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ALGORITHMIC COMPLEXITY
OF GREENBERG’S CONJECTURE

GEORGES GRAS

Abstract. Let k be a totally real number field and p a prime. We show
that the “complexity” of Greenberg’s conjecture (λ = µ = 0) is of p-
adic nature governed (under Leopoldt’s conjecture) by the finite torsion
group Tk of the Galois group of the maximal abelian p-ramified pro-p-
extension of k, by means of images in Tk of ideal norms from the layers
kn of the cyclotomic tower (Theorem 5.2). These images are obtained
via the formal algorithm computing, by “unscrewing”, the p-class group
of kn. Conjecture 5.4 of equidistribution of these images would show that
the number of steps bn of the algorithms is bounded as n → ∞, so that
Greenberg’s conjecture, hopeless within the sole framework of Iwasawa’s
theory, would hold true “with probability 1”. No assumption is made on
[k : Q], nor on the decomposition of p in k/Q.
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2 GEORGES GRAS

1. Introduction

Let k be a totally real number field, p ≥ 2 a prime number and S the
set of p-places p | p of k. Let k∞ be the cyclotomic Zp-extension of k
and kn the degree pn extension of k in k∞. Let Ck and Ckn be the p-
class groups of k and kn, respectively. We denote by Tk the torsion group
of Ak := Gal(Hpr

k /k), where Hpr
k is the maximal abelian S-ramified pro-p-

extension of k (i.e., unramified outside S), assuming the Leopoldt conjecture
for p in k∞. The group Tk is closely related to the deep Tate–Chafarevich
group (same p-rank):

III2k := Ker
[
H2(Gk,S,Fp) → ⊕p|pH

2(Gkp,Fp)
]
,

where Gk,S is the Galois group of the maximal S-ramified pro-p-extension
of k (hence Ak = G ab

k,S) and Gkp the local analogue over kp; but Tk is very
easily computable and relates the p-class group and the p-adic regulator.

We call Greenberg’s conjecture for k and p, the nullity of the Iwasawa
invariants λ, µ (see the origin of the conjecture in [10, Theorems 1 and
2]). The main effective test for this conjecture is the criterion of Jaulent
[14, Théorèmes A, B] proving that the conjecture is equivalent to the capit-

ulation in k∞ of the logarithmic class group C̃k of k (defined in [12] with
PARI/GP pakage in [1]), an invariant also related to S-ramification theory. 1

For specific cases of decomposition of p, as in [10], see [19].
In our opinion, many aesthetic statements, equivalent to Greenberg’s con-

jecture, are translations of standard formalism of class field and Iwasawa’s
theories. In other words, some “non-algebraic” p-adic aspects of the “dio-
phantine construction” of the class groups at each layer kn, are not taken
into account. We show how this construction works and study its arithmetic
complexity by means of the number bn of steps of the algorithms which be-
come oversized in the tower as soon as λ or µ are non-zero, suggesting the
triviality of the algorithms for n ≫ 0 (i.e., bn ≤ 1).

Our purpose has nothing to do with computational or theoretical ap-
proaches in the area of the “main theorem” on abelian fields (analytic for-
mulas, cyclotomic units, Lp-functions, etc.) as, for instance, the very many
contributions (cited in our papers [5, 6]), also giving computations and sug-
gesting that equidistribution results may have striking consequences for the
conjecture; our viewpoint is essentially logical and based on the governing
group Tk, because we have conjectured that Tk = 1 for all p ≫ 0, due to

1For more information on the main pioneering works about the practice of this theory,
see “history of abelian p-ramification” in [9, Appendix] (e.g., Gras: “Crelle’s Journal”
(1982/83), Jaulent: “Ann. Inst. Fourier” (1984), Nguyen Quang Do: “Ann. Inst.
Fourier” (1986), Movahhedi “Thèse” (1988) and others). For convenience, we mostly
refer to our book (2003/2005), which contains all the needed results in the most general
statements. For more broad context about the base field and the set S, see [16] and its
bibliography.
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properties of p-adic regulators [8] (p-rationality of k, as defined in [17] for
such fields), which relativizes Greenberg’s conjecture, obvious in that case.

In many papers, as in [10], the decomposition of p in k/Q plays a specific
role, which is not necessary for us. We shall not put any assumption on the
degree of k nor on the decomposition of p in k/Q.

Conventions 1.1. Subject to replace k by a layer K = kn0 of k∞ = K∞,
one may assume, without any loss of generality, that p is totally ramified
in K∞/K and is such that Iwasawa’s formula for #Ckn holds true for all
layers above K; indeed, we have λ(K) = λ(k), µ(K) = [K : k]µ(k) and
ν(K) = ν(k) + λ(k)n0.

2. Main results

The results of the paper may be described as follows in two parts:

(A) From results of [4, 5, 6]. The formal algorithm, determining #Ckn

(whence giving the Iwasawa invariants), computes inductively the classical
filtration (C i

kn
)i≥0, where C

i+1
kn

/C i
kn

:= (Ckn/C
i
kn
)Gn , for all i ≥ 0 (C 0

kn
= 1),

where Gn = Gal(kn/k). We have the decreasing i-sequence:

(2.1) #
(
C

i+1
kn

/C i
kn

)
=

#Ck

#Nkn/k(C
i
kn
)
· pn·(#S−1)

(Λi
n : Λi

n ∩ Nkn/k(k
×
n ))

,

with the increasing i-sequence of groups Λi
n, from Λ0

n = Ek:

(2.2) Λi
n := {x ∈ k×, (x) = Nkn/k(A), cℓkn(A) ∈ C

i
kn}.

Then C
i+1
kn

/C i
kn

in (2.1) becomes trivial for some minimal i =: bn ≥ 0

(giving C
bn
kn

= Ckn) as soon as the two factors vanish. Thus the length bn
of the algorithm depends on the decreasing evolution of the “class factor”

#Ck

#Nkn/k(C
i
k)

dividing #Ck and that of the “norm factor”
pn·(#S−1)

(Λi
n : Λi

n ∩ Nkn/k(k
×
n ))

dividing the order of a suitable quotient Rnr
k of the normalized p-adic reg-

ulator Rk (defined in [7, § 5]), related to the ramification of p in Hpr
k /k∞

(Theorem 3.4, Corollary 4.2). We prove in Theorem 4.3, under Conventions
1.1, the following inequalities (where vp is the p-adic valuation):

bn ≤ λ · n+ µ · pn + ν ≤ vp(#Ck · #R
nr
k ) · bn,

giving Ck = Rnr
k = 1 ⇐⇒ λ = µ = ν = 0 ⇐⇒ bn = 0 for all n.

Taking k hight enough in the tower, Greenberg’s conjecture is equivalent to
bn ≤ 1 for all n (Corollary 4.4), which constitutes a spectacular algorithmic
discontinuity compared to bn → ∞ if λ or µ are non-zero. In an heuristic
point of view, it is “necessary” that the algorithms become limited, because
of the unpredictable behavior of the class and norm factors.

(B) One may replace, in (2.2), the ideal norms a = Nkn/k(A) by represen-
tatives t ∈ Ikn ⊗Zp (Ikn is the group of prime-to-p ideals of kn) whose Artin
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symbols are in Tk, hence finite in number (main Theorem 5.2); so, each
step of the algorithm (i.e., the evolution of the class and norm factors) only
depends on at most #Tk possibilities, taking the class of the random ideal t,
then computing Hasse’s symbols on S of numbers τ ∈ k×

n ⊗Zp when t = (τ)
is principal, in other words, for this last case a classical situation involving
random Z/pnZ-matrices of symbols for which some equidistribution results
are proven [20, Section 6].

Then, under the natural Conjecture 5.4 of independence and randomness
of the data obtained, inductively, at each step of the algorithm, one would
obtain that Greenberg’s conjecture holds true with “probability 1”, suggest-
ing possible analytic proof of this fact, using the powerful techniques used
in [15, 20] for degree p cyclic extensions of Q, but unfortunately, probably
not a complete proof of Greenberg’s conjecture.

3. Abelian p-ramification and genus theories

3.1. Abelian p-ramification – The torsion group Tk. Recall the data
needed for the study of the Galois group Ak of the maximal abelian p-
ramified pro-p-extension Hpr

k of k and its torsion group Tk (under Leopoldt’s
conjecture). Let k′× be the subgroup of k× of prime-to-p elements:

(a) Let Ek be the group of p-principal units ε ≡ 1(mod
∏

p∈S p) of k. Let

Uk :=
⊕

p∈SUp be the Zp-module of p-principal local units, where Up is the
group of p-principal units of the p-completion kp of k. Let µk (resp. µp) be
the group of pth roots of unity of k (resp. kp). Put Wk :=

⊕
p∈S µp and

Wk := Wk/µk; thus, Wk = Wk for p 6= 2 and Wk = Wk/〈±1 〉 for p = 2.

(b) Let ι : k′× ⊗ Zp → Uk be the canonical surjective diagonal map. Let
Ek be the closure of ιEk in Uk and let Hnr

k be the p-Hilbert class field of k.
By class field theory, Gal(Hpr

k /k∞Hnr
k ) ≃ torZp(Uk/Ek) = U∗

k/Ek, where
U∗
k := {u ∈ Uk, Nk/Q(u) ∈ 〈±1 〉}.
(c) Let Ck be the p-class group of k and let:

(3.1) Rk := torZp(log(Uk)/ log(Ek)) = log(U∗
k )/ log(Ek)

be the normalized p-adic regulator [7, § 5].

(d) The sub-group of Tk fixing the Bertrandias–Payan field Hbp
k is iso-

morphic to Wk (the field Hbp
k is the compositum of all p-cyclic extensions of

k embeddable in p-cyclic extensions of arbitrary large degree).

Recall some classical fundamental results (under Leopoldt’s conjecture)
that may be found in [3, Corollary III.3.6.3], [7, Lemma 3.1, Corollary 3.2],
[13, Définition 2.11, Proposition 2.12], then [18, § 1] or [17], via cohomology:

Proposition 3.1. We have the exact sequences:

(3.2) 1 → U∗
k/Ek −→ Tk −→ Gal(k∞Hnr

k /k∞) ≃ Ck → 1,
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(3.3) 1 → Wk −→ U∗
k/Ek −→ log(U∗

k )/ log(Ek) ≃ Rk → 0.

3.2. Genus theory. We denote by Hnr
kn

the p-Hilbert class field of kn. Since
p is totally ramified in kn/k by convention, the inertia groups Ip(kn/k) in
kn/k, p ∈ S, are isomorphic to Gn = Gal(kn/k).

Let ωn be the map which associates with ε ∈ Ek the family of Hasse’s sym-

bols
(
ε , kn/k

p

)
∈ Gn, p ∈ S. This yields the genus exact sequence interpreting

the product formula of the Hasse symbols [3, Corollary IV.4.4.1]:

1 → Ek/Ek ∩ Nkn/k(k
×
n )

ωn−−−→Ω(kn/k)
πn−−−→Gal(Hkn/k/knH

nr
k ) → 1,

where Ω(kn/k) :=
{
(σp)p∈S ∈ G#S

n ,
∏

p∈S σp = 1
}

≃ G#S−1
n , then where

Hkn/k is the p-genus field of kn/k defined as the maximal sub-extension of
Hnr

kn
, abelian over k. The image of ωn is contained in Ω(kn/k) and the map

πn is defined as follows: with (σp)p∈S ∈ G#S
n , πn associates the product

of the extensions σ′
p of the σp in the inertia groups Ip(Hkn/k/H

nr
k ) generat-

ing Gal(Hkn/k/H
nr
k ); from the product formula, if (σp)p∈S ∈ Ω(kn/k), then∏

p∈S σ
′
p fixes both Hnr

k and kn, whence knH
nr
k . The genus exact sequence

shows that the kernel of πn is ωn(Ek).

Diagram 1. Tk

Rk

Ck
Hbp

k Wk
k∞Hnr

kk∞ k∞Hkn/k Hpr
k

- - - - - - - - - - - - - - - - -
∏

p∈S σ′

p

C
1−σn

kn

Ck

Gkn/k

Hkn/k Hnr
kn

knH
nr
kkn

Hnr
kk

Gn=〈σn〉 〈Ip(Hkn/k/H
nr
k )〉p∈S

Uk/Ek

We have, using Chevalley’s ambiguous class number formula [2, p. 402]:

(3.4) #Gkn/k = #Gal(Hkn/k/kn) =
#Ckn

#C
1−σn

kn

= #Ck · pn·(#S−1)

(Ek : Ek ∩ Nkn/k(k
×
n ))

In the Diagram, the genus field Hkn/k is the fixed field of the image of

C
1−σn

kn
, where Gkn/k = Gal(Hkn/k/kn) is the genus group in kn/k.

3.3. Groups Rnr
k , Rram

k – Ramification in Hpr
k /k∞. The genus group

Gkn/k has, in our context, the following main property that will give Theorem
3.4 when n is large enough:

Lemma 3.2. For all n ≥ 0, k∞Hkn/k ⊆ Hbp
k . Then #Gkn/k

∣∣#Ck ·Rk, which

is equivalent (using formula (3.4)) to
pn·(#S−1)

(Ek : Ek ∩ Nkn/k(k
×
n ))

∣∣#Rk.

Proof. Indeed, using the idelic global reciprocity map (under Leopoldt’s con-
jecture), we have the fundamental diagram [3, § III.4.4.1] of the Galois group
of the maximal abelian pro-p-extension kab of k, with our present notations,
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where Fv is the residue field of the tame place v (finite or infinite) and
where Hta

k is the maximal tame sub-extension of kab. The fixed field of
Uk =

⊕
p∈S Up is H

ta
k since each Up is the inertia group of p in kab/k. Thus,

torZp(Up) = µp, restricted to Gal(Hpr
k /k), fixes k∞ and since k∞Hkn/k/k∞ is

unramified, it fixes k∞Hkn/k for all n ≥ 0.

Diagram 2. ∏
v/∈S F×

v ⊗Zp

Uk=
⊕

p∈S Up

Ek⊗Zp

kabM0Hpr
k

Hta
kHnr

kk

Uk/Ek

In Diagram 1, the restriction of Wk =
⊕

p∈S µp to Gal(Hpr
k /Hnr

k ) is isomor-

phic to Wk/µk = Wk whose fixed field is Hbp
k ; whence the first claim.

The second one is obvious since non-ramification propagates. Then #Gkn/k

increases with n and stabilizes at a divisor of [Hbp
k : k∞] = #Ck · #Rk. �

Put Gk ≃ Gkn/k for n large enough. This group is called the genus group
of k∞/k; then the field Hgen

k :=
⋃

mHkm/k (the genus field of k∞/k) is
unramified over k∞ of Galois group Gk. We can state more precisely:

Theorem 3.3. Let n0 ≥ 0 be such that #Gkn0/k
stabilizes, definig the genus

field Hgen
k such that Gal(Hgen

k /k∞) = Gk. Then Hgen
k is the maximal unram-

ified extension of k∞ in Hpr
k and Gal(Hpr

k /Hgen
k ) ≃

〈
torZp(UpEk/Ek)

〉
p∈S

.

Proof. To simplify, put L∞ := Hgen
k . Let L′

∞ be a degree p unramified

extension of L∞ in Hbp
k ; put L = Hkn/k, n ≥ n0, and consider L′ such that

L′∩L∞ = L and L′L∞ = L′
∞; thus Gal(L∞/L) ≃ Gal(L′

∞/L′) ≃ Zp. Taking
n ≫ n0, one may assume that L∞/L and L′

∞/L′ are totally ramified at p.

Let M 6= L′ be a degree p extension of L in L′
∞ and v a p-place of L; if

v was unramified in M/L, the non-ramification would propagate over L′ in
L′
∞ (a contradiction). Thus, the inertia group of v in L′

∞/L is necessarily
Gal(L′

∞/L) or Gal(L′
∞/L′), but this last case for all v gives L′/L/kn unram-

ified and L′/k abelian (absurd by definition of the genus field L = Hkn/k);
so there exists v0 totally ramified in L′

∞/L, hence in L′
∞/L∞ (absurd).

For p ∈ S, the inertia group Ip(H
pr
k /k∞) is isomorphic to the torsion part,

torZp(UpEk/Ek), of the image of Up in Uk/Ek. �

Let Rnr
k := Gal(Hgen

k /k∞Hnr
k ), Rram

k := Gal(Hbp
k /Hgen

k ). The top of Dia-
gram 1 may be specified as follows (with Hpr

k /Hgen
k totally ramified at p):

Diagram 3. Tk

U∗

k/Ek
Rk

Rnr
k Rram

k

Ck
Hgen

k Hbp
k Wk

k∞Hnr
kk∞ Hpr

k

Gk
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From Lemma 3.2, formula (3.4) and the above study, we can state (a
generalization of Taya analytic viewpoint [21, Theorem 1.1]):

Theorem 3.4. Let n ≫ 0 be such that Gkn/k := Gal(Hkn/k/kn) ≃ Gk. Then

#Gk = #Ck · #Rnr
k = C

Gn

kn
, equivalent to

pn·(#S−1)

(Ek : Ek ∩ Nkn/k(k
×
n ))

= #Rnr
k .

4. Filtration of Ckn – Class and Norm factors

Describe now a formal algorithm of computation of #Ckn , for all n ≥ 0,
by means of “unscrewing” in kn/k. For this, put Gn := Gal(kn/k) =: 〈 σn 〉.
Let Ikn be the group of prime-to-p ideals of kn.

4.1. Filtration of the class groups. One uses the filtration of Mn := Ckn

defined as follows [4, Corollary 3.7]. For n ≥ 0 fixed, (M i
n)i≥0 is the i-

sequence of sub-Gn-modules of Mn defined by M0
n := 1 and M i+1

n /M i
n :=

(Mn/M
i
n)

Gn , for 0 ≤ i ≤ bn, where bn is the least integer i such that M i
n =

Mn (i.e., such that M i+1
n = M i

n).

If Ck = 1, M0 = M0
0 = 1, b0 = 0; if Ck 6= 1, M0 = M1

0 = Ck, b0 = 1.

We will obtain, inductively, ideal groups J i
n ⊂ Ikn, with J0

n = 1, such that:

M i
n =: cℓkn(J

i
n), for all i ≥ 0.

Proposition 4.1. This filtration has the following properties:

(i) From M0
n = 1, one gets M1

n = MGn
n of order #Ck · pn·(#S−1)

(Ek : Ek ∩ Nkn/k(k
×
n ))

.

(ii) One has M i
n = {c ∈ Mn, c

(1−σn)i = 1}, for all i ≥ 0.

(iii) The i-sequence #(M i+1
n /M i

n), 0 ≤ i ≤ bn, is decreasing to 1 and is
bounded by #M1

n since 1− σn defines the injections M i+1
n /M i

n →֒M i
n/M

i−1
n .

(iv) #Mn = #M bn
n =

∏bn−1
i=0

#(M i+1
n /M i

n).

In [4, Formula (29), § 3.2], we established a generalization of Chevalley’s
ambiguous class number formula, by means of the norm groups Nkn/k(M

i
n) =

cℓk(Nkn/k(J
i
n)) and the subgroups Λi

n := {x ∈ k×, (x) ∈ Nkn/k(J
i
n)} of k×,

giving #
(
M i+1

n /M i
n

)
=

#Ck

#Nkn/k(M
i
n)

· pn·(#S−1)

(Λi
n : Λi

n ∩ Nkn/k(k
×
n ))

, where:

(4.1)
#Ck

#Nkn/k(M
i
n)

&
pn·(#S−1)

(Λi
n : Λi

n ∩Nkn/k(k
×
n ))

are integers called the class factor and the norm factor, respectively, at the
step i of the algorithm in the layer kn. These factors are independent of the
choice of the ideals defining J i

n up to principal ideals of kn and the groups
Λi

n are, therefore, defined up to elements of Nkn/k(k
×
n ).

From Lemma 3.2 and Diagram 3, we can state, for any fixed integer n and
for the class and norm factors (4.1):
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Corollary 4.2. The class factors divide #Ck and define a decreasing i-
sequence since Nkn/k(M

i
n) ⊆ Nkn/k(M

i+1
n ) for all i ≥ 0. The norm factors di-

vide #Rnr
k and define a decreasing i-sequence for all i ≥ 0, due to the injective

maps Ek/Ek∩Nkn/k(k
×
n ) →֒ · · ·Λi

n/Λ
i
n∩Nkn/k(k

×
n ) →֒ Λi+1

n /Λi+1
n ∩Nkn/k(k

×
n ) · · ·

4.2. Relation of the algorithms with Iwasawa’s theory. The sub-
groups J i

n of Ikn are built inductively from J0
n = 1, hence Λ0

n = Ek. More
precisely the algorithm is the following, for n and i fixed [5, § 6.2]:

Let x ∈ Λi
n, (x) = Nkn/k(A), A ∈ J i

n; thus x is local norm on the tame
places. Suppose that x is local norm on S, hence global norm and we
can write x = Nkn/k(y), y ∈ k×

n . The random aspects occur, from the
relation Nkn/k(y) = Nkn/k(A), in the mysterious “evolution relation” giving
the existence of an ideal B ∈ Ikn such that (y) = AB1−σn . Remark that for
N(y) = 1 and y = b1−σn , b is given by an additive Hilbert’s resolvent.

A priori there is no algebraic link with the previous data because of the
global solution y (Hasse’s norm theorem) unique up to k×

n
1−σn ; this gives B

up to principal ideals. All numbers x ∈ Λi
n ∩Nkn/k(k

×
n ) define the step i+1:

J i+1
n := J i

n · 〈. . . ,B, . . .〉 and Λi+1
n := {x ∈ k×, (x) ∈ Nkn/k(J

i+1
n )}.

Therefore, for i = bn we obtain M bn
n = Ckn , Nkn/k

(
M bn

n

)
= Ck and (Λbn

n :

Λbn
n ∩ Nkn/k(k

×
n )) = pn·(#S−1), which explains that #Ckn essentially depends

on the number of steps bn of the algorithm; this is expressed in terms of
Iwasawa invariants as follows:

Theorem 4.3. We assume the Conventions 1.1 for the base field k and
recall that Rnr

k := Gal(Hgen
k /k∞Hnr

k ) (Diagram 3), where Hgen
k is the genus

field of k∞/k (Theorem 3.3). Let bn be the length of the algorithm in the
layer kn. Then (where vp denotes the p-adic valuation):

(i) bn ≤ λ ·n+µ ·pn+ν ≤ vp(#Ck ·#Rnr
k ) ·bn, for all n ≥ 0. So, λ = µ = 0

⇐⇒ bn bounded.

(ii) bm ≥ bn, for all m ≥ n ≥ 0.

(iii) b1 = 0 ⇐⇒ λ = µ = ν = 0 ⇐⇒ bn = 0 for all n ⇐⇒ Ck = Rnr
k = 1.

Proof. Let Mn := Ckn , for all n ≥ 0.

(i) As #
(
M i+1

n /M i
n

)
≥ p, for 0 ≤ i ≤ bn − 1, Proposition 4.1 (iv) implies

#Mn = #M bn
n ≥ pbn ; whence bn ≤ λ · n+ µ · pn + ν.

From the fact that #
(
M i+1

n /M i
n

)
| #Ck · #Rnr

k (Corollary 4.2) this yields
#
(
M i+1

n /M i
n

)
≤ #Ck ·#Rnr

k for 0 ≤ i ≤ bn−1, whence #Ckn ≤ (#Ck ·#Rnr
k )bn

from Proposition 4.1 (iv); hence the second inequality and the second claim.

(ii) By definition, M bm
m = Mm with bm minimal. Since km/kn is to-

tally ramified, Nkm/kn(M
bm
m ) = Mn, but Nkm/kn(M

bm
m ) ⊆ M bm

n (Proposition
4.1 (ii)), whence Mn ⊆ M bm

n , thus M bm
n = Mn, proving the claim.
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(iii) So b1 = 0 implies b0 = 0, whence λ + µp + ν = µ + ν = 0 yielding
λ = µ = 0 and ν = 0; then (i) implies bn = 0 for all n ≥ 0, in other words,
Ckn = 1 for all n ≥ 0; thus, taking n ≫ 0 to apply Theorem 3.4 yields
Gkn/k = C

Gn
kn

= 1, whence Ck = Rnr
k = 1 (reciprocals obvious). �

Corollary 4.4. (a) Under Conventions 1.1, λ = µ = 0 (equivalent to bn
bounded) is equivalent to each of the following properties:

(i) Nkn/k : Ckn → Ck is an isomorphisms for all n ≥ 0.

(ii) #C
Gn
kn

= #Ckn = #Ck, for all n ≥ 0.

(iii) C
Gn
kn

= Ckn, for all n ≥ 0 and Rnr
k = 1.

(b) Let kn1, still denoted k, be such that bn is constant for all n ≥ n1;
2

for this new base field k and the new b-function, bn ≤ 1, for all n ≥ 0.

Proof. Proof of (a). (i) Under the condition λ = µ = 0, #Ckn = #Ck = pν

for all n, and all the (surjective) norm maps are isomorphisms.

(ii) Chevalley’s formula #C
Gn
kn

= #Ck · pn·(#S−1)

(Ek :Ek∩Nkn/k(k
×

n ))
≤ #Ckn = #Ck

yields #C
Gn
kn

= #Ckn = #Ck and pn·(#S−1)

(Ek:Ek∩Nkn/k(k
×

n ))
= 1, for all n ≥ 0.

(iii) From (ii), Rnr
k = 1, taking n ≫ 0 to apply Theorem 3.4.

In the three cases, the reciprocals are obvious.

Proof of (b). Consider the second step of the algorithm in kn (we exclude
the case bn = 0 where all class groups are trivial); the class factor for C 2

kn
/C 1

kn

is trivial since Nkn/k(C
Gn

kn
) = Ck (from (i), (ii)) and the norm factor, as

divisor of Rnr
k , is also trivial (from (iii)); whence bn = 1 for all n ≥ 0. �

Note that under Greenberg’s conjecture, in pn·(#S−1)

(Λ1
n:Λ

1
n∩Nkn/k(k

×

n ))
, we have Λ1

n =

{x ∈ k×, (x) = Nkn/k(A), A ∈ J1
n} where cℓkn(J

1
n) = C

Gn

kn
; thus, norms

being isomorphisms, (x) = Nkn/k(A) implies that A = (α), α ∈ k×
n , so that

Λ1
n = Ek Nkn/k(k

×
n ), showing that the algorithm becomes trivial.

4.3. The n-sequences (Ckn/C
i
kn
)Gn. We fix the step i of the algorithms.

For now, we do not assume the Conventions 1.1. For all m ≥ n ≥ 0, the

norm maps Nkm/kn on Mm and M
(1−σm)i

m are surjective (they are, a priori,

not injective nor surjective on the kernels M i
m of the maps Mm → M

(1−σm)i

m ).
This leads to the following result (see [5, Lemmas 7.1, 7.2] for the details),
giving another approach of the conjecture:

Theorem 4.5. For all i ≥ 0 fixed,
{
#
(
M i+1

n /M i
n

)}
n
defines an increasing

n-sequence of divisors of #Ck ·#Rnr
k . Thus lim

n→∞
#
(
M i+1

n /M i
n

)
=: pc

i

pρ
i

. The

2On must note that for each change of base field in the tower, the Iwasawa invariants
are given by Conventions 1.1, and the algorithms are distinct; for instance the parameter
bn defines a new function of the nth layer of the new k (in the meaning [kn : k] = pn).
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i-sequences pc
i
and pρ

i
are decreasing, stationary at a divisor pc of #Ck and

pρ of #Rnr
k , respectively. Greenberg’s conjecture is equivalent to c = ρ = 0.

5. Tk as governing invariant of the algorithms

The ideals A ∈ J i
n may be arbitrarily modified up to principal ideals of

kn, whence Nkn/k(A) defined up to elements of Nkn/k(k
×
n ), as well as Λ

i
n. We

intend to obtain suitable finite sets of representatives of these ideal norms,
independently of n, more precisely of cardinality ≤ #Tk.

5.1. Decomposition of Nkn/k(A) – The fundamental ideals t. Let Hpr
k

and Hpr
kn

be the maximal abelian p-ramified pro-p-extensions of k and kn,
respectively. Let F be an extension of Hnr

k such that Hpr
k be the direct

compositum of F and k∞Hnr
k over Hnr

k (possible because k∞ ∩Hnr
k = k due

to the total ramification of p in k∞/k); we put Γ = Gal(Hpr
k /F ) ≃ Zp.

In the same way, we fix an extension Fn of F such that Hpr
kn

be the direct

compositum of Fn and Hpr
k over knF ; we put Γn = Gal(Hpr

kn
/Fn) ≃ Γpn. We

have F = F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ Fn+1 ⊂ · · · (see Diagram 4 hereafter).

In what follows, we systematically use the flatness of Zp.

Consider the Artin symbols
(

Hpr
k /k

·

)
and

(
Hpr

kn
/kn

·

)
, defined on Ik⊗Zp and

Ikn ⊗ Zp, respectively. Their images are the Galois groups Ak (resp. Akn);
their kernels are the groups of infinitesimal principal ideals Pk,∞ (resp.
Pkn,∞), where Pk,∞ is the set of ideals (x∞), x∞ ∈ k′× ⊗ Zp, such that
ιx∞ = 1 in Uk (idem for Pkn,∞) [3, Theorem III.2.4, Proposition III.2.4.1].

The arithmetic norm (or restriction of automorphisms), in kn/k, leads to
Nkn/k(Akn) = Gal(Hpr

k /kn) and Nkn/k(Tkn) = Tk since kn∞ = k∞. The fixed

points formula T
Gn
kn

≃ Tk ([3, Theorem IV.3.3], [11, Section 2 (c)]), implies

Ker(Nkn/k) = T
1−σn
kn

= Gal(Hpr
kn
/Hpr

k ).

We denote by K ×
∞ ⊂ k′× ⊗Zp the subgroup of infinitesimal elements of k

(idem for K ×
n,∞ ⊂ k′×

n ⊗Zp). In the sequel, the notations x∞, y∞, . . . always
denote such infinitesimal elements.

Diagram 4.

Hpr
kWk

Tkn
= torZp

(Akn
)

Tk = torZp
(Ak)

F

knF Fn

Ck Rk

Akn

Ak

NAkn

Hpr
kn

k∞Hnr
k Hbp

kk∞

knH
nr
k knF

bp

Hnr
k F bp

kn

k

Gn pn

Γn

Uk/Ek

Γ
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Lemma 5.1. If (x∞) ∈ Pk,∞ ∩ Nkn/k(Ikn ⊗ Zp), then x∞ ∈ Nkn/k(K
×
n,∞).

Proof. The assumption implies that x∞ is everywhere local norm in kn/k,
whence x∞ = Nkn/k(y), y ∈ k′×

n ⊗ Zp (Hasse norm theorem). Thus, we get
ιNkn/k(y) = Nkn/k(ιny) = 1 and ιny = t1−σn , t ∈

∏
pn∈Sn

k×
n,pn (Hilbert’s The-

orem 90, H1(Gn,
∏

pn∈Sn
k×
n,pn) = 1). Consider t in the profinite completion∏

pn∈Sn
k̂×
n,pn; then one has the exact sequence [11, Chap. 1, § a)]:

1 → K
×
n,∞ −−−→ k×

n ⊗ Zp
ι̂n−−−→

∏
pn∈Sn

k̂×
n,pn ≃ Z

#S
p ⊕ Uk → 1.

Put t = ι̂nz, z ∈ k×
n ⊗ Zp; then ι̂ny = ι̂n(z

1−σn), y = z1−σn y∞, y∞ ∈ K ×
n,∞,

then x∞ = Nkn/k(y∞). We also have H1(Gn,K
×
n,∞) = 1 [11, Lemme 5]. �

The fundamental link between ideal norms in kn/k and the torsion group
Tk is given, for n large enough, by the following result where the “unique-
ness” are relative to the choices of the Fn; we say that some numbers
a ∈ k′× ⊗ Zp (depending on n) are “close to 1” if ιa → 1 in Uk when
n → ∞.

Theorem 5.2. Let n ≫ 0 fixed and let A ∈ Ikn ⊗ Zp (prime-to-p ideal of
kn).

(i) There exists α ∈ k′×
n ⊗Zp such that Nkn/k(A (α)) = Nkn/k(T) =: t, with

(Hpr
kn

/kn

T

)
∈ Tkn,

(Hpr
k /k

t

)
∈ Tk and ιNkn/k(α) close to 1.

(ii) The representative t of the class Nkn/k(A) · Nkn/k(k
′×
n ⊗ Zp), does not

depend, modulo Nkn/k(Pkn,∞), on the tower
⋃

jFj.

Proof. (i) From Diagram 4 and the properties of Artin symbols, there exist
unique ideals T,C ∈ Ikn ⊗ Zp, modulo Pkn,∞, such that:

(5.1) A = T·C·(y∞), with
(

Hpr
kn

/kn

T

)
∈ Tkn ,

(
Hpr

kn
/kn

C

)
∈ Γn, y∞ ∈ K

×
n,∞

By restriction, the image of Γn in Γ is Γ pn; thus Nkn/k(C) = cp
n · (x∞)

for c ∈ Ik ⊗ Zp such that
(Hpr

k /k

c

)
∈ Γ and x∞ ∈ K ×

∞ ; but since Hnr
k ⊆ F ,

the ideal c is p-principal, thus c = (c), c ∈ k′× ⊗ Zp, and then, Nkn/k(C) =
(cp

n
)· (x∞). We have from (5.1):

Nkn/k(A) = Nkn/k(T) · (cp
n

) · (x∞) · Nkn/k(y∞) =: t · (cpn) · (x′
∞),

with
(Hpr

k /k

t

)
∈ Tk, x

′
∞ ∈ K ×

∞ . From Lemma 5.1, since (x′
∞) is norm of ideal

in kn/k, x
′
∞ = Nkn/k(y

′
∞), whence Nkn/k

(
A (c)−1 (y′∞)−1

)
= t.

Let α = c−1 y′−1
∞ ; then ιNkn/k(α) = ι(c−pn) is close to 1.

(ii) Let
⋃

j F
′
j be another tower for Diagram 4; with obvious notations

(which depend on n), put u := Nkn/k(α), u
′ := Nkn/k(α

′), ιu, ιu′ close to 1,
we get Nkn/k(A) ·(u) = t, Nkn/k(A) ·(u′) = t′. Whence t′ t−1 = (a), with a
close to 1. So, if pe is the exponent of Tk, we obtain (a)p

e
= (a∞) ∈ Pk,∞,
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which gives ap
e
= ε a∞, ε ∈ Ek ⊗ Zp with ιε close to 1, hence (for n ≫ 0)

of the form ε = ηp
e
, η ∈ Ek ⊗ Zp, with ιη close to 1 (from Leopoldt’s

conjecture [3, Theorem III.3.6.2 (iv)]). This yields (a η−1)p
e
= a∞ and we

get ι(a η−1) = ξ ∈ Wk = torZp(Uk); both ιa and ιη are close to 1, thus ξ = 1
and a η−1 = a′∞ giving t′ t−1 = (a′∞) ∈ Nkn/k(Pkn,∞), using Lemma 5.1 �

5.2. Images in Ck and Rk of the ideals t – Conjecture. We choose,
once for all, a set Tk =

{
tℓ
}
1≤ℓ≤#Tk

, of ideals tℓ ∈ Ik ⊗ Zp whose Artin

symbols describe Tk isomorphic to Tk ·Pk,∞/Pk,∞.

The ideals Nkn/k(A (α)) = t ∈ Tk, well-defined modulo Nkn/k(Pkn,∞),
play the following roles in the evolution of the class and norm factors:

(i) Class factors and Tk. The ideal groups Nkn/k(J
i
n), representing the

class groups Nkn/k(M
i
n) as denominator of the class factors, are generated,

modulo principal ideals (a), a ∈ Nkn/k(k
′×
n ⊗ Zp), by ideals ti ∈ Tk.

(ii) Norm factors and Tk. The groups Λi
n = {x ∈ k×, (x) ∈ Nkn/k(J

i
n)},

giving the norm factors, are obtained, modulo elements of Nkn/k(k
′×
n ⊗ Zp),

via principal ideals (τ) ∈ Tk (hence τ is local norm at the tame places in
kn/k and its norm properties only depend on S).

Put Tppl
k := {t ∈ Tk, t = (τ)}; the subgroup Tppl

k · Pk,∞/Pk,∞, is iso-

morphic to Gal(Hpr
k /k∞Hnr

k ). Let t = (τ) ∈ Tppl
k ; so we have

(Hpr
k /k

t

)
∈

Gal(Hpr
k /k∞Hnr

k ) ≃ U∗
k/Ek. This yields τ p

e
= ε x∞, ε ∈ Ek ⊗ Zp; whence

ιNk/Q(τ) = ±1 and the image of ιτ modulo Ek is defined in U∗
k/Ek. We con-

sider the image of log(ιτ) in log(U∗
k )/ log(Ek) = Rk, which defines log(t) :=

log(ιτ) (mod log(Ek)). We have Wk = Ker(log), and this gives again the
exact sequence (3.3).

Remark 5.3. Let (τ) ∈ Tppl
k ; choosing a representative of τ modulo K ×

∞

one may always assume that (τ) = Nkn/k(T), T ∈ Ikn ⊗ Zp, since N(Tkn) =
Tk (whence τ local norm at the tame places). Suppose that the image
of ιτ in torZp(Uk/Ek) is in the subgroup Gal(Hpr

k /Hgen
k ) generated by the

inertia groups torZp(UpEk/Ek), p ∈ S; then τ is local norm on S. Indeed,
let ιτ = u = (up, 1, . . . , 1); u is local norm at each p′ 6= p, whence a global

norm (product formula). This explains that generators τ of ideals t ∈ Tppl
k ,

whose images are in Gal(Hpr
k /Hgen

k ), do not modify any norm factor, only
depending on the image in Rnr

k = Gal(Hgen
k /k∞Hnr

k ).

5.3. The algorithm in terms of fundamental ideals t. We still assume
Conventions 1.1 to the base field k. In this subsection, we consider the layer
K = kn (with pn ≫ pe, the exponent of Tk) and, to simplify, we delete
indices n (e.g., M i

n → M i, Λi
n → Λi, Nkn/k → N, bn → b (number of steps in

K)); then uppercase (respectively lowercase) letters for ideals are reserved
to K (respectively k).
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From Theorem 5.2 (i) and for any prime-to-p ideals A ∈ J i, defining M i,
there exist α ∈ K ′× ⊗ Zp and T of finite order modulo PK,∞, such that
N(A (α)) = N(T) =: t ∈ Tk with N(α) close to 1. Denote by Σi

K , the set of
such representatives Ti and let Σi

k be the set of ti := N(Ti); so:

(5.2) N(Σi
K) = Σi

k, N(M i) = cℓk〈Σi
k〉, Σi

k ⊆ Tk.

Replacing A by A (α) does not modify the class and norm factors (4.1)
since cℓk(N(A)) = cℓk(t) and, if N(A) is principal, then t = (τ) is equal to
N(A) up to N(K×⊗ Zp), which does not modify the norm properties in Λi.
Then, in Λi = {τ ∈ k′× ⊗Zp, (τ) ∈ 〈Σi

k〉}, one must find all elements τ i (by
definition of the form N(Ti), Ti ∈ 〈Σi

K〉), such that τ i is local norm on S
in K/k, thus of the form N(yi), yi ∈ K ′× ⊗ Zp; so the algorithm continues,
from N(yi) = N(Ti), with the following evolution using Theorem 5.2 (i)):

(5.3) (yi) = Ti ·B1−σ, with N(B (β)) = N(T′) = t′ ∈ Tk,

for a suitable β such that N(β) is close to 1, and one obtains a new t′ to build
Σi+1

k , and so on. If λ or µ do not vanish, there exist, when [K : k] → ∞,
arbitrary large i-sequences of sets Σi

k such that the class and norm factors
are constant, which seems incredible, each new t′ being a priori random
in Tk.

A philosophy should be that it is the t′ which govern (numerically) the
G-structure of the class groups in K/k and not the inverse (see also [6,
Remarques 11, § 6]).

Let’s give a more precise description of the numerical possibilities, assum-
ing to simplify the comments that 1 → Rk → Tk → Ck → 1 is an exact
sequence of Fp-vector spaces; we compute the filtration {M i}i≥0 for M = CK

(K = kn fixed) with the following exact sequence at the step i (see (5.2)):

1 −→ Λi/Ek
( . )−−−→〈Σi

k〉
cℓk−−−→ cℓk〈Σi

k〉 = N(M i) −→ 1,

where Λi = {τ ∈ k′× ⊗ Zp, (τ) ∈ 〈Σi
k〉}, and let ti+1 (obtained as above).

Various cases may arrive to get the (i+ 1)th exact sequence

1 → Λi+1/Ek
( . )−−−→〈Σi+1

k 〉 cℓk−−−→ cℓk〈Σi+1
k 〉 = N(M i+1) → 1 :

(a) cℓk(t
i+1) /∈ cℓk〈Σi

k〉. Thus N(M i+1) ) N(M i) and this decreases the
class factor; but there is no new relation of principality between ideals, so
Λi+1 = Λi (norm factor unchanged).

(b) cℓk(t
i+1) ∈ cℓk〈Σi

k〉. Thus N(M i+1) = N(M i) (class factor unchanged);
but ti+1 = (τ) ·∏j t

i
j
aj gives, possibly, some τ /∈ Λi. Then two cases arise:

(i) τ /∈ Λi N(K×), therefore (Λi+1 : Λi+1∩N(K×)) > (Λi : Λi ∩N(K×)),
which decreases the norm factor.
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(ii) τ ∈ Λi N(K×) (class and norm factors unchanged). This is the “bad
case” occurring, roughly, O(λn + µpn) times if Greenberg’s conjecture falls
(see Remark 5.3 for more enlightenment).

We have given, in [6, Section 6], some heuristics about the “equation
(y) = AB1−σ ” in cyclic extensions L/K when NL/K(y) = NL/K(A) and its
“additive aspects”, which applies to (τ) = N(T) = N(y) and (y) = TB1−σ.

Assuming that the ideals t, given by the algorithm, are random, cℓk(t)
(resp. log(ιτ) (mod log(Ek)) are random in Ck (resp. Rk). This is likely to
avoid unbounded algorithms and suggests the following conjecture:

Conjecture 5.4. For n ≫ 0 fixed, let tj (or τj, when tj = (τj) is principal),
be the fundamental ideals encountered by the algorithm computing inductively
the successive class and norm factors, in bn steps; then:

(i) The classes cℓk(tj) are uniformly distributed in Ck.

(ii) When tj = (τj), the images log(tj) := log(ιτj) (mod log(Ek)) are
uniformly distributed in the normalized regulator Rk = log(U∗

k )/ log(Ek).

5.4. Conclusion and possible methods. Recall that bn is the length of
the algorithm for the layer n. We observe the huge discontinuity between the
case bn bounded, which characterizes Greenberg’s conjecture (Theorem 4.3
and Corollary 4.4) and the case where λ or µ are non-zero, giving bn → ∞.
In other words, there is a conflict between the “random aspect” of the algo-
rithm, when λ or µ are non-zero, and the smooth algebraic form given by Iwa-
sawa’s theory. We indeed have, under Conventions 1.1, #Ckn = pλn+µpn+ν

for all n ≥ 0, so that the algorithm must obtain rigorously these formulas,
for all n, which seems to be an excessive requirement in contradiction with
Conjecture 5.4.

To give a logical way, the sole “solution”, where bn does not tend to infinity,
is bn constant for all n ≥ n1, giving, from the new base field kn1, that
we still denote k, the well-known properties when Greenberg’s conjecture
holds. In that case, C 2

kn
/C 1

kn
= 1 and bn ≤ 1 for all n. In other words,

in this situation, the “unpredictable” evolution relation (5.3) is not needed.
The quotient C 2

kn/C
1
kn does appear (written instead (1 − σ)Ckn [(1 − σ)]) in

works of Koymans–Pagano–Smith [15, 20], where deep distribution results
are proved for the degree p cyclic case.

We believe that these techniques can be successful for Greenberg’s con-
jecture since the general algorithm of “unscrewing” in kn/k is identical and
is essentially based on random values of classical norm symbols. In other
words, Greenberg’s conjecture would be, for k∞/k (k taken hight enough in
the cyclotomic tower), an extreme version (of the degree p cyclic case) giving
the non-existence of “exceptional p-classes” (i.e., non-invariant p-classes) in
the tower, that is to say, bn ≤ 1 for all n ≥ 0 (to be compared with bn → ∞
if λ or µ do not vanish).
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Remark 5.5. For a base field which does not fulfill the previous conditions,
the algorithms may need several steps and (under Greenberg’s conjecture)
they regularize at some layer such that the above trivialization holds; for
instance, the case of k = Q(

√
6559), p = 3, computed in [6, § 7.2], yields

Ck ≃ Z/9Z, Rk ≃ Z/27Z, Ck1 ≃ Z/27Z× Z/3Z (whence b1 = 2) and Ck2 ≃
Z/27Z× Z/9Z; we compute with [1] that C̃k ≃ Z/3Z, C̃k1 ≃ C̃k2 ≃ Z/9Z.

All this shows how classical arguments of algebraic number theory seem
insufficient to prove unconditionally Greenberg’s conjecture (among others),
but that density results may be accessible, giving that the conjecture holds
except, possibly, for pathological families of zero density (probably none).
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