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GREENBERG’S CONJECTURE FOR TOTALLY REAL FIELDS

IN TERMS OF ALGORITHMIC COMPLEXITY

GEORGES GRAS

Abstract. Let k be a totally real number field and let k∞ be its cyclotomic
Zp-extension, p ≥ 2. This paper synthesizes and generalizes our articles in
french: “Approche p-adique de la conjecture de Greenberg pour les corps
totalement réels”, Ann. Math. Blaise Pascal 24(2) (2017), 235–291 and
“Normes d’idéaux dans la tour cyclotomique et conjecture de Greenberg”,
Ann. math. du Québec 43 (2019), 249–280. We show that this conjecture
(λ = µ = 0) depends on images, of ideal norms along the stages kn/k of the
tower, in the torsion group Tk of the Galois group of the maximal abelian
p-ramified pro-p-extension of k; these images (obtained inductively via a clas-
sical algorithm in each kn) take place both in the p-class group Cℓk and in the
normalized p-adic regulator Rk of k. A suitable property of uniform distri-
bution of these images would lead to accessible proofs of density results for
Greenberg’s conjecture, which remains hopeless within the sole framework of
Iwasawa’s theory. Indeed, many “algebraic/class field theory” criteria exist
for Greenberg’s conjecture, which hide a broad p-adic arithmetic and algo-
rithmic complexity governed by Tk. No assumption is made on the degree of
k nor on the decomposition of p in k/Q.
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2 GEORGES GRAS

1. Introduction

Let k be a totally real number field of degree d and let p ≥ 2 be a prime number.
Let Q∞ be the cyclotomic Zp-extension of Q and let k∞ := kQ∞ be that of k.
We denote by kn the degree pn extension of k in k∞ and put Gn := Gal(kn/k).

Let Cℓk and Cℓkn be the ordinary p-class groups of k and kn, respectively.

Let Tk be the torsion group of Ak := Gal(Hpr
k /k), where Hpr

k is the maximal
abelian p-ramified (i.e., unramified outside p and ∞) pro-p-extension of k.

In the case p = 2, all the forthcoming p-invariants: “ Cℓ (class groups), T (torsion
in p-ramification), R (regulators),W (local torsion), G (genus groups), . . . ” may
be also considered in the restricted sense “res” instead of the ordinary sense
“ord”. But, to avoid complicated notations, we do not emphasize about this
distinction, so that all writings will be identical for all p; indeed, there is a kind
of “miracle” since, under Leopoldt’s conjecture:

#T res
k = 2d #T ord

k [4, Theorem III.4.1.5],

knowing that, for totally real number fields:

#Cℓresk =
2d

(E : Epos)
· #Cℓordk , #Rres

k =
(E : Epos)

2
· #Rord

k , #Wres
k = 2 #Word

k ,

which makes coherent the formulas #T = #Cℓ #R #W in the two senses (see the
main notations for the ordinary sense in § 2.1).

We call Greenberg’s conjecture for totally real number fields k, the nullity of
the Iwasawa invariants λ, µ of the cyclotomic p-tower k∞ of k (for all p) (see
the origin of the conjecture in [13, Theorems 1 and 2] with the study of two
particular cases of decomposition of p in k/Q). This conjecture is in some sense
a generalization of Vandiver’s conjecture for Q(µp)

+ (see [12] for new approach
on Vandiver’s conjecture, [9, 24] for annihilation aspects in p-ramification).

Main recent studies of this conjecture, after the pioneering work of Ozaki, Taya
[25, 26, 28, 29], are [7, 10, 15, 16, 17, 21, 22, 23]. In [16, Théorème A] a new
criterion is given (capitulation in some kn0

of the logarithmic class group of k),
in [17] the Greenberg conjecture is stated in terms of “universal norms”. In [23]
a synthetic view of the criteria of Greenberg, Jaulent and others, is given by
means of Iwasawa’s theory. See a more complete description of these criteria in
§ 2.4. Then we shall explain in what sense these criteria hide a tricky arithmetic
complexity, materialized by the algorithm given and studied in Sections 3.

Remark 1.1. Subject to replace k by a stage kn0
in k∞, one may assume

without any limitation of the generality (under Leopoldt’s conjecture in k∞)
that p is totally ramified in k∞/k. Indeed, any stage in k∞ remains totally real
and, since kn0

Q∞ = k∞, the Iwasawa invariants of kn0
are trivial if and only if

that of k are trivial.

In many papers, the decomposition of p in k/Q plays an important role and
needs different techniques; for instance, two cases are examined after [13]:

(i) The case of a single place over p in k∞; in this case, the corresponding papers
assume that p is totally ramified in k∞/k, which constitutes a restriction (e.g.,
p = 2 and k = Q(

√
2m), m ≡ 1 (mod 4)).

(ii) The case of p totally split in k/Q.

On the contrary, we shall not put any assumption on the degree d nor on the
decomposition of p in k/Q; to analyze Greenberg’s conjecture, we will show
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how this decomposition of p intervenes, especially regarding the inertia groups
of the p-places in Hpr

k /k∞ and regarding the “normalized regulator” Rk.

Main results. The results of the paper may be described as follows. The
algorithm, determining #Cℓkn at the stage kn (whence giving the Iwasawa in-
variants for n≫ 0), computes inductively the classical filtration (Cℓikn)i≥0, where

Cℓi+1
kn

/Cℓikn := (Cℓkn/Cℓikn)Gn for all i ≥ 0 and Cℓ0kn = 1, where Gn = Gal(kn/k).

We have the decreasing sequence, where rp ≥ 1 is the number of p-places of k:

#

(
Cℓi+1

kn
/Cℓikn

)
=

#Cℓk
#Nkn/k(Cℓikn

)
· pn·(rp−1)

(Λi
n : Λi

n ∩Nkn/k(k
×
n ))

,

where Λi
n is the subgroup of k× of elements x such that (x) = Nkn/k(A) for

some representatives A such that cℓkn(A) ∈ Cℓikn , giving the increasing sequence
(from Λ0

n = Ek):

Ek/Ek∩Nkn/k(k
×
n ) →֒· · · →֒ Λi

n/Λ
i
n∩Nkn/k(k

×
n ) →֒ Λi+1

n /Λi+1
n ∩Nkn/k(k

×
n ) →֒· · ·

The length of the algorithm depends on the decreasing evolution of the “class

factors”
#Cℓk

#Nkn/k(Cℓik)
dividing #Cℓk and the “norm factors”

pn·(rp−1)

(Λi
n : Λi

n ∩ Nkn/k(k
×
n ))

dividing the order of a suitable quotient Rnr
k of the normalized p-adic regulator

Rk, related to the ramification in Hpr
k /k∞ (Theorems 2.8, 3.3). Whence the

obvious consequence:

(1) Cℓk = Rnr
k = 1⇐⇒ λ = µ = ν = 0.

When Cℓi+1
kn

/Cℓikn becomes trivial for some i = mn (thus Cℓkn = Cℓmn
n ), the two

factors are trivial and one gets (Theorem 3.4 and Corollary 3.5):

(2) Cℓk · Rnr
k 6= 1 =⇒ mn ≥ 1

vp(#Cℓk#Rnr
k )
· (λ · n+ µ · pn + ν),

where vp is the p-adic valuation. Note that under Greenberg’s conjecture, the
algorithm must give mn = 1 for all n≫ 0 (Theorem 2.11 (i)).

So the main question is the algorithmic complexity, analyzed in Section 4, which
suggests possible analytic proof in the framework of techniques used in [19] in
a particular case (degree p cyclic extensions), but very powerful.

The hope for such a proof comes from the fact that the algorithm computing
Cℓkn is “governed” by means of finite invariants of k (that is to say Tk, from
Theorems 4.2, 4.5 giving a relation between the ideal norms in k∞/k and some
ideals t of k whose Artin symbols are in Tk). For instance, the inequality in
(2) shows that if λ or µ is non-zero, the sequence mn is unbounded while each
step of the algorithm only depends on finite number of possibilities by taking
the class of the random ideal t of k and by computing Hasse’s symbols at the
p-places of the random element τ of k× when t = (τ) is principal, in other
words, a classical situation involving p-ranks of random Fp-matrices.

2. Abelian p-ramification and genus theories

2.1. Abelian p-ramification – The torsion group Tk. Let rp ≥ 1 be the
number of primes p | p in k (hence totally ramified in k∞/k with the convention
of Remark 1.1). Under Leopoldt’s conjecture for p in k∞, recall the main data
needed for the study of the Galois group Ak of the maximal abelian p-ramified
pro-p-extension Hpr

k of k and its torsion group Tk (see [11, Appendix 1] for a
wide story of abelian p-ramification theory in its various aspects).
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(i) Let Ek be the group of p-principal global units ε ≡ 1 (mod
∏

p|p p) of k.

Let Uk :=
⊕

p|p Uk,p be the Zp-module of p-principal local units, where Uk,p is

the group of p-principal units of the p-completion kp of k, p being the maximal
ideal for kp. We put

Wk := torZp
(Uk) =

⊕
p|p µp(kp) and Wk := Wk/µp(k).

Since µ(k) = {±1}, Wk := Wk for p 6= 2 and Wk := Wk/〈±1〉 for p = 2.

Let ι : {x ∈ k× ⊗ Zp, x prime to p} −→ Uk be the diagonal embedding.

(ii) Let Ek be the closure of the diagonal embedding ιEk of Ek in Uk and let
Hk be the p-Hilbert class field; from class field theory, Gal(Hpr

k /Hk) ≃ Uk/Ek.

One checks that under Leopoldt’s conjecture, torZp
(Uk/Ek) = U∗

k/Ek, where
U∗
k := {u ∈ Uk, Nk/Q(u) = 1} if p 6= 2 (Nk/Q(u) = ±1 if p = 2).

(iii) Let Cℓk be the p-class group of k and let

Rk := torZp
(log(Uk)/log(Ek)) = log(U∗

k )/log(Ek)

be the normalized p-adic regulator [8, § 5]; recall that for p 6= 2, #Rk =
Rk

pd−1

and #Rk =
1

2r2−1

Rk

2d−1
for p = 2, where Rk is the classical regulator.

(iv) The sub-module of Tk fixing the Bertrandias–Payan field Hbp
k is Wk. For

a given base field k, the invariants Cℓk and Wk are trivial for almost all primes
p; this is only conjectured for Rk (see [5] for conjectural p-adic properties of
regulators) and constitutes an out of reach question.

Recall some classical results in our context (under the Leopoldt conjecture):

Proposition 2.1. [8, § 4, § 5]. We have the exact sequences:

1→ torZp
(Uk/Ek) = U∗

k/Ek −→ Tk −→ Gal(k∞Hk/k∞) ≃ Cℓk → 1,

(3) 1→Wk −→ torZp
(Uk/Ek) −→ torZp

(log(Uk)/log(Ek)) ≃ Rk → 0.

2.2. Genus theory in kn/k. We denote by Hk and Hkn the p-Hilbert class
fields of k and kn, respectively. Since p is totally ramified in kn/k, the inertia
groups Ip(kn/k) in kn/k, p | p, are isomorphic to Gn = Gal(kn/k).

Let ωn be the map which associates with ε ∈ Ek the family of Hasse’s symbols(ε , kn/k
p

)
∈ Gn, p | p. This yields the genus exact sequence interpreting the

product formula of the Hasse symbols of a unit (see, e.g., [4, Corollary IV.4.4.1]):

1→ Ek/Ek ∩Nkn/k(k
×
n )

ωn−−−→Ω(kn/k)
πn−−−→Gal(Hkn/k/knHk)→ 1,

where Ω(kn/k) :=
{
(sp)p|p ∈ G

rp
n ,

∏
p|p sp = 1

}
≃ G

rp−1
n , then where Hkn/k is the

p-genus field of kn defined as the maximal sub-extension of Hkn, abelian over k.

The image of ωn is contained in Ω(kn/k) and the map πn is defind as follows:
with (sp)p|p ∈ G

rp
n , πn associates the product of the extensions s′p of the sp in

the inertia groups Ip(Hkn/k/Hk) generating Gal(Hkn/k/Hk); from the product
formula, if (sp)p|p ∈ Ω(kn/k), then

∏
p|p s

′
p fixes both Hk and kn, whence knHk.

The genus exact sequence shows that the kernel of πn is ωn(Ek). We have as
expected, using Chevalley’s ambiguous class number formula [2],

#Gkn/k := #Gal(Hkn/k/kn) =
#Cℓkn

#Cℓ1−σn

kn

= #CℓGn

kn
= #Cℓk · pn·(rp−1)

(Ek : Ek ∩ Nkn/k(k
×
n ))

.
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In the following Diagram, Hkn/k is the fixed field 1 of the image of Cℓ1−σn

kn
, where

σn is a generator of Gn, and Gkn/k = Gal(Hkn/k/kn) is the genus group in kn/k.

Diagram 2.2.
Tk

Rk

Cℓk Hbp
k Wk

k∞Hkk∞ k∞Hkn/k Hpr
k

∏
p|p s

′
p

Cℓ1−σn

kn

Cℓk

Gkn/k

Hkn/k HknknHkkn

Hkk

Gn

〈
Ip(Hkn/k/Hk)

〉
p|p

Uk/Ek

The genus group Gkn/k has, in our context, the following property that we will
analyze in more details in § 2.3 to obtain Theorem 2.8:

Proposition 2.3. (i) For all n ≥ 0, k∞Hkn/k ⊆ Hbp
k and #Gkn/k

∣∣ #Cℓk · Rk,

equivalent to
pn·(rp−1)

(Ek : Ek ∩ Nkn/k(k
×
n ))

∣∣∣ #Rk.

(ii) The n-sequence #Gkn/k is increasing and stabilizes at a divisor of #Cℓk·#Rk.

(iii) Let Jkn/k be the transfer map Cℓk → Cℓkn, let Skn be the set of p-places of
kn and let cℓkn(Skn) be the subgoup of Cℓkn generated by the cℓkn(p), p | p.
Then, for all n ≥ 0, the orders of Jkn/k(Cℓk) · cℓkn(Skn) are bounded by #Cℓk·#Rk.

Proof. Using the idelic global reciprocity map (under Leopoldt’s conjecture), we
have the fundamental diagram [4, § III.4.4.1] of the Galois group of the maximal
abelian pro-p-extension kab of k, with our present notations:

Diagram 2.4. ∏
v∤p F

×
v ⊗Zp

Uk=
⊕

p|p Uk,p

≃Ek⊗Zp

kabM0Hpr
k

Hta
kHkk

where Fv is the residue field of the tame place v (finite or infinite). We know
that the fixed field of the maximal tame sub-extension Hta

k is Uk =
⊕

p|p Uk,p

since each Uk,p is the inertia group of p in kab/k. Thus its torsion part, µp(kp),
restricted to Gal(Hpr

k /k), fixes k∞ and since k∞Hkn/k/k∞ is unramified, it fixes
k∞Hkn/k for all n ≥ 0. From the diagram, the restriction of Uk to Gal(Hpr

k /k)

is Gal(Hpr
k /Hk) ≃ Uk/Ek as usual, and the restriction of Wk =

⊕
p|p µp(kp) to

Gal(Hpr
k /Hk) is isomorphic to Wk/µp(k) =Wk whose fixed field is Hbp

k ; whence
the first claim (i). Point (ii) is obvious since non-ramification propagates so
that Hkn/k kn+h ⊆ Hkn+h/k for all h ≥ 1 (use Diagram 2.2). Point (iii) results of

the inclusion Jkn/k(Cℓk) · cℓkn(Skn) ⊆ CℓGn

kn
since #CℓGn

kn
= #Gkn/k for all n. �

1If L/K is a Galois extension of Galois group G, we say that K is the fixed field of G but
we say that G fixes k when k is a subfield of K.
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Remarks 2.5. (i) Since Gkn/k is “constant” for all n≫ 0, we can put Gk := Gkn/k
independently of n large enough. This group will be called, by abuse, the genus
group of k; then the field:

Hgen
k :=

⋃
mHkm/k

is unramified over k∞ and of Galois group Gk.
(ii) Let k0 be a totally real number field in which p totally splits and totally
ramifies in k0,∞/k0 (i.e., rp = d). We have Wk0 = 1 since k0,p = Qp for all p | p;
then we shall have #Gk0 = #Cℓk0 · #Rk0 (see Corollary 2.9). This classical case is
due to Taya [29, Theorem 1.1]; see analogous approaches in [7, Théorème 4.8],
[16, § 2.1, § 2.2, Corollaire 11], [23, Théorème C].

(iii) The case of a single place in k∞ (i.e., rp = 1 giving
pn·(rp−1)

(Ek : Ek ∩ Nkn/k(k
×
n ))

= 1

for all n) is also considered in these papers; we have #Gk = #Cℓk and the norm
factors that we shall define later as divisors of #Rk (see (4)) will be trivial.

We shall emphasize on the influence, for the arithmetic of Hpr
k /k∞, of the de-

composition of p in k/Q in the following section in which we characterize a
quotient Rnr

k = Rk/Rram
k , of Rk, such that #Gk = #Cℓk · #Rnr

k .

2.3. Ramification in Hpr
k /k∞. Give more information about the ramification

of the p-places in Hpr
k /k∞. Recall, once for all, that the tame places totally split

in Hpr
k /k∞ [4, Remark III.4.8.2].

Proposition 2.6. Let n0 ≫ 0 be such that #Gkn/k (hence the increasing normic

factor
pn·(rp−1)

(Ek : Ek ∩ Nkn/k(k
×
n ))

) stabilizes for all n ≥ n0; this defines the “genus field”

Hgen
k :=

⋃
mHkm/k, such that Gal(Hgen

k /k∞) = Gk. Then Hgen
k is the maximal

unramified extension of k∞ in Hpr
k and Gal(Hpr

k /Hgen
k ) ≃

〈
torZp

(Uk,pEk/Ek)
〉
p|p

.

Proof. To simplify, put L∞ := Hgen
k . Let L′

∞ be a degree p unramified extension

of L∞ in Hbp
k ; put L = Hkn/k, n ≥ n0, and consider L′ such that L′ ∩ L∞ = L

and L′L∞ = L′
∞; thus Gal(L∞/L) ≃ Gal(L′

∞/L′) ≃ Zp. Taking n ≫ n0, one
may assume that L∞/L and L′

∞/L′ are totally ramified at p.

Let M 6= L′ be a degree p extension of L in L′
∞ and v a p-place of L; if v

was unramified in M/L, the non-ramification would propagate over L′ in L′
∞ (a

contradiction). Thus, the inertia group of v in L′
∞/L is necessarily Gal(L′

∞/L)
or Gal(L′

∞/L′), but this last case for all v gives L′/L/kn unramified and L′/k
abelian (absurd by definition of the genus field L = Hkn/k); so there exists v0
totally ramified in L′

∞/L, hence in L′
∞/L∞ (absurd). For p | p in k, the inertia

group Ip(H
pr
k /k∞) is isomorphic to torZp

(Uk,pEk/Ek) (see Diagram 2.4). �

Denote by Rnr
k (“non-ramification”) and Rram

k (“ramification”) the Galois groups

Gal(Hgen
k /k∞Hk) and Gal(Hbp

k /Hgen
k ), respectively. So the top of Diagram 2.2

may be specified as follows:

Diagram 2.7.
Tk

Rk

Rnr
k Rram

k

Cℓk
∪mHkm/k

Hgen
k =

Hbp
k Wk

k∞Hkk∞ Hpr
k

Gk
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From Proposition 2.3 and the above study, we can state:

Theorem 2.8. Let n0 be such that the genus groups Gkn/k= Gal(k∞Hkn/k/k∞)
stabilize for all n ≥ n0 giving the genus group Gk.
Then #Gk = #Cℓk ·#Rnr

k , equivalent to
pn·(rp−1)

(Ek : Ek ∩ Nkn/k(k
×
n ))

= #Rnr
k for all n ≥ n0.

Corollary 2.9. (i) If p is totally split in k (rp = d) and totally ramified in
k∞/k, then Rram

k = 1 and Rnr
k = Rk.

(ii) If there is a unique p-place in k∞ (rp = 1), then Rram
k = Rk and Rnr

k = 1.

Proof. (i) If rp = d, one obtains Wk = 1 and Uk,pEk/Ek = Uk,p/Ek ∩Uk,p; since
Uk,p = 1 + pZp for all p, torZp

(Uk,p/Ek ∩ Uk,p) = torZp
(Uk,p)/torZp

(Ek) = 1

whatever p. Thus the inertia field is Hbp
k = Hpr

k , giving Rram
k = 1.

(ii) If rp = 1, torZp
(Uk,pEk/Ek) = torZp

(Uk/Ek), whence the result. �

Otherwise, these inertia groups are only accessible by means of numerical com-
putations (this is done in [11] in the context of incomplete p-ramification); they
give Hgen

k =
⋃

mHkm/k independently of the knowledge of Gk. It would be
interesting to interpret Rram

k in terms of units of k.

Corollary 2.10. Let Skn be the set of p-places of kn. We have the exact sequence

1→ Jkn/k(Cℓk) cℓkn(Skn) −→ CℓGn

kn

θ−→Ek∩Nkn/k(k
×
n )/Nkn/k(Ekn)→ 1. Thus the

orders of the subgroups Jkn/k(Cℓk) cℓkn(Skn) are bounded by #Gk = #Cℓk · #Rnr
k .

Proof. We have the exact sequence:

1→ cℓkn(I
Gn

kn
) = Jkn/k(Cℓk) cℓkn(Skn)→ CℓGn

kn

θ→Ek ∩Nkn/k(k
×
n )/Nkn/k(Ekn)→ 1

where Ikn is the Z[Gn]-module of ideals of kn and where θ associates with
cℓkn(A), such that A1−σn = (α), α ∈ k×

n , the class of the unit Nkn/k(α) of
k, modulo Nkn/k(Ekn). The surjectivity and the kernel are immediate.

Then cℓkn(I
Gn

kn
) = Jkn/k(Cℓk) cℓkn(Skn). Whence the claim from the equalities

#Gkn/k = #CℓGn

kn
= #Gk = #Cℓk · #Rnr

k for all n≫ 0 (Theorem 2.8). �

2.4. Criteria for Greenberg’s conjecture. Let k be a totally real number
field assuming p totally ramified in k∞/k (cf. Remark 1.1). We first give some
obvious properties of k∞ under the assumption λ = µ = 0.

2.4.1. Consequences of Greenberg’s conjecture. If λ = µ = 0, there exists ν ≥ 0
and n0 ≥ 0 such that #Cℓkn = pν for all n ≥ n0; thus, any property fulfilled at
the stage kn0

is fulfilled at any stage kn, n ≥ n0. Let Gn0
n := Gal(kn/kn0

).

Let Rkn be the normalized p-adic regulator of kn, then Rram
kn

, Rnr
kn
≃ Rkn/Rram

kn
,

Gkn = Gal(Hgen
kn

/k∞), where Hgen
kn

=
⋃

mHkm/kn is the maximal unramified
extension of k∞ in Hpr

kn
(cf. § 2.3, Diagram 2.7).

Theorem 2.11. Under Greenberg’s conjecture, we have the following properties:

(i) Rnr
kn

= 1 for all n ≥ n0, then Rram
kn

= Rkn which means that the fixed field

Hgen
kn

of
〈
torZp

(Ukn,pEkn/Ekn)
〉
p|p

is k∞Hkn (see Diagram 2.7 applied to kn).

(i ′) Whence CℓG
n0
n

kn
= Cℓkn, of order pν , for all n ≥ n0.

(ii) For m ≥ n ≥ n0 the norm maps Nkm/kn : Cℓkm −→ Cℓkn are isomorphisms.

(iii) For all n ≥ 0, Cℓkn capitulates in k∞.
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Proof. (i) We have (Theorem 2.8), #CℓG
n0
n

kn
= #Cℓkn0

· #Rnr
kn0

= pν · #Rnr
kn0

, for all

n ≥ n0; thus, as soon as #Rnr
kn0

> 1, we get #Cℓkn ≥ #CℓG
n0
n

kn
> pν (contradiction).

We deduce that CℓG
n0
n

kn
= Cℓkn = Gkn, for all n ≥ n0.

(ii) Due to the totale ramification of p in k∞/k, the norm maps Gal(Hkm/km)→
Gal(Hkn/kn) are surjective; since #Cℓkm = #Cℓkn = pν these maps are injective.

(iii) Let Cℓkm=:
⊕

j

〈
cℓkm(Aj)

〉
be a decomposition of the p-class group of km into

cyclic components. Then, from (ii), Cℓkn=
⊕

j

〈
Nkm/kn(cℓkm(Aj))

〉
; for such a

cℓkm(Aj), using Chebotarev density theorem in Hkm/kn, we may assume that Aj

is a prime ideal L of km, totally split in km/kn. Consider l := Nkm/kn(L) in kn;
then Jkm/kn(l) = νkm/kn(L), where νkm/kn =

∑
σ∈Gal(km/kn)

σ is the algebraic

norm. We have νkm/kn = pm−n + A(σm
n ) · (1 − σm

n ) where σm
n is a generator

of Gm
n and A(σm

n ) ∈ Zp[σ
m
n ]. Thus, from (i ′) with m − n large enough, we get

Jkm/kn(cℓkn(l)) = 1. This proves the capitulation of Cℓkn in k∞ for all n ≥ 0. �

2.4.2. The logarithmic class group. Another approach in Iwasawa’s theory is the
criterion of Jaulent [16, Théorèmes A, B] proving that Greenberg’s conjecture

is equivalent to the capitulation in k∞ of the logarithmic class group C̃ℓk of k
which is much related to Tk as follows (from the general diagram [16, § 2.3]):

Diagram 2.12.

Hpr
k

Hbp
k

Hgen
k

H lc
k Hk

H lc
k k∞Hk

k∞Hpd
k

k∞

Rk

Gk

Tk ✑
✑

✑
✑

✑
✑✑

◗
◗
◗
◗
◗
◗
◗

◗
◗

◗
◗

◗
◗

◗

✑
✑
✑
✑
✑
✑
✑

Wk

Rram
k

Cℓ[p]kC̃ℓ[p]k

Rnr
k

C̃ℓk
Cℓk

Cℓ′k

where H lc
k is the maximal abelian locally cyclotomic pro-p-extension of k (i.e.,

such that all p-places totally split in H lc
k /k∞), Cℓ[p]k :=

〈
cℓk(p)

〉
p|p

, C̃ℓ[p]k is the

subgrup of C̃ℓk generated by the classes of logarithmic divisors of zero degree
built on the p-places, and Hpd

k is the maximal subfield of Hk in which the

p-places totally split; whence H lc
k ∩ k∞Hk = k∞Hpd

k & Gal(k∞Hpd
k /k∞) ≃ Cℓ′k.
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Lemma 2.13. Let Hgen
k =

⋃
mHkm/k; then Hgen

k = H lc
k Hk (see Diagram 2.7).

Proof. Since by definition H lc
k is the maximal extension of k∞ in which the p-

places split completely, the extension Hgen
k /H lc

k is unramified and p does not
split; thus its Galois group is generated by the Frobenius of the p-places and is
isomorphic to

〈
cℓk(p)

〉
p|p

. �

In other words, Hgen
k is fixed by the group generated by the inertia groups

Ip(H
pr
k /k∞) ≃ torZp

(Uk,pEk/Ek), p | p, and H lc
k is fixed by the group gener-

ated by the decomposition groups Dp(H
pr
k /k∞), p | p, which may be computed

numerically from [4, Exercice III.7.1].

In [18, Appendice, Définition 17], Jaulent defines the logarithmic regulator as

R̃k := Gal(Hbp
k /H lc

k ) (use [16, Diagram, § 2.3]). In the split case where Rram
k =

1, this logarithmic regulator is isomorphic to Cℓ[p]k := Gal(k∞Hk/k∞Hpd
k ).

2.4.3. Criteria of Iwasawa’s theory type. We summarize, without proofs, some
well-known characterizations of Greenberg’s conjecture.

If one replaces k by a stage ke ⊂ k∞, all the forthcoming statements hold true
for k′ := ke and its tower

⋃
n≥0 k

′
n, [k

′
n : k′] = pn. We assume the conventions of

Remark 1.1, then the Leopoldt and Gross–Kuz’min conjectures for totally real
number fields. Let Γ := Gal(k∞/k).

We use the classical objects A∞ := lim−→Cℓkn , X∞ := lim←−Cℓkn and similarly A′
∞,

X ′
∞, from the Skn-class groups Cℓ′kn , where Skn is the set of p-places of kn. Let

Cℓ[p]kn
= Ker(Cℓkn → Cℓ′kn) and C̃ℓ[p]kn = Ker(C̃ℓkn → Cℓ′kn) (cf. Diagram 2.12).

Proposition 2.14 ([15], [16, Théorèmes 4, 5, 7], [17], [20, Théorème 4.2] for

(X∞)Γ ≃ C̃ℓk, [23, Proposition 1.1, Théorème 2.1]). Geenberg’s conjecture is
equivalent to each of the following properties:

(i) X∞ is finite;

(i ′) X ′
∞ is finite;

(ii) A∞ = 0;

(ii ′) A′
∞ = 0;

(iii) Cℓkn = pν for all n≫ 0;

(iii ′) Cℓ′kn = pν
′

for all n≫ 0;

(iv) Jkm/kn(Cℓkn) = 0 for all m≫ n (capitulation of Cℓkn in k∞ for all n ≥ 0);

(iv ′) Jkm/kn(Cℓ′kn) = 0 for all m≫ n (capitulation of Cℓ′kn in k∞ for all n ≥ 0);

(v) (X∞)Γ capitulates asymptotically;

(v ′) (X ′
∞)Γ capitulates asymptotically;

(vi) C̃ℓk capitulates in k∞, or C̃ℓ[p]k and Cℓ′k capitulate in k∞;

In our opinion, these aesthetic statements are translations of standard formalism
of class field theory in terms of the algebraic tools of Iwasawa’s theory; they do
not take into account what is needed (in a “numerical” setting) to “construct”
the class groups at each stage of the tower. In the next section we will show how
does this construction work and study its arithmetic complexity which becomes
oversized as soon as λ + µ 6= 0 (cf. Corollary 3.5). Moreover, we shall see in
Section 4 that the algorithm depends rather weakly of the stage kn, at least for
n large enough.
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3. Filtration of Cℓkn
3.1. General algorithm – Class and Norm factors. In the framework of
the general algorithm of computation of the p-class group Cℓkn of kn, by means
of “unscrewing” in a cyclic p-extension, one uses the filtration of Mn := Cℓkn :

M i
n = cℓkn(Iin), Iin ⊂ Ikn, i ≥ 0,

defined inductively as follows (from [6, Corollary 3.7]) 2:

Definition 3.1. For n ≥ 1 fixed, (M i
n)i≥0 is the i-sequence of sub-Gn-modules

of Mn defined by M0
n := 1 and M i+1

n /M i
n := (Mn/M

i
n)

Gn, for 0 ≤ i ≤ mn − 1,
where Gn := Gal(kn/k) =: 〈σn〉 and where mn is the least integer i such that
M i

n = Mn (i.e., such that M i+1
n = M i

n).

We then have:

Proposition 3.2. This filtration has the following properties:

(i) For i = 0, one obtains M1
n = MGn

n (group of ambiguous classes in kn/k).

(ii) One has M i
n = {c ∈Mn, c

(1−σn)i = 1}, for all i ≥ 0.

(iii) For n fixed, the i-sequence of the #(M i+1
n /M i

n), 0 ≤ i ≤ mn, is decreasing
to 1 and has the upper bound #M1

n because of the sequence of injective maps:
M i+1

n /M i
n →֒M i

n/M
i−1
n →֒· · · →֒M2

n/M
1
n →֒M1

n defined from the action of 1−σn.

(iv) #Mmn
n =

∏mn−1
i=0

#(M i+1
n /M i

n).

Recall that for n ≥ 1 fixed, a generalization of the Chevalley ambiguous class
number formula [6, Formula (29), § 3.2], leads, by means of the norm groups
Nkn/k(M

i
n) and the groups of numbers:

Λi
n := {x ∈ k×, (x) ∈ Nkn/k(Iin)},

to the i-sequence: #

(
M i+1

n /M i
n

)
=

#Cℓk
#Nkn/k(M

i
n)
· pn·(rp−1)

(Λi
n : Λi

n ∩ Nkn/k(k
×
n ))

, where the

integers:

(4)
#Cℓk

#Nkn/k(M
i
n)

&
pn·(rp−1)

(Λi
n : Λi

n ∩ Nkn/k(k
×
n ))

are called the class factor and the norm factor, respectively, at the step i of the
algorithm in kn. These factors are independent of the choice of the ideals in Iin
up to principal ideals of kn and the groups Λi

n may be defined up to Nkn/k(k
×
n ).

The groups Iin are built inductively from I0n = 1, then Λ0
n = Ek [7, § 6.2].

From the above, we can state, for any fixed integer n:

Theorem 3.3. (i) The class factors
#Cℓk

#Nkn/k(M
i
n)

divide the order of the class

group Cℓk of k; they define a decreasing i-sequence of integers from #Cℓk.
(ii) The norm factors

pn·(rp−1)

(Λi
n : Λi

n ∩ Nkn/k(k
×
n ))

divide the order of the quotient Rnr
k

of the normalized regulator Rk of k (see Diagram 2.7); they define a decreasing

i-sequence of integers from
pn·(rp−1)

(Ek : Ek ∩ Nkn/k(k
×
n ))

.

2 In some former papers this filtration is considered for cyclic extensions of prime degree p;
the generalization to arbitrary cyclic extensions was given in [3], then translated into english
in [6] with improvements. So it applies in the kn/k.
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Proof. This is obvious for the class factors and comes from the injective maps:

Ek/Ek∩Nkn/k(k
×
n ) →֒· · · →֒ Λi

n/Λ
i
n∩Nkn/k(k

×
n ) →֒ Λi+1

n /Λi+1
n ∩Nkn/k(k

×
n ) →֒· · ·

for the norm factors since for all n,
pn·(rp−1)

(Ek : Ek ∩Nkn/k(k
×
n ))

∣∣ #Rnr
k from § 2.3, with

equality for n≫ 0. �

Therefore, for i = mn, using the above formula (4), we obtain Mmn
n = Cℓkn ,

Nkn/k

(
Mmn

n

)
= Cℓk and (Λmn

n : Λmn
n ∩ Nkn/k(k

×
n )) = pn·(rp−1), which explains

that #Cℓkn essentially depends on the number of steps mn of the algorithm,
which will be expressed in terms of Iwasawa invariants as follows.

Theorem 3.4. Let k be a totally real number field for which p fulfills the
Leopoldt conjecture. We recall that, without any loss of generality, we may
assume p totally ramified in k∞/k (cf. Remark 1.1).

Let Cℓk and Rk be the p-class group and the normalized p-adic regulator of k,
respectively and let Rnr

k := Gal(Hgen
k /k∞Hk) (Diagram 2.7 in § 2.3), where Hgen

k

is the union of the genus class fields Hkm/k (Proposition 2.6). Let n0 ≥ 0 be
such that, for all n ≥ n0, the Iwasawa formula #Cℓkn = pλ·n+µ·pn+ν is fulfilled.
Let mn be the length of the algorithm. Then:

(i) One has the inequalities mn ≤ λ · n+ µ · pn + ν ≤ vp(#Cℓk · #Rnr
k ) ·mn for all

n ≥ n0, where vp denotes the p-adic valuation.

(ii) If Cℓk = Rnr
k = 1, then λ = µ = ν = 0.

(iii) If #Cℓk · #Rnr
k 6= 1, then there exists c(n),

1

vp(#Cℓk · #Rnr
k )
≤ c(n) ≤ 1, such

that mn = c(n) · (λ · n+ µ · pn + ν).

Proof. Consider Mn := Cℓkn . As #

(
M i+1

n /M i
n

)
≥ p for 0 ≤ i ≤ mn − 1, the

Proposition (3.2) (iv) implies #Cℓkn = #Mmn
n ≥ pmn ; whence mn ≤ λ · n +

µ · pn + ν; then, from the fact that #

(
M i+1

n /M i
n

)
| #Cℓk · #Rnr

k , (Theorem 3.3)

this yields #

(
M i+1

n /M i
n

)
≤ #Cℓk · #Rnr

k for 0 ≤ i ≤ mn − 1; whence #Cℓkn ≤
(#Cℓk · #Rnr

k )mn from Proposition (3.2) (iv), which completes the proof of (i).
Point (ii) is equivalent to Gkn/k = 1, whence Cℓkn = 1 and (iii) is immediate. �

Corollary 3.5. If #Cℓk·#Rnr
k 6= 1, the number of steps mn of the algorithm fulfills

the following inequality linking Iwasawa’s theory and algorithmic complexity:

mn ≥ 1

vp(#Cℓk · #Rnr
k )

(
λ · n + µ · pn + ν

)
, for all n ≥ n0.

We know also that taking, as base field, a stage kn0
⊂ k∞, large enough, one may

expect (from Theorem 2.11 (i ′)) that the algorithm in kn/kn0
gives mn0

n = 1,

that is to say CℓG
n0
n

kn
= Cℓkn , of order pν , for all n ≥ n0.

Example 3.6. The integer n0 is not effective and in general n0 > 0 as shown
by the following PARI/GP [27] program for real quadratic fields k and p = 2.
The program computes the structure of Cℓkn for n ∈ [0, 4]; if k = Q(

√
2m′),

with m′ ≡ 1 (mod 4), the first stage k1 is contained in the Hilbert class field of
k, which gives an exception to the surjectivity Cℓkn → Cℓk, n ≥ 1, of the norm
and explains that in this case one must take k1 as base field.

Then we give some excerpts which only suggest a rapid stabilization:
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{for(m=2,10^3,if(core(m)!=m,next);P0=x^2-m;

P1=polcompositum(P0,x^2-2)[1];

P2=polcompositum(P0,(x^2-2)^2-2)[1];

P3=polcompositum(P0,((x^2-2)^2-2)^2-2)[1];

P4=polcompositum(P0,(((x^2-2)^2-2)^2-2)^2-2)[1];

K0=bnfinit(P0,1);H0=K0.cyc;K1=bnfinit(P1,1);H1=K1.cyc;

K2=bnfinit(P2,1);H2=K2.cyc;K3=bnfinit(P3,1);H3=K3.cyc;

K4=bnfinit(P4,1);H4=K4.cyc;

print("m=",m," ",H0," ",H1," ",H2," ",H3," ",H4))}

m=10 [2][][][][] m=226 [8][4][4][4]

m=15 [2][2][2][2][2] m=267 [2][2,2][4,2][4,2]

m=41 [][2][4][8][8] m=291 [4][4,2][4,2][4,2]

m=51 [2][2,2][2,2][2,2][2,2] m=323 [4][8,2][8,2][8,2]

m=65 [2][4][4][4][4] m=357 [2][2,2][4,2,2][4,2,2]

m=82 [4][2][4][8][8] m=399 [4,2][4,2][4,2][4,2]

m=113 [][4][4][4][4] m=435 [2,2][4,2][4,2][4,2]

m=119 [2][2,2][2,2,2][2,2,2] m=442 [4,2][4][4][4]

m=130 [2,2][4][4][4][4] m=483 [2,2][2,2,2][2,2,2][2,2,2]

m=137 [][2][4][4][4] m=1011 [4][4,2][4,2,2,2][4,2,2,2]

m=145 [4][4][4][4][4] m=1023 [4,2][8,2][16,2][32,2][64,2]

m=219 [4][4,2][4,2][4,2] m=30030 [2,2,2,2][4,4,2,2][8,4,2,2][8,4,2,2]

The case of m = 1023 = 3·11·31 does not show a stabilization at the stage k4
(unfortunately it took three days of computer to get Cℓk4 = [64, 2]); we have
#Cℓk = 8, #Rk = #Rram

k = 16 and Tk = [64, 2], but Tk3 = [512, 32, 8, 2, 2, 2, 2, 2, 2]
which may explain the difficulties.

Since Rnr
k = 1, we have C̃ℓk ≃ Cℓ′k which is here such that Cℓk = Cℓ′k ⊕ Z/2Z.

Remarks 3.7. (i) Thus, Greenberg’s conjecture reduces to an estimation of
the number mn of steps of the algorithm. But mn (n fixed) depends of the
i-progression of the class and norm factors (4) and under natural probabilities
on their evolution (Theorem 3.3), each of them is, a priori, rapidly trivial since
the computations only use the complexity of the base field k (i.e., Cℓk and Rnr

k ).

(ii) We observe the huge discontinuity between the cases #Cℓk · #Rnr
k = 1 (giving

λ = µ = ν = 0) and #Cℓk · #Rnr
k 6= 1 with λ + µ 6= 0 (giving mn →∞ with n).

(iii) But the most spectacular argument is that, for n large enough, assuming to
simplify that n0 = 0, one must find, in practice, mn = 1 from Theorem 2.11 (i ′)
giving, for n≫ 0, CℓGn

kn
= Cℓkn of order pν as the numerical experiments show.

See comments on the complexity of the algorithm in [10, § 6]. These observations
are strengthened by the results of [19] which show, in a particular case, that it
is quite possible to obtain density results and some proofs “with probability 1”.

3.2. The n-sequences Cℓi+1
kn

/Cℓikn for i fixed. Now, contrary to the previous
studies, we fix the step i of the algorithms and we consider the n-sequences
M i

n := Cℓikn , for n→∞. We study the n-sequence of integers:

#

(
M i+1

n /M i
n

)
:= #

(
Mn/M

i
n

)Gn
,

where Gn := Gal(kn/k), from their class and norm factors (4), knowing that
Mn := Cℓkn is obtained for i = mn.

One has, for all n ≥ 0, the following diagram where the norm maps Nkn+1/kn,

on Mn+1 and (Mn+1)
(1−σn+1)i , are surjective since Hkn ∩kn+1 = kn, but not that

on M i
n+1 (they may be a priori not injective nor surjective):
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Diagram 3.8.

1 −→ M i
n+1 −−−−−→ Mn+1

(1−σn+1)i−−−−−→ (Mn+1)
(1−σn+1)i −→ 1

Nkn+1/kn

y Nkn+1/kn

yy Nkn+1/kn

yy

1 −→ M i
n −−−−−→ Mn

(1−σn)i−−−−−→ (Mn)
(1−σn)i −→ 1 .

We have Nkn+1/kn(M
i
n+1) ⊆M i

n; thus, for all An+1 ∈ Iin+1:

Nkn+1/kn(An+1) = (αn)An, where αn ∈ k×
n and An ∈ Iin,

in what case, modifying Iin modulo suitable principal ideals, one gets:

Nkn+1/kn(Iin+1) ⊆ Iin, whence Nkn+1/k(Iin+1) ⊆ Nkn/k(Iin);
this reduces to modify the sets Λi

n = {x ∈ k×, (x) ∈ Nkn/k(Iin)} modulo global
norms of elements of k×

n leaving invariant (Λi
n : Λi

n ∩ Nkn/k(k
×
n )).

So, one may suppose that, for all given h ≥ 1:

(5) Λi
n+h ⊆ · · · ⊆ Λi

n+1 ⊆ Λi
n.

In the next section, we shall give a more p-adic approach of the properties of
ideal norms a = Nkn/k(A), replacing the ideal a of k by an ideal t(a) whose
Artin symbol is in Tk.
Proposition 3.9. For all i ≥ 0 fixed, the integers #

(
M i+1

n /M i
n

)
define an in-

creasing stationary n-sequence of divisors of #Cℓk · #Rnr
k , and the integers #M i

n

define an increasing stationary n-sequence.

Proof. As Nkn+1/k(M
i
n+1) ⊆ Nkn/k(M

i
n), the class factors

#Cℓk
#Nkn/k(M

i
n)

define an

increasing n-sequence pc
i
n , stationary at a maximal value pc

i | #Cℓk. The norm

factors are
pn·(rp−1)

#ωn(Λi
n)

=: pρ
i
n (see § 2.2) and pρ

i
n+1−ρin = prp−1 #ωn(Λ

i
n)

#ωn+1(Λi
n+1)

; since

by (5) one may assume Λi
n+1 ⊆ Λi

n, this yields #ωn+1(Λ
i
n+1) ≤ #ωn+1(Λ

i
n), then

we obtain pρ
i
n+1−ρin ≥ prp−1 #ωn(Λ

i
n)

#ωn+1(Λi
n)

; in the restriction Ω(kn+1/k) →→ Ω(kn/k)

of Hasse’s symbols (with kernel isomorphic to F
rp−1
p ), the image of ωn+1(Λ

i
n) is

ωn(Λ
i
n), whence an increasing n-sequence pρ

i
n | #Rnr

k . Thus:

lim
n→∞

#

(
M i+1

n /M i
n

)
= pc

i · pρi | #Cℓk · #Rnr
k .

If one assumes, by induction, that the n-sequence #M i
n is increasing stationary,

the property follows for the n-sequence #M i+1
n . �

Proposition 3.10. The i-sequences pc
i

and pρ
i

are decreasing, stationary at a
divisor of #Cℓk and Rnr

k , respectively.

Proof. For n large enough (to get cin = ci and ρin = ρi), we have
#Nkn/k(M

i
n)

#Nkn/k(M
i+1
n )
≤ 1

and
#ωn(Λ

i
n)

#ωn(Λ
i+1
n )
≤ 1 since Λi

n · Nkn/k(k
×
n ) ⊆ Λi+1

n · Nkn/k(k
×
n ). �

Corollary 3.11. There exists imin ≥ 0 and some constants c ≥ 0, ρ ≥ 0 such

that ci = c et ρi = ρ for all i ≥ imin. Whence lim
i→∞

(
pc

i · pρi
)
= pc+ρ | #Cℓk · #Rnr

k ;

from Theorem 3.4, Greenberg’s conjecture holds true if and only if c = ρ = 0.
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Remark 3.12. From Theorem 2.11 (i ′), under Greenberg’s conjecture, the pre-
vious results should be, for all n large enough:

M i
n = M1

n , ci = ρi = 0, for all i ≥ 1, thus mn = 1, c = ρ = 0.

Unfortunately, numerical examples need to take n large enough, which is not
effective.

We refer to [7, 10] for complements, conjectures and numerical experiments; in
particular, for x ∈ Λi

n we then have (x) = Nkn/k(A), A ∈ Iin, and when we
compute that x is local norm at p, hence x = Nkn/k(yn), yn ∈ k×

n , the random
aspects occur in the mysterious “evolution relation” (see [10, § 6.1]) from the
equality (x) = Nkn/k(yn) = Nkn/k(A), giving the existence of B (having, a
priori, no algebraic link with the previous data), such that:

(yn) = AB1−σn 7→ B ∈ Ii+1
n 7→ b := Nkn/k(B) 7→ Λi+1

n · · ·
The natural conjecture being that the class and norm factors become trivial
in a bounded number of steps (uniformly in n large enough). In other words,
c+ρ 6= 0 should indicate a very strange and incredible algorithmic phenomenon.

4. Cℓk and Rk as governing invariants of the algorithms

We have seen the significance of the ideals of k of the form a = Nkn/k(A). This
concerns the two following directions:

(i) The class factors
#Cℓk

#Nkn/k(M
i
n)

where Nkn/k(M
i
n) is generated by the classes of

a = Nkn/k(A), A ∈ Iin, where the Iin (n fixed) are given by an algorithm.

(ii) The norm factors
pn·(rp−1)

(Λi
n : Λi

n ∩ Nkn/k(k
×
n ))

, where the groups Λi
n are the sets of

numbers x ∈ k× such that (x) = Nkn/k(A), A ∈ Iin as above.

Since any ideal class can be represented by a prime to p ideal, we assume that
A ∈ Iin is taken in the group I ′kn of prime to p ideals of kn. We have seen that the
ideals A ∈ Iin may be arbitrarily modified modulo principal ideals of kn, whence
a = Nkn/k(A) defined up to Nkn/k(k

×
n ) and prime to p. This non-unicity hides

some structural aspects of Greenberg’s conjecture that we intend to analyze in
relation with the invariant Tk, more precisely its “sub-invariants” Cℓk and Rk,
to obtain canonical representatives of these ideals.

4.1. Decomposition of a = Nkn/k(A) – The fundamental ideals t(a). Let
Hpr

k and Hpr
kn

be the maximal abelian p-ramified pro-p-extensions of k and kn,
respectively. Let F be an extension of Hk such that Hpr

k be the direct composi-
tum of F and k∞Hk over Hk (which is possible because k∞ ∩Hk = k); we put
Γ = Gal(Hpr

k /F ) ≃ Zp.

We consider the Artin symbols
(
Hpr

k /k

·

)
and

(
Hpr

kn
/kn

·

)
, defined on I ′k⊗Zp and

I ′kn ⊗ Zp, where I ′k and I ′kn are the groups of prime to p ideals of k and kn,
respectively. Their images are the Galois groups Ak and Akn; their kernels are
the groups of infinitesimal principal ideals Pk,∞ et Pkn,∞, where Pk,∞ is the set
of ideals (x∞), x∞ ∈ k×⊗Zp, prime to p, with trivial image in Uk (idem for kn)
(see, e.g., [4, Theorem III.2.4, Proposition III.2.4.1] and [14, Chap. 1, § (d)]).

The action of the arithmetic norm in kn/k is given by the following diagram; in
particular:

Nkn/k(Akn) = Gal(Hpr
k /kn) and Nkn/k(Tkn) = Tk.
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Diagram 4.1.

Hpr
kWk

Tkn
= torZp

(Akn
)

Tk = torZp
(Ak)

F

Fn

Cℓk Rk

Akn

Ak

NAkn

Hpr
kn

k∞Hk Hbp
kk∞

knHk F bp
n

Hk F bp

kn

k

Gn pn

Γ

Uk/Ek

The link between ideal norms in the stage kn/k and the torsion group Tk (more
precisely Cℓk and Rk) is given by the following result in kn for n large enough
(but relative to the choice of F , whence of Γ; in Theorem 4.5 we will prove that
this link is independent of the decomposition of Ak = Γ⊕ Tk):
Theorem 4.2. Let A ∈ I ′kn (ordinary ideal seen in I ′kn ⊗ Zp).

(i) There exist unique ideals c, t ∈ I ′k ⊗ Zp and (x∞) ∈ Pk,∞, such that:

Nkn/k(A) = cp
n ·t · (x∞), with

(
Hpr

k /k

c

)
∈ Γ,

(
Hpr

k /k

t

)
∈ Tk.

(ii) There exist some αn ∈ k× ⊗ Zp such that Nkn/k(A (αn)) = t (mod Pk,∞),
with ιNkn/k(αn) = ι(αpn

n ) arbitrarily close to 1 in Uk regarding n≫ 0.

Proof. (i) The map Nkn/k on I ′kn ⊗ Zp induces the restriction Akn → Ak giving
Nkn/k(Akn) = Γpn ⊕ Tk since Nkn/k(Akn) = Gal(Hpr

k /Hpr
k ∩ kn) = Gal(Hpr

k /kn).

It follows that Nkn/k(A) is of the required form for a given subgroup Γ.

(ii) Let N ≥ n; from the total ramification of p in kN/k, Cℓk = NkN/k(CℓkN ),
and there exists cN ∈ k× ⊗ Zp such that c · (cN) = NkN/k(CN), CN ∈ I ′kN . The
previous decomposition for the stage kN yields:

c · (cN) = NkN/k(CN) = c′p
N · t′ (mod Pk,∞),

with c′, t′ ∈ I ′k ⊗ Zp; thus:

Nkn/k(A (cN)) = (c (cN))
pn · t · (x∞) = c′p

n+N · t′pn · t (mod Pk,∞).

For pn larger than the exponent pe of Tk we get t′p
n ∈ Pk,∞ and:

Nkn/k(A (cN )) = (γN) · t (mod Pk,∞),

with ιγN arbitrarily close to 1 in Uk regarding N ; indeed, c′p
n

=: (γ′
n) in I ′k⊗Zp,

thus γN = γ′pN

n is of the form Nkn/k(γn), γn ∈ k×⊗Zp. Whence the claim taking

αn := cN · γ−1
n since Nkn/k(cN · γ−1

n ) = cp
n

N · γ−1
N is close to 1 in Uk, but regarding

n because of the factor cp
n

N ∈ (k× ⊗ Zp)
pn. �

Definition 4.3. We shall call this unique ideal t of finite order modulo Pk,∞ the
fundamental ideal associated to the class Nkn/k(A)Nkn/k(k

×
n ⊗ Zp) of Nkn/k(A).

We denote this representative t(a) where a := Nkn/k(A) (mod Nkn/k(k
×
n ⊗ Zp)).

We remark that this representative t(a) belongs to a · (k× ⊗ Zp)
pn .



16 GEORGES GRAS

4.2. Images of the ideals t(a) in Cℓk and Rk. The ideals a := Nkn/k(A) play
two different roles, in the evolution of the class factors (via the class of a) and
in that of the norm factors (via principal a), which will be stated in terms of
ideals t as follows:

4.2.1. Class factors and ideals t. The Nkn/k(Iin), representing Nkn/k(M
i
n) and

defining the class factors, are generated, modulo Nkn/k(k
×
n ⊗ Zp), by some t ∈

I ′k ⊗ Zp, of finite order modulo Pk,∞, with cℓk(t) ∈ Nkn/k(M
i
n). Thus, a priori,

cℓk(t) runs through Cℓk.

4.2.2. Norm factors and ideals t. The Λi
n={x ∈ k×, (x) ∈ Nkn/k(Iin)}, defining

the norm factors, are obtained via ideals (x) such that (x) Nkn/k(αn)
−1 = t

(mod Pk,∞), αn ∈ k×
n ⊗ Zp, where t is principal of finite order modulo Pk,∞.

The question is to examine the domain of variation of principal t; this is done
taking the logarithm as follows, showing that, a priori, log(t) runs through Rk.

4.2.3. Definition of log(t) ∈ Rk for t principal. Let t = (τ), τ ∈ k× ⊗ Zp, be a
principal fundamental ideal (of finite order modulo Pk,∞). There exists a power
pe such that τ p

e

= ε x∞, ε ∈ Ek ⊗ Zp; thus ιNk/Q(τ) = 1 or ±1 and the image

of ιτ is defined in U∗
k/Ek.

Then we consider the image of log(ιτ) in log(U∗
k )/log(Ek) = Rk, which defines

the element of Rk:

log(t) := log(ιτ) (mod log(Ek)).

Lemma 4.4. Let x ∈ k×⊗Zp, such that (x) ∈ Nkn/k(Iin). Then x is local norm
at p in kn/k (whence global norm) if and only if any representative of x modulo
Wk =

⊕
p|p µp(kp) is local norm at p.

Proof. Let p | p in k and let pn | p be the unique prime of kn above p. Let kp
and kn,pn be the respective completions. We must show that each µp(kp) is in
the local norm group. We have four cases:

(i) Case p 6= 2 and µp(kp) = 1. The norm condition is trivially fulfilled.

(ii) Case p 6= 2 and µp(kp) 6= 1. Let pν , ν ≥ 1, be the order of µp(kp); then
µp(kn,pn) is of order pν+n. Thus, in that case, Nkn,pn/kp(µp(kn,pn)) = µp(kp).

(iii) Case p = 2 and µ2(kp) ⊇ µ4. The proof is similar to that of case (ii).

(iv) Case p = 2 and µ2(kp) = µ2. We know that, in Qn/Q, −1 is a global norm
as norm of the generating cyclotomic unit of Qn. �

From exact sequence (3) and Lemma 4.4, the norm properties of x in kn/k do
not depend on the representative of x modulo Wk, which is precisely the kernel
of log, and the map:

{t = (τ), of finite order modulo Pk,∞}
log−−−→Rk

is surjective of kernel {t = (τ), τ ∈ k× ⊗ Zp, such that ιτ ∈ Wk}.

4.2.4. Conclusion about the role of the fundamental ideals. It is immediate to see
that, using suitable representatives of ideals A ∈ Iin in kn (from Theorem 4.2),
the filtration M i

n =: cℓkn/k(Iin) may be such that Nkn/k(Iin) = 〈ti,j〉j, generated
by fundamental ideals, and Λi

n = {τ ∈ k×⊗Zp, (τ) ∈ 〈ti,j〉j} in which one finds
the τ = Nkn/k(yn), yn ∈ k×

n ⊗ Zp.
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So the algorithm continues with the evolution relation:

(yn) = AB1−σn 7→ B ∈ Ii+1
n 7→ b = Nkn/k(B) 7→ t(b) ∈ Nkn/k(Ii+1

n ).

The main consequence being that the fundamental ideals t are finite in number
(modulo Pk,∞).

Assuming that the ideals A of kn are random as well as the norms a = Nkn/k(A),
this suggests that the t(a) are random. In other words, both cℓk(t(a)) and
log(t(a)) (when t(a) is principal) are random in Cℓk and Rk, respectively.

This yields the following heuristics/conjectures:

(i) The class of t(a), governing the class factor, is uniformly distributed in Cℓk.
(ii) When t(a) = (τ), the image log(t(a)) = log(ιτ) (mod log(Ek)), governing
the norm factor, is uniformly distributed in the normalized regulator Rk.

A proof of such density results would be the key for Greenberg’s conjecture.

4.3. Galois descent of Tk. The Galois descent of Hpr
k /k∞, by means of F/k

(Diagram 4.1), provides, in a numerical context (see an example in [10, § 8.1]),

the repartition of the Artin symbols
(
F/k

a

)
, for a = Nkn/k(A) or for the ideals

t(a). The field F (more precisely F bp) is, in some sense, a “governing field” for
Greenberg’s conjecture. This is enforced according to the essential following
result:

Theorem 4.5. The ideal t(a), deduced from the class of the ideal a = Nkn/k(A)
modulo Nkn/k(k

×
n ⊗ Zp), does not depend (modulo Pk,∞) on the choice of F .

Proof. Let F ′/k be another solution; then, referring to suitable expressions of
Theorem 4.2 (ii), we get, modulo Pk,∞, with obvious notations for F and F ′:

Nkn/k(A) = (u) t, Nkn/k(A) = (u′) t′ (mod Pk,∞), u, u′ ∈ k× ⊗ Zp,

ιu, ιu′ arbitrary close to 1 regarding n; whence t′ t−1 = (a) with ιa close to 1.

So, (a)p
e

= (a∞) ∈ Pk,∞, which gives ap
e

= ε a∞, ε ∈ Ek⊗Zp with ιε close to 1,
hence of the form ε = ηp

e

with ιη close to 1 (Leopoldt’s conjecture). From the
relation (a η−1)p

e

= a∞ we get ι(a η−1) = ξ ∈ Wk; but, both ιa and ιη are close
to 1 in Uk, thus ξ = 1 and a η−1 = a′∞ giving t′ t−1 = (a′∞). �
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