

q̂1−(1−τn)s
qτn

= s−γ

(
1 +

1√
n(1− τn)

γs−1W (s) +
s−ρ − 1

ρ
A((1− τn)−1) + oP

(
s−1/2−ε√
n(1− τn)

))
and

log
q̂1−(1−τn)s

qτn
= −γ log s+

1√
n(1− τn)

γs−1W (s)+
s−ρ − 1

ρ
A((1−τn)−1)+oP

(
s−1/2−ε√
n(1− τn)

)
.

As the statement of Theorem 3.4 makes clear, this approximation result only applies to
appropriate versions of the tail empirical process, equal in distribution to the original process,
on a rich enough probability space. Our weak convergence results following from Theorem 3.4
are of course unaffected by this choice. Our next such result gives the asymptotic behaviour
of the pair (γ̂Hn , q̂τn), which we then use to find the limiting distribution of the estimator ξ̂τn
constructed using γ̂Hn as the tail index estimator.

Corollary 3.5. Assume that conditions A, B and C are satisfied. Let τn ↑ 1 be such that
n(1− τn)→∞, rn(1− τn)→ 0, rn log2(n(1− τn))/

√
n(1− τn)→ 0 and

√
n(1− τn)A((1−

τn)−1)→ λ1 ∈ R as n→∞. Then√
n(1− τn)

(
γ̂Hn − γ,

q̂τn
qτn
− 1

)
d−→ (Γ,Θ)

where (Γ,Θ) is a Gaussian random pair having expectation (λ1/(1− ρ), 0)> and covariance
matrix defined by

Var(Γ) = Var(Θ) = γ2

(
1 + 2

∞∑
t=1

Rt(1, 1)

)

and Cov(Γ,Θ) = γ2
∫ 1

0

∞∑
t=1

[
Rt(s, 1) +Rt(1, s)

s
− 2Rt(1, 1)

]
ds.

If moreover E|X−| <∞ and 0 < γ < 1 as well as
√
n(1− τn)q−1τn → λ2 ∈ R as n→∞, then

for γ̂n = γ̂Hn in the estimator ξ̂τn,

√
n(1− τn)

(
ξ̂τn
ξτn
− 1

)
d−→ N

(
m(γ)

1− ρ
λ1 − λ, γ2 × vH(γ,R)

)
with λ as in Proposition 3.3 and

vH(γ,R) := (1 + [m(γ)]2)

(
1 + 2

∞∑
t=1

Rt(1, 1)

)

+ 2m(γ)

∫ 1

0

∞∑
t=1

[
Rt(s, 1) +Rt(1, s)

s
− 2Rt(1, 1)

]
ds.
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Corollary 3.5 is, to the best of our knowledge, the first result on the QB estimator at
intermediate levels under weak dependence assumptions. This result contains Corollary 2
in Daouia et al. (2018), restricted to the i.i.d. setup, in which case the asymptotic variance

of ξ̂τn is γ2(1 + [m(γ)]2), as our result indeed shows by taking Rt ≡ 0 for any t ≥ 1.
There are of course many other ways to estimate the tail index γ. We briefly present here

an alternative, novel estimator based on the use of intermediate expectiles. The asymptotic
proportionality relationship (5) can be equivalently rephrased as F (ξτ )/(1 − τ) → γ−1 − 1
as τ ↑ 1, which implies

γ = lim
τ↑1

(
1 +

F (ξτ )

1− τ

)−1
.

Taking τ = τn → 1, and estimating F (ξτ ) by F̂ n(ξ̃τn), where F̂ n(u) = n−1
∑n

t=1 1{Xt > u}
is the empirical survival function, suggests the Expectile-Based (EB) estimator

γ̂En =

(
1 +

F̂ n(ξ̃τn)

1− τn

)−1
.

It can be seen there that, due to asymptotic variance considerations, this estimator will tend
to be less variable than the Hill estimator (in the i.i.d. case, when γ < 0.38). This may make
it a valuable device in the construction of confidence intervals requiring an estimate of γ.

3.2 At extreme levels

We now consider the important problem of the estimation of extreme expectiles ξτ ′n , whose
level τ ′n → 1 satisfies n(1 − τ ′n) → c ∈ [0,∞) as n → ∞. A typical choice in applications
is τ ′n = 1 − pn for an exceedance probability pn not greater than 1/n, see e.g. Cai et al.
(2015). The idea of the semiparametric approach we present here is to define an estimator
of an extreme expectile through a Weissman-type construction (Weissman, 1978). This is
motivated by a combination of the heavy-tailed assumption with Equation (5), resulting in

ξτ ′n
ξτn
≈
qτ ′n
qτn

=
U((1− τ ′n)−1)

U((1− τn)−1)
≈
(

1− τ ′n
1− τn

)−γ
as n→∞.

This suggests to consider the following class of plug-in estimators of ξτ ′n :

ξ
?

τ ′n
≡ ξ

W

τ ′n
(τn) :=

(
1− τ ′n
1− τn

)−γ̂n
ξτn

where γ̂n and ξτn are consistent estimators of γ and of the intermediate expectile ξτn , respec-

tively. We say that ξ
?

τ ′n
is the extrapolating LAWS estimator when ξτn = ξ̃τn , and we denote

it by ξ̃?τ ′n . We call it the extrapolating QB estimator when ξτn = ξ̂τn , and we denote it by

ξ̂?τ ′n . Our next main result gives high-level conditions for the convergence of ξ
?

τ ′n
.
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Proposition 3.6. Assume that E|X−| < ∞ and condition C holds with 0 < γ < 1 and
ρ < 0. Assume further that τn, τ

′
n ↑ 1 with n(1 − τn) → ∞, n(1 − τ ′n) → c ∈ [0,∞) and√

n(1− τn)/ log[(1−τn)/(1−τ ′n)]→∞ as n→∞. Suppose also that there are nondegenerate
limiting random variables Γ,∆ such that

√
n(1− τn)(γ̂n − γ)

d−→ Γ and
√
n(1− τn)

(
ξτn
ξτn
− 1

)
d−→ ∆.

If moreover
√
n(1− τn)A((1 − τn)−1) → λ1 ∈ R and

√
n(1− τn)q−1τn → λ2 ∈ R as n → ∞,

then √
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ
?

τ ′n

ξτ ′n
− 1

)
d−→ Γ.

Proposition 3.6 extends Theorem 3 in Daouia et al. (2018) by dropping the unnecessary
assumption of an increasing function F . When γ̂n is chosen to be the Hill estimator γ̂Hn , we
have the following corollary of Proposition 3.6.

Corollary 3.7. Assume that E|X−| < ∞, and that conditions A, B and C are satisfied
with 0 < γ < 1 and ρ < 0. Let τn, τ

′
n ↑ 1 with n(1 − τn) → ∞, n(1 − τ ′n) → c ∈

[0,∞) and
√
n(1− τn)/ log[(1 − τn)/(1 − τ ′n)] → ∞ as n → ∞. Assume also that rn(1 −

τn) → 0, rn log2(n(1 − τn))/
√
n(1− τn) → 0,

√
n(1− τn)A((1 − τn)−1) → λ1 ∈ R and√

n(1− τn)q−1τn → λ2 ∈ R as n→∞. Suppose finally that

√
n(1− τn)

(
ξτn
ξτn
− 1

)
d−→ ∆.

Then, if γ̂n = γ̂Hn in ξ
?

τ ′n
, one has√

n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ
?

τ ′n

ξτ ′n
− 1

)
d−→ N

(
λ1

1− ρ
, γ2

[
1 + 2

∞∑
t=1

Rt(1, 1)

])
.

Corollary 3.7 makes it possible to construct confidence intervals for our extreme expectile
estimators, and applies indifferently to the estimators extrapolated from the direct and
indirect intermediate expectile estimators. When Rt ≡ 0 for any t ≥ 1, the asymptotic
variance is γ2. The quantity 2

∑∞
t=1Rt(1, 1) represents the proportion of increase of this

asymptotic variance, compared to the i.i.d. case, due to the temporal dependence. An
analogue result is of course possible for the Expectile-Based (EB) estimator γ̂En , although we
shall not pursue this for the sake of brevity.

4 Asymptotic confidence interval construction

On the basis of the theory developed in Section 3, we propose here asymptotic confidence
interval estimators for inferring extreme expectiles. They can be derived from the asymptotic
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behaviour of either the extrapolating LAWS or QB estimators (see Corollary 3.7), and we
examine both options.

First, we recall that an estimator of the expectile at the extreme level is given by

ξ
?

τ ′n
=

(
1− τ ′n
1− τn

)−γ̂Hn
ξτn , (7)

where γ̂Hn is the Hill estimator and ξτn is an estimator of the expectile at the intermediate
level. Second, for the asymptotic variance of the estimator in (7), deduced in Corollary 3.7
and that we denote hereafter by w(γ,R), we propose the following estimator. By Proposition
2.1 in Drees (2003) we have that, when n(1− τn)→∞, rn →∞ and rn(1− τn)→ 0,

1

rn(1− τn)
Var

(
rn∑
i=1

1{F (Xi) > τn}

)
→ 1 + 2

∞∑
t=1

Rt(1, 1) as n→∞.

We then adopt a “big-block/small-block” technique where we split the data into big blocks
of size rn separated by small blocks of size ln, respectively, and we define the sequence of
random variables

Zj =

rn+j`n∑
t=1+j`n

1{F̂n(Xt) > τn}

for j = 0, 1, . . . ,mn − 1, where mn = bn/`nc and `n = rn + ln, and F̂n is the empirical
distribution function of all the observations. Therefore, we compute the sample variance of
the sequence (Z0, . . . , Zmn−1), say Σn. As a result, an empirical estimator of the asymptotic
variance w(γ,R) := γ2 [1 + 2

∑∞
t=1Rt(1, 1)] is

ŵn(γ,R) =
(γ̂Hn )2

rn(1− τn)
Σn. (8)

Next, note that Corollary 3.7 is equivalent to its (in practice more accurate) log-scale version√
n(1− τn)

log[(1− τn)/(1− τ ′n)]
log

ξ
?

τ ′n

ξτ ′n

d−→ N
(

λ1
1− ρ

, w(λ,R)

)
as n→∞.

Hence, we propose the following interval estimatorξ?τ ′n (1− τn
1− τ ′n

)zα/2√ŵn(γ,R)/[n(1−τn)]

, ξ
?

τ ′n

(
1− τn
1− τ ′n

)z1−α/2√ŵn(γ,R)/[n(1−τn)]
 , (9)

where ξ
?

τ ′n
is the estimator in (7), ŵn(γ,R) is the estimator in (8), zα/2 and z1−α/2 are the

(α/2)th and (1− α/2)th quantiles of the standard normal distribution, with α ∈ (0, 1). For
simplicity we have ignored the bias term λ1/(1−ρ). We call the estimator in (9) the LAWS-D-

based estimator when ξτn = ξ̃τn in (7), and QB-D-based estimator when ξτn = ξ̂τn . Finally,
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and for comparison purposes, the asymptotic variance in the i.i.d. case is w(γ,R) = γ2,
estimated by (γ̂Hn )2. In this case, an interval estimator is simplyξ?τ ′n (1− τn

1− τ ′n

)zα/2γ̂Hn /√n(1−τn)

, ξ
?

τ ′n

(
1− τn
1− τ ′n

)z1−α/2γ̂Hn /√n(1−τn)
 (10)

and we call it the LAWS-IID-based estimator or QB-IID-based estimator depending on
whether ξτn = ξ̃τn or ξτn = ξ̂τn .

5 Extreme expectile level selection

A crucial practical question in actuarial and financial risk management is the choice of
the level of prudentiality of the risk measure under consideration. When working with
quantile-based risk measures, as we mentioned in Section 3.2, one usually chooses extreme
tail probabilities αn ↑ 1 with n(1− αn)→ c, a finite constant, as n→∞, to allow for more
prudent risk management. In the case when expectiles are of interest, a reasonable idea is to
select τ ′n so that ξτ ′n ≡ qαn for a given relative frequency αn. This had already been suggested
by Bellini and Di Bernardino (2017), albeit for a normally distributed Y .

For heavy-tailed and i.i.d. data, Daouia et al. (2018) instead suggest a nonparametric
estimator of the level τ ′n that satisfies ξτ ′n ≡ qαn , without recourse to any parametric distribu-
tional specification. Here we briefly recall, and then extend, this theory to serially dependent
data. Recall that the interpretation of the expectile ξτ ′n in terms of average distances is

τ ′n =
E[|X − ξτ ′n|1{X ≤ ξτ ′n}]

E|X − ξτ ′n|
.

Using standard theory of conditional tail expectations, Daouia et al. (2018) find (in their
Proposition 3) that the extreme expectile level τ ′n(αn) = τ ′n such that ξτ ′n ≡ qαn then satisfies

1− τ ′n(αn)

1− αn
→ γ

1− γ
as n→∞.

If γ̂n is a consistent estimator of γ, one can then define a natural estimator of τ ′n(αn) as

τ̂ ′n(αn) = 1− (1− αn)
γ̂n

1− γ̂n
.

By substituting this estimated value in place of τ ′n ≡ τ ′n(αn) in the extrapolating LAWS

estimator ξ̃?τ ′n and in the extrapolating QB estimator ξ̂?τ ′n , we obtain composite estimators of
qαn . It is interesting to note that if one uses the exact same estimator γ̂n in the extrapolation
step and the calculation of τ̂ ′n(αn), the composite extrapolating LAWS estimator has a natural
interpretation. Indeed, in this case,

ξ̃?τ̂ ′n(αn) =

(
1− τ̂ ′n(αn)

1− τn

)−γ̂n
ξ̃τn = (γ̂−1n − 1)γ̂n ξ̃?αn .
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In other words, rewriting Equation (5) as the approximation qαn ≈ (γ−1 − 1)γξαn , the com-
posite extrapolating LAWS estimator can be constructed by plugging in an estimator γ̂n
and the extrapolating LAWS estimator at level αn in the right-hand side of this approxima-
tion. This way of constructing the composite extrapolating LAWS estimator had not, to the
best of our knowledge, been appreciated in the literature. By contrast, Daouia et al. (2018)
had already mentioned the interpretation of the extrapolating QB estimator as a Weissman
estimator of the quantile.

The available theory of the composite LAWS and QB estimators in Daouia et al. (2018)
is limited to i.i.d. data. We give below a result showing their asymptotic normality in our
dependent setting, when γ̂n is the Hill estimator.

Theorem 5.1. Suppose the conditions of Corollary 3.7 hold with αn in place of τ ′n. Then,

if γ̂n = γ̂Hn and ξ
?

is either ξ̂? or ξ̃?, we have√
n(1− τn)

log[(1− τn)/(1− αn)]

(
ξ
?

τ̂ ′n(αn)

qαn
− 1

)
d−→ N

(
λ1

1− ρ
, γ2

[
1 + 2

∞∑
t=1

Rt(1, 1)

])
.

6 Simulation experiments

Here we investigate the finite sample performance of the point and interval expectile estima-
tors, at the extreme level, through a simulation study. We consider AR, ARMA, ARCH and
GARCH models. Specifically, we first consider the AR(1) family Xt+1 = φXt + εt, where the
innovations εt are i.i.d. and have a common distribution Fε which is a Student-t with ν > 0
degrees of freedom. The tail index of Fε is γ = 1/ν, and we choose

(i ) φ = 0.8, ν = 3;

(ii ) φ = 0.8, ν = 4.

These models exhibit fairly strong linear dependence. We then consider the ARMA(1,1)
family Xt+1 = φXt + εt+1 + θεt, where the innovations εt are i.i.d. and have a common
distribution Fε which is a symmetric Pareto with shape parameter ζ > 0. The tail index of
Fε is γ = 1/ζ, and we consider

(iii ) φ = 0.95, θ = 0.9, ζ = 3;

(iv ) φ = 0.95, θ = −0.6, ζ = 3;

(v ) φ = 0.95, θ = −0.9, ζ = 3;

(vi ) φ = 0.3, θ = 0.9, ζ = 3.

A very strong linear dependence is present in the first two models and a weak one in the
second two models. We recall that for standard linear time series families with a heavy-
tailed innovation satisfying the so-called tail balance condition, which is the case for models
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(i )-(vi ), we have that FX(x) ≈ C F ε(x) as x→∞, where C is a positive constant (see e.g.
Drees, 2003, Section 3.2 and the references therein). In other words, the tail index of X in
models (i )-(vi ) is always 1/3 except in model (ii ), where it is 1/4. Finally, we consider the
nonlinear GARCH(1,1) family Xt = σt+1εt, where σ2

t+1 = α0 + α1X
2
t + β σ2

t , and (εt) is a
sequence of i.i.d. Gaussian innovations. We work on two ARCH models and then two proper
GARCH models:

(vii ) α0 = 0.0001, α1 = 0.9, β = 0;

(viii ) α0 = 0.4, α1 = 0.6, β = 0;

(ix ) α0 = 0.0001, α1 = 0.4, β = 0.5;

(x ) α0 = 0.1, α1 = 0.4, β = 0.4.

It is known that the marginal distribution FX is heavy-tailed in such ARCH/GARCH models,
under suitable conditions (see e.g. Embrechts et al., 1997, Chapter 8). The actual expression
of the tail index, however, is quite involved. Numerical experiments suggest that the tail
index in models (vii )-(x ) is respectively approximately 0.4, 0.25, 0.3 and 0.25. Thus, the
tails of the models (vii ) and (ix ) are quite heavy, while those of the models (viii ) and (x ) are
slightly lighter. In addition, these four models feature quadratic serial dependence. Finally,
let us point out that the time series models (iii )-(vii ) and (ix ) have also been investigated
by Drees (2003).

For each of the models (i )-(x ), we simulate 104 samples of size n = 2500. We consider
the extreme levels τ ′n = 0.9995 and τ ′n = 0.9999; the former is slightly smaller than 1− 1/n
while the latter is larger. The true value ξτ ′n is estimated to a high degree of accuracy via
Monte-Carlo simulation. We use the extreme expectile estimator as defined in (7). On each
simulated dataset, and for both the extrapolating LAWS and QB estimators, we repeat the
estimation exercise for k ∈ {6, 8, . . . , 700} and with the intermediate level τn = 1−k/n. Then,
we estimate an asymptotic confidence interval using the LAWS-D-based interval estimator
in (9), with 95% nominal coverage probability, and we check whether it contains the true
expectile value. The big- and small-block sequences are chosen as rn = blog2(n)c and ln =
bC log nc, respectively, where C is selected such that ln is greater than or equal to a lag after
which the value of the sample autocorrelation is small, e.g. smaller than 0.1. This allows
us to compute a Monte Carlo approximation of the coverage probability. We carry out the
same exercise for the QB-D-based, QB-IID-based and LAWS-IID-based estimators. Results
are reported in Figure 1 at level τ ′n = 0.9995; results at level τ ′n = 0.9999 are similar.

It is readily seen that, for time series data, our proposed confidence intervals, derived from
the theory of serial dependent data, behave substantially better than the previously available
i.i.d.-based intervals. In particular, the QB-IID-based and LAWS-IID-based intervals are
overall far too permissive, and are acceptable only within models where serial dependence is
weak, such as the ARMA(1,1) model (v ). By contrast, in terms of coverage, our QB-D-based
and LAWS-D-based intervals provide far better intervals, which seem to perform overall well
in linear time series models (although they tend to be conservative in certain cases, see for
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instance model (iv )). The ARCH and GARCH cases are more difficult, but once again our
intervals represent significant improvement compared to the i.i.d. case, by bringing down the
non-coverage probability by about a half to around 15% in the ARCH cases, and by getting
very close to the nominal level when k is in a neighbourhood of approximatively 60.

7 Real data analysis

Stock market index data. We consider here daily negative log-returns of the S&P 500
(GSPC) and Dow Jones Industrial Average (DJIA) index from January 29, 1985 to December
12, 2019 (freely available from Yahoo! Finance). These samples of size n = 8785 are plotted
on the rightmost panels of Figure 2. They show evidence of the stylised facts such as
heteroscedasticity, fat-tailedness, and asymmetric behaviour of positive and negative returns,
which are typically found in financial time series (Embrechts et al., 1997). Throughout this
section, we use the Hill estimator in our estimates and confidence intervals.

In the literature, the analysis of tail risk of loss returns is typically based on VaR at
the 99.9% level (see e.g. Drees, 2003; de Haan et al., 2016) or on using a quantile at level
αn = 1 − pn where pn is not larger than 1/n. Bellini and Di Bernardino (2017) showed
that forecasts based on the expectile provide capital requirements that are similar to those
obtained with VaR for some econometric models. This is as long as the extreme level τ ′n
of the expectile is appropriately selected so that it is close to a pre-specified extreme VaR.
For this selection, we use the method of Section 5 which, contrary to the method of Bellini
and Di Bernardino (2017), does not depend on a specific parametric model. Precisely, here
we fix pn = 1/n = 1/8784 and αn = 1 − pn = 0.9998862, and according to Section 5
we estimate first τ ′n(αn) = τ ′n(0.9998862). Then we compute an estimate of the expectile

at the extreme level τ̂ ′n(αn) using the composite extrapolating LAWS estimator ξ̃?τ ′n and

the composite extrapolating QB estimator ξ̂?τ ′n for τ ′n = τ̂ ′n(αn). This accordingly produces
estimators of ξτ ′n(αn), which is also the quantile-VaR qαn = q1−1/n. Let us reiterate here that
our focus in this real data application is the estimation of an extreme marginal expectile;
we are therefore not tackling the completely different problem of dynamically predicting
extreme expectiles, where the interest is in estimating conditional extreme expectile levels
for tomorrow with our knowledge of today.

The first panels of Figure 2 display τ̂ ′n(αn) against k for k ≤ 700, where as before τn =
1 − k/n. After large fluctuations, the estimates stabilise around a (close for both series)
common value, and then drift away due to bias from the centre of the distribution. The choice
k = 200 seems to be a reasonable compromise. We further confirm this choice by calculating
the composite extrapolating LAWS and composite extrapolating QB estimators, and the
corresponding LAWS-D and QB-D confidence intervals of Section 4 at level τ ′n = τ̂ ′n(αn).
Again, after the high-variance part of the sample path (see the green lines on the second
and third panels of Figure 2), the estimates stabilise and then drift away due to bias. The
choice k = 200 once again seems sensible and is therefore adopted. It can be seen that our
confidence intervals taking the dependence into account are indeed wider than the i.i.d.-based
estimators, as a way to reflect better the uncertainty about the estimation. With k = 200,
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we find τ̂ ′n(αn) ≈ 0.9999423 for the S&P 500 data, and 0.9999402 for the Dow Jones data.
These levels are indeed larger than the original αn = 1− pn = 0.9998862.

We compare our extrapolating LAWS and QB methods with the traditional Weissman
extreme quantile estimator at level αn. This is

q̂?αn =

(
1− αn
1− τn

)−γ̂Hn
q̂τn =

(
1− αn
1− τn

)−γ̂Hn
Xn−bn(1−τn)c,n.

Confidence intervals can also be constructed for the extreme quantile qαn on the basis of
this estimator: here we use a method developed by Drees (2003) which, contrary to ours,
does not rely on a big-block/small-block argument, see Formula (33) therein. The estimates
are reported in Table 1 and can be visualised in the rightmost panel of Figure 2. Quite
reassuringly the methods give point estimates that are similar: note that the composite
extrapolating QB point estimator is indeed nothing but q̂?αn . However, on the third and
fourth panels of Figure 2, it can be seen that the confidence intervals constructed on the
basis of q̂?αn and the method of Drees (2003) are in general much more volatile than the
LAWS-D-based interval; moreover, in a neighbourhood of our selected value of k, they are
very close to the intervals based on i.i.d. theory. For our selected k = 200, according to the
fourth panels of Figure 2, they do not contain the maximum observation in the sample, even
though one is estimating qαn = q1−1/n, whereas the LAWS-D-based interval does contain this
maximum value.

Financial returns of individual banks. We carried out an analogue analysis of
the financial returns of Goldman Sachs and Morgan Stanley. We consider the negative log-
returns on their equity prices at a daily frequency from July 3, 2000, to June 30, 2010.
These samples of data were already considered in Cai et al. (2015) and Daouia et al. (2018),
albeit under the assumption of i.i.d. data and in the context of measuring systemic risk.
Choosing αn = 1 − 1/n = 0.9996021, we display τ̂ ′n(αn) against k, as well as the composite
extrapolating LAWS and composite extrapolating QB estimators, and the corresponding
LAWS-D and QB-D confidence intervals at level τ ′n = τ̂ ′n(αn), on the first three panels of
Figure 3. The choice k = 150 seems reasonable here and we then find τ̂ ′n(αn) ≈ 0.9997239 for
the Goldman Sachs data, and 0.9996626 for the Morgan Stanley data. Again, we compare
our estimates to the Weissman extreme quantile estimator at level αn. All estimates are
reported in Table 2 and can be visualised in the rightmost panel of Figure 3. Like on our
stock market index data, it can be seen that the confidence intervals constructed with the
method of Drees (2003) are very volatile, and in this case, they appear to be far more
conservative than the LAWS-D-based interval.
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Table 1: Estimates for the negative daily log-returns of the S&P 500 and Dow Jones indices,
obtained with k = 200. Here αn = 1− 1/n = 0.9998862.

Estimator S&P 500 Dow Jones

γ̂n = γ̂Hn 0.3364 [0.2198; 0.4530] 0.3442 [0.2219; 0.4665]

ξ̃?τ̂ ′n(αn) 0.1358 [0.0676; 0.2727] 0.1360 [0.0657; 0.2813]

ξ̂?τ̂ ′n(αn) 0.1398 [0.0696; 0.2807] 0.1394 [0.0674; 0.2884]

q̂?αn 0.1398 [0.1124; 0.1739] 0.1394 [0.1025; 0.1896]

Table 2: Estimates for the loss returns of Goldman Sachs and Morgan Stanley, obtained
with k = 150. Here αn = 1− 1/n = 0.9996021.

Estimator Goldman Sachs Morgan Stanley

γ̂n = γ̂Hn 0.4096 [0.2815; 0.5377] 0.4589 [0.2966; 0.6212]

ξ̃?τ̂ ′n(αn) 0.2523 [0.1267; 0.5024] 0.4036 [0.1742; 0.9350]

ξ̂?τ̂ ′n(αn) 0.2746 [0.1379; 0.5469] 0.4422 [0.1909; 1.0243]

q̂αn 0.2746 [0.0890; 0.8474] 0.4422 [0.1565; 1.2498]

8 Discussion

We provide asymptotic theory and practical guidance for the estimation of extreme expectiles
in a stationary but weakly dependent framework. Our model allows us to handle the ARMA
and GARCH models that are of interest in financial practice. This represents a substantial
advance compared to earlier procedures in which only i.i.d. or uniformly strongly mixing
data could be considered. In particular, the performance of our proposed procedure for
confidence interval construction is very encouraging, both on simulated and real data; this
procedure has been implemented in an accessible way in our R package ExtremeRisks.

With this in mind, there remains a lot to be done. For the sake of simplicity, in the
estimation of extreme expectiles and construction of our confidence intervals, we did not
consider the question of estimating and correcting for the bias of the procedures. Bias can
here be incurred at the extrapolation step either in the estimation of the tail index, or by
the use of the extrapolation relationship itself. It is reasonable to think that one can use
tools recently developed in the weakly dependent context, such as those of de Haan et al.
(2016), to handle the bias of the Hill estimator of the tail index. In addition to obvious
theoretical complications, this would also require modifying our method for the construction
of confidence intervals: note indeed that according to Theorem 4.1 in de Haan et al. (2016),
the asymptotic variance of their bias-reduced version is not the same as that of the Hill
estimator. A different idea is to adapt the efficient bias-reduced estimator of Caeiro et al.
(2005), whose asymptotic variance coincides with that of the Hill estimator, to our time-
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dependent setting. This is, however, a highly non-trivial theoretical step.
Besides, in the kind of stock market data application we consider, a well-known problem

is the estimation and use of the dependence between indices or prices of individual stocks.
As an illustration, we have represented a scatterplot of the negative daily log-returns of
the Dow Jones versus those of the S&P 500 in Figure 4, and similarly we have plotted a
scatterplot of the loss returns of Morgan Stanley versus those of Goldman Sachs. It is clear
that there is strong positive pairwise dependence in both cases. Our statistical theory, being
developed for univariate time series, cannot yet harness that dependence structure to make
more precise inferences (i.e. with shorter confidence intervals). This will require adapting
our procedures to multivariate time series, and as such is of course far beyond the scope of
this paper.
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Figure 4: Left panel: Dow Jones log-returns versus S&P 500 log-returns. Right panel:
Morgan Stanley loss-returns versus Goldman Sachs loss-returns.
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