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PRIMITIVE MULTIPLE SCHEMES

JEAN–MARC DRÉZET

Resume. A primitive multiple scheme is a Cohen-Macaulay scheme Y such that the associ-
ated reduced scheme X = Yred is smooth, irreducible, and that Y can be locally embedded
in a smooth variety of dimension dim(X) + 1. If n is the multiplicity of Y , there is a canon-
ical filtration X = X1 ⊂ X2 ⊂ · · · ⊂ Xn = Y , such that Xi is a primitive multiple scheme of
multiplicity i. The simplest example is the trivial primitive multiple scheme of multiplicity n
associated to a line bundle L on X: it is the n-th infinitesimal neighborhood of X, embedded
in the line bundle L∗ by the zero section.

Let Zn = spec(C[t]/(tn)). The primitive multiple schemes of multiplicity n are obtained by
taking an open cover (Ui) of a smooth variety X and by gluing the schemes Ui × Zn using
automorphisms of Uij × Zn that leave Uij invariant. This leads to the study of the sheaf of
nonabelian groups Gn of automorphisms of X×Zn that leave the X invariant, and to the study
of its first cohomology set. If n ≥ 2 there is an obstruction to the extension of Xn to a primitive
multiple scheme of multiplicity n+ 1, which lies in the second cohomology group H2(X,E) of
a suitable vector bundle E on X.

In this paper we study these obstructions and the parametrization of primitive multiple
schemes. As an example we show that if X = Pm with m >= 3 all the primitive multiple
schemes are trivial. IfX = P2, there are only two non trivial primitive multiple schemes, of mul-
tiplicities 2 and 4, which are not quasi-projective. On the other hand, if X is a projective bundle
over a curve, we show that there are infinite sequences X = X1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ Xn+1 ⊂ · · ·
of non trivial primitive multiple schemes.
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1. Introduction

A multiple scheme is a Cohen-Macaulay scheme Y over C such that Yred = X is a smooth
connected variety. We call X the support of Y . If Y is quasi-projective we say that it is a
multiple variety with support X. In this case Y is projective if X is.

Let IX be the ideal sheaf of X in Y . Let n be the smallest integer such that Y = X(n−1),
X(k−1) being the k-th infinitesimal neighborhood of X, i.e. IX(k−1) = IkX . We have a filtration
X = X1 ⊂ X2 ⊂ · · · ⊂ Xn = Y where Xi is the biggest Cohen-Macaulay subscheme contained
in Y ∩X(i−1). We call n the multiplicity of Y .

Let d = dim(X). We say that Y is primitive if, for every closed point x of X, there exists a
smooth variety S of dimension d+ 1, containing a neighborhood of x in Y as a locally closed
subvariety. In this case, L = IX/IX2 is a line bundle on X, Xj is a primitive multiple scheme of
multiplicity j and we have IXj

= I
j
X , IXj

/IXj+1
= Lj for 1 ≤ j < n. We call L the line bundle

on X associated to Y . The ideal sheaf IX can be viewed as a line bundle on Xn−1. If d = 2, Y
is called a primitive double scheme.

The simplest case is when Y is contained in a smooth variety S of dimension d+ 1. Suppose
that Y has multiplicity n. Let P ∈ X and f ∈ OS,P a local equation of X. Then we have
IXi,P = (f i) for 1 < j ≤ n in S, in particular IY,P = (fn), and L = OX(−X) .

For any L ∈ Pic(X), the trivial primitive variety of multiplicity n, with induced smooth variety
X and associated line bundle L on X is the n-th infinitesimal neighborhood of X, embedded
by the zero section in the dual bundle L∗, seen as a smooth variety.

The case dim(X) = 1 is well known. The primitive multiple curves have been defined and
studied in [3]. Double curves had previously been used in [17]. The primitive double schemes
have then been constructed and parametrized in [4]. Further work on primitive multiple curves
has been done in [5], [6], [7], [8], [9], [10], [11], [12], [13] and [14], where higher multiplicity is
treated, as well as coherent sheaves on primitive curves and their deformations. See also [23],
[19], [27], [28] and [29]. Primitive double schemes of greater dimension are also studied in[1],
[2], [20] and [21].

If dim(X) ≥ 2, the main difference with the case of curves is the presence of obstructions :
given Xn they are

– Obstruction to the extension of a vector bundle on Xn−1 to a vector bundle on Xn.
– Obstruction to the extension of Xn to a primitive multiple scheme of multiplicity n+ 1.

We will see that these obstructions depend on the vanishing of elements in cohomology groups
H2(X,E), where E is a suitable vector bundle on X. Hence if dim(X) = 1 the obstructions
disappear, and it is always possible to extend vector bundles or primitive multiple schemes.
This is why one can obtain many primitive multiple curves.

On the other hand in some cases, when dim(X) ≥ 2, it may happen that non trivial primitive
multiple schemes are very rare. For example, we will see that if X = Pm, m ≥ 2, then there
are exactly two non trivial primitive multiple schemes (for m = 2, in multiplicities 2 and 4),
and these two schemes are not quasi-projective (the scheme of multiplicity 2 appears already
in [2], see also [21], 2-). But in some other cases (for example if X is of dimension 2 and is a
projective bundle over a curve) there are big families and infinite sequences

X = X1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ Xn+1 ⊂ · · ·
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of non trivial primitive multiple schemes.

If dim(X) ≥ 2, it may also happen that primitive multiple schemes are not quasi-projective
(this has also been observed in [2], [21]). In fact, Xn is quasi-projective (and even projective)
if and only if it is possible to extend an ample line bundle on X to a line bundle on Xn. For
example the two non trivial primitive multiple schemes for X = P2 are not quasi-projective.

I am grateful to the anonymous referee for giving some useful remarks.

Notations: – In this paper, an algebraic variety is a quasi-projective scheme over C. A vector
bundle on a scheme is an algebraic vector bundle.

– If X is a scheme and P ∈ X is a closed point, we denote by mX,P (or mP ) the maximal ideal
of P in OX,P .

– If X is an scheme and Z ⊂ X is a closed subscheme, IZ (or IZ,X) denotes the ideal sheaf of
Z in X.

– If V is a finite dimensional complex vector space, P(V ) denotes the projective space of lines
in V , and we use a similar notation for projective bundles.

Let Xn be a primitive multiple scheme of multiplicity n, X = (Xn)red, and L ∈ Pic(X) the
associated line bundle.

1.1. Construction and parametrization of primitive multiple schemes

1.1.1. The sheaves of groups associated to primitive multiple schemes – For every open subset
U ⊂ X, let U (n) denote the corresponding open subset of Xn. Let Zn = spec(C[t]/(tn)). It is
proved in [8], th. 5.2.1, that Xn is locally trivial, i.e. there exists an open cover (Ui)i∈I of X
such that for evey i ∈ I there is an isomorphism

δi : U
(n)
i −→ Ui × Zn

inducing the identity on Ui. For every open subset U ofX, we have OX×Zn(U) = OX(U)[t]/(tn).
It is then natural to introduce the sheaf of (non abelian) groups Gn on X, where Gn(U) is the
group of automorphisms θ of the C-algebra OX(U)[t]/(tn) such that for every α ∈ OX(U)[t]/(tn),
θ(α)|U = α|U . We have G1 = O∗X .

Let
δij = δjδ

−1
i : Uij × Zn

' // Uij × Zn,

and δ∗ij = δ∗−1
i δ∗j ∈ OX(Uij)[t]/(t

n). Then (δ∗ij) is a cocycle of Gn, which describes completely
Xn.

In this way we see that there is a canonical bijection between the cohomology set H1(X,Gn)
ans the set of isomorphism classes of primitive multiple schemes Xn such that X = (Xn)red.
Most results of this paper come from computations in Čech cohomology.

There is an obvious morphism ρn+1 : Gn+1 → Gn, such that
H1(ρn+1) : H1(X,Gn+1) −→ H1(X,Gn)
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sends Xn+1 to Xn if n ≥ 2, whereas
H1(ρ2) : H1(X,G2) −→ H1(X,O∗X) = Pic(X)

sends X2 to L.

We prove that ker(ρ2) ' TX (proposition 4.3.2) and ker(ρn+1) ' TX ⊕ OX if n ≥ 2 (proposition
4.4.1), where TX is the tangent bundle of X. The fact that they are sheaves of abelian groups
allows to compute obstructions. Let gn ∈ H1(X,Gn), corresponding to the primitive multiple
scheme Xn, and for 1 ≤ i < n, gi the image of gn in H1(X,Gi). Let ker(ρn+1)gn be the associated
sheaf of groups (cf. 2.2). We prove that

ker(ρ2)g1 ' TX ⊗ L
(proposition 4.3.1). By cohomology theory, we find that there is a canonical surjective map

H1(X,TX ⊗ L) −→ H1(ρ2)−1(L)

sending 0 to the trivial primitive scheme, and whose fibers are the orbits of the action of C∗
on H1(X,TX ⊗ L) by multiplication. Hence there is a bijection between the set of non trivial
double schemes with associated line bundle L, and P(H1(X,TX ⊗ L)). For a non trivial double
scheme X2, we have an exact sequence

0 −→ L −→ ΩX2|X −→ ΩX −→ 0 ,

corresponding to σ ∈ Ext1
OX

(ΩX , L) = H1(TX ⊗ L), and Cσ is the element if P(H1(TX ⊗ L))
corresponding to X2. This result has already been proved in [4] using another method, and in
[8] when X is a curve, in the same way as here.

If n > 2 we have
ker(ρn+1)gn ' (ΩX2|X)∗ ⊗ Ln

(proposition 4.3.2). We have then (by the theory of cohomology of sheaves of groups) an
obstruction map

∆n : H1(X,Gn) −→ H2((ΩX2|X)∗ ⊗ Ln)

such that gn ∈ im(H1(ρn+1)) if and only ∆n(gn) = 0.

Suppose that n > 2 and ∆n(gn) = 0, and let gn+1 ∈ H1(X,Gn+1) be such that
H1(ρn+1)(gn+1) = gn. ThenH1(ρn+1)−1(gn) is the set of extensions ofXn to a primitive multiple
scheme of multiplicity n+ 1. Let Aut(Xn) be the set of automorphisms of Xn inducing the
identity on X. There is a canonical surjective map

λgn+1 : H1(X, (ΩX2|X)∗ ⊗ Ln) −→ H1(ρn+1)−1(gn)

which sends 0 to gn, and whose fibers are the orbits of an action of Aut(Xn) on
H1(X, (ΩX2|X)∗ ⊗ Ln).

1.1.2. Extensions of the ideal sheaf of X – The ideal sheaf IX,Xn is a line bundle on Xn−1.
A necessary condition to extend Xn to a primitive multiple scheme Xn+1 of multiplicity n+ 1
is that IX,Xn can be extended to a line bundle on Xn (namely IX,Xn+1). This is why we can
consider pairs (Xn,L), where L is a line bundle on Xn such that L|Xn−1 ' IX,Xn .

The corresponding sheaf of groups on X is defined as follows: for every open subset U ⊂ X,
Hn(U) is the set of pairs (φ, u), where φ ∈ Gn(U), and u ∈ OX(U)[t]/(tn) is such that φ(t) = ut
(with an adequate definition of the group law, cf. 4.5). The set of isomorphism classes of the
above pairs (Xn,L) can then be identified with the cohomology set H1(X,Hn).
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There is an obvious morphism τn : Gn+1 → Hn, such that
H1(τn) : H1(X,Gn+1) −→ H1(X,Hn)

sends Xn+1 to (Xn, IX,Xn+1). Let g ∈ H1(X,Hn). We prove in proposition 4.5.2 that
ker(τn) ' TX and

ker(τn)g ' TX ⊗ Ln .
Consequently there is again, by cohomology theory, an obstruction map

∆′′n : H1(X,Hn) −→ H2(TX ⊗ Ln)

such that, if (Xn,L) corresponds to g, there is an extension of Xn to a primitive multiple scheme
Xn+1 of multiplicity n+ 1 with IX,Xn+1 ' L if and only if ∆′′n(g) = 0.

Suppose ∆′′n(g) = 0, and let gn+1 ∈ H1(X,Gn+1) be such that H1(τn)(gn+1) = g. Then
H1(τn)−1(g) is the set of extensions of Xn to a primitive multiple scheme Xn+1 of multiplicity
n+ 1, such that IX,Xn+1 ' L. Let AutL(Xn) be the set of automorphisms σ of Xn inducing
the identity on X, and such that σ∗(L) ' L. There is a canonical surjective map

λ′′gn+1
: H1(X,TX ⊗ Ln) −→ H1(ρn+1)−1(gn)

which sends 0 to gn+1, and whose fibers are the orbits of an action of AutL(Xn) on
H1(X,TX ⊗ Ln).

1.2. Automorphisms of primitive multiple schemes

The group Aut(Xn) appears in the parametrization of the extensions of Xn to multiplicity
n+ 1. Let Aut0(Xn) be group of automorphisms of Xn such that the induced automorphism
of L is the identity. Let

Tn = (ΩXn)∗ .

We prove that there is a natural bijection
Aut0(Xn) −→ H0(Xn, IXTn)

(theorem 6.3.2, unless n = 2 this is not a morphism of groups). Locally this corresponds to the
following result: let U ⊂ X be an open subset such that ΩU is trivial. For every derivation D0

of OX(U)[t]/(tn), if D = tD0, then

χD =
∑
k≥0

1

k!
Dk : OX(U)[t]/(tn) −→ OX(U)[t]/(tn)

is an element of Gn(U) such that χD(t) is of the form χD(t) = (1 + βt)t (for some
β ∈ OX(U)[t]/(tn)). Moreover for every χ ∈ Gn(U) with this property, there exists a unique
derivation D multiple of t such that χ = χD (theorem 6.1.5).

We show that if Xn is not trivial, and Aut0(Xn) is trivial, then Aut(Xn) is finite (theorem 6.3.6
and corollary 6.3.7).
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1.3. Extensions and obstructions

1.3.1. Extension of vector bundles – Let r be a positive integer. If Y is a primitive multiple
scheme, let GL(r,OY ) denote the sheaf of groups on Y of invertible r × r-matrices with coeffi-
cients in Y (the group law being the multiplication of matrices). If E is a coherent sheaf on Y ,
let M(r,E) denote the sheaf of groups on Y of matrices with coefficients in E (the group law
being the addition of matrices). There is a canonical bijection between H1(Y,GL(r,OY )) and
the set of isomorphism classes of rank r vector bundles on Y .

Suppose thatXn can be extended to a primitive multiple schemeXn+1 of multiplicity n+ 1. The
kernel of the canonical morphism pn : GL(r,OXn+1)→ GL(r,OXn) is isomorphic to M(r, Ln).
Let g ∈ H1(Xn,GL(r,OXn)), corresponding to the vector bundle E on Xn. Let E = E|X . We
prove that the associated sheaf M(r, Ln)g is isomorphic to E∗ ⊗ E ⊗ Ln. It follows that we
have a canonical obstruction map

∆ : H1(Xn,GL(r,OXn)) −→ H2(X,E∗ ⊗ E ⊗ Ln)

such that g ∈ im(H1(pn)) if and only ∆(g) = 0. Hence ∆(g) is the obstruction to the extension
of E to Xn+1. If E is a line bundle, this obstruction lies in H2(X,Ln).

We have a canonical exact sequence of sheaves on Xn

0 −→ Ln −→ ΩXn+1|Xn −→ ΩXn −→ 0 ,

corresponding to σn ∈ Ext1
OXn

(ΩXn , L
n), inducing σn ∈ Ext1

OXn
(E⊗ ΩXn ,E⊗ Ln). Let

∇0(E) ∈ Ext1(E,E⊗ ΩXn) be the canonical class of E (cf. 3). We have a canonical prod-
uct
Ext1

OXn
(E⊗ΩXn ,E⊗Ln)×Ext1

OXn
(E,E⊗ΩXn) −→ Ext2

OXn
(E,E⊗Ln) = H2(X,E∗⊗E⊗Ln) .

We prove that ∆(g) = σn∇0(E) (theorem 7.1.2).

1.3.2. Extension of primitive multiple schemes – Suppose that n = 2, and that IX,X2 can be
extended to a line bundle L on X2. Let g2 ∈ H1(X,H2) be associated to X2. We give in
theorem 7.3.1 a description of the obstruction map

∆′′2 : H1(X,H2) −→ H2(X,TX ⊗ L2)

corresponding to (X,L), used to decide ifX2 can be extended to multiplicity 3. This description
is made with Čech cohomology.

We could not find a simpler expression for ∆′′2(g2), except in the case L = OX . The parametriza-
tion of extensions of OX to a line bundle on X2 exhibits an element θL ∈ H1(OX) associated to
L. On the other hand, we have σ ∈ H1(TX) associated to X2 (from the construction of double
primitive schemes, or by the exact sequence 0→ L→ ΩX2|X → ΩX → 0). We find that

∆′′2(g2) = θLσ +
1

2
[σ, σ] .

(where [−,−] is the Poisson bracket).

Suppose that X2 is trivial. We give in 6.5 a complete description of the action of Aut(X2) on
H1(X, (ΩX2|X)∗ ⊗ L2) (cf .1.1).
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For any n ≥ 2, if Xn is trivial, we describe in 6.6 the action of C∗ ⊂ Aut(Xn) on
H0(X, (ΩX2|X)∗ ⊗ Ln). It follows that if h0(Xn, IXTn) = 0, then Aut(Xn) ' C∗, and the exten-
sions of Xn to multiplicity n+ 1 are parametrized by a weighted projective space (cf. 7.2.3).

1.4. Examples

1.4.1. The case of surfaces and canonical associated line bundle – Suppose that X is a surface
and L = ωX . Let X2 be a non trivial primitive double scheme with associated line bundle
ωX . As indicated in 1.1, such schemes are parametrized by P(H1(ΩX)). Let σ ∈ H1(ΩX) such
that Cσ corresponds to X2. We prove in proposition 7.4.1 that if H0(TX) = {0}, then X2 can
be extended to a primitive multiple scheme of multiplicity 3 if and only if σ.∇0(ωX) = 0 in
H2(ωX).

1.4.2. The case of projective spaces – We suppose that X = Pm, m ≥ 2. We prove that if
m > 2, then there are only trivial primitive multiple schemes, and if m = 2, there are exactly
two non trivial primitive multiple schemes (theorem 8.0.1). The first, X2, is of multiplicity 2,
with L = OP2(−3). The second, X4, is of multiplicity 4, with L = OP2(−1).

We prove that the only line bundles on X2 and X4 are the trivial line bundles. Consequently,
X2 and X4 are not quasi-projective (theorems 8.0.2 and 8.0.3). Since a primitive multiple
scheme is a locally complete intersection, it has a dualizing sheaf which is a line bundle. We
must have ωX2 ' OX2 and ωX4 ' OX4 , i.e. X2 X4 are K3 carpets according to definition 1.2
of [21].

1.4.3. The case of projective bundles over curves – Let C be a smooth irreducible projective
curve and E a rank 2 vector bundle on C. Let X = P(E) be the associated projective bundle
and π : P(E)→ C the canonical projection. We suppose that

L = π∗(D)⊗ OP(E)(−k) ,

with D ∈ Pic(C) and k ≥ 3. We prove in 9 that if deg(D) is sufficiently big, then there exist
infinite sequences

X1 = P(E) ⊂ X2 ⊂ · · · ⊂ Xn ⊂ Xn+1 ⊂ · · ·
of projective non trivial primitive multiple schemes (Xn of multiplicity n).

For example, if C = P1, E = OP1 ⊗ C2, we have X = P1 × P1. Let L = O(d,−k), with
d > 0, k ≥ 3. Then such infinite sequences exist, and for every n > 1, the extensions
of Xn to primitive multiple schemes of multiplicity n+ 1 form a family of dimension
d(3kn2 − 5n− 2kn+ k + 1) + 5kn− 7− k.

1.5. Outline of the paper

In chapter 2, we give several ways to use Čech cohomology, and some basic results on cohomol-
ogy of sheaves of groups are recalled. We give also some technical results about polynomials
that are used later.
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In chapter 3 the definition and some properties of the canonical class of a vector bundle are
given.

In chapter 4 we give the definition and the properties of the sheaves of groups that are used to
define primitive multiple schemes, as described in 1.1.

The chapter 5 contains a detailed study of the groups Gn(U) of 1.1, and of the canonical
sheaves of primitive multiple schemes. These results are used is to perform computations in
Čech cohomology.

In chapter 6 we give some descriptions and properties of the automorphism group of a primi-
tive multiple scheme. Some demonstrations are omitted when they are similar to the case of
primitive multiple curves, treated in [8].

In chapter 7 we study the two extensions problems: extension of vector bundles and extension
of primitive multiple schemes to higher multiplicity. It contains also a comparison of the present
work and of the other possible construction of primitive multiple schemes given in [4].

In Chapter 8 we apply the previous results to the case X = Pm, m ≥ 2.

In chapter 9 we apply the previous results to the case X = P(E), where E is a rank 2 vector
bundle on a smooth projective curve.

2. Preliminaries

2.1. Čech cohomology and trivializations

Let X be a scheme over C and E, F vector bundles on X of ranks r, s respectively. Let (Ui)i∈I
be an open cover of X such that we have trivializations:

αi : E|Ui

' // OUi
⊗ Cr.

2.1.1. Let
αij = αi ◦ α−1

j : OUij
⊗ Cr ' // OUij

⊗ Cr,

so that we have the relation αijαjk = αik. Let n be a positive integer, and for every sequence
(i0, . . . , in) of distinct elements of I, σi0···in ∈ H0(Ui0···in ,OX ⊗ Cr). Let

θi0···in = α−1
i0
σi0···in ∈ H0(Ui0···in , E) .

The family (θi0···in) represents an element of Hn(X,E) if the cocycle relations are satisfied: for
every sequence (i0, . . . , in+1) of distinct elements of I,

n∑
k=0

(−1)kθi0···îk···in+1
= 0 ,

which is equivalent to

αi0i1σi1···in+1 +
n+1∑
k=1

(−1)kσi0···îk···in+1
= 0 .
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For n = 1, this gives that elements of H1(X,E) are represented by families (σij),
σij ∈ H0(Uij,OX ⊗ Cr), such that

αijσjk + σij − σik = 0 .

In Čech cohomology, it is generally assumed that θji = −θij. This implies that σji = −αjiσij.

2.1.2. Similarly, an element of Hn(X,E ⊗ F ) is represented by a family (µi0···in), with
µi0···in ∈ H0(Ui0···in ,Cr ⊗ F ), satisfying the relations

(αi0i1 ⊗ IF )(µi1···in+1) +
n+1∑
k=1

(−1)kµi0···îk···in+1
= 0 .

The corresponding element of H0(Ui0···in , E ⊗ F ) is θi0···in = (αi0 ⊗ IF )−1(µi0···in).

Suppose that n = 1. Let ν ∈ H1(E ⊗ F ) be the element defined by (θij). For every i ∈ I,
let βi be an automorphism of OUi

⊗ Cr, and θi ∈ H0(Ui, E ⊗ F ). The cocycle (θij + θi − θj)
represents also ν. Let ρi = (βiαi ⊗ IF )(θi) ∈ H0(Ui,Cr ⊗ F ). If we replace αi with βiαi, we
see that ν is represented by the family (µ′ij), µ′ij ∈ H0(Uij,Cr ⊗ F ), with

µ′ij = (βi ⊗ IF )(µij) + ρi − (βiαijβ
−1
j ⊗ IF )(ρj) .

2.1.3. Representation of morphisms – Suppose that we have also local trivializations of F :

βi : F|Ui

' // OUi
⊗ Cs.

We have then local trivializations of Hom(E,F )

∆i : Hom(E,F )|Ui

' // OUi
⊗ L(Cr,Cs)

φ � // βi ◦ φ ◦ α−1
i

such that, for every λ ∈ Uij × L(Cr,Cs), we have

∆ij(λ) = ∆i∆
−1
j (λ) = βijλα

−1
ij .

2.1.4. Construction of vector bundles via local isomorphisms – Le Z be a scheme over C, (Zi)i∈I
an open cover of Z, and for every i ∈ I, a scheme Ui, with an isomorphism δi : Zi → Ui. Let
δij = δjδ

−1
i : δi(Zij)→ δj(Zij), which is an isomorphism. Then a vector bundle of X can be

constructed (in an obvious way) using vector bundles Ei on Ui and isomorphisms
Θij : δ∗ij(Ej|δj(Zij)) −→ Ei|δi(Zij)

such that Θij ◦ δ∗ij(Θjk) = Θik on δi(Zijk).

2.1.5. Representation of extensions – Let E, F be vector bundles on X, and
σ ∈ Ext1(F,E) ' H1(Hom(F,E)). Let

0 −→ E −→ E −→ F −→ 0
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be the corresponding exact sequence. Suppose that σ is represented by a cocycle (σij),
σij : F|Uij

→ E|Uij
. Then E can be constructed by gluing the vector bundles (E ⊕ F )|Ui

us-

ing the automorphisms of (E ⊕ F )|Uij
defined by the matrices

(
IE σij
0 IF

)
.

2.2. Cohomology of sheaves of non abelian groups

(cf. [18])

Let X be a paracompact topological space and G a sheaf of groups on X. We denote by
H1(X,G) the first Čech cohomology group of G. If G is not a sheaf of commutative groups
there is no natural structure of group on H1(X,G). Let e ∈ H1(X,G) be defined by the trivial
section of G (on the trivial open cover (X) of X), we call e the identity element of H1(X,G).

Given an open cover (Ui)i∈I of X, a 1-cocycle of G is a family (gij)i,j∈I such that gij ∈ G(Uij)
and that the relations gijgjk = gik are satisfied.

2.2.1. Actions of sheaves of groups – Let H be another sheaf of group on X, acting on G
(the action is compatible with the group actions). Let z ∈ H1(X,H), represented by a cocycle
(zij) with respect to an open cover (Ui)i∈I of X. Recall that the associated sheaf of groups
Gz is defined as follows: we glue the sheaves G|Ui

using the automorphisms (zij) of G|Uij
. The

sections of Gz are represented by families (γi)i∈I , γi ∈ G(Ui), such that γi = zijγj on Uij. The
elements of H1(X,Gz) are represented by families (ρij), ρij ∈ G(Uij), such that ρ−1

ij ρik = zijρjk
on Uijk. If G is a sheaf of commutative groups, the elements of the higher cohomology groups
Hk(X,Gz), k ≥ 2 can be represented in the same way by appropriate families.

2.2.2. Exact cohomology sequence – Let Γ ⊂ G be a subsheaf of normal subgroups of G, and
G/Γ the quotient sheaf of groups. Hence we have an exact sequence of sheaves of groups

0 // Γ
i // G

p // G/Γ // 0.

Let A1, . . . , Am be sets, having a particular element ei ∈ Ai for 1 ≤ i ≤ m. A sequence of maps

A1
f1 // A2

// · · · // Am−1

fm−1 // Am

is called exact if for 1 < i < m we have f−1
i (ei) = fi−1(Ai−1) . Then we have: the canonical

sequence

0 // H0(X,Γ)
H0(i)

// H0(X,G)
H0(p)

// H0(X,G/Γ)
δ //

H1(X,Γ)
H1(i)

// H1(X,G)
H1(p)

// H1(X,G/Γ) .

is exact. The subsequence

0 // H0(X,Γ)
H0(i)

// H0(X,G)
H0(p)

// H0(X,G/Γ)

is an exact sequence of groups. Moreover, if c, c′ ∈ H0(X,G/Γ), we have δ(c) = δ(c′) if and
only if cc′−1 ∈ im(H0(p)).
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The group H0(X,G/Γ) acts on H1(X,Γ) as follows: let a ∈ H1(X,Γ), represented by a cocycle
(γij) (with respect to an open cover (Ui) of X), and c ∈ H0(X,G/Γ). Suppose also that the
cover (Ui) is such that c|Ui

is the image of an element ci of G(Ui). Then (ciγijc
−1
j ) is a cocycle

of elements of Γ, and the corresponding element of H1(X,Γ) depends only on c and a; we
denote it by c.a. We have then δ(c) = c−1.e . Moreover, let γ, γ′ ∈ H1(X,Γ). Then we have:
H1(i)(γ) = H1(i)(γ′) if and only if γ, γ′ are in the same H0(X,G/Γ)-orbit.

2.2.3. The fibers of H1(p) – The sheaf of groups G acts (by conjugation) on itself and Γ, G/Γ.
Let ω ∈ H1(X,G/Γ), g ∈ H1(X,G) be such that H1(p)(g) = ω. Suppose that g is represented
by a cocycle (gij). Let g′ ∈ H1(p)−1(ω). Then g′ is represented by a cocycle of the form (γijgij),
with γij ∈ Γ(Uij). Conversely, a cochain (γijgij) is a cocycle if and only if, for every i, j, k we
have γ−1

ij γik = gijγjkg
−1
ij , i.e. if and only if (γij) induces a cocycle in Γg (cf. 2.2.1). In this way

we define a surjective map
λg : H1(X,Γg) −→ H1(p)−1(ω)

sending the identity element of H1(X,Γg) to g.

Note that we have an exact sequence 0→ Γg → Gg → Gg/Γg → 0.

The group H0(X,Gg/Γg) acts on H1(X,Γg) and the fibers of λg are the fibers of this action.

2.2.4. The case where Γ is commutative – The sheaf of groups G/Γ acts then by conjugation
on Γ. Let ω ∈ H1(X,G/Γ). We define ∆(ω) ∈ H2(X,Γω) as follows: we can represent ω
by a cocycle (ωij) (for a suitable open cover (Ui) of X), such that for every i, j there exists
gij ∈ G(Uij) over ωij, and that gji = g−1

ij . For every indices i, j, k let γijk = gijgjkgki. Then
(γijk) is a family representing ∆(ω) (cf. 2.2.1). We have then: ∆(ω) = 0 if and only if ω belongs
to the image of H1(p).

The commutativity of Γ brings also a supplementary property of the map λg of 2.2.3. The sheaf
of groups Γg can be seen naturally as a subsheaf of commutative groups of of Gg, and we have
a canonical isomorphism (G/Γ)g ' Gg/Γg. Hence there is a natural action of H0(X,Gg/Γg)
on H1(X,Γg), and we have: the fibers of λg are the orbits of the action of H0(X,Gg/Γg). This
action is as follows: let h ∈ H0(Gg/Γg), γ ∈ H1(X,Γg), represented by (γij). For a suitable
open cover (Ui), each h|Ui

can be lifted to hi ∈ G(Ui), and we have higijhjg
−1
ij ∈ Γ(Uij). Then

h.γ is represented by (hi.γij.gijh
−1
j g−1

ij ).

2.3. Extension of polynomials

The following results are used in 3. Let R be a commutative unitary ring and n a positive
integer. Let Rn = R[t]/(tn), which can be seen as the set of polynomials of degree < n in
the variable t with coefficients in R. In this way we have an inclusion Rn ⊂ Rn+1. For every
α ∈ Rn and every integer p such that 0 ≤ p < n, let αp denote the coefficient of tp in α.

Let r be a positive integer,Mn,r = M(r, Rn) the R-algebra of r × r-matrices with coefficients if
Rn, and GLn,r = GL(r, Rn) ⊂Mn,r the group of invertible r × r matrices. We have inclusions
Mn,r ⊂Mn+1,r, GLn,r ⊂ GLn+1,r.
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Let A ∈Mn+1,r, and p an integer such that 0 ≤ p ≤ n. We will denote by Ap ∈M(r, R) the
coefficient of the term of degree p of A, so that A =

∑
0≤p≤n

Apt
p. Let

[A]n =
∑

0≤p<n

Apt
p ,

so that A = [A]n + Ant
n.

Let A ∈ GLn,r. An element B of GLn+1,r is called an extension of A if [B]n = A. Here we will
define canonical extensions compatible with some actions of automorphisms of Rn+1.

Let λ be an automorphism of Rn+1 such that λ(α)0 = α for every α ∈ R. We have λ(t) = µλt,
with µλ ∈ Rn, invertible, and µλ−1 = µ−1

λ . We will also denote by λ the automorphism of Rn

and the bijection Mn+1,r →Mn+1,r induced by λ.

Let A ∈ GLn+1,r (or GLn,r). Let Invλ(A) = λ−1(A−1). In this way we define a bijection
GLn+1,r → GLn+1,r whose inverse is A 7→ Invλ−1(A). Let

Γλ(A) =
1

2

(
µnλA0Invλ(A)nA0 − An

)
,

so that we have also

Γλ−1(Invλ(A)) =
1

2

(
µnλ−1A−1

0 AnA
−1
0 − Invλ(A)n

)
.

Let
Aext,λ = A+ Γλ(A)tn ,

which is an extension of A if A ∈ GLn,r.

2.3.1. Lemma: We have Invλ(Aext,λ) = Invλ(A)ext,λ−1 .

Proof. We have
Invλ(Aext,λ) = λ−1

(
[A+ Γλ(A)tn]−1

)
= λ−1

(
[A(I + A−1

0 Γλ(A)tn)]−1)

= λ−1
(
(I − A−1

0 Γλ(A)tn))A−1)

= (I − µ−nλ A−1
0 Γλ(A)tn)Invλ(A)

= Invλ(A)− µ−nλ A−1
0 Γλ(A)A−1

0 tn .

The result follows from the equality Γλ−1(Invλ(A)) = −µ−nλ A−1
0 Γλ(A)A−1

0 , which is easily ver-
ified. �

2.3.2. Lemma: Let A ∈ GL(n, r), viewed as an element of GL(n+ 1, r). Then we have

Invλ(Aext,λ) = ([Invλ(A)]n)ext,λ−1 .
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Proof. We have from lemma 2.3.1
Invλ(Aext,λ) = Invλ(A)ext,λ−1

= Invλ(A)− 1

2
Invλ(A)nt

n

= [Invλ(A)]n +
1

2
Invλ(A)nt

n .

Let B = Invλ−1([Invλ(A)]n), so that [Invλ(A)]n = Bλ. We have

([Invλ(A)]n)ext,λ−1 = [Invλ(A)]n +
1

2
µ−nλ A−1

0 BnA
−1
0 tn ,

hence we have to show that Invλ(A)n = µ−nλ A−1
0 BnA

−1
0 . We have

B = λ
(
([Invλ(A)]n)−1

)
= λ

(
(Invλ(A)− Invλ(A)nt

n)−1
)

= λ
(
[Invλ(A)(1− A0Invλ(A)nt

n)]−1
)

= λ
(
(1 + A0Invλ(A)nt

n)Invλ(A)−1
)

= A+ µnλA0Invλ(A)nA0t
n ,

and the result follows immediately since An = 0. �

2.3.3. Example – If n = 2, λ = I and A ∈ GL2,r, we have

Aext,I = A0 + tA1 +
1

2
t2A1A

−1
0 A1 ,

(A−1)ext,I = A−1
0 − tA−1

0 A1A
−1
0 +

1

2
t2A−1

0 A1A
−1
0 A1A

−1
0 .

3. Canonical class associated to a vector bundle

3.1. Definition

Let X be a scheme over C and E a vector bundle on X of rank r. Let (Ui)i∈I be an open cover
of X such that we have trivializations:

θi : E|Ui

' // OUi
⊗ Cr.

then
θij = θiθ

−1
j : OUij

⊗ Cr ' // OUij
⊗ Cr

can be viewed as a r × r matrix with coefficients in O(Uij). We can then define dθij, which is
a r × r matrix with coefficients in ΩX(Uij). Let

Bij = (dθij)θ
−1
ij .
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We have
Bik = (dθik)θ

−1
ik

=
(
θijdθjk + dθijθjk

)
θ−1
jk θ

−1
ij

= θij(dθjk)θ
−1
jk θ

−1
ij + (dθij)θ

−1
ij

= θijBjkθ
−1
ij +Bij .

From 2.1, it follows that (Bij) represents an element of H1(E ⊗ E∗ ⊗ ΩX). It is easy to see
that it does not depend on the family (θij) defining E. We denote by ∇0(E) this element, and
call it the canonical class of E.

If L is a line bundle on X, then we have ∇0(L) ∈ H1(ΩX).

3.2. Functorial properties

Let f : X → Y be a morphism of schemes over C, and F a vector bundle on Y . We have a
canonical morphism of sheaves η : f ∗(ΩY )→ ΩX , hence

η ⊗ I : f ∗(F ⊗ F ∗ ⊗ ΩY ) −→ f ∗(F )⊗ f ∗(F )∗ ⊗ ΩX .

Let ι be the canonical map H1(Y, F ⊗ F ∗ ⊗ ΩY )→ H1(X, f ∗(F ⊗ F ∗ ⊗ ΩY )).

3.2.1. Lemma: We have ∇0(f ∗(F )) = H1(η ⊗ I)(ι(∇0(F ))).

Proof. Let (Vi)i∈I be an open cover of Y such that for every i ∈ I there is a trivialization
θi : FVi ' OVi ⊗ Cr, so that, if θij = θiθ

−1
j : OVij ⊗ Cr → OVij ⊗ Cr, then (θij) is a cocycle rep-

resenting F . We have then f ∗(θij) : Of−1(Vij) ⊗ Cr → Of−1(Vij) ⊗ Cr, and (f ∗(θij)) is a co-
cycle representing f ∗(F ), with respect to the open cover (f−1(Vi)i∈I) of X. The result fol-
lows immediately from the fact that, for every open subset V ⊂ Y , and α ∈ OY (V ) we have
η(dα) = d(f ◦ α). �

Let E1, E2 be vector bundles on X. For i = 1, 2, let Ψi : OX → Ei ⊗ E∗i be the canonical
morphism. If 1 ≤ i 6= j ≤ 2, we have then

I ⊗Ψj : Ei ⊗ E∗i ⊗ ΩX −→ (E1 ⊗ E2)⊗ (E1 ⊗ E2)∗ ⊗ ΩX .

3.2.2. Lemma: We have ∇0(E1 ⊗ E2) = (I ⊗Ψ1)(∇0(E2)) + (I ⊗Ψ2)(∇0(E1)).

Proof. For k = 1, 2, let rk = rk(Ek). Suppose that Ek is represented by a cocycle (θkij), where
θkij is an automorphism of OUij

⊗ Crk . Then E1 ⊗ E2 is represented by the cocycle (θ1
ij ⊗ θ2

ij),
θ1
ij ⊗ θ2

ij being an automorphism of OUij
⊗ Cr1 ⊗ Cr2 . We have then(

d(θ1
ij ⊗ θ2

ij)
)
(θ1
ij ⊗ θ2

ij)
−1 =

(
dθ1

ij ⊗ θ2
ij + θ1

ij ⊗ dθ2
ij

)
(θ1
ij ⊗ θ2

ij)
−1

= (dθ1
ij)(θ

1
ij)
−1 ⊗ I + I ⊗ (dθ2

ij)(θ
2
ij)
−1 .

The result follows immediately. �
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3.2.3. Corollary: Let L1, L2 be line bundles on X. Then we have
∇0(L1 ⊗ L2) = ∇0(L1) +∇0(L2).

3.3. The canonical class of the determinant of a vector bundle

Let U be a scheme over C. Let
ηr : GL(r,H0(OU)) // M(r,H0(ΩU))

M � // M−1dM

We have, for any M,N ∈ GL(r,H0(OU)),

ηr(MN) = ηr(N) +N−1ηr(M)N .

Let
Tr : GL(r,H0(OU)) // H0(ΩU)

M � // tr(ηr(M))

(where tr is the trace morphism). We have
(1) Tr(MN) = Tr(M) + Tr(N) .

3.3.1. Proposition: For every M ∈ GL(r,H0(OU)) we have Tr(M) = T1(det(M)) .

Proof. It is true if M ∈ GL(r,C), because in this case Tr(M) = T1(det(M))) = 0.

Let’s show that it is also true if M is a triangular matrix (upper or lower). Let
λ1, . . . , λr ∈ O∗(U) be the diagonal elements of M . Then M−1dM is also triangular, and its

diagonal elements are
dλi
λi

, 1 ≤ i ≤ r. Hence we have

Tr(M) =
r∑

k=1

dλk
λk

.

We have det(M) =
∏r

k=1 λk. Hence

d(det(M)) =
( r∏
k=1

λk
) r∑
k=1

dλk
λk

,

and Tr(M) = T1(det(M))).

Note that for any A,B ∈ O∗(U), we have T1(AB) = T1(A) + T1(B). Hence it follows from
(1) that it suffices to show that M is a product of matrices that are triangular or in GL(r,C).
We can also replace M by the product of M with a triangular matrix, or by the product of M
with an element of GL(r,C). Il particular, we can multiply rows or columns of M by elements
of O∗(U), add a column (or row) to another one, or switch columns or rows.

We now prove proposition 3.3.1, more precisely the fact that M is a product of matrices that
are triangular or in GL(r,C), by induction on r. The case r = 1 is obvious. Suppose that the
theorem is true for r − 1.
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In the first column of M there is at least one invertible element Mi1. By permuting rows of
M we can assume that i = 1. For 2 ≤ i ≤ r, by subtracting Mi1M

−1
11 times the first row to the

i-th we can assume that Mi1 = 0. Similarly we can assume that M1i = 0. We have then

M =

(
M11 0

0 M ′

)
,

where M ′ ∈ GL(r − 1, H0(OU)). From the induction hypothesis we can write
M ′ = M ′

1 · · ·M ′
p ,

where, for 1 ≤ i ≤ p, M ′
i is triangular or in GL(r − 1,C). We have

M =

(
M11 0

0 Ir−1

)(
1 0
0 M ′

1

)
· · ·
(

1 0
0 M ′

p

)
,

and
(
M11 0

0 Ir−1

)
,
(

1 0
0 M ′

1

)
, . . . ,

(
1 0
0 M ′

p

)
are triangular or in GL(r,C). �

Let trE : H1(End(E)⊗ ΩX)→ H1(ΩX) be the trace morphism.

3.3.2. Corollary: We have trE(∇0(E)) = ∇0(det(E)) .

We have a canonical isomorphism End(E) ' Ad(E)⊕ OX , where Ad(E) is the sheaf of en-
domorphisms of trace 0. Let ∇(E) be the component of ∇0(E) in H1(Ad(E)⊗ ΩX). So we
have

∇0(E) = ∇(E) +
1

r
∇0(det(E)) .

4. Primitive multiple schemes

4.1. Definitions

Let X be a smooth connected variety, and d = dim(X). A multiple scheme with support X is
a Cohen-Macaulay scheme Y such that Yred = X. If Y is quasi-projective we say that it is a
multiple variety with support X. In this case Y is projective if X is.

Let n be the smallest integer such that Y = X(n−1), X(k−1) being the k-th infinitesimal neigh-
borhood of X, i.e. IX(k−1) = IkX . We have a filtration X = X1 ⊂ X2 ⊂ · · · ⊂ Xn = Y where
Xi is the biggest Cohen-Macaulay subscheme contained in Y ∩X(i−1). We call n themultiplicity
of Y .

We say that Y is primitive if, for every closed point x of X, there exists a smooth variety S
of dimension d+ 1, containing a neighborhood of x in Y as a locally closed subvariety. In this
case, L = IX/IX2 is a line bundle on X, Xj is a primitive multiple scheme of multiplicity j and
we have IXj

= I
j
X , IXj

/IXj+1
= Lj for 1 ≤ j < n. We call L the line bundle on X associated

to Y . The ideal sheaf IX,Y can be viewed as a line bundle on Xn−1.
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Let P ∈ X. Then there exist elements y1, . . . , yd, t of mS,P whose images in mS,P/m
2
S,P form a

basis, and such that for 1 ≤ i < n we have IXi,P = (ti). In this case the images of y1, . . . , yd in
mX,P/m

2
X,P form a basis of this vector space.

A multiple scheme with support X is primitive if and only if IX/I2
X is zero or a line bundle on

X (cf. [12], proposition 2.3.1).

Even if X is projective, we do not assume that Y is projective. In fact we will give examples
of non quasi-projective Y .

The simplest case is when Y is contained in a smooth variety S of dimension d+ 1. Suppose
that Y has multiplicity n. Let P ∈ X and f ∈ OS,P a local equation of X. Then we have
IXi,P = (f i) for 1 < j ≤ n in S, in particular IY,P = (fn), and L = OX(−X) .

For any L ∈ Pic(X), the trivial primitive variety of multiplicity n, with induced smooth variety
X and associated line bundle L on X is the n-th infinitesimal neighborhood of X, embedded
by the zero section in the dual bundle L∗, seen as a smooth variety.

4.2. Construction and parametrization of primitive multiple schemes

Let Y be a primitive multiple scheme of multiplicity n, X = Yred. Let Zn = spec(C[t]/(tn)).
Then for every closed point P ∈ X, there exists an open neighborhood U of P in X, such that
if U (n) is the corresponding neighborhood of P in Y , there exists a commutative diagram

UnN

}}

� q

##
U (n) ' // U × Zn

i.e. Y is locally trivial ([8], théorème 5.2.1, corollaire 5.2.2).

It follows that we can construct a primitive multiple scheme of multiplicity n by taking an
open cover (Ui)i∈I of X and gluing the varieties Ui × Zn (with automorphisms of the Uij × Zn
leaving Uij invariant).

Let An = OX×Zn . So we have, for any open subset U of X
An(U) = OX(U)⊗C C[t]/(tn) .

We have a canonical morphism An → OX of sheaves on X coming from the inclusion
X ⊂ X × Zn. Let Gn be the sheaf of groups of automorphisms of An leaving X invariant,
i.e. Gn(U) is the group of automorphisms of C-algebras θ : An(U)→ An(U) such that the
following diagram is commutative

An(U)
θ //

$$

An(U)

zz
OX(U)

Then the set of primitive multiple schemes Y of multiplicity n, such that X = Yred, can be
identified with the cohomology set H1(X,Gn).
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4.2.1. Primitive multiple schemes and the associated cohomology classes – For every open
subset U of X, let U (n) be the corresponding open subset of Y . Let (Ui)i∈I be an affine open
cover of X such that we have trivializations

δi : U
(n)
i

' // Ui × Zn,

and δ∗i : OUi×Zn → O
U

(n)
i

the corresponding isomorphism. Let

δij = δjδ
−1
i : Uij × Zn

' // Uij × Zn,

and δ∗ij = δ∗−1
i δ∗j ∈ Gn(Uij). Then (δ∗ij) is a cocycle which represents the element gn ofH1(X,Gn)

corresponding to Y .

4.2.2. The ideal sheaf of X – There exists aij ∈ OX(Uij)⊗C C[t]/(tn−1) such that δ∗ij(t) = aijt.
Let αij = aij|X ∈ OX(Ui). For every i ∈ I, δ∗i (t) is a generator of IX,Y |U(n) . So we have local
trivializations

λi : I
X,Y |U(n−1)

i

// O
U

(n−1)
i

× C

δ∗i (t)
� // 1

Hence λij = λiλ
−1
j : O

U
(n−1)
ij

× C→ O
U

(n−1)
ij

× C is the multiplication by δ∗j (aij). It follows that
(δ∗j (aij)) (resp. (αij)) is a cocycle representing the line bundle IX,Y (resp. L) on Xn−1 (resp.
X).

We have a canonical morphism of sheaves of groups
ξn : Gn −→ O∗X

defined as follows: if U is an open subset of X ans ∈ Gn(U), then there exists ν ∈ O∗X(U) such
that φ(t) = νt. Then ξn(φ) = ν. The map

H1(ξn) : H1(X,Gn) −→ H1(X,O∗X)

associates to the primitive scheme Y the associated line bundle L on X. This map is surjective:
for every line bundle L on X, there exists a primitive variety of multiplicity n and associated
line bundle L (the trivial primitive variety).

4.2.3. Descriptions using the open cover (Ui)

(i) Construction of sheaves – Let E be a coherent sheaf on Xn. We can define it in the usual
way, starting with sheaves Fi on the open sets U (n)

i and gluing them. We take these sheaves of
the form Fi = δ∗i (Ei), where Ei is a sheaf on Ui × Zn. To glue the sheaves Fi on the intersection
U

(n)
ij we use isomorphisms ρij : F

j|U(n)
ij
→ F

i|U(n)
ij

, with the relations ρik = ρjkρij. Let

θij = (δ∗i )
−1(ρij) : δ∗ij(Ej|U(n)

ij ×Zn
) −→ E

i|U(n)
ij ×Zn

.

We have then the relations θik = θij ◦ δ∗ij(θjk). Conversely, starting with sheaves Ei and iso-
morphisms θij satisfying the preceding relations, one obtains a coherent sheaf on Xn.

This applies to trivializations, i.e when Ei = O
U

(n)
i
⊗ Cr. We have then

θij : OUij×Zn ⊗ Cr → OUij×Zn ⊗ Cr.
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(ii) Morphisms – Suppose that we have another sheaf E′ on Xn, defined by sheaves E′i on
Ui × Zn and isomorphisms θ′ij. One can see easily that a morphism Ψ : E→ E′ is defined by
morphisms Ψi : Ei → E′i such that θ′ij ◦ δ∗ij(Ψj) = Ψi ◦ θij.

(iii) Inverse images – Let ϕ be an automorphism of Xn inducing the identity on X. Let
ϕi = δi ◦ ϕ ◦ δ−1

i : Ui × Zn → Ui × Zn. We have then ϕj ◦ δij = δij ◦ ϕi. And conversely, given
automorphisms ϕi : Ui × Zn → Ui × Zn inducing the identity on Ui and satisfying the preced-
ing relations we can build a corresponding automorphism ϕ of Xn.
Suppose that E is defined by trivializations as in (i), and described with the morphisms θij. In
the same way ϕ∗(E) is described by the morphisms ϕ∗i (θij).

4.3. The case of double schemes

We suppose that n = 2. Then there exists a map Dij : OX(Uij)→ OX(Uij) such that, for
every f ∈ OX(Uij) we have

δ∗ij(f) = f + tDij(f) ,

and it is easy to see that Dij is a derivation of OX(Uij), i.e. a section of TX|Uij
. It follows

that δ∗ij can be represented as the matrix
(

1 0
Dij αij

)
. The formula δ∗ijδ

∗
jk = δ∗ik implies

that Dij + αijDjk = Dik. It follows from 2.1.2 that the family (Dij) represents an element
of H1(TX ⊗ L). This element does not depend on the choice of the automorphisms δi and
the trivializations λi|X of L : suppose that τi is an automorphism of Ui × Zn, represented by

the matrix
(

1 0
Di βi

)
, and that we replace δi with δ′i = τiδi. Then δ∗ij is replaced with δ∗

′
ij ,

represented by the matrix(
1 0
D′ij αijβjβ

−1
i

)
=

(
1 0
Di βi

)−1(
1 0
Dij αij

)(
1 0
Dj βj

)
,

with D′ij = −β−1
i Di + β−1

i Dij + β−1
i αijDj. It follows from 2.1.2 that (D′ij) represents the same

element of H1(TX ⊗ L) as (Dij).
We have ker(ξ2) ' TX , so we have an exact sequence of sheaves of groups on X

0 // TX // G2
ξ2 // O∗X

// 0.

Recall that g2 ∈ H1(X,G2) is associated to Y . Let g1 = H1(ξ2)(g2).

4.3.1. Lemma: 1 – We have T g1X ' TX ⊗ L.
2 – The action of H0(X,O∗X) = C∗ on H1(X,TX ⊗ L) is the multiplication.

Proof. Let U ⊂ X be an open subset, D,D0 ∈ H0(U, TX), α ∈ H0(U,O∗X). The result follows
easily from the formula (

1 0
D α

)(
1 0
D0 1

)(
1 0
D α

)−1

=

(
1 0

αD0 1

)
and 2.1.1. �
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4.3.2. Proposition: The element of H1(X,TX ⊗ L) = Ext1
OX

(ΩX , L) corresponding to the
canonical exact sequence

0 −→ L −→ ΩY |X −→ ΩX −→ 0

is g2.

Proof. The vector bundle ΩY |X can be constructed, by the method of 2.1.4, using the lo-
cal isomorphisms U (2)

i ' Ui × Z2, the bundles ΩUi×Z2|Ui
, and the canonical automorphisms of

ΩUij×Z2|Uii
defined by δij. Let

µij : δ∗ij(ΩUij×Z2) = ΩUij×Z2 −→ ΩUij×Z2

be the canonical morphism. Then for every α ∈ OX(Uij) we have
µij(dα) = d(δij ◦ α)

= d(α +Dij(α)t)

= dα + d(Dij(α))t+Dij(α)dt,

µij(dt) = d(δij ◦ t)
= d(αijt)

= d(αij)t+ αijdt.

It follows that µij|Uij
: ΩUij×Z2|Uij

→ ΩUij×Z2|Uij
is defined, with respect to the isomorphism

ΩUij×Z2|Uij
' ΩUij

⊕ (OUij
⊗ Cdt), by the matrix

(
I 0
Dij αij

)
. The result follows then easily

from 2.1. �

4.3.3. Parametrization of primitive double schemes – From lemma 4.3.1 it follows that the non
trivial primitive double schemes Y such that Yred = X and with associated line bundle L are
parametrized by P(H1(X,TX ⊗ L)). This result has been proved by another method in [4] (cf.
7.5).

4.4. The case of primitive schemes of multiplicity n > 2

There is a canonical obvious morphism ρn : Gn → Gn−1.

4.4.1. Proposition: We have ker(ρn) ' TX ⊕ OX .

Proof. Let U ⊂ X be an open subset. Let φ be an automorphism of U × Zn leaving U
invariant, and φ∗ the associated automorphism of OX(U)[t]/(tn). It belongs to ker(ρn)(U) if
and only if there is a derivation D of OX(U) and α ∈ O∗X(U) such that φ∗(λ) = λ+D(λ)tn−1

for every λ ∈ OX(U), and φ∗(t) = (1 + αtt−2)t. The result follows easily. �

Let gn ∈ H1(X,Gn), and for 2 ≤ k < n, gk = ρk+1 ◦ · · · ◦ ρn(gn). We denote by Y the double
primitive scheme defined by g2, and use the notations of 4.2 and 4.3. Suppose that gn is
represented by the cocycle (δij) with respect to (Ui).

4.4.2. Proposition: We have ker(ρn)gn−1 ' (ΩY |X)∗ ⊗ Ln−1.
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Proof. The sheaf ker(ρn)gn−1 = (TX ⊕ OX)gn−1 is constructed as follows: we glue the sheaves
(TX ⊕ OX)|Ui

using the automorphisms of ker(ρn)|Uij
: φ 7→ δ∗ijφ(δ∗ij)

−1. We can write

φ(α) = α +D(α)tn−1 , φ(t) = (1 + εtn−2)t

for every α ∈ OX(Uij) (for some derivation D of OX(Uij) and ε ∈ OX(Uij)); D and ε are the
components of ψ if H0(Uij, TX) and OX(Uij) respectively. An easy computation shows then
that

δ∗ijψ(δ∗ij)
−1(α) = α +

(
D(α) +Dij(α)ε

)
αn−1
ij tn−1,

δ∗ijψ(δ∗ij)
−1(t) = (1 + εαn−2

ij tn−2)t,

i.e. we obtain the automorphism of (TX ⊕ OX)|Uij
defined by the matrix(

αn−1
ij αn−1

ij Dij

0 αn−2
ij

)
. The result follows then from 2.1. �

4.5. Primitive multiple schemes with extensions of the canonical ideal sheaf

We use the notations of 4.1 to 4.4. Suppose that n ≥ 2, and let Y = Xn be a primitive multiple
scheme of multiplicity n such that Yred = X, with associated line bundle L ∈ Pic(X). The ideal
sheaf IX,Y is a line bundle on Xn−1. A necessary condition for the possibility to extend Y to
a primitive multiple scheme Xn+1 of multiplicity n+ 1 is that IX,Y can be extended to a line
bundle on Y , because in this case IX,Xn+1 is a line bundle on Y and we have IX,Xn+1|Y = IX,Y .
This is why we will consider pairs (Y,L), where L is a line bundle on Y such that L|Xn−1 ' IY,X .

4.5.1. The corresponding sheaf of groups – The sheaf of groups Hn on X (as Gn for primitive
multiple schemes of multiplicity n) is defined as follows: for every open subset U ⊂ X, Hn(U)
consists of pairs (φ, u), where φ ∈ Gn(U), and u ∈ OX(U)[t]/(tn) is such that φ(t) = ut. Note
that u is then defined up to a multiple of tn−1. The multiplication is defined by:

(φ′, u′)(φ, u) = (φ′φ, u′φ′(u))

(cf. the formulas in 5.1). Associativity is easily verified. The identity element is (I, 1) and

the inverse of (φ, u) is (φ−1, φ−1(
1

u
)). The set of isomorphism classes of the above pairs (Y,L)

can then be identified with the cohomology set H1(X,Hn). More precisely, given a cocycle
((φij, uij)) of Hn associated to (Y,L), (φij) is a cocycle of Gn defining Y and (uij) a family
defining L (according to 4.2.2 and 4.2.3).

We have canonical obvious morphisms
εn : Hn −→ Gn , τn : Gn+1 −→ Hn .

4.5.2. Proposition: 1 – We have ker(τn) ' TX .

2 – Let g ∈ H1(X,Hn). Then we have T gX ' TX ⊗ Ln.

The proof is similar to those of propositions 4.4.1 and 4.4.2.

Finally we obtain commutative diagrams with exact rows
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0 // TX //
� _

��

Gn+1
τn // Hn

//

εn
��

0

0 // TX ⊕ OX
// Gn+1

ρn+1 // Gn // 0

0 // TX ⊗ Ln //

ι

��

G
g
n+1

// Hg
n

//

��

0

0 // (ΩY |X)∗ ⊗ Ln // G
g
n+1

// Ggn
// 0

(2)

It is easy to see that ι is the injective morphism deduced from the exact sequence of proposition
4.4.2.

4.5.3. The associated sheaf of groups – Let g ∈ H1(X,Hn), corresponding to the pair (Y,L).
Suppose that g is defined by the cocycle ((δ∗ij, uij)), (δ∗ij, uij) ∈ Hn(Uij), so that (δ∗ij) is the
cocycle defining Y (cf. 4.2.1).

A global section of Hg
n is defined by a family ((χi, vi))i∈I , (χi, vi) ∈ Hn(Ui), such that

(δ∗ij, uij)(χj, vj)(δ
∗
ij, uij)

−1 = (χi, vi) ,

which is equivalent to the two relations
δ∗ijχjδ

∗−1
ij = χi ,

uijδ
∗
ij(vj) = viχi(uij) .

The first one says that (χi) defines an automorphism χ of Y inducing the identity on X. The
second that (vi) defines an isomorphism L→ χ∗(L). It follows that we can identify H0(X,Hg

n)
with the set of pairs (χ, η), where χ is an automorphism of Y and η : L→ χ∗(L) is an
isomorphism.

4.6. Ample line bundles and projectivity

We use the notations of 4.1 to 4.4. Suppose that n ≥ 2, and let Y = Xn be a primitive multiple
scheme of multiplicity n such that Yred = X, with associated line bundle L ∈ Pic(X). The
following result follows from prop. 4.2 of [25]:

4.6.1. Proposition: Let D be a line bundle on Xn, and D = D|X . Then D is ample if and
only D is ample.

4.6.2. Corollary: The scheme Xn is quasi-projective if and only if there exists an ample line
bundle on X that can be extended to a line bundle on Xn.

In this case Xn is even projective.
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5. Structure of Gn

We use the notations of 4.1 and 4.2.

5.1. Description of local automorphisms

Let U ⊂ X be a non empty open subset. Let φ be an automorphism of U × Zn leaving
U invariant, that we can view φ as an automorphism of OX(U)[t]/(tn) such that for every
α ∈ OX(U) we have φ(α) = α + tη(α), for some map η : OX(U)→ OX(U)/(tn−1). We have
also φ(t) = µt, for some µ ∈ OX(U)/(tn−1), invertible, and φ is completely defined by η and
µ. The map η is C-linear and has the following property: for every α, β ∈ OX(U) we have

η(αβ) = η(α)β + αη(β) + η(α)η(β).t .

In particular, if n = 2 then η is a derivation of OX(U). Conversely, given an invertible element
µ ∈ OX(U)/(tn−1) and a C-linear map η satisfying the preceding property, there is a unique
automorphism φ of OX(U)[t]/(tn) such that for every α ∈ OX(U) we have φ(α) = α + tη(α),
and φ(t) = µt. We will write

φ = φη,µ .

Let d = dim(X). Suppose that there exist x1, . . . , xd ∈ OX(U) such that for every P ∈ U ,
x1 − x1(P ), . . . , xd − xd(P ) generate mX,P/m

2
X,P . Then η is completely determined by µ and

η(xi), 1 ≤ i ≤ d. Conversely, any sequence (λ1, . . . , λd, µ) of elements of µ ∈ OX(U)/(tn−1)
uniquely defines such a map η with the required properties. For every α ∈ OX(U), φη,µ(α) can
be computed with the Taylor formula. For example, for n = 3

φη,µ(α) = α + t
d∑
i=1

λi
∂α

∂xi
+
t2

2

∑
0≤i,j≤d

λiλj
∂2α

∂xi∂xj
.

For every β ∈ OX(U)[t]/(tn) and 0 ≤ k < n, let βk be the coefficient of tk in β, and if k > 0

[β]k =
k−1∑
p=0

βpt
p .

Let φη,µ and φη′,µ′ be automorphisms, and
φη′′,µ′′ = φη′,µ′ ◦ φη,µ .

Then we have, for every α ∈ OX(U)

η′′(α) = η′(α) + ν ′[φη′,ν′(η(α))]n−1 ,

and ν ′′ = [φη′,ν′(ν)]n−1ν
′ .
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5.2. The case n = 2

Let φD,µ be an automorphism of OX(U)[t]/(t2), where D is a derivation of OX(U) and
µ ∈ OX(U) is invertible.

5.2.1. Composition and inverse – Let ΦD,µ, ΦD′,µ′ , be automorphisms, and

ΦD′′,µ′′ = ΦD′,µ′ ◦ ΦD,µ , ΦD̂,µ̂ = (ΦD,µ)−1 .

Using the formulas of 5.1 or directly, it is easy to prove that
D′′ = D′ + µ′D , µ′′ = µµ′ ,

D̂ = − 1

µ0

D , µ̂ =
1

µ
.

5.3. The case n = 3

The following computations will be used in 7.3 to describe the obstruction to extend primitive
double schemes to multiplicity 3.

5.3.1. We can write the automorphism Φ of OX(U)[t]/(t3) as follows: for every α ∈ OX(U)

(3) Φ(α) = α +D(α)t+ E(α)t2 ,

where D is a derivation of OX(U) and E is a D-operator, i.e. a C-linear map OX(U)→ OX(U)
such that

E(αβ) = αE(β) + βE(α) +D(α)D(β)

for every α, β ∈ OX(U). We have also
Φ(t) = µt ,

where µ = µ0 + µ1t ∈ OX(U)[t]/(t2), with µ0, µ1 ∈ OX(U), µ0 invertible.

5.3.2. Properties of D-operators - We have

(i) If E, E ′ are D-operators, then E − E ′ is a derivation.
(ii) If E is a D-operator and D0 a derivation, then E +D0 is a D-operator.

(iii)
1

2
D2 =

1

2
D ◦D is a D-operator.

It follows that the D-operators are the maps of the form

E =
1

2
D2 +D(1) ,

where D(1) is a derivation.

5.3.3. Notations – We will denote the automorphism Φ defined as in (3), with

E =
1

2
D2 +D(1), as

Φ = ΦD,µ,D(1) .

The automorphism of OX(U)[t]/(t2) induced by ΦD,µ,D(1) is ΦD,µ0 .
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5.3.4. Composition and inverse – Let ΦD,µ,D(1) , ΦD′,µ′,D′(1) , be automorphisms, and

ΦD′′,µ′′,D′′(1) = ΦD′,µ′,D′(1) ◦ ΦD,µ,D(1) , ΦD̂,µ̂,D̂(1) = (ΦD,µ,D(1))−1 .

Using the formulas of 5.1 or directly, it is easy to prove the

5.3.5. Lemma: We have
D′′ = D′ + µ′0D ,

µ′′0 = µ0µ
′
0 , µ′′1 = µ′0D

′(µ0) + µ′0
2
µ1 + µ0µ

′
1 ,

D′′
(1)

= D′
(1)

+ µ′0
2
D(1) + µ′1D −

1

2
(D′ + µ′0D)(µ′0)D +

1

2
µ′0(D′D −DD′) ,

D̂ = − 1

µ0

D ,

µ̂0 =
1

µ0

, µ̂1 =
D(µ0)− µ1

µ3
0

,

D̂(1) = − 1

µ2
0

D(1) +
1

µ3
0

(
µ1 −

1

2
D(µ0)

)
D .

5.3.6. Canonical extensions – Let D be a derivation of OX(U) and µ = µ0 + µ1t ∈ OX [t]/(t2),
with µ0 invertible. Let

D(1) =
µ1 −D(µ0)

2µ0

D

and
Ψ(D,µ) = ΦD,µ,D(1) .

Let D̂ and µ̂ be defined as in lemma 5.3.5. An easy computation using lemma 5.3.5 shows that

5.3.7. Lemma: We have Ψ(D,µ)−1 = Ψ(D̂, µ̂) .

So we have defined an extension of ΦD,µ0 to an automorphism of OX(U)[t]/(t3) in such a way
that the extension of the inverse is the inverse of the extension.

Let Ψ(D,µ), Ψ(D′, µ′), be automorphisms, and
ΦD′′,µ′′,D′′(1) = Ψ(D′, µ′) ◦Ψ(D,µ)

(with D′′, µ′′ as in lemma 5.3.5). In general we don’t have ΦD′′,µ′′,D′′(1) = Ψ(D′′, µ′′). The
following result can be computed using lemma 5.3.5, and will be used in 7.2.

5.3.8. Proposition: We have

Ψ(D′, µ′) ◦Ψ(D,µ) ◦Ψ(D′′, µ′′)−1 = Φ0,1,D̂(1) ,

with
D̂(1) =

1

2

(
µ′1D +

(
D(µ′0) +

µ′0
µ0

D(µ0)− µ′0
µ0

µ1

)
D′ + µ′0(D′D −DD′)

)
.
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5.4. The canonical sheaf of primitive multiple schemes and extension in higher mul-
tiplicity

This section contains technical results that are used in 8. We use the notations of 4.1 to 4.4.

5.4.1. Canonical sheaves and isomorphisms – Let Y , Z be schemes and φ : Y → Z an iso-
morphism. Then φ induces a canonical isomorphism

θ : φ∗(ΩZ) −→ ΩY .

Let U ⊂ Z be an open subset and f, g ∈ OZ(U). Then f.dg ∈ ΩZ(U) = φ∗(ΩZ)(φ−1(U)), and
θ(f.dg) = f ◦ φ.d(g ◦ φ) = φ∗(f).d(φ∗(g)) .

We will also note θ = φ∗.

5.4.2. Description of canonical sheaves using open covers – Let Xn be a primitive multiple
curve of multiplicity n ≥ 2, such that (Xn)red = X, with associated line bundle L on X. Let
(Ui) be an open cover of X such that we have trivializations

δ
(n)
i : U

(n)
i −→ Ui × Zn

as in 4.2.

Let (τij) be a cocycle representing τ ∈ H1(Ωn) (τij ∈ H0(U
(n)
ij ,ΩXn)). Let

θ
(n)
i : ((δ

(n)
i )−1)∗(Ω

U
(n)
i

) −→ ΩUi×Zn

be the canonical morphism (cf. 5.4.1). Let

ρij = H0(θ
(n)
i )(τij) ∈ H0(Uij × Zn,ΩUij×Zn) .

We have
ρij + θ

(n)
ij (ρjk) = ρik ,

where
θ

(n)
ij : ((δ

(n)
ij )−1)∗(ΩUij×Zn) −→ ΩUij×Zn

is the morphism described in 5.4.1, corresponding to δ(n)
ij . Conversely, every family (ρij) satis-

fying the preceding relation defines an element of H1(ΩXn).

5.4.3. Extension to multiplicity n+ 1 – Suppose that Xn can be extended to Xn+1, of multi-
plicity n+ 1, and let

δ
(n+1)
i : U

(n+1)
i −→ Ui × Zn+1

be trivializations extending δ(n)
i .

We can view every element of H0(OUij×Zn) as an element of H0(OUij×Zn+1) (with coefficient 0
in degree n with respect to t).

For every β ∈ H0(OUij×Zn+1), β =
n∑
p=0

βkt
k, βk ∈ OX(Uij), let [β]n =

n−1∑
p=0

βkt
k ∈ H0(OUij×Zn).
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Similarly, we can view every element of H0(ΩUij×Zn) as an element of H0(ΩUij×Zn+1). Let
ω ∈ H0(ΩUij×Zn+1). We can write

(4) ω =
n∑
k=0

tkbk +
( n−1∑
p=0

cpt
p
)
dt ,

with bk ∈ H0(Uij,ΩX), cp ∈ OX(Uij). Let

[ω]n =
n−1∑
k=0

tkbk +
( n−2∑
p=0

cpt
p
)
dt ,

Then we have ω ∈ H0(ΩUij×Zn) if and only if ω = [ω]n, i.e. if and only if bn = 0 and cn−1 = 0.

Let
θ

(n+1)
i : ((δ

(n+1)
i )−1)∗(Ω

U
(n+1)
i

) −→ ΩUi×Zn+1 ,

θ
(n+1)
ij : ((δ

(n+1)
ij )−1)∗(ΩUij×Zn+1) −→ ΩUij×Zn+1

be the canonical morphisms. We have

θ
(n+1)
ij (ω) = θ

(n)
ij ([ω]n) + tnΥ0(ω) + Υ1(ω)tn−1dt ,

with Υij
0 (ω) ∈ H0(Uij,ΩX) and Υij

1 (ω) ∈ OX(Uij). If R(θ
(n+1)
ij (ω)) is the restriction of θ(n+1)

ij (ω)
to Uij × Zn, we have

R(θ
(n+1)
ij (ω)) = θ

(n)
ij ([ω]n) + Υij

1 (ω)tn−1dt .

Suppose that there exist x1, . . . , xd ∈ OX(Uij), d = dim(X), such that
ΩX(Uij) = Cdx1 ⊕ · · · ⊕ Cdxd.

5.4.4. The case of a trivial Xn – We suppose that Xn is the trivial primitive multiple scheme
associated to L and that n ≥ 2. We have then (δ

(n)
ij )∗(α) = α for every α ∈ OX(Uij), and

(δ
(n)
ij )∗(t) = αijt, where αij ∈ OX(Ui)

∗ (and (αij) is a cocycle which defines L). We have then,
for every α ∈ OX(Uij),

(δ
(n+1)
ij )∗(α) = α + ηij(α)tn ,

where ηij is a derivation of OX(Uij) and (δ
(n+1)
ij )∗(t) = αij(1 + εijt

n−1)t, with εij ∈ OX(Uij).
Now let ω ∈ H0(ΩUij×Zn), written as in 4, with bn = 0 and cn−1 = 0. We have then

θ
(n)
ij (ω) =

n−1∑
k=0

αkijt
kbk +

n−2∑
p=0

cpα
p
ijt

p(tdαij + αijdt) ,

θ
(n+1)
ij (ω) = θ

(n+1)
ij (b0) + αij(1 + εijt

n−1)tθ
(n+1)
ij (b1) +

n−1∑
k=2

αkijt
kθ

(n+1)
ij (bk)

+
[
c0 + ηij(c0)tn + c1αij(1 + εijt

n−1)t+
n−2∑
p=2

cpα
p
ijt

p
]
d
(
(δ

(n+1)
ij )∗(t),

hence

R(θ
(n+1)
ij (ω)) =

n−1∑
k=0

αkijt
kθ

(n+1)
ij (bk) +

( n−2∑
p=0

cpα
p
ijt

p
)(
tdαij + (αij + nαijεijt

n−1)dt
)
.
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Suppose that bk =
d∑
q=1

γ
(k)
q dxq. Then

tkθ
(n+1)
ij (bk) = tk

d∑
q=1

(γ(k)
q + µij(γ

(k)
q )tn)(dxq + nµij(xq)t

n−1dt+ d(µij(xq))t
n) .

Restricting to Uij × Zn we have

θ
(n+1)
ij (b0)|Uij×Zn = b0 + n

( d∑
q=1

γ(0)
q µij(xq)

)
tn−1dt ,

and tkθ
(n+1)
ij (bk)|Uij×Zn = tkbk if k ≥ 1. Finally

R(θ
(n+1)
ij (ω)) = θ

(n)
ij (ω) + n

(( d∑
q=1

γ(0)
q µij(xq)

)
+ c0αijεij

)
tn−1dt ,

whence

Υij
1 (ω) = n

(( d∑
q=1

γ(0)
q µij(xq)

)
+ c0αijεij

)
= n(<µij, b0> +c0αijεij) .

In particular, if n = 1 we have ω = b0 and Υij
1 (ω) =<µij, ω>.

Let δ : H1(ΩXn)→ H2(Ln) be the map deduced from the exact sequence
0→ Ln → ΩXn+1|Xn → ΩXn → 0.

5.4.5. Description of δ – Let τ ∈ H0(ΩXn) as in 5.4.2. Let ρij be ρij viewed as an element
og H0(ΩUij×Zn+1), and

τ ′ij = H0((θi(n+ 1))−1)(ρij) ∈ H0(U
(n+1)
ij ,ΩXn+1) .

Let τ ij = τ ′
ij|U(n)

ij

∈ H0(U
(n)
ij ,ΩXn+1|Xn), which is over τij ∈ H0(U

(n)
ij ,ΩXn). Then

ωijk = τ ij + τ jk − τ ik ∈ H0(Uijk, L
n) ,

and ωijk) is a cocycle which represents δ(τ). It is also represented (as in 2.1.1) by
(θ

(n+1)
i (ω′ijk)|Uijk×Zn), where ω′ijk = τ ′ij + τ ′jk − τ ′ik. We have

θ
(n+1)
i (ω′ijk)|Uijk×Zn =

(
ρij + θn+1

ij (ρjk)− ρik
)
|Uijk×Zn

= Υij
1 (ρjk)t

n−1dt .

It follows that δ(τ) is represented (in the sense of 2.1.1) by (Υij
1 (ρjk)).

5.4.6. Description of δ in the case of a trivial Xn – We suppose also that:

– (i) τ is the canonical class of the line bundle IX,Xn+1 on Xn: τ = ∇0(IX,Xn+1).
– (ii) IX,Xn+1 is the same as the ideal sheaf ofX in the trivial extension ofXn in multiplicity
n+ 1.
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For example, condition (ii) will be satisfied if h1(Ln−1) = 0. With the notations of 5.4.4, we

have b0 =
dαij
αij

and c0 = 0. Hence δ(τ) is represented by the cocycle
(µij(αjk)

αjk

)
.

6. Automorphisms of primitive multiple schemes

6.1. Derivations and automorphisms

Let U be a smooth affine variety, U = spec(A), of dimension d > 0, such that the vector bundle
ΩU is trivial, generated by dx1, . . . , dxd, with x1, . . . , xd ∈ A. Then for every closed point P ∈ U ,
the images of xi − xi(P ), 1 ≤ i ≤ d, form a basis of mP/m

2
P .

Let n ≥ 2 be an integer, and Rn = A[t]/(tn).

6.1.1. Derivations of Rn – They are of the form

(5) D =
d∑
i=1

ai
∂

∂xi
+ bt

∂

∂t
,

with a1, . . . , ad, b ∈ Rn. If α =
n−1∑
p=0

αpt
p, with α0, . . . , αn−1 ∈ A, then

D(α) =
d∑
i=1

ai
( n−1∑
p=0

∂αp
∂xi

tp
)

+ b
n−1∑
p=1

pαpt
p .

Let Der0(Rn) be the vector space of derivations D of Rn such that

D(Rn) ⊂ (t) and D((t)) ⊂ (t2) ,

i.e. derivations (5) with a1, . . . , ad, b multiple of t. In other words, a derivation D belongs to
Der0(Rn) if and only if there exists another derivation D0 of Rn such that D = tD0.

For every D ∈ Der0(Rn), and every integer k ≥ 1, we have Dk(Rn) ⊂ (tk) (where Dk denotes
the k times composition of D).

6.1.2. Automorphisms from derivations – Let D ∈ Der0(Rn). Then we have Dk = 0 if k ≥ n,
so we can define the map

(6) χD =
∑
k≥0

1

k!
Dk : Rn −→ Rn ,

such that for every α ∈ Rn, the terms of degree 0 of α and χD(α), with respect to t, are the
same.

Let D0 be a derivation of Rn and D ∈ Der0(Rn). Then D + tn−1D0 ∈ Der0(Rn), and we have
χD+tn−1D0

= χD + tn−1D0.
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6.1.3. Proposition: 1 – The map χD is an automorphism of C-algebras.
2 – If D,D′ ∈ Der0(Rn) commute, then χD+D′ = χD ◦ χD′.

Proof. The fact that χD is a morphism of C-algebras and 2- are immediate. From 2- we see
that χ−D is the inverse of χD, so χD is an automorphism. �

6.1.4. Examples: If n = 2 and D,D′ ∈ Der0(R2), then DD′ = D′D = 0 (multiple of t2).

If n = 3 and D,D′ ∈ Der0(R3), then we have

χD ◦ χD′ = χD+D′ +
1

2
(D′ ◦D −D ◦D′) = χD+D′+ 1

2
(D′◦D−D◦D′)

(D′ ◦D −D ◦D′ is a multiple of t2).

For every D ∈ Der0(Rn) have χD ∈ Gn(U) (cf. 4.2). Let G0
n(U) denote the subgroup of Gn(U)

of automorphisms γ such that γ(t) = (1 + tε)t for some ε ∈ Rn. It is also the set of γ ∈ Gn(U)
which can be written as γ = I + tψ, for some map ψ : Rn → Rn−1.

We have an obvious “division by t” map (t)→ Rn−1, that we can denote by multiplication by
1

t
. With the notations of 5.1 we have χD = φη,µ, with

η =
1

t

∑
k≥1

1

k!
Dk , µ = 1 +

1

t

∑
k≥1

1

k!
Dk(t) .

6.1.5. Theorem: The map
Der0(Rn) // G0

n(U)

D � // χD

is a bijection.

Proof. It similar to the proof of theorem 4.2.5 of [8]. One can also define the inverse using the
logarithm

I + tψ � //
n−1∑
k=1

(−1)k−1 1

k
(tψ)k.

�

6.1.6. Remark: If we allow in (6) derivations D which are not multiple of t we could still get
a convergent series but not in Rn (in the ring of holomorphic functions on U instead), or the
terms of degree 0 of ∈ Rn and χD(α) can be distinct. For example in this way, with A = C[x],

if we take D =
∂

∂x
, then for every α ∈ C[x] we have χD(α) = α(x+ 1).
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6.2. Sheaves of differentials

Let X be a smooth connected variety of dimension d > 0 and n an integer such that n ≥ 2.
Let Xn be a primitive multiple scheme, of multiplicity n, such that (Xn)red = X. We give here
some properties of the sheaf of differentials ΩXn and of its dual Tn = (ΩXn)∗, that will be used
in 8 and 9 . Recall that we have a canonical filtration by primitive multiple schemes

X1 = X ⊂ X2 ⊂ · · · ⊂ Xn−1 ⊂ Xn

(cf. 4.1).

The sheaves ΩXn and Tn are quasi locally free (cf. [7], [9], i.e. they are locally isomorphic to
a direct sum of sheaves OXi

, 1 ≤ i ≤ n). They are locally isomorphic to d.OXn ⊕ OXn−1 : if
P ∈ X and x1, . . . , xd ∈ mXnP

generate mX,P/m
2
X,P , and z ∈ OXnP

is a generator of the ideal
of X, then

ΩXnP
' OXnP

dx1 ⊕ · · · ⊕ OXnP
dxd ⊕ OXnP

dz ,

and we have zn−1dz = 1
n
d(zn) = 0 (OXnP

dz ' OXn−1,P
).

Let E be a coherent sheaf on Xn. For 0 ≤ i ≤ n, let Ei = IiXE ⊂ E, and E(i) ⊂ E the subsheaf
of elements annihilated by IiX . The filtration

0 = En ⊂ En−1 ⊂ · · · ⊂ E1 ⊂ E = E0

is called the first canonical filtration of E, and

0 = E(0) ⊂ E(1) ⊂ · · · ⊂ E(n−1) ⊂ E(n) = E

the second canonical filtration of E.

For 0 ≤ i < n, let
Gi(E) = Ei/Ei+1 , G(i+1)(E) = E(i+1)/E(i) .

If 1 ≤ i < n we have (E∗)(i) = (E/Ei)
∗, and it follows easily that if E is quasi locally free, then

G(i+1)(E∗) = Gi(E)∗ ⊗ Ln−1 .

In the simplest case, i.e. if E is locally free, the two filtrations are the same, and we have, if
E = E|X , Gi(E) ' E ⊗ Li for 0 ≤ i < n.

6.2.1. The case of ΩXn and Tn – We have ΩXn|X ' ΩX2|X , and an exact sequence
0 −→ L −→ ΩX2|X −→ ΩX −→ 0 ,

associated to σ ∈ Ext1OX
(ΩX , L) = H1(TX ⊗ L). We have seen in 4.3 that σ = 0 if and only

X2 is trivial, and that if σ 6= 0, then Cσ ∈ P(H1(TX ⊗ L)) defines completely X2. We have

Gi(ΩXn) ' ΩX2|X ⊗ Li for 1 ≤ i < n− 1 ,

and Gn−1(ΩXn) ' ΩX ⊗ Ln−1.

For every ∇ ∈ H1(ΩX) = Ext1
OX

(OX ,ΩX), let 0 −→ ΩX −→ E∇ −→ OX −→ 0 be the ex-
act sequence associated to ∇, where E∇ is a rank d+ 1 vector bundle on X. Recall that
∇0(L) ∈ H1(ΩX) denotes the canonical class of L (cf. 3).

6.2.2. Theorem: We have Ω
(1)
Xn
' E∇0(L) ⊗ Ln−1.
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Proof. Suppose that Xn is constructed as in 4.2, using the open cover (Ui)i∈I of X. We sup-
pose also that for every i ∈ I, there are x1, . . . , xd ∈ OX(Ui) such that ΩX|Ui

is generated by
dx1, . . . , dxn. We will first construct ΩXn by the method and notations of 4.2.3. We take
Ei = ΩUi×Zn . We have canonical isomorphisms induced by δij

Ψij : δ∗ij(ΩUij×Zn) −→ ΩUij×Zn .

We take θij = Ψ−1
ij . Suppose that δij = φηij ,µij , cf. 5.1), and let λijk = ηij(xk) for 1 ≤ k ≤ d.

We have then
Ψij(dxk) = d(xk + λijk t)

= dxk + d(λijk )t+ λijk dt ,

ηij(dt) = d(µijt)

= d(µij)t+ µijdt .

Let
η

(1)
ij : δ∗ij(ΩUij×Zn)(1) = (ΩUij×Zn)(1) −→ (ΩUij×Zn)(1)

be the isomorphism induced by ηij. We have (ΩUij×Zn)(1) ' ΩX|Uij
⊕ OUij

, and the sheaf
(ΩUij×Zn)(1) is generated by tn−1dx1, . . . , t

n−1dxd and tn−2dt. We have

η
(1)
ij (tn−1dxk) = (µij0 )n−1tn−1dxk ,

η
(1)
ij (tn−2dt) = (µij0 )n−1(

dµij0
µij0

tn−1 + tn−2dt) .

It follows that if
θ

(1)
ij : (ΩUij×Zn)(1) −→ (ΩUij×Zn)(1)

is the isomorphism induced by θij (it is also the inverse of η(1)
ij ), then we have

θ
(1)
ij (tn−1dxk) =

(
1

µij0

)n−1

tn−1dxk ,

θ
(1)
ij (tn−2dt) =

(
1

µij0

)n−1

(tn−2dt− dµij0
µij0

tn−1) .

In other words, θ(1)
ij : ΩX|Uij

⊕ OUij
→ ΩX|Uij

⊕ OUij
is defined by the matrix(

1

µij0

)n−1
(
I −dµij0

µij0
0 1

)
. Proposition 6.2.2 follows then from 2.1.5 and 4.2.2. �

It follows easily that we have G(i)(ΩXn) ' E∇0(L) ⊗ Ln−i for 1 ≤ i < n and G(n)(ΩXn) ' ΩX .

6.2.3. Corollary: 1 – We have Gi(Tn) ' (E∇0(L))
∗ ⊗ Li for 0 ≤ i < n− 1 and

Gn−1(Tn) ' TX ⊗ Ln−1.

2 – We have G(i)(Tn) ' (ΩX2|X)∗ ⊗ Ln−i for 1 ≤ i ≤ n− 1 and G(n)(Tn) ' TX .
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6.3. Automorphisms of primitive multiple schemes

We use the notations of 6.2. Suppose that Xn corresponds to γ ∈ H1(X,Gn). Let Aut(Xn) be
the sheaf of groups of automorphisms of Xn leaving X invariant, which can be identified with
Gγn (cf. 2.2). Suppose that n ≥ 3. From lemma 4.4.2 we have an exact sequence of sheaves of
groups on X

0 −→ (ΩX2|X)∗ ⊗ Ln−1 −→ Aut(Xn) −→ Aut(Xn−1) −→ 0 .

Let Aut(Xn) = H0(Aut(Xn)) be the group of global automorphisms ofXn leavingX invariant.
From 4.2.2 we have a canonical morphism ξn : Gn → O∗X , inducing ξγn : Gγn → (O∗X)γ = O∗X and

H0(ξγn) : Aut(Xn) −→ C∗ ,
sending to an automorphism of Xn the induced automorphism of L. Let
Aut0(Xn) = ker(H0(ξγn)).

6.3.1. Automorphisms from derivations 2 – We have IXTn ' Tn−1 ⊗ IX : this follows easily
from the fact that IX is a line bundle on Xn−1. Let D ∈ H0(Xn−1, IXTn). Then for every
affine open subset U of Xn such that IX|U ' OXn−1|U , D|U is a derivation of OXn(U) such
that im(D|U) ⊂ IX|U and D|U(IC|U) ⊂ I2

X|U , and we obtain from 6.1 an automorphism χD|U
of U . These automorphisms glue to define an automorphism χD of Xn. From theorem 6.1.5 we
deduce

6.3.2. Theorem: For every φ ∈ Aut0(Xn), there is an unique D ∈ H0(Xn−1, IXTn) such
that φ = χD.

Of course, if n > 2 the map D → χD is not a morphism of groups, so we have
Aut0(Xn) ' H0(Xn−1, IXTn) as sets only. But if n = 2, it is actually a morphism of groups,
and IXTn = TX ⊗ L.

6.3.3. Automorphisms of double primitive schemes – Suppose first that X2 is not trivial. Then
the automorphisms of X2 leaving X invariant are of the form ΘD = IX2 +D, where D is a
sheaf of derivations with value in IX . With the notations of 6.2, at P ∈ X, we have

T2,P ' OX2,P
∂

∂x1

⊕ · · · ⊕ OX2,P
∂

∂x1

⊕ OX2,P .z
∂

∂z
.

It follows that we must have D ∈ H0(X,G(1)(T2)) = H0(X, (ΩX2|X)∗ ⊗ L). From the
exact sequence of lemma 4.3.2 and the fact that X2 is not trivial, we see that
H0(X, (ΩX2|X)∗ ⊗ L) ' H0(X,TX ⊗ L). It follows that

6.3.4. Corollary: If X2 is not trivial, then Aut(X2) = Aut0(X2) = H0(TX ⊗ L).

If X2 is trivial, see 6.3.8.

6.3.5. The general case – We suppose now that n ≥ 2, and that Aut0(Xn) is trivial. This is the
case for example if h0(TX ⊗ Lp) = 0 for 1 ≤ p ≤ n− 1 and h0(Lp) = 0 for 1 ≤ p ≤ n− 2
(using corollary 6.2.3 )
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6.3.6. Theorem: If im(H0(ξγn)) contains a number λ such that λp 6= 1 for every integer p
such that 1 ≤ p ≤ n− 1, then Xn is trivial.

Proof. By induction on n. The result is true for n = 2 by corollary 6.3.4.

Suppose that n ≥ 3 and that it is true for n− 1. Suppose that im(H0(ξγn)) contains a number λ
such that λi 6= 1 for every integer i such that 1 ≤ i ≤ n− 1. Then, by the induction hypothesis,
Xn−1 is trivial, it is the (n− 1)th infinitesimal neighborhood of X in L∗.

We now use the notations of 4.2 and 5.1. Let (νij) (νij ∈ C∗) be a cocycle which defines L.
Then Xn−1 is defined by the cocycle (φ0,νij) of Gn−1. According to proposition 4.4.1, Xn is
defined by the cocycle δ∗ij, with δ∗ij ∈ H0(Uij, TX ⊕ OX) ⊂ H0(Uij,Gn). We can write

δ∗ij = φDijtn−2,νij(1+ρijtn−2) ,

i.e.
δ∗ij = φDijtn−2,1+ρijtn−2 ◦ φ0,νij ,

where ((Dij, ρij)) is a cocyle which represents σ ∈ H1(X, (ΩX2|X)∗ ⊗ Ln−1) (cf. 7.2.2), in the
way of 2.1.. To prove that Xn is trivial, we must show that σ = 0, i.e. that there exist
derivations Fi of OX(Ui), fi ∈ OX(Ui), such that

(7) Dij = Fi − νn−1
ij Fj , ρij = fi − νn−2

ij fj .

Let χ be an automorphism of Xn, such that, if λp 6= 1 for every integer p such that
1 ≤ p ≤ n− 1. From theorem 6.3.2 and the hypothesis, χ|Xn−1 is induced by the multiplication
by λ in L∗. If χi = δi ◦ χ ◦ δ−1

i ∈ Aut(Ui × Zn), we can write
χ∗i = φtn−2Ei,λ(1+εitn−2) ,

where Ei is a derivation of OX(Ui) and εi ∈ OX(Ui). On can then see easily that the equations
(7) follow from the equality δ∗ij ◦ χ∗j = χ∗i ◦ δ∗ij, with

Fi =
1

1− λn−1

Ei , fi =
1

1− λn−2

εi .

�

6.3.7. Corollary: Suppose that h0(TX ⊗ Lp) = 0 for 1 ≤ p ≤ n− 1 and h0(Lp) = 0 for
1 ≤ p ≤ n− 2. If Xn is non trivial, then Aut(Xn) is finite.

6.3.8. Automorphisms of trivial primitive multiple schemes – Suppose that Xn is trivial.
then Aut0(Xn) is a normal subgroup of Aut(Xn). In this case Xn is the nth-infinitesimal
neighborhood of X ⊂ L∗ (via the zero section), and for every λ ∈ C∗ the multiplication
×λ : L∗ → L∗ induces a corresponding automorphism of Xn. We can see in this way C∗
as a subgroup of Aut(Xn). We have Aut(Xn) = Aut0(Xn).C∗ and Aut0(Xn) ∩ C∗ = {IXn}.
Hence Aut(Xn) is the semi-direct product of C∗ and Aut0(Xn). For example, if n = 2, as a set,
Aut(X2) = Aut0(X2)× C∗, with the group law(

(σ, λ), (σ′, λ′)
)
7→ (σ + λσ′, λλ′) .
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6.4. The case of pairs (Xn,L)

With the notations of 4.5, let g ∈ Hn, corresponding to a pair (Xn,L), where Xn is a prim-
itive multiple scheme such that (Xn)red = X and L is a vector bundle on Xn such that
LXn−1 = IX,Xn . Then it is easy to see, using 4.2.3, that H0(X,Hg

n) is isomorphic to the group
of automorphisms χ of Xn leaving X invariant and such that χ∗(L) ' L.

6.5. Parametrizations of the extensions of trivial double schemes to multiplicity 3

We use the notations of 4.1 to 4.4. Let X2 be the trivial primitive double scheme such
that (X2)red = X, with associated line bundle L ∈ Pic(X). Then X2 can be extended to
a primitive multiple scheme X3 of multiplicity 3 (for example the trivial one). Recall that
ρ3 : G3 → G2 is the canonical morphism. Let gi ∈ H1(X,Gi), i = 2, 3, correspond to Xi. We
have H1(ρ3)(g3) = g2. From 2.2.3 and 4.4.2 we have a canonical surjective map

λg3 : H1(X, (ΩX2|X)∗ ⊗ L2) −→ H1(ρ3)−1(g2)

which sends 0 to g3. Note that we have (ΩX2|X)∗ ' L−1 ⊕ TX .
There is an action of the group Aut(X2) on H1(X, (ΩX2|X)∗ ⊗ L2) such that the fibers
of λg3 are the orbits of this action, so that there is a bijection between the set of iso-
morphism classes of primitive schemes of multiplicity 3 extending X2 and the quotient
H1(X, (ΩX2|X)∗ ⊗ L2)/Aut(X2). The action is as follows: let (gij) be a cocycle of G3 (with
respect to (Ui)i∈I) representing g3, γ ∈ H1(X, (ΩX2|X)∗ ⊗ L2), represented by (γij) (seen as a
cocycle in G3, cf. 4.4.1), and χ ∈ Aut(X2). Let δi : U

(3)
i → Ui × Z3 be isomorphisms such that

gij = (δ∗j )
−1δ∗i . The induced isomorphisms U

(2)
i → Ui × Z2 will also be denoted by δi. Let

χi = (δ∗j )
−1χ∗δ∗i ∈ Aut(Ui × Z2) = G2(Ui). Suppose that χi can be extended to ci ∈ G3(Ui).

Then we have χγ = (θij), with

(8) θij = ciγijgijc
−1
j g−1

ij .

We use the notations of 5.3. Let (νij) be a cocycle representing L, νij ∈ OX(Uij)
∗. Then we

can take
gij = Φ0,νij ,0 .

Let γ = (η, ε), with η ∈ H1(X,L) and ε ∈ H1(X,TX ⊗ L2), represented by cocycles (ηij), (εij),
ηij ∈ OX(Uij), εij ∈ H0(Uij, TX), with the cocycle relations

ηik = ηij + νijηjk , εik = εij + ν2
ijεjk

(cf. 2.1.1). Using 4.4.2, we see that
γij = Φ0,1+ρijt,εij .

According to 6.3, as a set we have Aut(X2) = H0(TX ⊗ L)× C∗.

6.5.1. The action of H0(TX ⊗ L) – We suppose that χ ∈ Aut0(X2) ' H0(TX ⊗ L). In this
case we can take χi = ΦDi,1 (with the notations of 5.2), where (Di) represents χ (with the
cocycle relation Di = νijDj). We can take

ci = ΦDi,1,Ki
,
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where Ki is a derivation of OX(Ui). A lengthy calculation of formula (8) shows then that
χγ = (η′, ε′), where η′ (resp. ε′) is represented by the cocycle (η′ij) (resp. (ε′ij)), with

(9) η′ij = ηij +Dj(νij) , ε′ij = εij − νij
(
ηij +

1

2
Dj(νij)

)
Dj +Ki − ν2

ijKj .

The duality ΩX ' T ∗X induces a canonical bilinear map

H0(TX ⊗ L)×H1(ΩX) // H1(L)

(χ, τ) � // <χ, τ> ,

and we have a canonical product H1(L)×H0(TX ⊗ L)→ H1(TX ⊗ L2). Recall that ∇0(L)
denotes the canonical class of L in H1(ΩX) (cf. 3).

6.5.2. Proposition: We have

η′ = η+ <χ,∇0(L)> , ε′ = ε− ηχ− 1

2
<χ,∇0(L)> χ .

The proof follows easily from formulas (9), with the conventions of 2.1. See also the similar
more detailed proof of theorem 7.1.2.

Remarks: 1 – The term “Ki − ν2
ijKj” in ε′ij can be suppressed (as expected), since

(Ki − ν2
ijKj) is a boundary.

2 – Let χ′ ∈ Aut0(X2). The formulas of proposition 6.5.2 do not show directly that
χ′(χ(η, ε)) = (χ′χ)(η, ε). We find that

χ′(χ(η, ε))− (χ′χ)(η, ε) =
(
0,

1

2
(<χ′,∇0(L)> χ− <χ,∇0(L)> χ′)

)
= (0, β) .

If χi = (δ∗j )
−1χ∗δ∗i = φD′i,1 , then β is represented by the cocycle(νij

2
(D′j(νij)Dj −Dj(νij)D

′
j))
)
. But we have

νij
2

(D′j(νij)Dj −Dj(νij)D
′
j) = Ki − ν2

ijKj ,

with Ki =
1

2
(D′iDi −DiD

′
i), so actually β = 0 in H1(TX ⊗ L2).

6.5.3. The action of C∗ – Let λ ∈ C∗. For the corresponding element χ of Aut(X2) we have
χi = Φ0,λ , and we can take ci = Φ0,λ,0. Let (η′, ε′) = χγ. Then it follows easily that

6.5.4. Proposition: We have η′ = λη and ε′ = λ2ε .
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6.6. Parametrizations of the extensions of trivial schemes of multiplicity n > 2

Let Xn be the trivial primitive multiple scheme of multiplicity n such that (Xn)red = X, with
associated line bundle L ∈ Pic(X). Then Xn can be extended to a primitive multiple scheme
Xn+1 of multiplicity n+ 1 (for example the trivial one). Let ρn+1 : Gn+1 → Gn be the canonical
morphism. Let gi ∈ H1(X,Gi), i = n, n+ 1, correspond to Xi. We have H1(ρn+1)(gn+1) = gn.
From 2.2.3 and 4.4.2 we have a canonical surjective map

λgn+1 : H1(X, (ΩX2|X)∗ ⊗ Ln) −→ H1(ρn+1)−1(gn)

which sends 0 to gn+1. We have (ΩX2|X)∗ ' TX ⊕ L−1. There is an action of the group Aut(Xn)
on H1(X, (ΩX2|X)∗ ⊗ Ln) such that the fibers of λgn+1 are the orbits of this action, so that there
is a bijection between the set of isomorphism classes of primitive schemes of multiplicity n+ 1
extending Xn and the quotient H1(X, (ΩX2|X)∗ ⊗ Ln)/Aut(Xn).

We will consider only the action of the subgroup C∗ ⊂ Aut(Xn) on H1(X, (ΩX2|X)∗ ⊗ Ln) (cf.
6.3.8). We have

H1(X, (ΩX2|X)∗ ⊗ Ln) ' H1(X,Ln−1)×H1(X,TX ⊗ Ln) .

Then the following result is an easy generalization of proposition 6.6.1:

6.6.1. Proposition: For every (η, ε) ∈ H1(X,Ln−1)×H1(X,TX ⊗ Ln) and λ ∈ C∗, we
have λ.(η, ε) = (λn−1η, λnε).

7. Extension to higher multiplicity

Let n ≥ 1 be an integer, X a smooth projective variety, and Xn a primitive multiple scheme
of multiplicity n such that (Xn)red = X. Let L be the associated line bundle on X. We will
see when it is possible to extend Xn in multiplicity n+ 1, i.e. to construct a primitive multiple
scheme Xn+1 of multiplicity n+ 1 whose canonical subscheme of multiplicity n is isomorphic
to Xn. If such a Xn+1 exists, we will also see when it is possible to extend a vector bundle on
Xn to a vector bundle on Xn+1. The two problems are related: IX,Xn is a line bundle on Xn−1,
and a necessary condition for the existence of Xn+1 is the extension of IX,Xn to a line bundle
on Xn (that will be IX,Xn+1).

7.1. Extension of vector bundles

Let r be a positive integer. If Y is a primitive multiple scheme, let GL(r,OY ) denote the sheaf
of groups on Y of invertible r × r-matrices with coefficients in OY (the group law being the
multiplication of matrices), and if E is a coherent sheaf on Y , let M(r,E) denote the sheaf
of groups on Y of r × r-matrices with coefficients in E (the group law being the addition of
matrices). There is a canonical bijection between H1(Y,GL(r,OY )) and the set of isomorphism
classes of rank r vector bundles on Y .
Suppose that Xn, of multiplicity n, can be extended to Xn+1 of multiplicity n+ 1. For every
integer p such that 1 ≤ p ≤ n+ 1, we can view the sheaf of groups GL(r,OXp) on Xp as a sheaf
of groups on Xn+1, and we have a canonical surjective morphism GL(r,OXn+1)→ GL(r,OXn).
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Its kernel is isomorphic to M(r, Ln). So we have an exact sequence of sheaves of groups on
Xn+1

0 −→M(r, Ln) −→ GL(r,OXn+1)
pn−−−−→ GL(r,OXn) −→ 0 .

Let g ∈ H1(Xn,GL(r,OXn)), E the corresponding vector bundle on Xn and E = E|X .

7.1.1. Proposition: We have M(r, Ln)g ' E∗ ⊗ E ⊗ Ln.

Proof. The action of GL(r,OXn) is the action by conjugation after restriction to X. The result
follows then easily from 2.1.3. �

Recall that we have a canonical map
∆ : H1(Xn,GL(r,OXn)) −→ H2(E∗ ⊗ E ⊗ Ln)

such that g ∈ im(H1(pn)) if and only ∆(g) = 0 (cf. 2.2.4). Hence ∆(g) is the obstruction to
the extension of E to a vector bundle on Xn+1. In particular, if E is a line bundle then this
obstruction lies in H2(Ln).

We have a canonical exact sequence of sheaves on Xn

0 −→ Ln −→ ΩXn+1|Xn −→ ΩXn −→ 0 ,

corresponding to σn ∈ Ext1
OXn

(ΩXn , L
n), inducing σn ∈ Ext1

OXn
(E⊗ ΩXn ,E⊗ Ln). In 3 we

have defined ∇0(E) ∈ Ext1(E,E⊗ ΩXn), the canonical class of E. We have a canonical product

Ext1
OXn

(E⊗ΩXn ,E⊗Ln)×Ext1
OXn

(E,E⊗ΩXn) −→ Ext2
OXn

(E,E⊗Ln) = H2(X,E∗⊗E⊗Ln) .

7.1.2. Theorem: We have ∆(g) = σn∇0(E) .

Proof. For every subset U of X, let U (n) (resp. U (n+1)) denote the corresponding open subset
of Xn (resp. Xn+1). Let (Ui)i∈I be an open cover of X such that L is trivial on every Ui,
U

(n+1)
i ' Ui × Zn+1, and that E is represented by a cocycle (θij), θij ∈ Aut(O

(n)
Uij
⊗ Cr). Let

ti : OUi
→ L|Ui

be an isomorphism. For every i, j ∈ I such that i 6= j, let θij be an extension of
θij to an automorphism of O(n+1)

Uij
⊗ Cr. Using the isomorphisms U

(n+1)
i ' Ui × Zn+1 and 2.3,

we can assume that θji = θ
−1

ij . Then by 2.2, ∆(g) is represented by the family (θijθjkθki). We
can write

θijθjkθki = I
U

(n+1)
ijk ⊗Cr + tni ρijk ,

and ∆(g) is also represented by the family (tni ρijk). More precisely, let θi : E|U(n)
i
→ O

U
(n)
i
⊗ Cr

be isomorphisms such that θij = θiθ
−1
j . Then ∆(g) is represented by the true cocycle

(tni .θ
−1
i ρijkθi).

On the other hand, consider the morphism
δ : H1(E∗ ⊗ E⊗ ΩXn) −→ H2(E∗ ⊗ E⊗ Ln)

coming from the exact sequence
0 −→ E∗ ⊗ E⊗ Ln −→ E∗ ⊗ E⊗ ΩXn+1|Xn −→ E∗ ⊗ E⊗ ΩXn −→ 0 .



PRIMITIVE MULTIPLE SCHEMES 39

Then we have
σn.∇0(E) = δ(∇0(E)) .

The class ∇0(E) is represented by the cocycle ((dθij)θ
−1
ij ) in the way of 2.1. In the ordinary

way (local sections of E∗ ⊗ E⊗ ΩXn), it is represented by the cocycle (θ−1
i (dθij)θj). To describe

δ(∇0(E)) we first take θ−1
i (dθij)θj ∈ H0(U

(n)
ij ,E∗ ⊗ E⊗ ΩXn+1|Xn), which is over θ−1

i (dθij)θj.
Then we have

τijk = θ−1
i (dθij)θj − θ−1

i (dθik)θk + θ−1
j (dθjk)θk ∈ H0(U

(n)
ijk ,E

∗ ⊗ E⊗ Ln) ,

and (τijk) is a cocycle representing δ(∇0(E)). We have

θijθjk = (I
U

(n+1)
ijk ⊗Cr + tni ρijk)θik ,

hence
θik = θijθjk − tni ρijkθ0

ijθ
0
jk

(where the exponent 0 means restriction to X). Restricting to Xn we have

dθik = θij.dθjk + dθij.θjk − ntn−1
i θ0

ijθ
0
jkρijkdti .

An easy computation shows then that
τijk = ntn−1

i dti.(θ
−1
i ρijkθi) ,

i.e. it is the image in H0(U
(n)
ijk ,E∗ ⊗ E⊗ ΩXn+1|Xn) of tni ρijk ∈ H0(U

(n)
ijk ,Cr∗ ⊗ Cr ⊗ Ln). This

proves theorem 7.1.2. �

7.1.3. Other construction of the obstruction – To get an extension of E to a vector bundle on
Xn+1 we can try to build an extension

0 −→ E ⊗ Ln −→ E −→ E −→ 0

on Xn+1 such that E is locally free. We have an exact sequence

0 // H1(Hom(E, E ⊗ Ln)) // Ext1
OXn+1

(E, E ⊗ Ln)
ζ // H0(Ext1OXn+1

(E, E ⊗ Ln))
∇′−→

H1(E ⊗ E∗ ⊗ Ln) End(E)

−−−−−−−−−−→ H2(Hom(E, E ⊗ Ln)) = H2(E ⊗ E∗ ⊗ Ln) .

Suppose that the preceding extension corresponds to σ ∈ Ext1
OXn+1

(E, E ⊗ Ln“). Then one can
prove that E is locally free if and only ζ(σ) is an automorphism. So it can be possible to build
a locally free E if and only if ∇′(IE) = 0. One can then show that ∇′(IE) = ∆(g).
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7.2. Extension of multiple schemes

We use the notations of 4. Let gn ∈ H1(X,Gn) and Xn be the corresponding multiple scheme
of multiplicity n. Recall that we have an exact sequence

0 // TX ⊕ OX
// Gn+1

ρn+1 // Gn // 0 ,

that (TX ⊕ OX)gn ' (ΩX2|X)∗ ⊗ Ln, and that we have a canonical map

∆n : H1(X,Gn) −→ H2((ΩX2|X)∗ ⊗ Ln)

such that gn ∈ im(H1(ρn+1)) if and only ∆n(gn) = 0 (cf. 2.2.4). Hence ∆n(gn) is the obstruc-
tion to the extension of Xn to a primitive multiple scheme of multiplicity n+ 1.
Suppose that ∆n(gn) = 0. By 2.2.3, given an extension of Xn in multiplicity n+ 1, correspond-
ing to gn+1 ∈ H1(Gn+1), there is a canonical surjective map

λgn+1 : H1((ΩX2|X)∗ ⊗ Ln) −→ H1(ρn+1)−1(gn)

such that λgn+1(0) = gn+1.
By 7.1, we have also a canonical map

∆′n : H1(Xn−1,O
∗
Xn−1

) = Pic(Xn−1) −→ H2(Ln−1)

such that a line bundle L on Xn−1 can be extended to a line bundle on Xn if and only if
∆′n(L) = 0.
By 4.3 we have an exact sequence

0 // TX
ι // (ΩX2|X)∗

υ // L−1 // 0 .

Let Υn : H1(X,Gn)→ Pic(Xn−1) be the map defined as follows: if gn ∈ H1(X,Gn) and Xn is
the corresponding multiple scheme of multiplicity n, then Υn(gn) = IX,Xn .

The following result can be proved easily using the methods of 4.4:

7.2.1. Proposition: The following diagram

H1(X,Gn)
∆n //

Υn

��

H2((ΩX2|X)∗ ⊗ Ln)

H2(υ⊗ILn )
��

Pic(Xn−1)
∆′n // H2(Ln−1)

is commutative.

This result is not surprising: if gn ∈ H1(X,Gn) and Xn is the corresponding primitive multiple
scheme, then ∆n(gn) is the obstruction to its extension in multiplicity n+ 1, and ∆′n(Υn(gn))
is the obstruction to the extension of IX,Xn to a line bundle on Xn. It follows that ∆n(gn) = 0
implies that ∆′n(Υn(gn)) = 0.
Suppose that ∆′n(Υn(gn)) = 0. It follows that there exists η ∈ H2(TX ⊗ Ln) such that
∆n(gn) = H2(ι⊗ ILn)(η). This can be seen more precisely using 4.5. From (2) we have a
canonical map

∆′′n : H1(X,Hn) −→ H2(TX ⊗ Ln)
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such that for any pair (Xn,L) (where L is an extension of IX,Xn to a line bundle on Xn),
corresponding to hn ∈ H1(X,Hn), there exists an extension of Xn to a primitive multiple
scheme Xn+1 of multiplicity n+ 1 such that IX,Xn+1 = L if and only if ∆′′n(hn) = 0. We have
also a commutative diagram

H1(X,Hn)
∆′′n //

H1(εn)
��

H2(TX ⊗ Ln)

H2(ι⊗ILn )
��

H1(X,Gn)
∆n // H2((ΩY |X)∗ ⊗ Ln)

Since ∆′n(Υn(gn)) = 0, IX,Xn can be extended to a line bundle L onXn, and (Xn,L) corresponds
to hn ∈ H1(X,Hn). It follows that we can take η = ∆′′n(hn).

Let X be the set of extensions of Xn to a primitive multiple scheme Xn+1 of multiplicity n+ 1
such that IX,Xn+1 ' L. Then there exists a canonical surjective map

λ : H1(TX ⊗ Ln) −→ X

such that the fibers of λ are the orbits of the group of automorphisms χ of Xn leaving X
invariant and such that χ∗(L) ' L.

7.2.2. Parametrization of the extensions – We use the notations of 4.2 and 5.1. Suppose that
gn = H1(ρn+1)(gn+1), and that gn+1 is defined by the cocycle (δ∗ij), δ∗ij = φηij ,µij . Then the
elements of H1(ρn+1)−1(gn) are represented by the cocycles of the form (τijδ

∗
ij), with

τij = φDijtn−1,1+εijtn−1 ,

where Dij is a derivation of OX(Uij) and εij ∈ OX(Uij). The cocyle relation satisfied by (τijδ
∗
ij)

(to ensure that it defines an element of H1(X,Gn+1)) is equivalent to a cocyle relation satisfied
by (Dij, εij), so that it defines an element of H1(X, (ΩX2|X)∗ ⊗ Ln) in the way described in 2.1
(cf. 2.2.3).

7.2.3. Extensions of trivial primitive multiple schemes – Let X0
n be trivial primitive multiple

scheme of multiplicity n ≥ 2, with associated smooth variety X and associated line bundle L.
We suppose that h0(Xn, IXTn) = 0. Since Aut0(X0

n) = {IX0
n
}, we have Aut(X0

n) = C∗. It fol-
lows from proposition 6.6.1 that the non trivial extensions of X0

n to a primitive multiple scheme
of multiplicity n+ 1 can be identified with the quotient

(
H1(X,Ln−1)×H1(X,TX ⊗ Ln)

)
/C∗

with the action

C∗ ×
(
H1(X,Ln−1)×H1(X,TX ⊗ Ln)

)
// H1(X,Ln−1)×H1(X,TX ⊗ Ln)

(λ, (η, ε)) � // (λn−1η, λnε)

i.e. it is a weighted projective space.
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7.3. Extension of double schemes

We use the notations of 4.2 and 4.3: X2 is a double scheme with underlying smooth variety X
and associated line bundle L on X, (Ui) is an open affine cover of X, and X2 is obtained by
gluing the varieties Ui × Z2 using the automorphisms δij : Uij × Z2 → Uij × Z2. We can write
(using the notations of 5)

δ∗ij = ΦDij ,αij
,

where Dij is a derivation of OX(Uij) and αij ∈ OX(Uij) is invertible. The cocycle (αij) defines
the line bundle L, and we have Dik = Dij + αijDjk.

Suppose that L can be extended to a line bundle on X2, and let (αij + βijt)
(αij + βijt ∈ OX(Uij)[t]/(t

2)) be a family defining L (the cocycle defining L on X2 is
(δ∗i (αij + βijt))). The pair (X2,L) corresponds to η ∈ H1(X,H2) (cf. 4.5). The cocycle
((ΦDij ,αij

, αij + βijt)) represents η. We have a canonical map

∆′′2 : H1(X,H2) −→ H2(TX ⊗ L2)

such that there exists an extension of X2 to a primitive multiple scheme X3 of multiplicity 3
such that IX,X3 = L if and only if ∆′′2(η) = 0.

7.3.1. Theorem: The cocycle (ρijk), with

ρijk =
1

2

(
βijDjk +

(
Djk(αij) +

αij
αjk

Djk(αjk)−
αij
αjk

βjk
)
Dij + αij(DijDjk −DjkDij)

)
represents ∆′′2(η).

Proof. The construction of ∆′′2(η) follows 2.2.4, using the exact sequence of (2)

0 // TX ⊗ L2 // G
η
3

// H
η
2

// 0 .

We take Ψij = Ψ(Dij, αij + βijt) ∈ G3(Uij) as a pull-back of (ΦDij ,αij
, αij + βijt) ∈ H2(Uij).

The family (Ψij) has the correct property, i.e. Ψ−1
ij = Ψij, by lemma 5.3.7, and (ΨijΨjkΨki)

represents ∆′′2(η). We have
ΨijΨjkΨki = Φ0,1,ρijk ,

from proposition 5.3.8, and the result follows. �

7.3.2. The case L = OX – In this case we take αij = 1, and (Dij) is a cocycle representing
the element σ ∈ H1(TX) which defines X2 (cf. 4.3.3). On the other hand, (βij) is a cocycle
representing θL ∈ H1(OX) associated to L. We have a canonical bilinear map (Poisson bracket)

H1(TX)×H1(TX) // H2(TX)

(u, v) � // [u, v]

and it follows easily from theorem 7.3.1 that

∆′′2(η) = θLσ +
1

2
[σ, σ] .
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7.4. The case of surfaces – Double primitives schemes with canonical associated sheaf

We suppose that X is a surface and L = ωX . The non trivial primitive double schemes with
support X and associated line bundle ωX are parametrized by P(H1(TX ⊗ ωX)) = P(H1(ΩX)).
Suppose that σ ∈ H1(ΩX), σ 6= 0, and let X2 be the primitive double scheme corresponding to
Cσ. The first necessary condition to extend X2 to multiplicity 3 is that ωX can be extended to
a line bundle on X2. This is equivalent to

σ.∇0(ωX) = 0

in H2(ωX) ' C. If this is true, a sufficient condition to extend X2 to multiplicity 3 is that

h2(TX ⊗ ω2
X) = h0(TX) = 0 .

In other words

7.4.1. Proposition: If H0(TX) = {0}, then X2 can be extended to a primitive multiple
scheme of multiplicity 3 if and only if σ.∇0(ωX) = 0.

7.5. Relations with the construction of D. Bayer and D. Eisenbud

D. Bayer and D. Eisenbud gave in [4] the construction and parametrization of primitive double
schemes, also called ribbons. These constructions can be generalized to higher multiplicities, as
we will see (mostly without proofs).
Given Xn, if Xn+1 exists, then we have an exact sequence of sheaves on Xn

(10) 0 // Ln // ΩXn+1|Xn

p // ΩXn
// 0 ,

and ΩXn+1|Xn is locally free. Let
dn : OXn −→ ΩXn , dn+1 : OXn+1 −→ ΩXn+1

be the canonical derivations, and ρ : ΩXn+1 → ΩXn+1|Xn the restriction morphism. Then we
have a commutative diagram

OXn+1
//

ρdn+1

��

OXn

dn
��

ΩXn+1|Xn

p // ΩXn

inducing, for every x ∈ Xn, a bijection between OXn+1,x and the set of pairs
(α, β) ∈ OXn,x × ΩXn+1|Xn,x such that dn,x(α) = ρxdn+1,x(β). It follows that given
σ ∈ Ext1

OXn
(ΩXn , L

n), there exists at most one extension Xn+1 such that σ is associated to (10).
Conversely, given an exact sequence of sheaves on Xn

(11) 0 // Ln // E
p // ΩXn

// 0 ,

where E is locally free, we can define a sheaf of abelian groups C to be the pullback

C //

��

OXn

dn
��

E
p // ΩXn
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and make C into a sheaf of C-algebras with an appropriate product law (cf. [4], proof of theorem
1.2). We can then define Xn+1 as Xn+1 = spec(C). It follows that Xn can be extended to a
primitive multiple scheme of multiplicity n+ 1 if and only if there exists an extension (11) such
that E is locally free.

To study the extensions of Xn in multiplicity n+ 1 we have to consider extensions (11). We
have from [22], 7.3, a canonical exact sequence

(12) 0 −→ H1(Hom(ΩXn , L
n)) −→ Ext1

OXn
(ΩXn , L

n) −→

H0(Ext1OXn
(ΩXn , L

n)) // H2(Hom(ΩXn , L
n)) .

7.5.1. Lemma: We have Ext1OXn
(ΩXn , L

n) ' OC .

Proof. We use the exact sequence
Ln −→ ΩXn+1|Xn −→ ΩXn −→ 0 .

For every x ∈ X, there is an open neighborhood U of x in Xn such that IX,Xn|U can be extended
to a line bundle L of U . We obtain a locally free resolution of ΩXn|U :

· · · −→ Ln+1 −→ Ln −→ ΩXn+1|U −→ ΩXn|U −→ 0 .

It follows that we have an isomorphism Ext1OU
(ΩXn|U , L

n
|U) ' OU . It is easy to see that all these

isomorphisms glue and thus define the isomorphism of lemma 7.5.1. �

7.5.2. Lemma: Let x ∈ X and α ∈ Ext1
OXn,x

(ΩXn,x, L
n
x) ' OX,x. Let

0 −→ Lnx −→M −→ ΩXn,x −→ 0

be the corresponding extension of OXn,x-modules. Then M is free if and only if α is invertible.

Proof. We use the free resolution

· · · // Ln+1
x

// Lnx
β // ΩXn+1|U,x

// ΩXn,x
// 0 ,

where β induces β : Lnx → ΩXn+1|U,x. Then, by the usual construction of extensions, M is
isomorphic to the cokernel of

α⊕ β : Lnx −→ Lnx ⊕ ΩXn+1|U,x .

Lemma 7.5.2 follows easily. �

We have Hom(ΩXn , L
n) ' (ΩX2|X)∗ ⊗ Ln. Hence we have an exact sequence

0 // H1((ΩX2|X)∗ ⊗ Ln)
ν // Ext1

OXn
(ΩXn , L

n)
τ // C δ // H2((ΩX2|X)∗ ⊗ Ln) .

it follows that Xn can be extended to primitive multiple scheme of multiplicity n+ 1 if and only
if δ(1) = 0, and that the set of isomorphism classes of extensions of Xn in multiplicity n+ 1
can be identified with τ−1(1).
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LetXn+1 be an extension ofXn in multiplicity n+ 1 and σ ∈ τ−1(1) the corresponding element.
We have a bijection

ν : H1((ΩX2|X)∗ ⊗ Ln) // τ−1(1)

u � // σ + ν(u) .

With the notations of 7.2, τ−1(1) can be identified withH1(ρn+1)−1(gn), and we have a canonical
map

λgn+1 : H1((ΩX2|X)∗ ⊗ Ln) −→ H1(ρn+1)−1(gn) .

The following result is proved in [11], 3.1, when X is a curve, but the proof is similar in any
dimension:

7.5.3. Theorem: We have, for every u ∈ H1((ΩX2|X)∗ ⊗ Ln), λgn+1(u) = ν(nu).

8. The case of projective spaces

We use the notations of 4.1 to 4.4.

Let V be a complex vector space of dimension m+ 1, m ≥ 2. We suppose that X = P(V ) = Pm
(the set of lines in V ). Let k be an integer, and L = OPm(k). We will prove

8.0.1. Theorem: 1 – If m > 2, all primitive multiple schemes Y such that Yred = Pm are
trivial.

2 – There are only two non trivial primitive multiple schemes Y such that Yred = P2, one in
multiplicity 2, with L = OP2(−3), and the other in multiplicity 4, with L = OP2(−1).

Proof. There exists a non trivial primitive double scheme X2 with underlying smooth variety
X and associated line bundle L if and only if h1(TX ⊗ L) 6= 0. This is true only if m = 2 and
k = −3.

Suppose that m > 2. According to 7.2, there can be non trivial extensions of a trivial primi-
tive multiple scheme Xn to multiplicity n+ 1 only if h1(Pm, (ΩX2|X)∗ ⊗ Ln) 6= 0. This never
happens if m > 2. So 1 is proved.

Suppose now that m = 2 and k = −3. In this case, according to 4.3, the non trivial primitive
double schemes are parametrized by P(H1(TP2(−3))). Since h1(TP2(−3)) = 1, there is just only
one non trivial primitive double scheme, that we will denote by X2. We will prove

8.0.2. Theorem: The only line bundle on X2 is the trivial bundle OX2.

It follows that X2 is not quasi-projective and cannot be extended to a primitive scheme of
multiplicity 3. The scheme X2 appears also in [2] (it is an example of non projective K3
carpet).

Hence any non trivial primitive multiple scheme with underlying smooth variety X = P2 and
associated line bundle L, and of multiplicity n+ 1 > 2 is an extension of a trivial multiple
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scheme of multiplicity n ≥ 2. This can only happen if h1(TX ⊗ Ln) 6= 0 (cf. 7.2.2). In this
case we have Ln = OP2(−3), hence n = 3 and L = OP2(−1). Starting with the trivial primitive
multiple scheme X3 of multiplicity 3 (with L = OP2(−1)), we get a non trivial primitive multiple
schemeX4 of multiplicity 4. Since h1(TX ⊗ L3) = 1, proposition 6.5.4 implies thatX4 is unique.
We will prove

8.0.3. Theorem: The only line bundle on X4 is the trivial bundle OX4.

It follows that X4 is not quasi-projective and cannot be extended to a primitive scheme of
multiplicity 5. Hence 2 is proved. �

8.1. Description of some sheaves on the projective plane

We assume that m = 2. Let x0, x1, x2 ∈ V ∗ be coordinates in P2, and for i=0,1,2, let
Ui = {C(u0, u1, u2) ∈ P2;ui 6= 0} .

We will take indices in Z/3Z, so that x3 = x0, x4 = x1, · · · .
We have OP2(Ui) = C[xi+1

xi
, xi+2

xi
].

8.1.1. Line bundles – For every x ∈ P2, we have OP2(−1)x = x. For i = 0, 1, 2 we have a
trivialization of OP2(−1) on Ui, αi : OP2(−1)|Ui

→ OUi
⊗ C, such that for every x = C(u0, u1, u2)

in Ui, we have αi,x(u0, u1, u2) = ui. Hence OP2(−1) is defined by the cocycle (αij), where
αij : Uij → C∗, and for every x = C(u0, u1, u2) in Uij, we have αij,x(x) =

ui
uj

.

Similarly, let k ∈ Z. Then OP2(k) is defined by the cocycle (α
(k)
ij ), where α

(k)
ij : Uij → C∗, and

for every x = C(u0, u1, u2) in Uij, we have α
(k)
ij,x(x) =

(ui
uj

)−k.
Let U ⊂ P2 be a nonempty open subset. Then H0(U,OP2(k)) can be identified with the

set of rational functions
P

Q
, P,Q ∈ C[X0, X1, X2], such that P , Q are homogeneous, Q

does not vanish on U and deg(P )− deg(Q) = k. If k < 0, then for every x ∈ U , x = C.u,

OP2(k)x = x−k ∈ S−kV , and
P

Q
(x) =

P (u)

Q(u)
.u−k.

For example, if k = −3, these rational functions
P

Q
such that Q does not vanish on U012

are the linear combinations of
1

X0X1X2

,
Xa
k

Xb
iX

c
j

,
Xd
iX

e
j

Xf
k

, 0 ≤ i < j ≤ 2, 0 ≤ k ≤ 2, k 6= i, j

a, b, c, d, e, f ≥ 0, a− b− c = 3, d+ e− f = 3. We have H2(OP2(−3)) ' C, generated by the

element corresponding to the cocycle
( 1

X0X1X2

)
.
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8.1.2. Canonical bundle and tangent bundle – We have H1(ΩP2) ' C, and it is generated by
the canonical class of OP2(−1), which is represented by the cocycle (ρij), with

ρij =
xj
xi
d
(xi
xj

)
.

The OP2(Ui)-moduleH0(TP2 ⊗ OP2(−3)) is generated by the derivations
∂

∂(xi+1/xi)
,

∂

∂(xi+2/xi)
.

We have ΩP2 ' TP2 ⊗ OP2(−3), and H1(TP2 ⊗ OP2(−3)) ' C is generated by the element ρ′
corresponding to the cocycle (ρ′ij) with

ρ′i,i+1 =
xi
xi+1

∂

∂(xi+2/xi)
⊗ 1

x3
i

(where
1

x3
i

corresponds to a section of OP2(−3) on Ui, cf. 8.1.1).

8.2. The primitive scheme X2 – Proof of theorem 8.0.2

It is the primitive double scheme defined by ρ′ ∈ H1(TP2 ⊗ OP2(−3)) (cf. 8.1.2). It is obtained
from the cocycle (δ∗ij), with δ∗ij = φDij ,νij , where

Di,i+1 =
xi
xi+1

∂

∂(xi+2/xi)
, νij =

(xi
xj

)3

(with the notations of 5.4.2).

Let p be an integer, 6= 0. The line bundle OP2(p) is defined by the cocycle
((xi

xj

)−p)
.

Consider the exact sequence 0→ OP2(−3)→ ΩX2|P2 → ΩP2 → 0, and the associated map
δ : H1(ΩP2)→ H2(OP2(−3)). According to theorem 7.1.2, OP2(p) can be extended to a line
bundle on X2 if and only if δ(∇0(OP2(p))) 6= 0.

The class ∇0(OP2(p)) is represented by the cocycle
((
− pxj

xi
d(xi/xj)

))
. From 5.4.6,

δ(∇0(OP2(p))) is represented by the cocycle (λ012), with

λ012 =
1

x3
0

x0

x1

 ∂
∂x2/x0

((
x1
x2

)−p)
((

x1
x2

)−p)
 =

p

x0x1x2

.

It follows from 8.1.1 that δ(∇0(OP2(p))) 6= 0. This proves theorem 8.0.2.

8.3. The primitive scheme X4 – Proof of theorem 8.0.3

The computations are exactly the same as in 8.2.
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9. The case of projective bundles over curves

Let C be a smooth irreducible projective curve of genus g and E a rank 2 vector bundle on
C. Let X = P(E) be the associated projective bundle and π : P(E)→ C the canonical
projection. For every closed point x ∈ C, π−1(x) is the projective line P(Ex) of lines in Ex.

9.1. Preliminaries

They are of the form
L = π∗(D)⊗ OP(E)(k) ,

for some uniquely determined D ∈ Pic(C) and integer k. We have then

π∗(L) = (SkE∗)⊗D if k ≥ 0,

= 0 if k < 0,

R1π∗(L) = (S−2−kE)⊗ det(E)⊗D if k ≤ −2,

= 0 if k > −2.

it follows that
H0(L) = H0((SkE∗)⊗D) if k ≥ 0,

= {0} if k < 0,

H1(L) = H1((SkE∗)⊗D) if k ≥ 0,

= H0((S−2−kE)⊗ det(E)⊗D) if k ≤ −2,

= {0} if k = −1,

H2(L) = H1((S−2−kE)⊗ det(E)⊗D) if k ≤ −2,

= {0} if k > −2.

We have canonical exact sequences
(13) 0 −→ ΩP(E)/C −→ π∗(E∗)⊗ OP(E)(−1) −→ OP(E) −→ 0 ,

0 −→ π∗(ωC) −→ ΩP(E) −→ ΩP(E)/C −→ 0 .

9.1.1. Proposition: If E is simple and g ≥ 2, we have H0(TP(E)) = {0}.

Proof. Since g ≥ 2, we have H0(ω∗C) = {0}, and H0(TP(E)) ' H0((ΩP(E)/C)∗) (by the second
exact sequence). Applying π∗ to the dual of the first exact sequence we find

0 −→ OC −→ E ⊗ E∗ −→ π∗((ΩP(E)/C)∗) ' Ad(E) −→ 0 ,

hence H0((ΩP(E)/C)∗) = H0(Ad(E)) = {0} because E is simple. �

Using proposition 7.4.1 we get

9.1.2. Corollary: Suppose that E is simple. Let X2 be a non trivial primitive double scheme
with support P(E) and associated line bundle ωP(E). Let Cσ be the element of P(H1(ΩP(E)))
associated do X2. Then X2 can be extended to a primitive multiple scheme of multiplicity 3 if
and only if σ.∇0(ωP(E)) = 0 in H2(ωP(E)).
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9.2. Annulation of obstructions

Let Γ, F ∈ Pic(C), γ = deg(Γ), n, k, p integers, with n, k > 0. We will consider 3 cases:

(i) E is semi-stable and deg(E) = 0,
(ii) E is semi-stable and deg(E) = −1,
(iii) E is not semi-stable of degree ε = 0 or −1. Let L1 ⊂ E be the Harder-Narasimhan

filtration of E, where L1 is a line bundle of degree ε1 > ε.

9.2.1. Lemma: We have h0((Skn+pE)⊗ F ⊗ Γn) = 0 if γ < γ0, and γ0 = −deg(F )

n
in

case (i), γ0 =
k

2
− deg(F )

n
+

p

2n
in case (ii), γ0 = −deg(F )

n
− pε1

n
− kε1 in case (iii).

Proof. In case (i), Skn+pE is semi-stable of degree 0, so h0((Skn+pE)⊗ F ⊗ Γn) = 0 if

deg(F ⊗ Γn) < 0, which is equivalent to γ < −deg(F )

n
. The proof in case (ii) is similar.

To prove case (iii) we use the fact that there is a filtration of Skn+pE with graduates
La1 ⊗ (OC/L1)kn+p−a, 0 ≤ a ≤ kn+ p. �

9.2.2. Lemma: We have h0((Skn+pE)⊗ E ⊗ F ⊗ Γn) = 0 if γ < γ0, and γ0 = −deg(F )

n

in case (i), γ0 =
k

2
− deg(F )

n
+
p+ 1

2n
in case (ii), γ0 = −deg(F )

n
− (p+ 1)ε1

n
− kε1 in case

(iii).

Proof. Similar to that of lemma 9.2.1. �

Let n, k be positive integers, and L = π∗(D)⊗ OP(E)(−k) a line bundle on P(E). If we want
to study the primitive multiple schemes with associated smooth variety P(E) and associated
line bundle L, we need to consider the cohomology groups H2(Ln), H2(TX ⊗ Ln), n > 0.

9.2.3. Obstructions to the extension of line bundles in higher multiplicity – We have
H0(Ln) = {0}, H1(Ln) ' H0((Skn−2E)⊗ det(E)⊗Dn),
H2(Ln) ' H1((Skn−2E)⊗ det(E)⊗Dn), and by Serre duality

h1((Skn−2E)⊗det(E)⊗Dn) = h0((Skn−2E∗)⊗det(E∗)⊗D−n⊗ωC) = h0((Skn−2E)⊗F⊗Γn) ,

with F = det(E)⊗ ωC , Γ = D∗ ⊗ det(E)−k. Hence, by lemma 9.2.1, h2(Ln) = 0 if

deg(D) > δ0, with δ0 =
2g − 2

n
in case (i), δ0 =

k

2
+

2g − 2

n
in case (ii), and

δ0 =
2g − 2 + deg(E)− 2ε1

n
+ kε1 − k deg(E) in case (iii).

9.2.4. Obstructions to the extension of the schemes in higher multiplicity – We have exact
sequences
(14) 0 −→ Ln −→ π∗(E)⊗ OP(E)(1)⊗ Ln −→ Ω∗P(E)/C ⊗ Ln −→ 0 ,
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0 −→ Ω∗P(E)/C ⊗ Ln −→ TP(E) ⊗ Ln −→ π∗(ω∗C)⊗ Ln −→ 0 .

Hence we have H2(TP(E) ⊗ Ln) = {0} whenever

h2(π∗(E)⊗ OP(E)(1)⊗ Ln) = h2(π∗(ω∗C)⊗ Ln) = 0.

We have
h2(π∗(E)⊗ OP(E)(1)⊗ Ln) = h1((Skn−3E)⊗ E ⊗ det(E)⊗Dn) ,

and by Serre duality
h1((Skn−3E)⊗ E ⊗ det(E)⊗Dn) = h0((Skn−3E∗)⊗ E∗ ⊗ det(E∗)⊗D−n ⊗ ωC)

= h0((Skn−3E)⊗ E ⊗ F ⊗ Γn) ,

with F = det(E)⊗ ωC , Γ = D∗ ⊗ det(E)−k. Hence, by lemma 9.2.2,
h2(π∗(E)⊗ OP(E)(1)⊗ Ln) = 0 if the same conditions as in 9.2.3 are satisfied.

We have H2(π∗(ω∗C)⊗ Ln) ' H1((Skn−2E)⊗ det(E)⊗ ω∗C ⊗Dn), and

h1((Skn−2E)⊗ det(E)⊗ ω∗C ⊗Dn) = h0((Skn−2E)⊗ F ⊗ Γn) ,

with F = det(E)⊗ ω2
C , Γ = D∗ ⊗ det(E)−k. Hence, by lemma 9.2.1, h2(π∗(ω∗C)⊗ Ln) = 0 if

deg(D) > δ0, with δ0 =
4g − 4

n
in case (i), δ0 =

k

2
+

4g − 4

n
in case (ii), and

δ0 =
4g − 4 + deg(E)− 2ε1

n
+ kε1 − k deg(E) in case (iii).

9.3. Construction of primitive multiple schemes

Suppose that L = π∗(D)⊗ OP(E)(−k), with k ≥ 3. The following is a consequence of 9.2:

9.3.1. Lemma: We have H2(Ln) = {0} for every n ≥ 1 and H2(TP(E) ⊗ Ln) = {0} for
every n ≥ 2 if

In case (i):

– If g = 0, d ≥ 0.
– If g = 1, d > 0.
– If g ≥ 2, d > 2g − 2.

In case (ii):

– If g = 0, d ≥ k

2
.

– If g = 1, d >
k

2
.

– If g ≥ 2, d >
k

2
+ 2g − 2.

In case (iii):

– If g = 0 or 1, d ≥ k(ε1 − deg(E)).
– If g ≥ 2, d ≥ k(ε1 − deg(E)) + 2g − 2.
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Recall that to extend a primitive scheme Xn of multiplicity n ≥ 2 to one of multiplicity n+ 1,
we must first extend the ideal sheaf of P(E) in Xn to a line bundle L on Xn (with an obstruction
in H2(Ln−1)), and then to extend Xn to Xn+1 such that the ideal sheaf of P(E) in Xn+1 is L,
we have another obstruction in H2(TP(E) ⊗ Ln). Hence if the conditions of lemma 9.3.1 are
satisfied, the obstructions vanish, and it is possible to extend a primitive multiple scheme of
multiplicity n to one of multiplicity n+ 1.

Similarly we have

9.3.2. Lemma: We have H2(TP(E) ⊗ L) = {0} if
In case (i):

– If g = 0, d > −2.
– If g = 1, d > 0.
– If g ≥ 2, d > 4g − 4.

In case (ii):

– If g = 0, d >
k

2
− 2

– If g = 1, d >
k

2

– If g ≥ 2, d >
k

2
+ 4g − 4

In case (iii):

– If g = 0, d > k(ε1 − deg(E)) + deg(E)− 2− 2ε1.
– If g = 1, d > k(ε1 − deg(E)) + deg(E)− 2ε1.
– If g ≥ 2, d > k(ε1 − deg(E)) + deg(E)− 2ε1 + 4g − 4.

9.3.3. Lemma: Suppose that n ≥ 1. Then the map H1(Ln)→ H1(π∗(E)⊗ OP(E)(1)⊗ Ln)
induced by (14) is injective.

Proof. This map is the canonical one
H0(Dn ⊗ (Skn−2E)⊗ det(E)) −→ H0(Dn ⊗ E ⊗ (Skn−3E)⊗ det(E)) ,

which is clearly injective. �

Suppose that the conditions of lemmas 9.3.1 and 9.3.2 are satisfied and n ≥ 1. We have
H0(Ω∗P(E)/C ⊗ Ln) = {0}, because for every x ∈ C, Ω∗P(E)/C ⊗ Ln|π−1(x) ' OP(Ex)(2− kn). Hence

h1(Ω∗P(E)/C ⊗ Ln) = h1(π∗(E)⊗ OP(E)(1)⊗ Ln)− h1(Ln) .
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We have then
h1(TP(E) ⊗ Ln) = h1(Ω∗P(E)/C ⊗ Ln) + h1(π∗(ω∗C)⊗ Ln)

= h1(π∗(E)⊗ OP(E)(1)⊗ Ln)− h1(Ln) + h1(π∗(ω∗C)⊗ Ln)

= h0(Dn ⊗ E ⊗ (Skn−3E)⊗ det(E))− h0(Dn ⊗ (Skn−2E)⊗ det(E))

+h0(Dn ⊗ ω∗C ⊗ (Skn−2E)⊗ det(E))

= χ(Dn ⊗ E ⊗ (Skn−3E)⊗ det(E))− χ(Dn ⊗ (Skn−2E)⊗ det(E))

+χ(Dn ⊗ ω∗C ⊗ (Skn−2E)⊗ det(E))

= n(kn− 2)(2d+ k deg(E)) + 2(1− g)(2kn− 3) .

It is easily verified that h1(TP(E) ⊗ Ln) > 0. It follows that there exist infinite sequences

X1 = P(E) ⊂ X2 ⊂ · · · ⊂ Xn ⊂ Xn+1 ⊂ · · · ,
where Xn is a non trivial projective primitive multiple scheme with associated smooth variety
P(E) and associated line bundle L.

We have also
h1(Ln) = χ(Dn ⊗ (Skn−2E)⊗ det(E))

= (kn− 1)
(kn

2
deg(E) + nd+ 1− g

)
.

The space P(H1(TP(E) ⊗ L)) parametrizes the primitive double schemes (cf. 4.3.3).

Let Xn be a non trivial primitive multiple scheme of multiplicity n. Let X be the set of
extensions of Xn to a primitive multiple scheme Xn+1 of multiplicity n+ 1. Then from 7.2,
there is a canonical surjective map

H1((ΩX2|P(E))
∗ ⊗ Ln) −→ X

whose fibers are the orbits of an action of Aut(Xn). As a set, we have
Aut0(Xn) ' H0(Tn−1 ⊗ IP(E),Xn) (cf. theorem 6.3.2). Using corollary 6.2.3 and the exact se-
quence 0→ TP(E) → (ΩX2|P(E))

∗ → L−1 → 0, it is easy to see that H0(Tn−1 ⊗ IP(E),Xn) = {0}.
From 6.3.7, Aut(Xn) is finite. Hence X is parametrized, up to the action of a finite group, by
H1((ΩX2|P(E))

∗ ⊗ Ln). We have

h1((ΩX2|P(E))
∗ ⊗ Ln) = h1(TP(E) ⊗ Ln) + h1(Ln−1)

= (3kn2 − 5n− 2kn+ k + 1)
(k

2
deg(E) + d

)
+ 2(1− g)(5kn− 7− k) .

9.4. The case of P1 × P1

We have here C = P1, E = OP1 ⊗ C2, π is the projection P1 × P1 → P1 on the first factor, and,
with the usual notations, OP(E)(1) = O(0, 1), π∗(OP1(1)) = O(1, 0).

Suppose that k ≥ 3, and L = O(d,−k). The conditions of lemmas 9.3.1 and 9.3.2 are: d > 0.

There exist infinite sequences
X1 = P1 × P1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ Xn+1 ⊂ · · · ,
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where Xn is a non trivial projective primitive multiple scheme with associated smooth variety
P1 × P1 and associated line bundle L.

The extensions of Xn to a primitive multiple scheme of multiplicity n+ 1 form a family of
dimension d(3kn2 − 5n− 2kn+ k + 1) + 5kn− 7− k.
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