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Abstract. Projections of future climate change cannot rely on a single model. It has become common to 

rely on multiple simulations generated by Multi-Model Ensembles (MMEs), especially to quantify the 

uncertainty about what would constitute an adequate model structure. But, as Parker points out (2018), 

one of the remaining philosophically interesting questions is: “How can ensemble studies be designed so 

that they probe uncertainty in desired ways?” This paper offers two interpretations of what General 

Circulation Models (GCMs) are and how MMEs made of GCMs should be designed. In the first 

interpretation, models are combinations of modules and parameterisations; an MME is obtained by 

“plugging and playing” with interchangeable modules and parameterisations. In the second interpretation, 

models are aggregations of expert judgements that result from a history of epistemic decisions made by 

scientists about the choice of representations; an MME is a sampling of expert judgements from modelling 

teams. We argue that, while the two interpretations involve distinct domains from philosophy of science 

and social epistemology, they both could be used in a complementary manner in order to explore ways of 

designing better MMEs. 

 

 

1. Introduction 

 

The climate system is commonly modelled as an object subdivided into components, such as the 

atmosphere, the oceans, the land surface, the ice sheets, and the biosphere, and submitted to a number of 

external influences, including fluctuations in incoming solar radiation, volcanic eruptions, and human 

activities.1 The dynamic range of processes involved in the climate system and the importance of living 

processes produce a level and a quality of complexity that are challenging to simulate. Even a General 

Circulation Model (GCM), involving several million lines of computer code, can only approximately 

represent climate dynamics based on idealisations under forcing scenarios and specific boundary 

conditions. 

 

Hence, it is generally agreed that projections of future climate change should not rely on a single model. 

For this purpose, it has become common to rely on multiple simulations generated by Multi-Model 

Ensembles (MMEs). The status of these MMEs constitutes a subject of increasing philosophical attention, 

notably in the work of Parker (e.g. Parker 2006, 2010a, 2010b, 2013, 2018; Betz 2009; Frigg, Stainforth 

and Smith 2013, 2015; Katzav, Dijkstra and de Laat 2012; Lenhard and Winsberg 2010; Winsberg 2012, 

2018). 

 

 

1 See Werndl (2016) for a discussion of definitions of climate and climate change. 

https://doi.org/10.1016/j.shpsa.2020.03.001
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Specifically, MMEs provide a means to estimate the uncertainty induced by choices of representation of 

the specific processes at work in the climate system. This form of uncertainty is termed “structural 

uncertainty” in the standard scientific literature (Tebaldi and Knutti 2007; Meinshausen et al. 2009; Knutti 

et al. 2010; Flato et al. 2013, AR5WGI chapter 9, p. 754-755).2 Parker makes it clear that structural 

uncertainty is uncertainty about what would constitute an adequate model structure but cannot be 

uncertainty about what would constitute a perfect model structure, for it is explored in practice via state-

of-the-art models that are imperfect. “After all, adequacy (not perfection) is all that is really needed, and 

it is plausible that the structures of today’s models are adequate for some predictive purposes of interest” 

(Parker 2010b, p. 991).  

 

Created in 1995, the Coupled Model Intercomparison Project (CMIP) is nowadays the reference 

framework in which GCMs are gathered into MMEs. For example, twenty-three GCMs, developed in 

Australia, Canada, China, France, Germany, Japan, Korea, Norway, Russia, the United Kingdom and the 

United States of America, composed the MME of CMIP5 built in 2013. CMIP was originally developed to 

enable scientists to compare model outputs in a consistent fashion, and thus identifying robust outputs, 

shared biases, the origins of disagreements, and which specific processes require more understanding in 

order to improve the models. It was later used for uncertainty quantification.  

 

However, it is worth questioning whether MMEs such as the ones built in CMIP are well adapted to 

quantify climate uncertainties. According to a common critique, MMEs are “ensembles of opportunity” 

(Meehl et al. 2007, p. 754; Tebaldi and Knutti 2007; Knutti et al. 2010) in that their members are not 

designed in the first place to sample the range of uncertainty, but are rather the state-of-the-art models 

available at the time, provided by the modelling centres willing to participate (Parker 2010a, 2010b, 2011, 

2013; Katzav and Parker 2015). Indeed, any modelling centre may in principle apply for archiving its own 

GCM outputs in the CMIP database, as long as the model complies with the imposed standards of CMIP. 

 

What this criticism tells us is that, when scientists historically first saw the opportunity to take advantage 

of the plurality of GCMs developed all over the world, it was too late to build MMEs with adequate 

properties for quantifying an uncertainty range. We analyse the situation as an epistemological change: 

When building GCMs, scientists design and tune them to get the representations of the climate that are 

expected to provide the most accurate projections. From this perspective, an ensemble is “a collection of 

best guesses” (Parker 2013), i.e. a set of models that are roughly equally good and equally bad. However, 

covering the full range of uncertainty requires more than a collection of best guesses. The GCMs must 

jointly contribute to forming a representative sample of climate possibilities, and this sample must possess 

adequate properties to this end. Given the arguments that MMEs are ensembles of opportunity, we will 

first make clear what these adequate properties are commonly supposed to be: they include systematicity, 

comprehensiveness, and model independence (Section 2). 

 

 

2 Four kinds of uncertainties are presently identified in IPCC reports: first, internal variability uncertainty, 
stemming from the chaotic and spontaneously varying nature of the climate system; second, model 
uncertainty, due to omissions, idealisations and incomplete knowledge of the climate system represented 

by the model; third, scenario uncertainty, due to dependence on socioeconomic factors including future 

(global) (geo)political agreements to control greenhouse gases and aerosol emissions, technological 

advances or population movements; and finally, uncertainties in future natural radiative forcing caused 

by unpredicted solar and volcanic activities (Kirtman et al. 2013, AR5WGI chapter 11, section 11.3.6.2, p. 

1007). Within model uncertainty, it is common to distinguish structural from parameter uncertainty: 

parameter uncertainty stems from the fact that, given a choice of structural representation, the best values 

of the constant parameters to be used in the model equations are unknown or ambiguously defined 

(Rougier 2007; Winsberg 2012; Frigg, Stainforth and Smith 2013). 
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The “ensemble of opportunity” criticism implicitly contains a positive message: MMEs could, in principle 

at least, be better designed. In other words, if we could coordinate the worldwide development of GCMs, 

then we might be able to design the members of MMEs to provide, for the same computing cost, a more 

reliable quantification of uncertainties about future climate.3 This suggestion allows us to address what 

Parker (2018) introduces as one of the remaining philosophically interesting questions related to model 

ensembles: “How can ensemble studies be designed so that they probe uncertainty in desired ways?” 

 

In order to allow for the construction of better ensembles, we first need a characterisation of what GCMs 

are, and how MMEs should be designed. This is what our contribution aims to offer.  

 

Beforehand, we make explicit why, following Parker (e.g. 2010b, 2013), MME optimisation is particularly 

hard to conceptualise (Section 3). We then introduce two views on how an MME should be constructed 

and assessed, depending on the object we assume an ensemble is a sampling of. Hence these views come 

with different interpretations of GCMs constituting MMEs. These interpretations are not complete or 

mutually exclusive. They rather highlight different aspects of GCMs. 

 

The first interpretation is suggested by the definition of structural uncertainty: Models are combinations 

of modules and parameterisations. An ensemble is here obtained by “plugging and playing” with 

interchangeable modules and parameterisations (Section 4). 

 

The second interpretation is suggested by practices underlying climate modelling as a social and epistemic 

process: Models are aggregations of expert judgements that result from a history of epistemic decisions 

made by scientists about the choices of representation. An ensemble is here a sampling of expert 

judgements from modelling teams (Section 5). 

 

Modules and parameterisations are mathematical structures and are therefore of a different nature than 

expert judgements. Hence, as we will show, the two interpretations involve distinct domains from 

philosophy of science and social epistemology. Nevertheless, because they illuminate different aspects of 

GCMs, both interpretations allow us to highlight distinct problems related to MMEs and therefore are 

complementary to each other in our exploration of ways to design better MMEs (Section 6).  

 

More precisely, we will argue that the first interpretation helps in properly formalising the adequate 

properties of MMEs (6.1) while remaining silent on the way we should define the space of model structures 

(6.2). We will further argue that, unlike the first interpretation (6.3), the second interpretation accounts 

for the fact that confidence in model projections is generated by the social and historical processes 

underlying model assessment (6.4) and also for the influence of non-epistemic values in choices of 

representation (6.5). We will finally suggest some consequences of adopting both interpretations for 

designing better MMEs (Section 7). 

 

 

2. Systematicity, comprehensiveness and model independence 

 

 

3 In this paper, we put aside the recent scientific attempts at improving MMEs. For example, methods have 

been developed in order to go beyond the “one-model-one-vote” approach in which each model deserves 

the same weight within the ensemble. They assign different weights to ensemble members to get more 

reliable projections (Sanderson, Knutti and Caldwell 2015a, 2015b). A more recent attempt is to build 

subsets of models, within the main ensemble, that reach independence with regard to specific results of 

interest (Abramowitz, Herger, Gutmann et al. 2018; Herger, Abramowitz, Knutti, et al. 2018). These 

attempts deserve philosophical attention but will not be discussed here. 
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The definition of the adequate properties of MMEs, as well as how they should be met, remain the subject 

of important ongoing discussions within the scientific community. The arguments underlying the idea 

that MMEs are “ensembles of opportunity” convey at the same time an idea of which properties the MMEs 

ought to have. In this section, we present succinctly two well-known criticisms expressed in both the 

scientific and philosophical literature so to make these properties clear. 

 

A first concern is that, because MMEs rely on self-selection by modelling groups, the spread of projections 

is “neither systematic nor comprehensive.” This is described within the last IPCC report in the following 

terms: “because the number of models is relatively small, and the contribution of model output to public 

archives is voluntary, the sampling of possible futures is neither systematic nor comprehensive” (Collins 

et al. 2013, p. 1036). 

 

In statistics, a sampling scheme is said to be systematic when it follows an algorithm which has been 

designed to confer good properties to the statistical estimator (such as asymptotic convergence, or absence 

of statistical bias). To use this technical definition, however, we would need to have first specified what is 

to be sampled. The criterion of comprehensiveness, on the other hand, suggests a deliberate effort to cover 

all possibilities, including the extreme ones. 

 

That the construction of the model ensembles does not follow a systematic sampling process is clear 

enough. It has been recognised that “Model builders put forward various ideas based on their wisdom and 

experience, as well as their idiosyncratic interests and prejudices” and thereby “Model improvements are 

often the result of serendipity rather than systematic analysis” (Held 2005, p. 1611). An undesirable 

consequence of being non-systematic and non-comprehensive is that the tail of distributions is by 

construction subsampled (Räisänen 2007). This means that the outcomes that are considered as unlikely 

but nevertheless plausible are hardly covered by the range of the projections generated by the ensemble. 

And yet such outcomes can be important for political decision-making. 

 

A second pitfall is that models may share design biases (e.g. Tebaldi and Knutti 2007; Knutti et al. 2010; 

Knutti, Masson and Gettelman 2013; Annan and Hargreaves 2017). They may all exclude some important 

processes, or all misrepresent a specific process the same way. It seems that this could be better avoided if 

models were designed more independently of each other. Today, a modelling centre may contribute to 

CMIP with more than one model. In that case, important pieces of computer code overlap in these 

different models because they come from the same lineage and, more generally, emerge from the same in-

house traditions (Flato et al. 2013, AR5WGI chapter 9). Besides this particular case, the history of 

collaborations across modelling centres has generated a complex genealogy with shared modules (e.g. the 

CICE sea-ice model is found in different climate models) and model assumptions (Knutti, Masson and 

Gettelman 2013). 

 

In a nutshell, the two main arguments that MMEs are ensembles of opportunity suggest that the spread of 

projections must in principle be systematic and comprehensive, and that the MME must be a sample of 

independent models. Now that we have made clear some of the adequate properties of MMEs, let us make 

explicit why MME optimisation is particularly hard to conceptualise. 

 

 

3. Present state of the question: the double challenge of conceptualisation 
 

Parker points out at several occasions (2010b p. 989, 2013 p. 220, 2018) that MME optimisation is not easy 

to conceptualise, and should be given philosophical priority.  
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The main problem, she shows, is the difficulty to sample an appropriate space of ensemble members. This 

becomes clear when she highlights the major difference between MMEs and Perturbed-Physics Ensembles 

(PPEs) (2013). While PPEs investigate parameter uncertainty, i.e., uncertainty regarding the value of 

parameters within a given model structure, MMEs investigate structural uncertainty with several model 

structures. It follows that, in PPEs, “the space of possibilities in which we are to identify plausible 

alternatives is clear: it is a space of numerical values”, whereas, in MMEs, “the space of possibilities instead 

ranges over model structures—simulation algorithms to be implemented on machines with specified 

precision and so forth” (2010b, p. 990). 

 

Therefore, while both ensemble approaches are computationally greedy, PPEs are better specified than 

MMEs. In PPEs, the “computational roadblock” is due to the high number of parameters to investigate, 

and yet is expected to be overcome in principle by improved computing approaches. By contrast, in MMEs, 

the systematic uncertainty analysis is overwhelming: “we do not want to set ourselves the task of 

identifying all plausibly adequate model structures, for this would seem to require that we survey all 

possible algorithms that might be implemented on today’s computers (and as part of those algorithms, all 

combinations of all mathematical functions)—a truly mind-boggling task” (2010b, p. 991). 

 

Thus, Parker emphasises that a precondition for systematic uncertainty analysis is to specify and 

circumscribe a finite collection of plausibly adequate model structures, whose size would depend on the 

extent of our background knowledge. But then we would still have to know how to sample systematically 
from this collection of structures: “even if we can specify such a collection, then unless it includes only a 

small, finite number of model structures, so that we can simply try them all […], we will face the further 

challenge of determining what it means to sample systematically from such a collection of structures; this 

is not at all obvious” (2010b, p. 991). 

 

In a nutshell, state-of-the-art MMEs are ensembles of opportunity that have not been initially designed 

to sample structural uncertainty, but, even if we now want to design better MMEs, we would face a double 

challenge: specifying the space of plausibly adequate model structures and sampling systematically from 

this space. With this double challenge in mind, we now seize the problem of MME optimisation by 

offering and discussing two views on how MMEs could be designed; each of them is based on a specific 

interpretation of what models are. 

 

 

4. Models as Modules & Parameterisations 

 

In this section, we present the first interpretation of models as modules and parameterisations (4.1), and 

then we give reasons that justify such an interpretation (4.2 and 4.3). 

 

4.1. Interpretation of models in mathematical and algorithmic terms 

 

According to the first interpretation, GCMs are assemblages of modules. Modules are mathematical models 

that represent specific climate components, for example, the atmosphere, the oceans, sea ice, land surface, 

plus possibly the atmospheric chemistry, the ocean tracers, and the vegetation dynamics. These models 

are built out of well-confirmed physical principles as well as a number of idealisations. 

 

The domain covered by a module is associated with a grid dividing the domain into grid cells, which 

supports the discretisation of the equations of fluid motion that determine the behaviour of the 

atmosphere and oceans. Each module also contains a number of parameterisations. For example, the 

module “atmosphere” can contain, among other things, parameterisations for atmospheric convection, 
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cloud formation, atmospheric mixing by gravity waves, evapotranspiration and radiative scattering by 

aerosols. 

 

Parameterisations can be considered as a sort of idealisation. They are equations representing phenomena 

known to occur within grid cells (convection, radiative transfer). Depending on knowledge of the process 

and available observations, some parameterisations are heavily constrained by theoretical foundations and 

measurements in laboratory experiments (radiative transfers, gravity waves), some may be based on field 

measurements (evapotranspiration), and others are rather based on quite simplified, idealised 

conceptualisations of physical processes (deep convection). The degree of idealisation in some 

parameterisations is such that there are generally a variety of possible formulations for a single process. 

 

Different versions of GCMs could be obtained by interchanging modules. From this perspective, a set of 

GCMs can be seen as a set of combinations of modules, where, for each module type, one has combined 

parameterisations for each phenomenon, and has considered, for each parameterisation, the range of all 

physically plausible parameter values. Note that we remain silent at this stage on how to define the space 

of modules and parameterisations to be considered; we will come back later to this issue (Section 7.2). For 

the sake of the argument, let us consider that a theoretical population of GCMs can be defined as the set 

of all possible combinations of modules, parameterisations, and parameter values, assuming that “all 

possible combinations” are not infinite. 

 

The MME is a statistical sample of that population. Statistical theory seems indeed to provide the formal 

framework to establish what a good MME is. This is suggested in AR5 by Collins and co-authors when 

they write that “the difficulty in producing quantitative estimates of uncertainty based on multiple model 

output originates in their peculiarities as a statistical sample, neither random nor systematic” (2013, p. 

1040, emphasis added). 

 

Within the framework of statistical theory, building a comprehensive and systematic ensemble seems to 

require an automatisation of the sampling of the modules and parameterisations. As we have here defined 

the population of GCMs as an enumerable set, we can foresee the possibility of sampling this population 

automatically. We can imagine an algorithmic system that probes the stock of available modules and 

parameterisations in an automated way, designed so as to satisfy the requirements of systematicity and 

comprehensiveness, which creates MMEs by “plugging and playing” with modules and parameterisations. 

 

4.2. Justification by common definition of structural uncertainty 

 

The first interpretation we have provided is suggested by the very definition of structural uncertainty. 

Structural uncertainty refers to the uncertainty induced by choices of representation of the specific 

processes at work in the climate system, which includes the form of parameterisations (Palmer 2005). 

 

From the assumption that the range of available parameterisations and modules is an expression of 

uncertainty about the representation of these processes, it follows that the variance of the population of 

models probes this uncertainty. 

 

Structural uncertainty is indeed explored via MMEs, in that idealisations vary from model to model “in 

terms of the fundamental numeric and algorithmic structures, forms and values of parameterisations, and 

number and kinds of coupled processes included” (Collins et al. 2013, AR5WGI chapter 12, p. 1039). The 

diversity of models thus stems from differences in the choice of a numerical scheme, the choices of 

modules, and the choices of parameterisations. 
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As it happens, the first interpretation considers GCMs as collections of modules and parameterisations 

that may differ from a member of the MME to another. Thus, this interpretation is justified by the very 

idea that sampling modules and parameterisations is expected to quantify the structural uncertainty, and 

that statistics provide a formal framework for expressing this uncertainty with probabilities (Tebaldi and 

Knutti 2007; Meinshausen et al. 2009; Knutti et al. 2010; Flato et al. 2013, AR5WGI chapter 9, p. 754-755). 

 

4.3. Justification by methodological aspects 

 

Some aspects of the methodology commonly followed in climate modelling support the first 

interpretation. 

 

First of all, the first interpretation of GCMs as sets of modules and parameterisations is compatible with 

the way, in practice, a GCM is built. It is composed of subroutines that are often arranged in different files 

and embedded within a main program; the main program calls the subroutines, passing relevant fluxes 

and state variables to them. This way of organising the computer code into subroutines mirrors the 

common representation of the climate system as an entity which can be decomposed into sub-

components, including the atmosphere, the oceans, the ice sheets, which exchange heat, water, and 

momentum. In this representation, the dynamics of the atmosphere, in turn, emerges from the 

interactions between different objects: cloud formation, precipitation, radiative transfer, heat exchanges, 

and chemical reactions. 

 

Furthermore, the first interpretation also comes with the possibility of developing the different modules 

by distinct teams. Such a division of labour is common in building GCMs. For instance, the ocean model 

NEMO is developed in France as a stand-alone model of ocean dynamics and is used for research activities 

and forecasting services in ocean sciences (NEMO 2019). However, it is also coupled with the LIM model 

of sea-ice dynamics developed in Belgium, and then is coupled with the IFS model developed at the 

European Center for Middle-Range Weather Forecast in Reading, where it is also used as a stand-alone 

model (ECMWF 2019). The ECEARTH model is the combination of these different modules, interfaced 

by a technical piece of software called a coupler, which is designed to allow these different assemblages 

(ENES 2015). 

 

Given that IFS is not the only possible software for simulating atmosphere dynamics, one can imagine a 

collection of alternatives to ECEARTH by plugging in successive alternatives to IFS. Within IFS, different 

parameterisations of the moist convection scheme are available; likewise, different parameterisations are 

available for the heat and momentum exchanges with soil, vegetation, snow and mountains. These 

possibilities provide further opportunities to augment the collection of possible assemblages. 

 

A number of investigators encourage developing a collection of climate models by combining alternative 

modules. Kalnay et al. (1989) advocated “rules for interchange of physical parameterisations” supported 

by methods of “plug compatibility” (p. 620). Similarly, one can read that the so-called Community Climate 

Model (CCSM) was built on software engineering process ensuring its “modularity” and “extensibility” 

(Drake, Jones and Carr 2005). The “Modular Earth Submodel System” relies on a “universal coupler” 

allowing the user to easily control which components are being plugged on a “standard interface” (Jöckel 

et al. 2005). 

 

That said, we will later argue that, even if the modules and parameterisations look individually decent, 

the practice of plugging them together does not always generate an acceptable GCM, because it may lead 

to unexpected and undesirable effects, and also because modularity in GCMs is fuzzy (Section 6.2). 
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Now that we have offered a first interpretation of MME members as sets of modules and parameterisations, 

let us turn to the second interpretation. After this, we will argue that both interpretations, while involving 

distinct philosophical domains, are complementary in reflecting on how to design better MMEs. 

 

 

5. Models as Aggregations of Expert Judgements 

 

In this section, we present the second interpretation of models as aggregations of expert judgements (5.1) 

and then we give reasons that justify such an interpretation (5.2). 

 

5.1. Interpretation of models in terms of expert judgements 

 

According to the second interpretation, models are the products of histories of epistemic decisions made 

by scientists about the choice of representations. This interpretation is suggested by the social dynamics 

underlying scientific practices in climate modelling. 

 

Throughout the construction of GCMs, modellers make epistemic decisions about the representations 

underlying the models. Such decisions include the choices of the numerical scheme, the modules and the 

parameterisations that the models contain. Models pass multiple quality control procedures during which 

assessments are made on their acceptability. 

 

Besides the direct choices of representation, the criteria of acceptability of internal and external 

consistency are also subject to judgement. Internal consistency includes the absence of numerical errors 

(bugs) and compatibility between different scientific assumptions. External consistency refers to 

consistency of our knowledge of the state of dynamics of the climate system. The collection of expert 

judgements made throughout the history of a model is effectively encoded in the code of the GCM, along 

with boundary conditions, parameters, and even minute details such as compiler options. 

 

The decisions underlying the choice of representations involve expert judgements from modelling teams. 

Expert judgements are based on objective knowledge but also contain subjective components that depend 

on the experience of the experts. On this view, building an ensemble is about sampling expert judgements, 

historically made by modelling teams. In other words, it is about sampling expert judgements from 

different research institutes. They are algorithmically formalised and encoded within the software 

including the computer code, the standard boundary conditions and the parameter values. 

 

5.2. Justification by practices 

 

The second interpretation finds its justification in the scientific practices underlying climate modelling. 

 

First of all, models are not built from scratch. The representations they contain often stem from older 

versions that have been embedded and tested within previous models. It is not uncommon that 

representations are revised and reused from one generation of models to another. In other words, the 

genesis of the representations that a model contains can precede the building of any particular model. 

Models belong to families and genealogies of models (Knutti, Masson and Gettelman 2013). They succeed 

each other and, for each new generation, scientists make decisions on which representations will be 

retained from one model to the next and how they will be improved. 

 

Second, when developing a climate model, climate scientists may choose to couple certain pre-existing 

components for practical reasons (e.g. some code has already been tested on the local high-performance 

computer; there is local knowledge about the module in question). However, certain combinations may 
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appear more scientifically consistent than others. For example, it may be judged better to use ocean and 

atmospheric modules that implement a similar numerical scheme. In other words, scientists usually make 

judgements when choosing to combine modules and parameterisations. 

 

Third, and perhaps more crucially, there is an important phase of work between the decision to obtain a 

GCM by combining modules, and the final step of producing simulations with the GCM to contribute to 

the MME ensemble. This phase includes testing, bug tracking, and tuning. It routinely involves a team of 

scientists and technicians in a process that requires frequent decisions, until the GCM is judged to be ready 

for producing the experiments that will be lodged in the CMIP database. This process shows that the team 

of scientists takes ownership of that specific combination of the model, and, through the testing and tuning 

phases, injects information, which contributes to bringing the present-day simulation into a state that 

they judge acceptable. This injected information is, for instance, about which level of tuning is tolerable, 

which compiler optimisations are acceptable, how much testing should be made, and which aspects of the 

climate system should be taken care of. This information is based on choices that partly reflect the identity 

of the developer team, and partly pertain to epistemic values shared across the community of modellers. 

 

This point of view outlines the fact that an MME member is more than a member of a population obtained 

by the systematic collection of possible assemblages. The testing, bug tracking and tuning process confer 

upon it a specific status owing to experts taking ownership and responsibility of the version of the model 

that they release. 

 

Now that we have introduced two interpretations of what GCMs are and how they should be sampled, 

we want to argue that both interpretations are complementary for reflecting on ways to design better 

MMEs. 

 

 

6. Complementary interpretations 

 

An important distinction between the two interpretations is that, while the second interpretation is more 

descriptively realistic with regard to the social dynamics of climate research and modelling, the first 

interpretation offers merely a synchronic view of model building. In the first interpretation, models are 

seen as mathematical representations with no consideration of the way they are actually built by scientists 

in practice. 

 

That said, as we want to argue, both interpretations are complementary from a philosophical point of 

view. The two interpretations involve distinct philosophical domains: 

 

On one hand, the first interpretation appeals to the part of philosophy of science that studies mathematical 

models as representations of target phenomena and discusses the rational norms and principles under 

which these representations, albeit idealised, produce genuine knowledge, and reflects on the current 

methodologies for validating them. 

 

On the other hand, the second interpretation pertains to the part of social epistemology that, given that 

knowledge is produced collectively by agents, studies the division of scientific labour. This part examines, 

for instance, under which conditions the collaborative practices in scientific research, based on epistemic 

dependence and trust between knowers, can legitimately produce knowledge. The second interpretation 

pertains also to the part of social epistemology that studies how the aggregation of judgements can be 

normatively justified. 
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The complexity of the problem is such that we cannot prefer one interpretation to the other. Both are 

required to study how MMEs can be better designed than they are today. In the end, we contend that 

both interpretations are relevant and offer complementary insights. We will show that they act as 

complementary lenses that could help in recognising, addressing and conceptually framing the various 

aspects of the issues raised by MMEs. 

 

6.1. Formalisation of the adequate properties of MMEs 

 

The question arises whether the given interpretations solve the double challenge of conceptualisation 

(Section 3). Here we will argue that the first interpretation gives half the answer since it is the appropriate 

framework for conceptualising the norms of systematicity, comprehensiveness and independence that 

MMEs need to satisfy. This is an important virtue of the first interpretation over the second. 

 

Let us assume that we have defined a set of modules and parameterisations that delineates formally a 

countable set of possibilities; we will immediately discuss this assumption (6.2). This set of possibilities 

delimits in turn the domain in which inferences are being made and specific questions can be answered. 

 

Then, to answer a question, for example “what is climate sensitivity?”, one will attach, to every 

combination of modules and parameters, the climate sensitivity obtained by running the model following 

a well-specified protocol. If we choose to adopt a Bayesian framework, then we need to define a likelihood 

function, which will effectively rate every individual member of the population, based on a well-defined 

set of observations. With these assumptions at hand, it is the statistician’s job to sample the population 

such as to deliver an estimate of the probability distribution function of climate sensitivity and to answer 

the question. 

 

The approach for designing such an ensemble of experiments can then be formalised in the language of 

experimental design with computer experiments (see, e.g. Santner, Williams and Notz 2003). Classically, 

the statistician, guided by the climate scientist, will formulate assumptions about the interdependency of 

different models of the population. One mathematical way of formalising the problem is to attach a large 

list of numbers to every combination of modules, parameterisations, and parameters. The list will contain 

integers, which indicate the choice of a particular module or parameterisation, and real numbers, which 

specify the values of parameters attached to this parameterisation. The set of all the lists can then be seen 

as a formal, mathematical space, which mirrors the population of models. 

 

The problem is then to sample this space efficiently. To this end, one will typically assume that a given 

climate model will simulate similar climates if run with two very similar parameter values. One may also 

assume that two climate models with the same cloud scheme should, a priori, have similar climate 

sensitivities. It is on the basis of these different assumptions (which may be revised en route, as the result 

of simulations is obtained) that statisticians solve the problem of optimal design (given a budget of 

experiments, selecting which ones will be a priori most informative), and avoid leaving unexplored areas 

(space-filling design). 

 

In other words, with the first interpretation, the demand of IPCC authors to have systematic and 

comprehensive sampling can be given a technical meaning, which can be, in principle, applied once the 

mathematical space hosting the population of models is defined. 

 

By contrast, the second interpretation does not support a statistical formalisation of such properties. This 

is why MMEs are said to be “ensembles of opportunity”. The second interpretation could still be a fruitful 

framework to discuss the properties of systematicity, comprehensiveness and independence. For instance, 

Parker (2011, pp. 591-593) draws a parallel between the role of independence between models in our 
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confidence in robust climate-modelling results and the independence between voters in a jury’s final 

choice following generalisations of Condorcet’s Jury Theorem. Thus she studies the independence 

between models through the lens of the theories of decision and social choice that are more naturally 

connected with the second interpretation. 

 

6.2. Specification of the space of model structures 

 

The question still remains on how to specify and circumscribe the space of model structures. The first 

interpretation is blind to the way scientists create modules and parameterisations, which involves creative 

steps and judgements as model output and new data become available. On the other hand, this view is 

compatible with a very large collection of model structures. In principle, we could imagine a list of all 

possible modules and parameterisations. But the approach just described in 6.1 would be unworkable given 

the computation cost of the GCMs. 

 

In fact, acknowledged by Murphy et al., (2007), “It is not clear how to define a space of possible model 

configurations of which [today’s multimodel ensemble] members are a sample” (Parker 2010b, 2011). 

What is the criterion of selection? Should we “identify a collection of plausibly adequate structures among 

which we can expect to find at least one that is actually adequate” as Parker suggests (2010b, p. 991)? 

 

We would rather suggest selecting, among the available model structures, the ones based on contradictory, 

yet complementary, representations that presumably might not converge in their projections. For 

example, if the community finds equally valid the finite difference, the spectral, and the finite element 

schemes, it may require the MME to cover these three numerical schemes. If it finds no reason a priori to 

favour the sea ice module over another, it could also include both of them. If it disapproves that many 

GCMs in an MME use the same coupler, it may ask to use alternative formulations. 

 

However, today, the existing modules and parameterisations might be considered as but a small fraction 

of the plausible ones. In this sense, one may require scientists not to overlook manners of representing the 

different aspects of the climate system in the future. The pragmatic answer to this objection is to consider 

that the existing modules and parameterisations may be enough because they represent our current state 

of best knowledge about the climate system that, in turn, can represent a legitimate Bayesian prior. Our 

justification stands in the way confidence in GCMs is built in practice. As we will show, confidence in 

GCMs cannot be gained in combinations of simply plugged modules (6.3) but is actually found within the 

social and historical processes of modelling that the second interpretation mirrors (6.4). 

 

6.3. Why the modular view of GCMs fails 

 

The first interpretation offers a modular view in which GCMs can be generated by “plugging and playing” 

with modules and parameterisations. But we will argue that one cannot be confident a priori that any 

resulting combination will produce an acceptable GCM. There are two reasons: the rules that define what 

a good model is, and how it should be calibrated, are not and cannot be decided unambiguously; and 

modularity is fuzzy. 

 

It is impossible in practice to decide everything in advance so that GCMs can then be constituted 

automatically. Here is the main argument. Sampling modules and parameterisations in an automated 

fashion with the help of an algorithmic system would in principle generate a tremendous base of possible 

GCMs, from which an MME with the expected properties could be optimally designed. But practice has 

shown that the mere assemblage of plausible modules with plausible parameterisations does not 

necessarily produce an acceptable GCM; an acceptable model is able, by definition, to provide reliable 

information about the dynamics and evolution of the climate. Consequently, the rejection of some 
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combinations of modules and parameterisations is at some point necessary. This cannot be performed by 

the algorithmic system, since the rules of rejection cannot all be set a priori: it has to be performed a 
posteriori by scientists instead, thus involving expert judgements. 

 

The main reason why the assemblage of modules and parameterisations does not always lead to an 

acceptable GCM is because coupling large non-linear dynamic modules can result in numerical 

instabilities and deviations from the “true” climate4. Thus, some combinations of modules and 

parameterisations inevitably turn wrong, but such effects are difficult to anticipate. For instance, 

simulations with a GCM freshly assembled from reputable ocean and atmosphere modules often produce 

disappointing results. In other words, the set of acceptable GCMs is a subset of the space generated by the 

combination of acceptable parameterisations. 

 

Furthermore, which criteria need to be retained in order to decide which GCM is acceptable is a modelling 

decision. Such a decision cannot be made a priori because it depends on the observations at hand and the 

criteria used to assess whether the observations are sufficiently well reproduced. As no model can 

reproduce all observations, these criteria can legitimately depend on the questions addressed with the 

model. 

 

If GCM acceptance criteria were defined in advance, assuming a reference set of observations and a 

standardised metric quantifying the distance between the simulation and the observations, then, one could 

imagine some algorithmic procedure for sampling the set of acceptable GCMs. In practice this would, 

however, require consensus among modellers about which observations to use, which distance metric to 

adopt, and which experiments to run with the GCM candidate to generate the test data needed for 

deciding its acceptability. Such an approach would be transparent, but it would also be restrictive, because 

it would impose one view about what makes a GCM acceptable. Therefore, it may miss its objective as a 

“comprehensive” assessment of climate change uncertainties. 

 

In other words, expert judgements reduce and constrain the range of uncertainty. In this way, the range 

of uncertainty cannot be seen as merely a space of possibilities generated by a set of parameterisations; it 

is constrained by expert judgements that determine what is a valid model, considering both the design 

and the output of this model. 

 

We can now further de-idealise the modular view: as Lenhard and Winsberg argue (2010), modularity in 

GCMs is actually fuzzy. The reason is precisely that GCMs are products of their own contingent histories. 

As a result, modules are not autonomous nor interchangeable, and their contributions do not just add up 

linearly. It follows that in no way can they provide acceptable GCMs just by being plugged to each other 

in an automated fashion. 

 

During the runtime of the simulation, fuzzy modularity is due to that modules interact continuously to 

each other, exchanging data: “data are continuously exchanged between all modules during the runtime 

of the simulation. The overall dynamics of one global climate model is the complex result of the interaction 

of the modules—not the interaction of the results of the modules.” (Lenhard and Winsberg 2010, p. 256). 

An important consequence is that the “net-effect” of a module or a parameterisation can be tested only by 

the overall outcome of all the modules and all the parameterisations that compose the model (p. 256). 

 

 

4 The first generation of models associating an atmosphere module with an ocean module (e.g. Cubash et 

al. 1992) included an artificial flux, called, “freshwater-flux correction” calibrated to stabilise the ocean 

circulation into an acceptable state. Current models no longer include a freshwater flux correction, but 

tuning an ocean-atmosphere model such that the ocean behaves well remains a delicate exercise. 
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In model development, fuzzy modularity is due to the generatively entrenched nature of methodological 

choices made in climate modeling. Lenhard and Winsberg (2010) — and also Winsberg (2012, p. 127-129) 

and Parker and Winsberg (2018) — claim that the historical nature of climate model optimisation can be 

grasped by the concept of generative entrenchment; the latter has been introduced by Wimsatt (2007) for 

characterising adaptive design functions. On this view, model optimisation is considered as a layered 

process that consists in sequentially adding and assembling modules by adapting them to each other with 

the final aim of increasing the overall performance of the model. This can be seen as an evolutionary 

process where modules are adjusted, on the basis of what is there already, following pragmatic software-

engineering measures (Lenhard and Winsberg 2010, p. 257). 

 

To sum up, the modular view of GCMs falls short in accounting for important modelling limitations: 

“plugging and playing” with modules and parameterisations would not automatically yield acceptable 

GCMs, and, in practice, they are not interchangeable entities since modularity in GCMs is fuzzy. 

 

6.4. Confidence in models generated by the social processes 

 

Unlike the first interpretation, the second interpretation leads us to recognise that the social and historical 

processes underlying model assessment warrant the reliability of models. Such processes generate more 

confidence than the mere selection among the combinations of the possible modules and 

parameterisations. 

 

Consider HadGEM3, the flagship climate modelled used by the UK Met Office Hadley Centre. On its 

presentation sheet, it is presented as “the third generation of HadGEM configurations [that] includes the 

NEMO ocean model and CICE sea-ice model components” (USGCRP 2019). Attention is thus drawn on 

the modules (NEMO and CICE) but the presentation sheet also focuses on its lineage: this is the third 

generation of a family, which itself is a successor to the HadCM family. 

 

An important warrant of GCMs is therefore that model assessment is based on a history of tests and 

epistemic decisions based on expert judgements. Models have a quality that is historically gained. While, 

following the first interpretation, HadGEM3 would be considered as just one model among many other 

models, it has actually withstood various rigorous “pass or fail” tests. This partially explains why it has a 

particular value and brings more confidence in the eyes of climate scientists. 

 

The lineage is also an important warrant of GCMs in that it expresses an in-house tradition. In the 

HadGEM3 example, one can see that the UK Met Office has coordinated the efforts of its employees to 

deliver a climate model satisfying what this institution considers to be good practices in the development 

of a climate model. This includes quality assurance policies, coding standards, the practice of tuning 

(selecting a best set of parameters) and in-house policy in response to different events such as the discovery 

of bugs or the availability of new observations. At the Hadley Center, climate scientists autonomously 

exert expert judgement in the development of parameterisations, in the use of observations, in the 

management of international collaborations, but the cycle of model development and release is governed 

strategically. 

 

Following that perspective, an institute such as the Hadley Centre can be seen as a model-generating 
agent: it produces a model that, it considers, satisfies acceptable criteria of internal and external 

consistency. 

 

6.5. Significance of values in climate models 
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Because expert judgements are situated and contain the standpoints of their owners, sampling expert 

judgements is also about sampling non-epistemic values and other research contingencies that may 

influence scientists. Thus, a significant contribution that the second interpretation offers is to enable us to 

consider the influence of non-epistemic values in climate modelling. 

 

Non-epistemic values are contextual values of a social, economic, political, cultural or ethical kind. They 

determine purposes and priorities in representing some particular aspect of the climate system (Intemann 

2015; Parker and Winsberg 2018). They therefore depend on the modelling centre, and thus, models may 

differ from one centre to another depending on the ethical values the research group respectively has. As 

Intemann (2015) illustrates, if one is ethically concerned with how to adapt to worst-case scenarios, 

models should be built so as to capture extreme weather events. If one feels moral obligations to protect 

future generations, models should be designed to support longer runs (e.g. 200 years versus 100 years). On 

the other hand, scientists may prioritise certain kinds of representation given the regional interests in 

knowing the climate future of their home country. Thus, regional concerns about climate change may also 

create diversity. One could think that, for example, Indian centres would have more interests in the 

monsoon, European centres in storms, Canadian or Russian centres in permafrost and sea ice, Dutch 

centres in rising waters. 

 

Other research contingencies may also be at stake. The choices of representations may depend on the 

peculiar specialities of research centres, and specific competencies and favourite subjects of their members. 

 

Recent philosophical attention has been paid to whether these non-epistemic values contravene the 

“value-free” ideal of climate science and lead to “wishful thinking” (Intemann 2015). “Wishful thinking” 

is “based on what we wish the model would predict rather than decisions about what will make the model 

more accurate or accountable to the “way the world really is” (Brown 2013)” (Intemann 2015, p. 221). 

 

Following this argument, one could be worried about a form of social bias among experts which makes 

them oversensitive to certain aspects of the problem at the expense of others, in a way that produces 

undesirable effects on their collective judgement. To cite one concrete example, James et al. (2018) explain 

how the lack of presence of African scientists in climate model development teams affects the model 

development and validation process in a way that impoverishes climate scientists' assessment of the future 

climate in Africa. That said, some values may be desirable (Intemann 2015; Schroeder 2017), and diversity 

of standpoints and associated values may be important in an intergovernmental context in helping to avoid 

undesirable biases.  

 

In the second interpretation, building an MME is the process of sampling a population of expert 

judgements from research institutes. The advantage of this account is that it offers a perspective for 

criticising the representativeness of the resulting sample and maybe, when desirable, to correct it, e.g., in 

excluding a model because some purposes and priorities are insufficient or lacking, such as the goal of 

simulating African regions. These considerations may be surprising from the mere perspective of the 

philosophy of science dealing with scientific representations. Nevertheless, they are consistent with the 

dominant literature on values in science. 

 

 

7. Practical upshot 
 

Each interpretation offers a partial view for designing better MMEs. Both are complementary, and 

adopting them simultaneously can offer a more comprehensive picture of the epistemological issues raised 

by ensemble optimization. Then, once we recognise this, it is worth questioning how differently scientists 
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should operate. What are the consequences of looking at MMEs from both perspectives for the practice of 

ensemble modelling? 

 

While the first interpretation seems widely (implicitly) shared within the scientific community, the 

second interpretation is certainly a less common way of considering MMEs. From this new perspective, 

scientists can see the MME as an elicitation of experts. The GCMs in the MME could then be treated as 

opinions of experts. Hence, one could in principle defer the problem of generating a population of models 

by sampling a population of institutes, which would all deliver their best model simulations. The 

simulations could even be associated with a measure of uncertainty, which could be obtained by sampling 

what they consider to be reasonable parameter ranges as in Murphy et al. (2004). Given that the actual 

population of research centres actually exists, the models may be collected comprehensively. 

 

One can indeed find, in the model development process, an analogy with the build-up of expertise on a 

specific subject. Academic knowledge is present in the basic equations concerning fluid dynamics and 

their parameterisations, and “experience” is encoded throughout the long process of parameterisation 

choices, model adjustment and tuning, which is nurtured by observations and the personal experience of 

individual researchers. Models therefore answer questions on the basis of encoded academic knowledge 

and experience. Rougier and Goldstein endorse this point of view when they write that “Insofar as the 

simulator is the outcome of many judgements, its distribution is subjective” (2014, p. 105). 

 

Concretely, if a coordination of MMEs were to be established worldwide, at a collective level, it could 

potentially address two important criticisms behind the argument that MMEs are ensembles of 

opportunity, somewhat differently as they are today. The analogy with expert elicitation could help us to 

spell out the terms of this coordination. 

 

First of all, one should see that there is not always reason to worry about the fact that different models 

share codes. For some subject matters, it is not considered to be a problem that different experts share 

knowledge and factsheets. It is indeed important to distinguish between different types of dependencies 

among models and that not all equally undermine the trust we can place in consensus projections. Some 

dependencies, for example, may simply reflect a prior consensus on the fundamental physical equations 

governing the climate system. By contrast, model idealizations, parameterisations and calibrations are 

often “in-house” traditional recipes of centres whose transmission from a model to another may be 

epistemically harmful. Rather than speaking of independence, which can easily be taken as a criterion 

involving information theory, one could prefer to value the concept of scientific autonomy, which 

emphasises the ability of scientific teams to take their own decisions, based on their own epistemic and 

non-epistemic values. 

 

To pursue the analogy, one could be worried about a form of conformism or common biases among 

experts. In particular, it seems that scientists favour models whose projections are more in the centre of 

the “consensus range” than models that provide projections far outside this range. As noticed by Knutti, 

“Although this is hard to confirm or reject, there may even be an element of ‘social anchoring’ and a 

tendency towards consensus” (Knutti 2010, p. 397). This worry is getting particularly serious if one aims 

to design a set of complementary GCMs (rather than a mere collection of best guesses). Conformism can 

be found more particularly in the practice of tuning. Examples include tuning a model such that its climate 

sensitivity falls within the range of other models (i.e. the “consensus range”), using similar targets for 

calibration (e.g. sea-ice cover, thermohaline circulation depth, monsoon area and intensity), or calibrating 

a model over similar historical cases. Here, one could imagine that scientists would have to resist to this 

tendency towards conformism. 
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Finally, if one adopts the two interpretations simultaneously, sampling models appears to be at the centre 

of a trade-off between, on one side, a coordination of worldwide model development, that should aim at 

diversity among modules and parameterisations (following the first interpretation), and, on the other side, 

scientific autonomy, particularly in the tuning of models that may well be the place of highest risk of 

conformism (as suggested by the second interpretation). 

 

 

8. Conclusion 

 

Projections of future climate change cannot rely on a single model. It has become common to rely on 

multiple simulations generated by Multi-Model Ensembles (MMEs), especially to quantify the uncertainty 

about what would constitute an adequate model structure. 

 

We offered two interpretations of what GCMs are and how MMEs should be designed. In the first 

interpretation, models are combinations of modules and parameterisations; an MME is obtained by 

plugging presumably interchangeable modules and parameterisations. In the second interpretation, 

models are aggregations of expert judgements that result from a history of epistemic decisions made by 

scientists about the choices of representation; an MME is a sampling of expert judgements from modelling 

teams. 

 

Modules and parameterisations can be seen either as mathematical structures or as historical expert 

judgements. These two interpretations therefore instantiate objects of a different nature and involve 

distinct epistemologies. We nevertheless argued that they may be used in a complementary manner in 

order to explore ways to design better MMEs. While the first interpretation helps in properly formalising 

the adequate properties of MMEs, the second accounts for the fact that confidence in model projections 

also hinges upon trust in the social and historical processes underlying model assessment, and the 

influence of non-epistemic values in choices of representation. We finally suggest the consequences of 

viewing MMEs as elicitations of experts. Following Winsberg (2018, last chapter), we think that the recent 

developments in social epistemology are beneficial to study the objects of climate science. We hope that 

adopting the two perspectives we have made explicit could help in framing other epistemic issues as well. 
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