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Let k be a totally real number field and p a prime. We show that the "complexity" of Greenberg's conjecture (λ = µ = 0) is of padic nature governed (under Leopoldt's conjecture) by the finite torsion group T k of the Galois group of the maximal abelian p-ramified pro-pextension of k, by means of images in T k of ideal norms from the layers k n of the cyclotomic tower (Theorem 5.2). These images are obtained via the formal algorithm computing, by "unscrewing", the p-class group of k n . Conjecture 5.4 of equidistribution of these images would show that the number of steps b n of the algorithms is bounded as n → ∞, so that Greenberg's conjecture, hopeless within the sole framework of Iwasawa's theory, would hold true "with probability 1". No assumption is made on [k : Q], nor on the decomposition of p in k/Q.

Let k be a totally real number field, p ≥ 2 a prime number and S the set of p-places p | p of k. Let k ∞ be the cyclotomic Z p -extension of k and k n the degree p n extension of k in k ∞ . Let C k and C kn be the pclass groups of k and k n , respectively. We denote by T k the torsion group of A k := Gal(H pr k /k), where H pr k is the maximal abelian S-ramified pro-pextension of k (i.e., unramified outside S), assuming the Leopoldt conjecture for p in k ∞ . The group T k is closely related to the deep Tate-Chafarevich group (same p-rank):

III 2 k := Ker H 2 (G k,S , F p ) → ⊕ p|p H 2 (G kp , F p )
, where G k,S is the Galois group of the maximal S-ramified pro-p-extension of k (hence A k = G ab k,S ) and G kp the local analogue over k p ; but T k is very easily computable and relates the p-class group and the p-adic regulator.

We call Greenberg's conjecture for k and p, the nullity of the Iwasawa invariants λ, µ (see the origin of the conjecture in [10, Theorems 1 and 2]). The main effective test for this conjecture is the criterion of Jaulent [14, Théorèmes A, B] proving that the conjecture is equivalent to the capitulation in k ∞ of the logarithmic class group C k of k (defined in [START_REF] Jaulent | Classes logarithmiques des corps de nombres[END_REF] with PARI/GP pakage in [START_REF] Belabas | The logarithmic class group package in PARI/GP, Pub. Math. Besançon[END_REF]), an invariant also related to S-ramification theory. 1 For specific cases of decomposition of p, as in [10], see [START_REF] Nguyen | Formules de genres et conjecture de Greenberg[END_REF].

In our opinion, many aesthetic statements, equivalent to Greenberg's conjecture, are translations of standard formalism of class field and Iwasawa's theories. In other words, some "non-algebraic" p-adic aspects of the "diophantine construction" of the class groups at each layer k n , are not taken into account. We show how this construction works and study its arithmetic complexity by means of the number b n of steps of the algorithms which become oversized in the tower as soon as λ or µ are non-zero, suggesting the triviality of the algorithms for n ≫ 0 (i.e., b n ≤ 1).

Our purpose has nothing to do with computational or theoretical approaches in the area of the "main theorem" on abelian fields (analytic formulas, cyclotomic units, L p -functions, etc.) as, for instance, the very many contributions (cited in our papers [START_REF] Gras | Approche p-adique de la conjecture de Greenberg pour les corps totalement réels[END_REF][START_REF] Gras | Normes d'idéaux dans la tour cyclotomique et conjecture de Greenberg[END_REF]), also giving computations and suggesting that equidistribution results may have striking consequences for the conjecture; our viewpoint is essentially logical and based on the governing group T k , because we have conjectured that T k = 1 for all p ≫ 0, due to 1 For more information on the main pioneering works about the practice of this theory, see "history of abelian p-ramification" in [9, Appendix] (e.g., Gras: "Crelle's Journal" (1982/83), Jaulent: "Ann. Inst. Fourier" (1984), Nguyen Quang Do: "Ann. Inst. Fourier" (1986), Movahhedi "Thèse" (1988) and others). For convenience, we mostly refer to our book (2003/2005), which contains all the needed results in the most general statements. For more broad context about the base field and the set S, see [START_REF] Maire | Sur la dimension cohomologique des pro-p-extensions des corps de nombres[END_REF] and its bibliography.

properties of p-adic regulators [START_REF] Gras | Heuristics and conjectures in the direction of a p-adic Brauer-Siegel theorem[END_REF] (p-rationality of k, as defined in [START_REF] Movahhedi | Sur les p-extensions des corps p-rationnels[END_REF] for such fields), which relativizes Greenberg's conjecture, obvious in that case.

In many papers, as in [10], the decomposition of p in k/Q plays a specific role, which is not necessary for us. We shall not put any assumption on the degree of k nor on the decomposition of p in k/Q. Conventions 1.1. Subject to replace k by a layer K = k n 0 of k ∞ = K ∞ , one may assume, without any loss of generality, that p is totally ramified in K ∞ /K and is such that Iwasawa's formula for #C kn holds true for all layers above K; indeed, we have λ

(K) = λ(k), µ(K) = [K : k] µ(k) and ν(K) = ν(k) + λ(k) n 0 .

Main results

The results of the paper may be described as follows in two parts: (A) From results of [START_REF] Gras | Invariant generalized ideal classes-Structure theorems for pclass groups in p-extensions[END_REF][START_REF] Gras | Approche p-adique de la conjecture de Greenberg pour les corps totalement réels[END_REF][START_REF] Gras | Normes d'idéaux dans la tour cyclotomique et conjecture de Greenberg[END_REF]. The formal algorithm, determining #C kn (whence giving the Iwasawa invariants), computes inductively the classical filtration (C i kn ) i≥0 , where C i+1 kn /C i kn := (C kn /C i kn ) Gn , for all i ≥ 0 (C 0 kn = 1), where G n = Gal(k n /k). We have the decreasing i-sequence:

(2.1) # C i+1 kn /C i kn = #C k #N kn/k (C i kn ) • p n•(#S-1) (Λ i n : Λ i n ∩ N kn/k (k × n ))
,

with the increasing i-sequence of groups Λ i n , from Λ 0 n = E k : (2.2) Λ i n := {x ∈ k × , (x) = N kn/k (A), cℓ kn (A) ∈ C i kn }. Then C i+1
kn /C i kn in (2.1) becomes trivial for some minimal i =: b n ≥ 0 (giving C bn kn = C kn ) as soon as the two factors vanish. Thus the length b n of the algorithm depends on the decreasing evolution of the "class factor"

#C k #N kn/k (C i k )
dividing #C k and that of the "norm factor"

p n•(#S-1) (Λ i n : Λ i n ∩ N kn/k (k × n ))
dividing the order of a suitable quotient R nr k of the normalized p-adic regulator R k (defined in [7, § 5]), related to the ramification of p in H pr k /k ∞ (Theorem 3.4, Corollary 4.2). We prove in Theorem 4.3, under Conventions 1.1, the following inequalities (where v p is the p-adic valuation):

b n ≤ λ • n + µ • p n + ν ≤ v p (#C k • #R nr k ) • b n , giving C k = R nr k = 1 ⇐⇒ λ = µ = ν = 0 ⇐⇒ b n = 0 for all n.
Taking k hight enough in the tower, Greenberg's conjecture is equivalent to b n ≤ 1 for all n (Corollary 4.4), which constitutes a spectacular algorithmic discontinuity compared to b n → ∞ if λ or µ are non-zero. In an heuristic point of view, it is "necessary" that the algorithms become limited, because of the unpredictable behavior of the class and norm factors.

(B) One may replace, in (2.2), the ideal norms a = N kn/k (A) by representatives t ∈ I kn ⊗ Z p (I kn is the group of prime-to-p ideals of k n ) whose Artin symbols are in T k , hence finite in number (main Theorem 5.2); so, each step of the algorithm (i.e., the evolution of the class and norm factors) only depends on at most #T k possibilities, taking the class of the random ideal t, then computing Hasse's symbols on S of numbers τ ∈ k × n ⊗ Z p when t = (τ ) is principal, in other words, for this last case a classical situation involving random Z/p n Z-matrices of symbols for which some equidistribution results are proven [START_REF] Smith | 2 ∞ -Selmer groups, 2 ∞ -class groups, and Goldfeld's conjecture[END_REF]Section 6].

Then, under the natural Conjecture 5.4 of independence and randomness of the data obtained, inductively, at each step of the algorithm, one would obtain that Greenberg's conjecture holds true with "probability 1", suggesting possible analytic proof of this fact, using the powerful techniques used in [15,[START_REF] Smith | 2 ∞ -Selmer groups, 2 ∞ -class groups, and Goldfeld's conjecture[END_REF] for degree p cyclic extensions of Q, but unfortunately, probably not a complete proof of Greenberg's conjecture.

3. Abelian p-ramification and genus theories 3.1. Abelian p-ramification -The torsion group T k . Recall the data needed for the study of the Galois group A k of the maximal abelian pramified pro-p-extension H pr k of k and its torsion group T k (under Leopoldt's conjecture). Let k ′× be the subgroup of k × of prime-to-p elements:

(a) Let E k be the group of p-principal units ε ≡ 1 (mod p∈S p) of k. Let U k := p∈S U p be the Z p -module of p-principal local units, where U p is the group of p-principal units of the p-completion k p of k. Let µ k (resp. µ p ) be the group of pth roots of unity of k (resp. k p ). Put W k := p∈S µ p and

W k := W k /µ k ; thus, W k = W k for p = 2 and W k = W k / ±1 for p = 2.
(b) Let ι : k ′× ⊗ Z p → U k be the canonical surjective diagonal map. Let E k be the closure of ιE k in U k and let H nr k be the p-Hilbert class field of k. By class field theory, Gal(

H pr k /k ∞ H nr k ) ≃ tor Zp (U k /E k ) = U * k /E k , where U * k := {u ∈ U k , N k/Q (u) ∈ ±1 }.
(c) Let C k be the p-class group of k and let:

(3.1) R k := tor Zp (log(U k )/ log(E k )) = log(U * k )/ log(E k ) be the normalized p-adic regulator [7, § 5]. (d) The sub-group of T k fixing the Bertrandias-Payan field H bp k is iso- morphic to W k (the field H bp
k is the compositum of all p-cyclic extensions of k embeddable in p-cyclic extensions of arbitrary large degree).

Recall some classical fundamental results (under Leopoldt's conjecture) that may be found in [START_REF] Gras | Class Field Theory: from theory to practice[END_REF]Corollary III.3.6.3], [7, Lemma 3.1, Corollary 3.2], [13, Définition 2.11, Proposition 2.12], then [18, § 1] or [START_REF] Movahhedi | Sur les p-extensions des corps p-rationnels[END_REF], via cohomology: Proposition 3.1. We have the exact sequences:

(3.2) 1 → U * k /E k -→ T k -→ Gal(k ∞ H nr k /k ∞ ) ≃ C k → 1, (3.3) 1 → W k -→ U * k /E k -→ log(U * k )/ log(E k ) ≃ R k → 0. 3.2.
Genus theory. We denote by H nr kn the p-Hilbert class field of k n . Since p is totally ramified in k n /k by convention, the inertia groups

I p (k n /k) in k n /k, p ∈ S, are isomorphic to G n = Gal(k n /k).
Let ω n be the map which associates with ε ∈ E k the family of Hasse's symbols ε , kn/k p ∈ G n , p ∈ S. This yields the genus exact sequence interpreting the product formula of the Hasse symbols [3, Corollary IV.4.4.1]:

1 → E k /E k ∩ N kn/k (k × n ) ωn ---→ Ω(k n /k) πn ---→ Gal(H kn/k /k n H nr k ) → 1, where Ω(k n /k) := (σ p ) p∈S ∈ G #S n , p∈S σ p = 1 ≃ G #S-1 n
, then where H kn/k is the p-genus field of k n /k defined as the maximal sub-extension of H nr kn , abelian over k. The image of ω n is contained in Ω(k n /k) and the map π n is defined as follows: with (σ p ) p∈S ∈ G #S n , π n associates the product of the extensions σ ′ p of the σ p in the inertia groups

I p (H kn/k /H nr k ) generat- ing Gal(H kn/k /H nr k ); from the product formula, if (σ p ) p∈S ∈ Ω(k n /k), then p∈S σ ′ p fixes both H nr k and k n , whence k n H nr k . The genus exact sequence shows that the kernel of π n is ω n (E k ). Diagram 1. T k R k C k H bp k W k k ∞ H nr k k ∞ k ∞ H kn/k H pr k ----------------- p∈S σ ′ p C 1-σn kn C k G kn/k H kn/k H nr kn k n H nr k k n H nr k k G n = σ n I p (H kn/k /H nr k ) p∈S U k /E k
We have, using Chevalley's ambiguous class number formula [2, p. 402]:

(3.4) #G kn/k = #Gal(H kn/k /k n ) = #C kn #C 1-σn kn = #C k • p n•(#S-1) (E k : E k ∩ N kn/k (k × n ))
In the Diagram, the genus field H kn/k is the fixed field of the image of

C 1-σn kn , where G kn/k = Gal(H kn/k /k n ) is the genus group in k n /k. 3.3. Groups R nr k , R ram k -Ramification in H pr k /k ∞ .
The genus group G kn/k has, in our context, the following main property that will give Theorem 3.4 when n is large enough:

Lemma 3.2. For all n ≥ 0, k ∞ H kn/k ⊆ H bp k . Then #G kn/k #C k • R k , which is equivalent (using formula (3.4)) to p n•(#S-1) (E k : E k ∩ N kn/k (k × n )) #R k .
Proof. Indeed, using the idelic global reciprocity map (under Leopoldt's conjecture), we have the fundamental diagram [3, § III.4.4.1] of the Galois group of the maximal abelian pro-p-extension k ab of k, with our present notations, where F v is the residue field of the tame place v (finite or infinite) and where H ta k is the maximal tame sub-extension of k ab . The fixed field of

U k = p∈S U p is H ta k since each U p is the inertia group of p in k ab /k. Thus, tor Zp (U p ) = µ p , restricted to Gal(H pr k /k), fixes k ∞ and since k ∞ H kn/k /k ∞ is unramified, it fixes k ∞ H kn/k for all n ≥ 0. Diagram 2. v / ∈S F × v ⊗Z p U k = p∈S U p E k ⊗Z p k ab M 0 H pr k H ta k H nr k k U k /E k In Diagram 1, the restriction of W k = p∈S µ p to Gal(H pr k /H nr k ) is isomor- phic to W k /µ k = W k whose fixed field is H bp k ;
whence the first claim. The second one is obvious since non-ramification propagates. Then #G kn/k increases with n and stabilizes at a divisor of [

H bp k : k ∞ ] = #C k • #R k . Put G k ≃ G kn/k for n large enough. This group is called the genus group of k ∞ /k; then the field H gen k := m H km/k (the genus field of k ∞ /k) is unramified over k ∞ of Galois group G k .
We can state more precisely:

Theorem 3.3. Let n 0 ≥ 0 be such that #G kn 0 /k stabilizes, definig the genus field H gen k such that Gal(H gen k /k ∞ ) = G k . Then H gen k is the maximal unram- ified extension of k ∞ in H pr k and Gal(H pr k /H gen k ) ≃ tor Zp (U p E k /E k ) p∈S . Proof. To simplify, put L ∞ := H gen k . Let L ′ ∞ be a degree p unramified extension of L ∞ in H bp k ; put L = H kn/k , n ≥ n 0 , and consider L ′ such that L ′ ∩L ∞ = L and L ′ L ∞ = L ′ ∞ ; thus Gal(L ∞ /L) ≃ Gal(L ′ ∞ /L ′ ) ≃ Z p . Taking n ≫ n 0 , one may assume that L ∞ /L and L ′ ∞ /L ′ are totally ramified at p. Let M = L ′ be a degree p extension of L in L ′ ∞ and v a p-place of L; if v was unramified in M/L, the non-ramification would propagate over L ′ in L ′ ∞ (a contradiction). Thus, the inertia group of v in L ′ ∞ /L is necessarily Gal(L ′ ∞ /L) or Gal(L ′ ∞ /L ′
), but this last case for all v gives L ′ /L/k n unramified and L ′ /k abelian (absurd by definition of the genus field L = H kn/k ); so there exists v 0 totally ramified in

L ′ ∞ /L, hence in L ′ ∞ /L ∞ (absurd). For p ∈ S, the inertia group I p (H pr k /k ∞ ) is isomorphic to the torsion part, tor Zp (U p E k /E k ), of the image of U p in U k /E k . Let R nr k := Gal(H gen k /k ∞ H nr k ), R ram k := Gal(H bp k /H gen k ).
The top of Diagram 1 may be specified as follows (with H pr k /H gen k totally ramified at p):

Diagram 3. T k U * k /E k R k R nr k R ram k C k H gen k H bp k W k k ∞ H nr k k ∞ H pr k G k
From Lemma 3.2, formula (3.4) and the above study, we can state (a generalization of Taya analytic viewpoint [21, Theorem 1.1]): 

Theorem 3.4. Let n ≫ 0 be such that G kn/k := Gal(H kn/k /k n ) ≃ G k . Then #G k = #C k • #R nr k = C Gn kn , equivalent to p n•(#S-1) (E k : E k ∩ N kn/k (k × n )) = #R nr k .
M i n ) i≥0 is the i- sequence of sub-G n -modules of M n defined by M 0 n := 1 and M i+1 n /M i n := (M n /M i n ) Gn , for 0 ≤ i ≤ b n , where b n is the least integer i such that M i n = M n (i.e., such that M i+1 n = M i n ). If C k = 1, M 0 = M 0 0 = 1, b 0 = 0; if C k = 1, M 0 = M 1 0 = C k , b 0 = 1.
We will obtain, inductively, ideal groups J i n ⊂ I kn , with J 0 n = 1, such that:

M i n =: cℓ kn (J i n )
, for all i ≥ 0. Proposition 4.1. This filtration has the following properties:

(i) From M 0 n = 1, one gets M 1 n = M Gn n of order #C k • p n•(#S-1) (E k : E k ∩ N kn/k (k × n ))
.

(ii) One has

M i n = {c ∈ M n , c (1-σn) i = 1}, for all i ≥ 0. (iii) The i-sequence #(M i+1 n /M i n ), 0 ≤ i ≤ b n , is decreasing to 1 and is bounded by #M 1 n since 1 -σ n defines the injections M i+1 n /M i n ֒→ M i n /M i-1 n . (iv) #M n = #M bn n = bn-1 i=0 #(M i+1 n /M i n ).
In [4, Formula (29), § 3.2], we established a generalization of Chevalley's ambiguous class number formula, by means of the norm groups N kn/k (M

i n ) = cℓ k (N kn/k (J i n )) and the subgroups Λ i n := {x ∈ k × , (x) ∈ N kn/k (J i n )} of k × , giving # M i+1 n /M i n = #C k #N kn/k (M i n ) • p n•(#S-1) (Λ i n : Λ i n ∩ N kn/k (k × n ))
, where:

(4.1) #C k #N kn/k (M i n ) & p n•(#S-1) (Λ i n : Λ i n ∩ N kn/k (k × n )
) are integers called the class factor and the norm factor, respectively, at the step i of the algorithm in the layer k n . These factors are independent of the choice of the ideals defining J i n up to principal ideals of k n and the groups Λ i n are, therefore, defined up to elements of N kn/k (k × n ). From Lemma 3. 

M i n ) ⊆ N kn/k (M i+1 n ) for all i ≥ 0. The norm factors di- vide #R nr
k and define a decreasing i-sequence for all i ≥ 0, due to the injective maps

E k /E k ∩N kn/k (k × n ) ֒→ • • • Λ i n /Λ i n ∩N kn/k (k × n ) ֒→ Λ i+1 n /Λ i+1 n ∩N kn/k (k × n ) • • • 4.2.
Relation of the algorithms with Iwasawa's theory. The subgroups J i n of I kn are built inductively from J 0 n = 1, hence Λ 0 n = E k . More precisely the algorithm is the following, for n and i fixed [5, § 6.2]:

Let x ∈ Λ i n , (x) = N kn/k (A), A ∈ J i n ; thus x is local norm on the tame places. Suppose that x is local norm on S, hence global norm and we can write x = N kn/k (y), y ∈ k × n . The random aspects occur, from the relation N kn/k (y) = N kn/k (A), in the mysterious "evolution relation" giving the existence of an ideal B ∈ I kn such that (y) = A B 1-σn . Remark that for N(y) = 1 and y = b 1-σn , b is given by an additive Hilbert's resolvent.

A priori there is no algebraic link with the previous data because of the global solution y (Hasse's norm theorem) unique up to k × n 1-σn ; this gives B up to principal ideals. All numbers 1) , which explains that #C kn essentially depends on the number of steps b n of the algorithm; this is expressed in terms of Iwasawa invariants as follows: Proof. Proof of (a). (i) Under the condition λ = µ = 0, #C kn = #C k = p ν for all n, and all the (surjective) norm maps are isomorphisms.

x ∈ Λ i n ∩ N kn/k (k × n ) define the step i + 1: J i+1 n := J i n • . . . , B, . . . and Λ i+1 n := {x ∈ k × , (x) ∈ N kn/k (J i+1 n )}. Therefore, for i = b n we obtain M bn n = C kn , N kn/k M bn n = C k and (Λ bn n : Λ bn n ∩ N kn/k (k × n )) = p n•(#S-
(i) b n ≤ λ • n + µ • p n + ν ≤ v p (#C k • #R nr k ) • b n , for all n ≥ 0. So, λ = µ = 0 ⇐⇒ b n bounded. (ii) b m ≥ b n , for all m ≥ n ≥ 0. (iii) b 1 = 0 ⇐⇒ λ = µ = ν = 0 ⇐⇒ b n = 0 for all n ⇐⇒ C k = R nr k = 1. Proof. Let M n := C kn , for all n ≥ 0. (i) As # M i+1 n /M i n ≥ p, for 0 ≤ i ≤ b n -1, Proposition 4.1 (iv) implies #M n = #M bn n ≥ p bn ; whence b n ≤ λ • n + µ • p n + ν. From the fact that # M i+1 n /M i n | #C k • #R nr k (Corollary 4.2) this yields # M i+1 n /M i n ≤ #C k • #R nr k for 0 ≤ i ≤ b n -1, whence #C kn ≤ (#C k • #R nr k ) bn from Proposition 4.
(ii) Chevalley's formula #C Gn kn = #C k • p n•(#S-1) (E k :E k ∩N kn/k (k × n )) ≤ #C kn = #C k yields #C Gn kn = #C kn = #C k and p n•(#S-1) (E k :E k ∩N kn/k (k × n )) = 1, for all n ≥ 0. (iii) From (ii), R nr k = 1
, taking n ≫ 0 to apply Theorem 3.4. In the three cases, the reciprocals are obvious.

Proof of (b). Consider the second step of the algorithm in k n (we exclude the case b n = 0 where all class groups are trivial); the class factor for C2 kn /C 1 kn is trivial since N kn/k (C Gn kn ) = C k (from (i), (ii)) and the norm factor, as divisor of R nr k , is also trivial (from (iii)); whence b n = 1 for all n ≥ 0.

Note that under Greenberg's conjecture, in

p n•(#S-1) (Λ 1 n :Λ 1 n ∩N kn/k (k × n )) , we have Λ 1 n = {x ∈ k × , (x) = N kn/k (A), A ∈ J 1 n } where cℓ kn (J 1 n ) = C Gn kn ; thus, norms being isomorphisms, (x) = N kn/k (A) implies that A = (α), α ∈ k × n , so that Λ 1 n = E k N kn/k (k × n ),
showing that the algorithm becomes trivial. 4.3. The n-sequences (C kn /C i kn ) Gn . We fix the step i of the algorithms. For now, we do not assume the Conventions 1.1. For all m ≥ n ≥ 0, the norm maps N km/kn on M m and M (1-σm) i m are surjective (they are, a priori, not injective nor surjective on the kernels M i m of the maps

M m → M (1-σm) i m
). This leads to the following result (see [START_REF] Gras | Approche p-adique de la conjecture de Greenberg pour les corps totalement réels[END_REF]Lemmas 7.1,7.2] for the details), giving another approach of the conjecture:

Theorem 4.5. For all i ≥ 0 fixed, # M i+1 n /M i n n defines an increasing n-sequence of divisors of #C k • #R nr k . Thus lim n→∞ # M i+1 n /M i n =: p c i p ρ i .
The i-sequences p c i and p ρ i are decreasing, stationary at a divisor p c of #C k and p ρ of #R nr k , respectively. Greenberg's conjecture is equivalent to c = ρ = 0.

T k as governing invariant of the algorithms

The ideals A ∈ J i n may be arbitrarily modified up to principal ideals of k n , whence N kn/k (A) defined up to elements of N kn/k (k × n ), as well as Λ i n . We intend to obtain suitable finite sets of representatives of these ideal norms, independently of n, more precisely of cardinality ≤ #T k . 5.1. Decomposition of N kn/k (A) -The fundamental ideals t. Let H pr k and H pr kn be the maximal abelian p-ramified pro-p-extensions of k and k n , respectively. Let F be an extension of

H nr k such that H pr k be the direct compositum of F and k ∞ H nr k over H nr k (possible because k ∞ ∩ H nr k = k due to the total ramification of p in k ∞ /k); we put Γ = Gal(H pr k /F ) ≃ Z p .
In the same way, we fix an extension F n of F such that H pr kn be the direct compositum of F n and

H pr k over k n F ; we put Γ n = Gal(H pr kn /F n ) ≃ Γ p n . We have F = F 0 ⊂ F 1 ⊂ • • • ⊂ F n ⊂ F n+1 ⊂ • • • (see Diagram 4 hereafter).
In what follows, we systematically use the flatness of Z p .

Consider the Artin symbols

H pr k /k • and H pr kn /kn •
, defined on I k ⊗Z p and I kn ⊗ Z p , respectively. Their images are the Galois groups A k (resp. A kn ); their kernels are the groups of infinitesimal principal ideals P k,∞ (resp. P kn,∞ ), where

P k,∞ is the set of ideals (x ∞ ), x ∞ ∈ k ′× ⊗ Z p , such that ιx ∞ = 1 in U k (idem for P kn,∞ ) [3, Theorem III.2.4, Proposition III.2.4.1].
The arithmetic norm (or restriction of automorphisms), in k n /k, leads to

N kn/k (A kn ) = Gal(H pr k /k n ) and N kn/k (T kn ) = T k since k n∞ = k ∞ . The fixed points formula T Gn kn ≃ T k ([3, Theorem IV.3.3], [11, Section 2 (c)]), implies Ker(N kn/k ) = T 1-σn kn = Gal(H pr kn /H pr k ). We denote by K × ∞ ⊂ k ′× ⊗ Z p the subgroup of infinitesimal elements of k (idem for K × n,∞ ⊂ k ′× n ⊗ Z p ).
In the sequel, the notations x ∞ , y ∞ , . . . always denote such infinitesimal elements.

Diagram 4. H pr k W k T kn = tor Zp (A kn ) T k = tor Zp (A k ) F k n F F n C k R k A kn A k NA kn H pr kn k ∞ H nr k H bp k k ∞ k n H nr k k n F bp H nr k F bp k n k G n p n Γ n U k /E k Γ Lemma 5.1. If (x ∞ ) ∈ P k,∞ ∩ N kn/k (I kn ⊗ Z p ), then x ∞ ∈ N kn/k (K × n,∞ ). Proof.
The assumption implies that x ∞ is everywhere local norm in k n /k, whence x ∞ = N kn/k (y), y ∈ k ′× n ⊗ Z p (Hasse norm theorem). Thus, we get ιN kn/k (y) = N kn/k (ι n y) = 1 and ι n y = t 1-σn , t ∈ pn∈Sn k × n,pn (Hilbert's Theorem 90, H 1 (G n , pn∈Sn k × n,pn ) = 1). Consider t in the profinite completion pn∈Sn k × n,pn ; then one has the exact sequence [11, Chap. 1, § a)]: Lemme 5]. The fundamental link between ideal norms in k n /k and the torsion group T k is given, for n large enough, by the following result where the "uniqueness" are relative to the choices of the F n ; we say that some numbers a ∈ k ′× ⊗ Z p (depending on n) are "close to 1" if ιa → 1 in U k when n → ∞. 

1 → K × n,∞ ---→ k × n ⊗ Z p ιn ---→ pn∈Sn k × n,pn ≃ Z #S p ⊕ U k → 1. Put t = ι n z, z ∈ k × n ⊗ Z p ; then ι n y = ι n (z 1-σn ), y = z 1-σn y ∞ , y ∞ ∈ K × n,∞ , then x ∞ = N kn/k (y ∞ ). We also have H 1 (G n , K × n,∞ ) = 1 [11,
H pr kn /kn T ∈ T kn , H pr kn /kn C ∈ Γ n , y ∞ ∈ K × n,∞ By restriction, the image of Γ n in Γ is Γ p n ; thus N kn/k (C) = c p n • (x ∞ ) for c ∈ I k ⊗ Z p such that H pr k /k c ∈ Γ and x ∞ ∈ K × ∞ ; but since H nr k ⊆ F , the ideal c is p-principal, thus c = (c), c ∈ k ′× ⊗ Z p , and then, N kn/k (C) = (c p n )• (x ∞ ).
We have from (5.1):

N kn/k (A) = N kn/k (T) • (c p n ) • (x ∞ ) • N kn/k (y ∞ ) =: t • (c p n ) • (x ′ ∞ ), with H pr k /k t ∈ T k , x ′ ∞ ∈ K × ∞ . From Lemma 5.1, since (x ′ ∞ ) is norm of ideal in k n /k, x ′ ∞ = N kn/k (y ′ ∞ ), whence N kn/k A (c) -1 (y ′ ∞ ) -1 = t. Let α = c -1 y ′-1 ∞ ; then ιN kn/k (α) = ι(c -p n ) is close to 1. (ii) Let j F ′
j be another tower for Diagram 4; with obvious notations (which depend on n), put u := N kn/k (α), u ′ := N kn/k (α ′ ), ιu, ιu ′ close to 1, we get N kn/k (A) • (u) = t, N kn/k (A) • (u ′ ) = t ′ . Whence t ′ t -1 = (a), with a close to 1. So, if p e is the exponent of T k , we obtain (a) p e = (a ∞ ) ∈ P k,∞ , From Theorem 5.2 (i) and for any prime-to-p ideals A ∈ J i , defining M i , there exist α ∈ K ′× ⊗ Z p and T of finite order modulo P K,∞ , such that N(A (α)) = N(T) =: t ∈ T k with N(α) close to 1. Denote by Σ i K , the set of such representatives T i and let Σ i k be the set of t i := N(T i ); so:

(5.2) N(Σ i K ) = Σ i k , N(M i ) = cℓ k Σ i k , Σ i k ⊆ T k .
Replacing A by A (α) does not modify the class and norm factors (4.1) since cℓ k (N(A)) = cℓ k (t) and, if N(A) is principal, then t = (τ ) is equal to N(A) up to N(K × ⊗ Z p ), which does not modify the norm properties in Λ i . Then, in Λ i = {τ ∈ k ′× ⊗ Z p , (τ ) ∈ Σ i k }, one must find all elements τ i (by definition of the form N(T i ), T i ∈ Σ i K ), such that τ i is local norm on S in K/k, thus of the form N(y i ), y i ∈ K ′× ⊗ Z p ; so the algorithm continues, from N(y i ) = N(T i ), with the following evolution using Theorem 5.2 (i)):

(5.3) (y i ) = T i • B 1-σ , with N(B (β)) = N(T ′ ) = t ′ ∈ T k ,
for a suitable β such that N(β) is close to 1, and one obtains a new t ′ to build Σ i+1 k , and so on. If λ or µ do not vanish, there exist, when [K : k] → ∞, arbitrary large i-sequences of sets Σ i k such that the class and norm factors are constant, which seems incredible, each new t ′ being a priori random in T k .

A philosophy should be that it is the t ′ which govern (numerically) the G-structure of the class groups in K/k and not the inverse (see also [START_REF] Gras | Normes d'idéaux dans la tour cyclotomique et conjecture de Greenberg[END_REF]Remarques 11,[START_REF] Gras | Normes d'idéaux dans la tour cyclotomique et conjecture de Greenberg[END_REF]).

Let's give a more precise description of the numerical possibilities, assuming to simplify the comments that 1 → R k → T k → C k → 1 is an exact sequence of F p -vector spaces; we compute the filtration {M i } i≥0 for M = C K (K = k n fixed) with the following exact sequence at the step i (see (5.2)):

1 -→ Λ i /E k ( . ) ---→ Σ i k cℓ k ---→ cℓ k Σ i k = N(M i ) -→ 1, where Λ i = {τ ∈ k ′× ⊗ Z p , (τ ) ∈ Σ i
k }, and let t i+1 (obtained as above). Various cases may arrive to get the (i + 1)th exact sequence

1 → Λ i+1 /E k ( . ) ---→ Σ i+1 k cℓ k ---→ cℓ k Σ i+1 k = N(M i+1 ) → 1 : (a) cℓ k (t i+1 ) / ∈ cℓ k Σ i k . Thus N(M i+1
) N(M i ) and this decreases the class factor; but there is no new relation of principality between ideals, so Λ i+1 = Λ i (norm factor unchanged).

(b) cℓ k (t i+1 ) ∈ cℓ k Σ i k .
Thus N(M i+1 ) = N(M i ) (class factor unchanged); but t i+1 = (τ ) • j t i j a j gives, possibly, some τ / ∈ Λ i . Then two cases arise:

(i) τ / ∈ Λ i N(K × ), therefore (Λ i+1 : Λ i+1 ∩ N(K × )) > (Λ i : Λ i ∩ N(K × ))
, which decreases the norm factor.

(ii) τ ∈ Λ i N(K × ) (class and norm factors unchanged). This is the "bad case" occurring, roughly, O(λn + µp n ) times if Greenberg's conjecture falls (see Remark 5.3 for more enlightenment).

We have given, in [6, Section 6], some heuristics about the "equation (y) = A B 1-σ " in cyclic extensions L/K when N L/K (y) = N L/K (A) and its "additive aspects", which applies to (τ ) = N(T) = N(y) and (y) = T B 1-σ .

Assuming that the ideals t, given by the algorithm, are random, cℓ k (t) (resp. log(ιτ ) (mod log(E k )) are random in C k (resp. R k ). This is likely to avoid unbounded algorithms and suggests the following conjecture: Conjecture 5.4. For n ≫ 0 fixed, let t j (or τ j , when t j = (τ j ) is principal), be the fundamental ideals encountered by the algorithm computing inductively the successive class and norm factors, in b n steps; then:

(i) The classes cℓ k (t j ) are uniformly distributed in C k .

(ii) When t j = (τ j ), the images log(t j ) := log(ιτ j ) (mod log(E k )) are uniformly distributed in the normalized regulator R k = log(U * k )/ log(E k ). 5.4. Conclusion and possible methods. Recall that b n is the length of the algorithm for the layer n. We observe the huge discontinuity between the case b n bounded, which characterizes Greenberg's conjecture (Theorem 4.3 and Corollary 4.4) and the case where λ or µ are non-zero, giving b n → ∞. In other words, there is a conflict between the "random aspect" of the algorithm, when λ or µ are non-zero, and the smooth algebraic form given by Iwasawa's theory. We indeed have, under Conventions 1.1, #C kn = p λ n+µ p n +ν for all n ≥ 0, so that the algorithm must obtain rigorously these formulas, for all n, which seems to be an excessive requirement in contradiction with Conjecture 5.4.

To give a logical way, the sole "solution", where b n does not tend to infinity, is b n constant for all n ≥ n 1 , giving, from the new base field k n 1 , that we still denote k, the well-known properties when Greenberg's conjecture holds. In that case, C 2 kn /C 1 kn = 1 and b n ≤ 1 for all n. In other words, in this situation, the "unpredictable" evolution relation (5.3) is not needed. The quotient C 2 kn /C 1 kn does appear (written instead (1 -σ)C kn [(1 -σ)]) in works of [START_REF] Smith | 2 ∞ -Selmer groups, 2 ∞ -class groups, and Goldfeld's conjecture[END_REF], where deep distribution results are proved for the degree p cyclic case.

We believe that these techniques can be successful for Greenberg's conjecture since the general algorithm of "unscrewing" in k n /k is identical and is essentially based on random values of classical norm symbols. In other words, Greenberg's conjecture would be, for k ∞ /k (k taken hight enough in the cyclotomic tower), an extreme version (of the degree p cyclic case) giving the non-existence of "exceptional p-classes" (i.e., non-invariant p-classes) in the tower, that is to say, b n ≤ 1 for all n ≥ 0 (to be compared with b n → ∞ if λ or µ do not vanish). Remark 5.5. For a base field which does not fulfill the previous conditions, the algorithms may need several steps and (under Greenberg's conjecture) they regularize at some layer such that the above trivialization holds; for instance, the case of k = Q( √ 6559), p = 3, computed in [6, § 7.2], yields C k ≃ Z/9Z, R k ≃ Z/27Z, C k 1 ≃ Z/27Z × Z/3Z (whence b 1 = 2) and C k 2 ≃ Z/27Z × Z/9Z; we compute with [START_REF] Belabas | The logarithmic class group package in PARI/GP, Pub. Math. Besançon[END_REF] that

C k ≃ Z/3Z, C k 1 ≃ C k 2 ≃ Z/9Z.
All this shows how classical arguments of algebraic number theory seem insufficient to prove unconditionally Greenberg's conjecture (among others), but that density results may be accessible, giving that the conjecture holds except, possibly, for pathological families of zero density (probably none).
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 441 Filtration of C kn -Class and Norm factors Describe now a formal algorithm of computation of #C kn , for all n ≥ 0, by means of "unscrewing" in k n /k. For this, put G n := Gal(k n /k) =: σ n . Let I kn be the group of prime-to-p ideals of k n . Filtration of the class groups. One uses the filtration of M n := C kn defined as follows [4, Corollary 3.7]. For n ≥ 0 fixed, (

  2 and Diagram 3, we can state, for any fixed integer n and for the class and norm factors (4.1): Corollary 4.2. The class factors divide #C k and define a decreasing isequence since N kn/k (

Theorem 4 . 3 .

 43 We assume the Conventions 1.1 for the base field k and recall that R nr k := Gal(H gen k /k ∞ H nr k ) (Diagram 3), where H gen k is the genus field of k ∞ /k (Theorem 3.3). Let b n be the length of the algorithm in the layer k n . Then (where v p denotes the p-adic valuation):

  1 (iv); hence the second inequality and the second claim. (ii) By definition, M bm m = M m with b m minimal. Since k m /k n is totally ramified, N km/kn (M bm m ) = M n , but N km/kn (M bm m ) ⊆ M bm n (Proposition 4.1 (ii)), whence M n ⊆ M bm n , thus M bm n = M n , proving the claim. (iii) So b 1 = 0 implies b 0 = 0, whence λ + µp + ν = µ + ν = 0 yielding λ = µ = 0 and ν = 0; then (i) implies b n = 0 for all n ≥ 0, in other words, C kn = 1 for all n ≥ 0; thus, taking n ≫ 0 to apply Theorem 3.4 yields G kn/k = C Gn kn = 1, whence C k = R nr k = 1 (reciprocals obvious). Corollary 4.4. (a) Under Conventions 1.1, λ = µ = 0 (equivalent to b n bounded) is equivalent to each of the following properties: (i) N kn/k : C kn → C k is an isomorphisms for all n ≥ 0. (ii) #C Gn kn = #C kn = #C k , for all n ≥ 0. (iii) C Gn kn = C kn , for all n ≥ 0 and R nr k = 1. (b) Let k n 1 , still denoted k, be such that b n is constant for all n ≥ n 1 ; 2 for this new base field k and the new b-function, b n ≤ 1, for all n ≥ 0.

Theorem 5 . 2 .

 52 Let n ≫ 0 fixed and let A ∈I kn ⊗ Z p (prime-to-p ideal of k n ). (i) There exists α ∈ k ′× n ⊗ Z p such that N kn/k (A (α)) = N kn/k (T) =: t, with H pr kn /kn T ∈ T kn , H pr k /k t ∈ T k and ιN kn/k (α) close to 1. (ii) The representative t of the class N kn/k (A) • N kn/k (k ′× n ⊗ Z p ), does not depend, modulo N kn/k (P kn,∞ ), on the tower j F j .Proof. (i) From Diagram 4 and the properties of Artin symbols, there exist unique ideals T, C ∈ I kn ⊗ Z p , modulo P kn,∞ , such that:(5.1) A = T•C•(y ∞ ), with

On must note that for each change of base field in the tower, the Iwasawa invariants are given by Conventions 1.1, and the algorithms are distinct; for instance the parameter b n defines a new function of the nth layer of the new k (in the meaning [k n : k] = p n ).

which gives a p e = ε a ∞ , ε ∈ E k ⊗ Z p with ιε close to 1, hence (for n ≫ 0) of the form ε = η p e , η ∈ E k ⊗ Z p , with ιη close to 1 (from Leopoldt's conjecture [START_REF] Gras | Class Field Theory: from theory to practice[END_REF]Theorem III.3.6.2 (iv)]). This yields (a η -1 ) p e = a ∞ and we get ι(a η -1 ) = ξ ∈ W k = tor Zp (U k ); both ιa and ιη are close to 1, thus ξ = 1 and a η 

k /E k . We consider the image of log(ιτ ) in log(U * k )/ log(E k ) = R k , which defines log(t) := log(ιτ ) (mod log(E k )). We have W k = Ker(log), and this gives again the exact sequence (3.3).

Remark 5.3. Let (τ ) ∈ T ppl k ; choosing a representative of τ modulo K × ∞ one may always assume that (τ ) = N kn/k (T), T ∈ I kn ⊗ Z p , since N(T kn ) = T k (whence τ local norm at the tame places). Suppose that the image of ιτ in tor Zp (U k /E k ) is in the subgroup Gal(H pr k /H gen k ) generated by the inertia groups tor Zp (U p E k /E k ), p ∈ S; then τ is local norm on S. Indeed, let ιτ = u = (u p , 1, . . . , 1); u is local norm at each p ′ = p, whence a global norm (product formula). This explains that generators τ of ideals t ∈ T ppl k , whose images are in Gal(H pr k /H gen k ), do not modify any norm factor, only depending on the image in R nr k = Gal(H gen k /k ∞ H nr k ). 5.3. The algorithm in terms of fundamental ideals t. We still assume Conventions 1.1 to the base field k. In this subsection, we consider the layer K = k n (with p n ≫ p e , the exponent of T k ) and, to simplify, we delete indices n (e.g., M i n → M i , Λ i n → Λ i , N kn/k → N, b n → b (number of steps in K)); then uppercase (respectively lowercase) letters for ideals are reserved to K (respectively k).