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We prove semiclassical resolvent estimates for the Schrödinger operator in R d , d ≥ 3, with real-valued radial potentials V ∈ L ∞ (R d ). In particular, we show that if V (x) = O x -δ with δ > 2, then the resolvent bound is of the form exp Ch -4/3 with some constant C > 0. We also get resolvent bounds when 1 < δ ≤ 2. For slowly decaying α -Hölder potentials we get better resolvent bounds of the form exp Ch -4/(α+3) .

Introduction and statement of results

The aim of this work is to improve the recent results in [START_REF] Galkowski | Semiclassical resolvent bounds for weakly decaying potentials[END_REF], [START_REF] Vodev | Semiclassical resolvent estimates for short-range L ∞ potentials. II, Asymptotic Analysis[END_REF], [START_REF] Vodev | Semiclassical resolvent estimates for Hölder potentials[END_REF] concerning the semiclassical behavior of the resolvent of the Schrödinger operator

P (h) = -h 2 ∆ + V (x)
where 0 < h ≪ 1 is a semiclassical parameter, ∆ is the negative Laplacian in R d , d ≥ 3, and V ∈ L ∞ (R d ) is a real-valued short-range potential satisfying the condition where C > 0 and δ > 1 are some constants. More precisely, we are interested in bounding the quantity g ± s (h, ε) := log (|x| + 1) -s (P (h) -E ± iε) -1 (|x| + 1) -s

L 2 (R d )→L 2 (R d )
from above by an explicit function of h, independent of ε. Here 0 < ε < 1, s > 1/2 is independent of h and E > 0 is a fixed energy level independent of h. When δ > 2 it has been proved in [START_REF] Galkowski | Semiclassical resolvent bounds for weakly decaying potentials[END_REF] that (1.2) g ± s (h, ε) ≤ Ch -4/3 log(h -1 ). The bound (1.2) was previously proved in [START_REF] Klopp | Semiclassical resolvent estimates for bounded potentials[END_REF] and [START_REF] Shapiro | Semiclassical resolvent bound for compactly supported L ∞ potentials[END_REF] when d ≥ 2 for compactly supported potentials, and in [START_REF] Vodev | Semiclassical resolvent estimates for short-range L ∞ potentials[END_REF] when δ > 3 and d ≥ 3. It was also shown in [START_REF] Vodev | Semiclassical resolvent estimates for L ∞ potentials on Riemannian manifolds[END_REF] that (1.2) still holds for more general asymptotically Euclidean manifolds. In the present paper we show that, if d ≥ 3, the logarithmic term in the righ-hand side of (1.2) can be removed for potentials V depending only on the radial variable r = |x|. We also improve significantly the bound

(1.3) g ± s (h, ε) ≤ Ch -2δ+5 3(δ-1) log(h -1 ) 1 δ-1 .
proved in [START_REF] Vodev | Semiclassical resolvent estimates for short-range L ∞ potentials. II, Asymptotic Analysis[END_REF] for 1 < δ ≤ 3 and d ≥ 3. More precisely, we have the following Theorem 1.1. Let d ≥ 3 and suppose that the potential V depends only on the radial variable. If V satisfies (1.1) with δ > 2, then there exist constants C > 0 and h 0 > 0 independent of h and ε but depending on s, E, such that the bound

(1.4) g ± s (h, ε) ≤ Ch -4/3
1 holds for all 0 < h ≤ h 0 . If V satisfies (1.1) with 1 < δ ≤ 2, then we have the bound

(1.5) g ± s (h, ε) ≤ Ch -2δ 2δ-1 log(h -1 ) δ+1 2δ-1 .
If the potential satisfies the condition

(1.6) |V (r)| ≤ C(r + 1) -1 (log(r + 2)) -ρ
with some constants C > 0 and ρ > 1, then we have the bound

(1.7) g ± s (h, ε) ≤ Ch -2 . Note that when d = 1 we have much better resolvent bounds. Indeed, it has been proved in [START_REF] Datchev | Semiclassical estimates for scattering on the real line[END_REF] that for V ∈ L 1 (R) we have the bound (1.8) g ± s (h, ε) ≤ Ch -1 . The bound (1.8) is proved in [START_REF] Vodev | Semiclassical resolvent estimates for Hölder potentials[END_REF] (see also [START_REF] Datchev | Quantative limiting absorption principle in the semiclassical limit[END_REF]) when d ≥ 3 for slowly decaying Lipschitz potentials V with respect to the radial variable r and satisfying the conditions (1.9)

V (x) ≤ p(|x|)

where p(r) > 0, r ≥ 0, is a decreasing function such that p(r) → 0 as r → ∞, and

(1.10) ∂ r V (x) ≤ C 1 (|x| + 1) -δ 1
where C 1 > 0 and δ 1 > 1 are some constants. When d = 2 the bound (1.8) is proved in [START_REF] Shapiro | Semiclassical resolvent bounds in dimension two[END_REF] for potentials which are Lipschitz with respect to the space variable x. Under this condition, the bound (1.8) is extended in [START_REF] Vodev | Semiclassical resolvent estimates for Hölder potentials[END_REF] to general exterior domains and all dimensions d ≥ 2. Note that the bound (1.8) was first proved for smooth potentials in [START_REF] Burq | Lower bounds for shape resonances widths of long-range Schrödinger operators[END_REF]. A high-frequency analog of (1.8) on Riemannian manifolds was proved in [START_REF] Burq | Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel[END_REF] and [START_REF] Cardoso | Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds[END_REF]. It was also showed in [START_REF] Datchev | Resonances and lower resolvent bounds[END_REF] that the bound (1.8) is optimal for smooth potentials.

The bound (1.2) has been recently improved in [START_REF] Galkowski | Semiclassical resolvent bounds for weakly decaying potentials[END_REF], [START_REF] Vodev | Semiclassical resolvent estimates for Hölder potentials[END_REF] for Hölder potentials V ∈ C α β (R + ) with respect to the radial variable and satisfying the condition (1.9) as well. Hereafter, given 0 < α < 1 and β > 0, the space C α β (R + ) denotes the set of all Hölder functions a such that sup

r ′ ≥0: 0<|r-r ′ |≤1 |a(r) -a(r ′ )| |r -r ′ | α ≤ C(r + 1) -β , ∀r ∈ R + ,
for some constant C > 0. Indeed, it is shown in [START_REF] Galkowski | Semiclassical resolvent bounds for weakly decaying potentials[END_REF] (with β > 3) and in [START_REF] Vodev | Semiclassical resolvent estimates for Hölder potentials[END_REF] (with β = 4) that in this case we have the bound

(1.11) g ± s (h, ε) ≤ Ch -4/(α+3) log(h -1
). In [START_REF] Vodev | Semiclassical resolvent estimates for Hölder potentials[END_REF] the bound (1.11) is also extended to exterior domains and all dimensions d ≥ 2 for potentials which are α -Hölder with respect to the space variable. In the present paper we show that the bound (1.11) can be improved for radial potentials. We have the following Theorem 1.2. Let d ≥ 3 and suppose that the potential V depends only on the radial variable and satisfies (1.9). If V ∈ C α 3 (R + ), then there exist constants C > 0 and h 0 > 0 independent of h and ε but depending on s, E and the function p, such that the bound

(1.12) g ± s (h, ε) ≤ Ch -4/(α+3) holds for all 0 < h ≤ h 0 . If V ∈ C α β (R + ) with 2 < β < 3, then we have the bound (1.13) g ± s (h, ε) ≤ Ch -k log(h -1 ) q , where k = 2αβ -6α + 4 2αβ -5α + 3 , q = α(3 -β) 2αβ -5α + 3 . If V ∈ C α β (R + ) with 1 < β ≤ 2, then the bound (1.13) holds with k = 2β -2α 2β -α -1 , q = β + 1 2β -α -1 .
Remark 1. It is easy to see from the proof that the resolvent bounds in the above theorems still hold if we add to the potential V a radial real-valued Lipschitz function satisfying (1.9) and (1.10). Remark 2. The conclusions of the above theorems remain valid for the Dirichlet self-adjoint realisation of the operator P (h) on the Hilbert space L 2 (R d \ B), where B = {x ∈ R d : |x| ≤ r 0 }, r 0 > 0. In fact, in this case the proof also works when d = 2. The reason why the proof does not work on the whole R 2 is that in this case the effective potential is negative with a strong singularity at r = 0.

Resolvent bounds like those in the above theorems are usually proved by means of Carleman estimates with suitable phase functions. Since the resolvent bound is determined by the magnitude of the phase, the aim is to find as small phase as possible in order to get as good bound as possible. In the case of general potentials this proves to be a quite delicate problem which is not easy to handle with. Our proof in the present paper is very different from the proofs in the papers mentioned above. We take advantage of the assumption that the potential is radial in order to reduce our d-dimensional resolvent estimate to infinitely many one dimensional resolvent estimates depending on an additional parameter, which is the eigenvalues of the Laplace-Beltrami operator on the unit sphere (see Section 2). This allows us to use simpler Carleman estimates with better phases, and therefore we can get better bounds. We expect that the bound (1.4) is optimal for L ∞ potentials, but to our best knoweledge showing this remains an open problem. We also expect that (1.4) holds for general potentials satisfying (1.1) with δ > 2, without assuming that V is radial. This also is an open problem in the context of Euclidean spaces. Note that (1.4) is proved in [START_REF] Vodev | Semiclassical resolvent estimates for L ∞ potentials on Riemannian manifolds[END_REF] for a quite large class of asymptotically hyperbolic manifolds with L ∞ potentials decaying sufficiently fast. Finally, the bounds (1.4) and (1.12) imply a better local energy decay for the wave equation with a radial refraction index than that one in [START_REF] Shapiro | Local energy decay for Lipschitz wavespeeds[END_REF] and [START_REF] Vodev | Semiclassical resolvent estimates for Hölder potentials[END_REF].

Preliminaries

To get our resolvent bounds we will use the following Lemma 2.1. Let s > 1/2 and suppose that for all functions f ∈ H 2 (R d ) such that

(|x| + 1) s (P (h) -E ± iε)f ∈ L 2 (R d )
we have the estimate

(2.1) (|x| + 1) -s f 2 L 2 (R d ) ≤ M (|x| + 1) s (P (h) -E ± iε)f 2 L 2 (R d ) + M ε f 2 L 2 (R d )
with some M > 0 independent of ε and f . Then we have the resolvent bound

(2.2) g ± s (h, ε) ≤ log(M + 1). Proof. Since the operator P (h) is symmetric, we have ε f 2 L 2 = ±Im (P (h) -E ± iε)f, f L 2 ≤ (2M ) -1 (|x| + 1) -s f 2 L 2 + M 2 (|x| + 1) s (P (h) -E ± iε)f 2 L 2
which can be rewritten in the form

(2.3) M ε f 2 L 2 ≤ 1 2 (|x| + 1) -s f 2 L 2 + M 2 2 (|x| + 1) s (P (h) -E ± iε)f 2 L 2 . By (2.1) and (2.3) we get (2.4) (|x| + 1) -s f L 2 ≤ (M + 1) (|x| + 1) s (P (h) -E ± iε)f L 2 which clearly implies (2.

2). ✷

We will now use that the potential is radial to reduce the estimate (2.1) to infinitely many similar estimates on R + . To this end we will write the operator P (h) in polar coordinates (r, w) ∈ R + × S d-1 , r = |x|, w = x/|x| and we will use that

L 2 (R d ) = L 2 (R + × S d-1 , r d-1 drdw).
We have the identity

(2.5) r (d-1)/2 ∆r -(d-1)/2 = ∂ 2 r + ∆ w r 2 where ∆ w = ∆ w -1 4 (d -1)(d -3
) and ∆ w denotes the negative Laplace-Beltrami operator on S d-1 . Set v = r (d-1)/2 f and

P ± (h) = r (d-1)/2 (P (h) -E ± iε)r -(d-1)/2 .
Using (2.5) we can write the operator P ± (h) in the coordinates (r, w) as follows

P ± (h) = D 2 r + Λ w r 2 + V (r) -E ± iε where we have put D r = -ih∂ r and Λ w = -h 2 ∆ w .
Clearly, the estimate (2.1) can be rewritten in the form

(2.6) (r + 1) -s v 2 L 2 (R + ×S d-1 ) ≤ M (r + 1) s P ± (h)v 2 L 2 (R + ×S d-1 ) + M ε v 2 L 2 (R + ×S d-1
) . Let λ j ≥ 0 be the eigenvalues of -∆ w repeated with the multiplicities and let e j ∈ L 2 (S d-1 ) be the corresponding eigenfunctions. Set

ν = h λ j + 1 4 (d -1)(d -3) and v j (r) = v(r, •), e j L 2 (S d-1 ) , Q ± ν (h) = D 2 r + ν 2 r 2 + V (r) -E ± iε. Thus we can write v = j v j e j , P ± (h)v = j Q ± ν (h)v j e j ,
so we have the identities

v 2 L 2 (R + ×S d-1 ) = j v j 2 L 2 (R + ) , (r + 1) -s v 2 L 2 (R + ×S d-1 ) = j (r + 1) -s v j 2 L 2 (R + ) , (r + 1) s P ± (h)v 2 L 2 (R + ×S d-1 ) = j (r + 1) s Q ± ν (h)v j 2 L 2 (R + ) .
We have the following Lemma 2.2. Let s > 1/2 and suppose that for all ν the estimates

(r + 1) -s u 2 L 2 (R + ) ≤ M ν (r + 1) s Q ± ν (h)u 2 L 2 (R + ) (2.7) +M ν ε u 2 L 2 (R + ) + M ν ε D r u 2 L 2 (R + ) hold for every u ∈ H 2 (R + ) such that u(0) = 0 and (r + 1) s Q ± ν (h)u ∈ L 2 (R +
), with M ν > 0 independent of ε and u. Then the estimate (2.6) holds with

M = (2 + E + V L ∞ ) max ν 2 ∈spec Λw M ν .
Proof. We integrate by parts to obtain

Re ∞ 0 D 2 r uudr = ∞ 0 |D r u| 2 dr, which leads to Re ∞ 0 Q ± ν (h)uudr = ∞ 0 |D r u| 2 dr + ν 2 ∞ 0 r -2 |u| 2 dr + ∞ 0 (V (r) -E)|u| 2 dr ≥ ∞ 0 |D r u| 2 dr -(E + V L ∞ ) ∞ 0 |u| 2 dr.
This implies

(2.8) ∞ 0 |D r u| 2 dr ≤ ∞ 0 |Q ± ν (h)u| 2 dr + (1 + E + V L ∞ ) ∞ 0 |u| 2 dr.
Combining (2.7) and (2.8) we get

(r + 1) -s u 2 L 2 (R + ) ≤ 2M ν (r + 1) s Q ± ν (h)u 2 L 2 (R + ) (2.9) + (2 + E + V L ∞ ) M ν ε u 2 L 2 (R + )
. Applying (2.9) with u = v j and summing up all the inequalities clearly lead to (2.6) with the desired value of M . ✷

Thus we reduce our problem to proving estimates like (2.7) with as good bounds M ν as possible. This will be carried out in the next sections.

Bounding M for L ∞ potentials

We will first prove the following

Proposition 3.1. Let V ∈ L 1 (R + ) ∩ L ∞ (R + ).
Then the estimate (2.7) holds for all ν with M ν = e C(ν+1)/h , where C > 0 is a constant independent of ν and h.

Proof. We will first consider the simplier case when ν = 0. Note that this may happen only when

d = 3. Set F (r) = E|u(r)| 2 + |D r u(r)| 2
and observe that the first derivative of F satisfies the identity

F ′ (r) = 2h -1 Im V uD r u -2h -1 Im Q ± 0 (h)uD r u ± 2εh -1 Re uD r u. We have -F ′ (r) ≤ h -1 |V | |u| 2 + |D r u| 2 + h -1 γ(r + 1) -2s |D r u| 2 +h -1 γ -1 (r + 1) 2s |Q ± 0 (h)u| 2 + εh -1 |u| 2 + |D r u| 2
for any γ > 0. Let s > 1/2 and η = 1 2 min{1, E}. Set µ = e ψ/h , where

ψ(r) = r 0 η -1 |V (σ)| + (σ + 1) -2s dσ ≤ η -1 V L 1 + (2s -1) -1 .
We have |V (r)| ≤ ηψ ′ (r). Using this together with the identity µ = hµ ′ /ψ ′ , we obtain

-(µF ) ′ = -µ ′ F -µF ′ ≤ -µ ′ F + ηµ ′ |u| 2 + |D r u| 2 + h -1 γµ(r + 1) -2s |D r u| 2 +h -1 γ -1 µ(r + 1) 2s |Q ± 0 (h)u| 2 + εh -1 µ |u| 2 + |D r u| 2 ≤ - 1 2 µ ′ F + h -1 γµ(r + 1) -2s |D r u| 2 +h -1 γ -1 µ(r + 1) 2s |Q ± 0 (h)u| 2 + εh -1 µ |u| 2 + |D r u| 2 . Integrating this inequality gives 0 ≤ F (0) = - ∞ 0 (µF ) ′ ≤ - 1 2 ∞ 0 µ ′ F + h -1 γµ 0 ∞ 0 (r + 1) -2s |D r u| 2 +h -1 γ -1 µ 0 ∞ 0 (r + 1) 2s |Q ± 0 (h)u| 2 + εh -1 µ 0 ∞ 0 |u| 2 + |D r u| 2 ,
where

µ 0 = max µ ≤ e C/h , C > 0. Using that µ ′ ≥ ψ ′ /h ≥ h -1 (r + 1) -2s we deduce from the above inequality 1 2 ∞ 0 (r + 1) -2s F ≤ h 2 ∞ 0 µ ′ F ≤ γµ 0 ∞ 0 (r + 1) -2s |D r u| 2 +γ -1 µ 0 ∞ 0 (r + 1) 2s |Q ± 0 (h)u| 2 + εµ 0 ∞ 0 |u| 2 + |D r u| 2 .
Now we take γ = (3µ 0 ) -1 so that we can absorbe the first term in the right-hand side of the above inequality. Thus we get the estimate 1 6

∞ 0 (r + 1) -2s F ≤ 3µ 2 0 ∞ 0 (r + 1) 2s |Q ± 0 (h)u| 2 + εµ 0 ∞ 0 |u| 2 + |D r u| 2 ,
which clearly implies the desired bound. Consider now the case ν > 0. Then ν ≥ hν 0 with some constant ν 0 > 0. Let φ j ∈ C ∞ (R), j = 0, 1, 2, be real-valued functions such that 0

≤ φ j ≤ 1, φ ′ j ≥ 0, φ 0 (σ) = 0 for σ ≤ 1/3, φ 0 (σ) = 1 for σ ≥ 1/2, φ 1 (σ) = 0 for σ ≤ 1, φ 1 (σ) = 1 for σ ≥ 2, φ 2 (σ) = 0 for σ ≤ 3, φ 2 (σ) = 1 for σ ≥ 4. Set κ = 4 1 + E + V L ∞ and V ν = ν 2 φ 0 (r/κν)r -2 + V , u 1 = φ 1 (r/κν)u, u 2 = (1 -φ 2 )(r/κν)u. Observe that (ν 2 r -2 + V )u 1 = V ν u 1 and V ν ∈ L 1 with norm V ν L 1 = O(ν + 1).
As above, we are going to bound from below the first derivative of the function

F 1 (r) = E|u 1 (r)| 2 + |D r u 1 (r)| 2 .
We have the identity

F ′ 1 (r) = 2h -1 Im V ν u 1 D r u 1 -2h -1 Im Q ± ν (h)u 1 D r u 1 ± 2εh -1 Re u 1 D r u 1 = 2h -1 Im V ν u 1 D r u 1 -2h -1 Im φ 1 Q ± ν (h)uD r u 1 ± 2εh -1 Re u 1 D r u 1 + T (r), where T (r) = -2h -1 Im [D 2 r , φ 1 (r/κν)]uD r φ 1 (r/κν)u = 2(κν) -1 φ 1 φ ′ 1 |D r u| 2 + h(κν) -2 (φ 1 φ ′′ 1 + 2φ ′2 1 )Im uD r u + h 2 (κν) -3 φ ′ 1 φ ′′ 1 |u| 2 ≥ -O hν -2 (φ ′ 1 + |φ ′′ 1 |) |u| 2 + |D r u| 2 .
Thus we obtain

-F ′ 1 (r) ≤ h -1 |V ν | |u 1 | 2 + |D r u 1 | 2 + h -1 γ(r + 1) -2s |D r u 1 | 2 +h -1 γ -1 (r + 1) 2s |Q ± ν (h)u| 2 + εO h -1 |u| 2 + |D r u| 2 +O hν -2 (φ ′ 1 + |φ ′′ 1 |) |u| 2 + |D r u| 2
for any γ > 0. Let 1/2 < s ≤ 1, let η be as above and let λ ≫ 1 be a large parameter independent of h and ν to be fixed later on. Set µ = e ψ/h with

ψ(r) = r 0 η -1 |V ν (σ)| + λ(σ + 1) -2s dσ ≤ η -1 V ν L 1 + λ(2s -1) -1 ν + 1.
Integrating by parts and absorbing the term involving the potential in the same way as above we arrive at the inequality 1 2

∞ 0 ψ ′ µF 1 γµ ν ∞ 0 (r + 1) -2s |D r u 1 | 2 +γ -1 µ ν ∞ 0 (r + 1) 2s |Q ± ν (h)u| 2 +εµ ν ∞ 0 |u| 2 + |D r u| 2 +h 2 ν -2 µ(2κν) 2κν κν |u| 2 + |D r u| 2 ,
where µ ν = max µ ≤ e C(ν+1)/h , C > 0. On the othe hand, we have

∞ 0 ψ ′ µF 1 ≥ λµ(3κν) 4κν 3κν (r + 1) -2s F 1 ≥ λ(4κν + 1) -2 µ(3κν) 4κν 3κν F 1 .
Combining both inequalities and using that µ(3κν) > µ(2κν) > 1 yield

4κν 3κν F 1 γ(ν + 1) 2 µ ν ∞ 0 (r + 1) -2s |D r u 1 | 2 +γ -1 (ν + 1) 2 µ ν ∞ 0 (r + 1) 2s |Q ± ν (h)u| 2 +ε(ν + 1) 2 µ ν ∞ 0 |u| 2 + |D r u| 2 +λ -1 h 2 ν -2 (ν + 1) 2 2κν κν |u| 2 + |D r u| 2 .
Observe now that h 2 ν -2 (ν + 1) 2 1 as long as ν ≥ hν 0 . Therefore, we can rewrite the above inequality in the form

4κν 3κν |u| 2 + |D r u| 2 γ(ν + 1) 2 µ ν ∞ 0 (r + 1) -2s |D r u 1 | 2 +γ -1 (ν + 1) 2 µ ν ∞ 0 (r + 1) 2s |Q ± ν (h)u| 2 +ε(ν + 1) 2 µ ν ∞ 0 |u| 2 + |D r u| 2 (3.1) +λ -1 2κν κν |u| 2 + |D r u| 2 .
On the other hand, the choice of κ guarantees the inequality

(ν 2 r -2 + V (r) -E)|u 2 | 2 ≥ |u 2 | 2 .
Therefore, integrating by parts we obtain

Re ∞ 0 Q ± ν (h)u 2 u 2 = ∞ 0 |D r u 2 | 2 + ∞ 0 (ν 2 r -2 + V (r) -E)|u 2 | 2 ≥ ∞ 0 |D r u 2 | 2 + ∞ 0 |u 2 | 2 , which implies ∞ 0 |u 2 | 2 + |D r u 2 | 2 ≤ ∞ 0 |Q ± ν (h)u 2 | 2 ≤ ∞ 0 |Q ± ν (h)u| 2 + ∞ 0 [D 2 r , φ 2 (r/κν)]u 2 ∞ 0 |Q ± ν (h)u| 2 + 4κν 3κν |u| 2 + |D r u| 2 .
In particular, this inequality yields

(3.2) 2κν κν |u| 2 + |D r u| 2 ∞ 0 |Q ± ν (h)u| 2 + 4κν 3κν |u| 2 + |D r u| 2 .
Combining (3.1) and (3.2) and taking λ big enough, we get

2κν κν + 4κν 3κν |u| 2 + |D r u| 2 γ(ν + 1) 2 µ ν ∞ 0 (r + 1) -2s |D r u 1 | 2 +γ -1 (ν + 1) 2 µ ν ∞ 0 (r + 1) 2s |Q ± ν (h)u| 2 (3.3) +ε(ν + 1) 2 µ ν ∞ 0 |u| 2 + |D r u| 2 .
Using (3.3) we can rewrite the above inequalities as follows:

λ ∞ 5κν/2 (r + 1) -2s E|u| 2 + |D r u| 2 ≤ λ ∞ 0 (r + 1) -2s F 1 ≤ ∞ 0 ψ ′ F 1 ≤ ∞ 0 ψ ′ µF 1 γµ ν ∞ 0 (r + 1) -2s |D r u 1 | 2 +γ -1 µ ν ∞ 0 (r + 1) 2s |Q ± ν (h)u| 2 +εµ ν ∞ 0 |u| 2 + |D r u| 2 + µ ν 2κν κν |u| 2 + |D r u| 2 γ(ν + 1) 2 µ 2 ν ∞ 0 (r + 1) -2s |u| 2 + |D r u| 2 +γ -1 (ν + 1) 2 µ 2 ν ∞ 0 (r + 1) 2s |Q ± ν (h)u| 2 +ε(ν + 1) 2 µ 2 ν ∞ 0 |u| 2 + |D r u| 2 and 5κν/2 0 (r + 1) -2s |u| 2 + |D r u| 2 ≤ ∞ 0 |u 2 | 2 + |D r u 2 | 2 ∞ 0 |Q ± ν (h)u| 2 + 4κν 3κν |u| 2 + |D r u| 2 γ(ν + 1) 2 µ ν ∞ 0 (r + 1) -2s |u| 2 + |D r u| 2 +γ -1 (ν + 1) 2 µ ν ∞ 0 (r + 1) 2s |Q ± ν (h)u| 2 +ε(ν + 1) 2 µ ν ∞ 0 |u| 2 + |D r u| 2 . Hence ∞ 0 (r + 1) -2s |u| 2 + |D r u| 2 γ(ν + 1) 2 µ 2 ν ∞ 0 (r + 1) -2s |u| 2 + |D r u| 2 +γ -1 (ν + 1) 2 µ 2 ν ∞ 0 (r + 1) 2s |Q ± ν (h)u| 2 +ε(ν + 1) 2 µ 2 ν ∞ 0 |u| 2 + |D r u| 2 .
We now take γ such that γ(ν + 1) 2 µ 2 ν = γ 0 with a sufficiently small constant γ 0 > 0, so that we can absorbe the first term in the right-hand side of the above inequality. This leads to the estimate

∞ 0 (r + 1) -2s |u| 2 + |D r u| 2 (ν + 1) 4 µ 4 ν ∞ 0 (r + 1) 2s |Q ± ν (h)u| 2 +ε(ν + 1) 2 µ 2 ν ∞ 0 |u| 2 + |D r u| 2 ,
which implies the desired estimate for 1/2 < s ≤ 1, and hence for all s > 1/2. ✷

We will next show that for large ν much better bounds for M ν are possible. To this end, set (1.6), where ǫ = log(h -1 ) -1 .

τ = h -1/3 , τ 1 = τ if V satisfies (1.1) with δ > 2, τ = h -1 2δ-1 ǫ -2-δ 2δ-1 , τ 1 = τ ǫ -1 if V satisfies (1.1) with 1 < δ ≤ 2, and τ = h -1 , τ 1 = τ if V satisfies
Proposition 3.2. There exist constants C, c > 0 such that the estimate (2.7) holds for all ν ≥ cτ with

M ν = e Cτ 1 /h . Proof. Set λ = 1, ω(r) = (r + 1) -2δ+3 if V satisfies (1.1) with δ > 2, λ ≫ 1, ω(r) = (r + 1) -1-ǫ if V satisfies (1.1) with 1 < δ ≤ 2, and λ ≫ 1, ω(r) = (r + 1) -1 (log(r + 2)) -ρ if V satisfies (1.6). Set ϕ(r) = λτ r 0 ω(σ)dσ τ 1 .
The parameter λ in the second and the third cases is independent of ν and h and will be fixed later on. Introduce the operator

Q ± ν,ϕ (h) = e ϕ/h Q ± ν (h)e -ϕ/h = D 2 r + ν 2 r 2 + V (r) -ϕ ′2 + hϕ ′′ + 2iϕ ′ D r -E ± iε. Consider the function F ϕ (r) = (E -ν 2 r -2 + ϕ ′2 )|u(r)| 2 + |D r u(r)| 2 .
It is easy to see that its first derivative is given by

F ′ ϕ (r) = 2(ν 2 r -3 + ϕ ′ ϕ ′′ )|u| 2 + 4h -1 ϕ ′ |D r u| 2 +2h -1 Im (V + hϕ ′′ )uD r u -2h -1 Im Q ± ν,ϕ (h)uD r u ± 2εh -1 Re uD r u ≥ 2ν 2 r -3 -2ϕ ′ |ϕ ′′ | -(ϕ ′ ) -1 |ϕ ′′ | 2 |u| 2 -h -1 (ϕ ′ ) -1 V 2 |u| 2 -Φ(r), where Φ = γ(r + 1) -2s |D r u| 2 + γ -1 h -2 (r + 1) 2s Q ± ν,ϕ (h)u 2 +εh -1 |u| 2 + |D r u| 2
and γ > 0 and s > 1/2 are arbitrary. It is easy to check that

2ϕ ′ |ϕ ′′ | + (ϕ ′ ) -1 |ϕ ′′ | 2 ≤ c 2 0 τ 2 (r + 1) -3 with some constant c 0 > 0. Therefore, for ν ≥ c 0 τ , we obtain (3.4) F ′ ϕ (r) ≥ ν 2 r -3 |u| 2 -(λhτ ) -1 ω -1 V 2 |u| 2 -Φ. Let us see that (3.4) implies the inequality (3.5) F ′ ϕ (r) ≥ 1 2 ν 2 r -3 |u| 2 -Kλ -1 ω|u| 2 -Φ, provided ν ≥ cτ with some constant c > c 0 , where K = 0 if V satisfies (1.1) with δ > 2, K > 0 is a constant if V satisfies (1.6), and K = Kǫ, K > 0 is a constant if V satisfies (1.1) with 1 < δ ≤ 2.
Indeed, in the first case this follows from the inequality (hτ ) -1 ω -1 V 2 τ 2 (r + 1) -3 , while in the case when V satisfies (1.6) it follows from (hτ

) -1 ω -1 V 2 ω. Let now V satisfy (1.1) with 1 < δ ≤ 2. Then we have ω -1 V 2 (r + 1) -2δ+1+ǫ ≤ a 4-2δ+ǫ (r + 1) -3 + a 2-2δ+2ǫ (r + 1) -1-ǫ
for every a > 1. Take a such that (hτ ) -1 a 4-2δ = τ 2 , (hτ ) -1 a 2-2δ = ǫ.

In view of the choice of τ we find that these equations are satisfied with a = h -1 2δ-1 ǫ -3 2(2δ-1) . Thus we get the inequality (hτ ) -1 ω -1 V 2 τ 2 (r + 1) -3 + ǫ(r + 1) -1-ǫ , which clearly implies (3.5) in this case.

Integrating (3.5) from 0 to ∞ and using that F ϕ (0) = |D r u(0)| 2 ≥ 0, we get

(3.6) 1 2 ∞ 0 ν 2 r -3 |u| 2 ≤ Kλ -1 ∞ 0 ω|u| 2 + ∞ 0 Φ.
On the other hand, integrating (3.5) from r to ∞ yields

(3.7) F ϕ (r) = - ∞ r F ′ ϕ (σ)dσ ≤ Kλ -1 ∞ 0 ω|u| 2 + ∞ 0 Φ. Set ω = (r + 1) -2s if V satisfies (1.1) with δ > 2, and ω = ω otherwise. Clearly, ω L 1 ǫ -1 if V satisfies (1.1) with 1 < δ ≤ 2 and ω L 1
1 in the other two cases. Therefore, multiplying (3.7) by ω and integrating from 0 to ∞ lead to (1.6). By (3.6) and (3.8), using that ω ≤ Cr -1 , we obtain

(3.8) ∞ 0 ωF ϕ ℓ 1 λ -1 ∞ 0 ω|u| 2 + (1 + ℓ 2 ǫ -1 ) ∞ 0 Φ, where ℓ 1 = ℓ 2 = 0 if V satisfies (1.1) with δ > 2, ℓ 1 = ℓ 2 = 1 if V satisfies (1.1) with 1 < δ ≤ 2, and ℓ 1 = 1, ℓ 2 = 0 if V satisfies
∞ 0 ω E|u| 2 + |D r u| 2 ≤ ∞ 0 ωF ϕ + C ∞ 0 ν 2 r -3 |u| 2 ℓ 1 λ -1 ∞ 0 ω|u| 2 + (1 + ℓ 2 ǫ -1 ) ∞ 0 Φ.
When ℓ 1 = 1 we take λ large enough in order to absorbe the first term in the right-hand side of the above inequality. Thus we get (3.9)

∞ 0 ω |u| 2 + |D r u| 2 (1 + ℓ 2 ǫ -1 ) ∞ 0 Φ.
Since ω ≥ (r + 1) -2s , we deduce from (3.9)

∞ 0 (r + 1) -2s |u| 2 + |D r u| 2 γ(1 + ℓ 2 ǫ -1 ) ∞ 0 (r + 1) -2s |D r u| 2 +γ -1 h -2 (1 + ℓ 2 ǫ -1 ) ∞ 0 (r + 1) 2s Q ± ν,ϕ (h)u 2 +εh -1 (1 + ℓ 2 ǫ -1 ) ∞ 0 |u| 2 + |D r u| 2 .
We now take γ such that γ(1 + ℓ 2 ǫ -1 ) = γ 0 , where γ 0 is a sufficiently small constant. Thus we can absorbe the first term in the right-hand side of the above inequality to obtain

∞ 0 (r + 1) -2s |u| 2 h -2 (1 + ℓ 2 ǫ -1 ) 2 ∞ 0 (r + 1) 2s Q ± ν,ϕ (h)u 2 (3.10 
) +εh -1 (1 + ℓ 2 ǫ -1 ) ∞ 0 |u| 2 + |D r u| 2 .
We apply (3.10) with u replaced by e ϕ/h u. Thus we get the Carleman estimate

∞ 0 (r + 1) -2s e 2ϕ/h |u| 2 h -2 (1 + ℓ 2 ǫ -1 ) 2 ∞ 0 (r + 1) 2s e 2ϕ/h Q ± ν (h)u 2 (3.11) +εh -1 (1 + ℓ 2 ǫ -1 )τ 2 ∞ 0 e 2ϕ/h |u| 2 + |D r u| 2 .
Since 1 ≤ e 2ϕ/h ≤ e Cτ 1 /h with some constant C > 0, (3.11) implies

∞ 0 (r + 1) -2s |u| 2 h -2 (1 + ℓ 2 ǫ -1 ) 2 e Cτ 1 /h ∞ 0 (r + 1) 2s Q ± ν (h)u 2 (3.12) +εh -1 (1 + ℓ 2 ǫ -1 )τ 2 e Cτ 1 /h ∞ 0 |u| 2 + |D r u| 2 ,
which gives the desired bound for M ν . ✷ It follows from Propositions 3.1 and 3.2 together with Lemma 2.2 that M ≤ e Cτ 1 /h with some constant C > 0, which, in view of Lemma 2.1, implies Theorem 1.1.

Bounding M for Hölder potentials

Let ρ ∈ C ∞ 0 ([0, 1]), ρ ≥ 0, be a real-valued function independent of ν and h such that

∞ 0 ρ(σ)dσ = 1. If V ∈ C α β (R + )
, we can approximate it by the function

V θ (r) = θ -1 ∞ 0 ρ((r -r ′ )/θ)V (r ′ )dr ′ = ∞ 0 ρ(σ)V (r + θσ)dσ
where 0 < θ ≪ 1 will be chosen later on. We have

|V (r) -V θ (r)| ≤ ∞ 0 ρ(σ)|V (r + θσ) -V (r)|dσ (4.1) θ α (r + 1) -β ∞ 0 σ α ρ(σ)dσ θ α (r + 1) -β .
If in addition V satisfies (1.9), we obtain from (4.1)

(4.2) V θ (r) ≤ p(r) + O((r + 1) -β ).
Since p is a decreasing function tending to zero, it follows from (4.2) that given any γ, N > 0 there is a constant C γ,N > 0 such that

(4.3) V θ (r) ≤ C γ,N (r + 1) -N + γ.
Clearly, V θ ∈ C 1 and its first derivative V ′ θ is given by

V ′ θ (r) = θ -2 ∞ 0 ρ ′ ((r -r ′ )/θ)V (r ′ )dr ′ = θ -1 ∞ 0 ρ ′ (σ)V (r + θσ)dσ = θ -1 ∞ 0 ρ ′ (σ)(V (r + θσ) -V (r))dσ
where we have used that

∞ 0 ρ ′ (σ)dσ = 0. Hence (4.4) |V ′ θ (r)| θ -1+α (r + 1) -β ∞ 0 σ α |ρ ′ (σ)|dσ θ -1+α (r + 1) -β .
Using the above inequalities we will prove the following Proposition 4.1. Let V ∈ L ∞ satisfy (1.9). Suppose in addition that V ∈ C α β (R + ) with β > 1. Then the estimate (2.7) holds for all ν with M ν = e C(ν+1)/h , where C > 0 is a constant independent of ν and h.

Proof. We will modify the proof of Proposition 3.1 to avoid using that V ∈ L 1 . Instead, we will use that V -V θ and V ′ θ belong to L 1 . We will apply the above inequalities with θ independent of h and ν. Set ϕ(r) = λ 1 -(r + 1) -1 , where λ ≫ 1 is independent of h and ν. Clearly, ϕ ′ (r) = λ(r + 1) -2 . Using (4.3) with γ = E/2 and N = 4, we obtain (4.5)

E + ϕ ′2 -V θ ≥ E 2 + (λ 2 -C γ,4 )(r + 1) -4 ≥ E 2 provided λ is large enough. We set F (r) = (E + ϕ ′2 -V θ )|u(r)| 2 + |D r u(r)| 2
when ν = 0, and

F 1 (r) = (E + ϕ ′2 -V θ )|u 1 (r)| 2 + |D r u 1 (r)| 2 when ν > 0. By (4.5), (4.6) E 2 |u(r)| 2 + |D r u(r)| 2 ≤ F (r).
Clearly, (4.6) holds with u and F replaced by u 1 and F 1 . As in the previous section, the first derivative of F is given by

F ′ (r) = (2ϕ ′ ϕ ′′ -V ′ θ )|u| 2 + 4h -1 ϕ ′ |D r u| 2 +2h -1 Im (V -V θ + hϕ ′′ )uD r u -2h -1 Im Q ± 0,ϕ (h)uD r u ± 2εh -1 Re uD r u. Hence -F ′ (r) ≤ h -1 W 0 |u| 2 + |D r u| 2 + h -1 γ(r + 1) -2s |D r u| 2 +h -1 γ -1 (r + 1) 2s |Q ± 0,ϕ (h)u| 2 + εh -1 |u| 2 + |D r u| 2 for any γ > 0, where W 0 = |V -V θ | + |V ′ θ | + |ϕ ′′ | + 2ϕ ′ |ϕ ′′ | ∈ L 1 . Similarly -F ′ 1 (r) ≤ h -1 W ν |u 1 | 2 + |D r u 1 | 2 + h -1 γ(r + 1) -2s |D r u 1 | 2 +h -1 γ -1 (r + 1) 2s |Q ± ν,ϕ (h)u| 2 + εO h -1 |u| 2 + |D r u| 2 +O hν -2 (φ ′ 1 + |φ ′′ 1 |) |u| 2 + |D r u| 2 for any γ > 0, where W ν = ν 2 r -2 φ(r/κν) + W 0 ∈ L 1 . Clearly, W ν L 1 = O(ν + 1)
. Now, arguing in the same way as in the proof of Proposition 3.1 and using the above inequalities, we obtain the estimate

∞ 0 (r + 1) -2s |u| 2 ≤ e C(ν+1)/h ∞ 0 (r + 1) 2s |Q ± ν,ϕ (h)u| 2 + εe C(ν+1)/h ∞ 0 |u| 2 + |D r u| 2
with some constant C > 0. Applying this inequality with u replaced by e ϕ/h u, we get

∞ 0 (r + 1) -2s e 2ϕ/h |u| 2 ≤ e C(ν+1)/h ∞ 0 (r + 1) 2s e 2ϕ/h |Q ± ν (h)u| 2 + εe C(ν+1)/h ∞ 0 e 2ϕ/h |u| 2 + |D r u| 2 which implies ∞ 0 (r + 1) -2s |u| 2 ≤ e C(ν+1)/h ∞ 0 (r + 1) 2s |Q ± ν (h)u| 2 + εe C(ν+1)/h ∞ 0 |u| 2 + |D r u| 2
with a new constant C > 0, which is the desired estimate. ✷ 

Let V ∈ C α β with 0 < α < 1 and 1 < β ≤ 3. Set τ = h -k 0 ǫ -q 0 , τ 1 = h -k 0 ǫ -q , where k 0 = 1 -α α + 3 , q = q 0 = 0, if β = 3, k 0 = 1 -α 2αβ -5α + 3 , q = q 0 = α(3 -β) 2αβ -5α + 3 , if 2 < β < 3, k 0 = 1 -α 2β -α -1 , q 0 = α -β + 2 2β -α -1 , q = q 0 + 1, if 1 < β ≤ 2.
= e Cτ 1 /h . Proof. Set ω(r) = (r + 1) -2β+3 if 2 < β ≤ 3, ω(r) = (r + 1) -1-ǫ if 1 < β ≤ 2 and ϕ(r) = λτ r 0 ω(σ)dσ τ 1 ,
where λ ≫ 1 is independent of ν and h. Consider the function

F ϕ (r) = (E -ν 2 r -2 + ϕ ′2 -V θ )|u(r)| 2 + |D r u(r)| 2 .
Clearly, we can still arrange the inequality (4.5). Therefore, we have

(4.7) E 2 |u(r)| 2 + |D r u(r)| 2 ≤ F ϕ (r) + ν 2 r -2 |u(r)| 2 .
In the same way as in the proof of Proposition 3.2 we can obtain the following analog of the inequality (3.4)

(4.8) F ′ ϕ (r) ≥ ν 2 r -3 |u| 2 -W |u| 2 -Φ, for ν ≥ c 0 τ , where W = |V ′ θ | + (λhτ ) -1 ω -1 |V -V θ | 2
. By (4.1) and (4.4), we have (4.9)

W θ -1+α (r + 1) -β + (λhτ ) -1 θ 2α ω -1 (r + 1) -2β .

Set ℓ = 0, ω = (r + 1) -2s if β = 3 and ℓ = 1, ω = (r + 1) -1-ǫ if 1 < β < 3. We will show that (4.8) and (4.9) imply We are looking for solutions of these equations of the form τ = h -k 0 ǫ -q 0 , θ -1 = h -k 1 ǫ -q 1 , b = h -k 2 ǫ -q 2 . Thus the above equations take the form (4.12)

           2k 0 = (3 -β)k 2 + (1 -α)k 1 = 1 -k 0 -2αk 1 ,
(1 -α)k 1 -(β -1)k 2 = 0, 2q 0 = (3 -β)q 2 + (1 -α)q 1 = -q 0 -2αq 1 ,

(1 -α)q 1 -(β -1)q 2 = -1.

Solving this linear system we find the desired values of k 0 and q 0 . With this choice, by (4.9) we get (4.13) W τ 2 (r + 1) -3 + λ -1 ǫ(r + 1) -1-ǫ , which together with (4.8) imply (4.10). Let 1 < β < 2. Then (4.11) still holds. We also have the inequality (4.14) ω -1 (r + 1) -2β = (r + 1) -2β+1+ǫ ≤ a 4-2β+ǫ (r + 1) -3 + a 2-2β+2ǫ (r + 1) -1-ǫ for every a > 1. We let the parameters a and b satisfy the relations τ 2 = b 3-β θ -1+α = (hτ ) -1 θ 2α a 4-2β , θ -1+α b -β+1 = (hτ ) -1 θ 2α a 2-2β = ǫ.

As above, we are looking for solutions of these equations of the form τ = h -k 0 ǫ -q 0 , θ -1 = h -k 1 ǫ -q 1 , b = h -k 2 ǫ -q 2 and a = h -k 3 ǫ -q 3 . Thus the above equations take the form (4.15)

           2k 0 = (3 -β)k 2 + (1 -α)k 1 = 1 -k 0 -2αk 1 + 2(2 -β)k 3 ,
(1 -α)k 1 -(β -1)k 2 = 1 -k 0 -2αk 1 -2(β -1)k 3 = 0, 2q 0 = (3 -β)q 2 + (1 -α)q 1 = -q 0 -2αq 1 + 2(2 -β)q 3 , (1 -α)q 1 -(β -1)q 2 = -q 0 -2αq 1 -2(β -1)q 3 = -1.

Again, solving this linear system we find the desired values of k 0 and q 0 . Thus we conclude that (4.13) still holds in this case, and hence (4.10) follows. On the other hand, (4.7) and (4.10) imply the estimate (2.7) in the same way as in the proof of Proposition 3.2. ✷

(1. 1 )

 1 |V (x)| ≤ C(|x| + 1) -δ

2 r= λ - 1 .

 21 -3 |u| 2 -O(λ -1 )ℓǫ ω|u| 2 -Φ for ν ≥ cτ with some constant c ≫ 1. If β = 3 we require that τ and θ satisfy the relationsτ 2 = θ -1+α = (hτ ) -1 θ 2α ,which provides the desired value of τ . Since in this case ω -1 (r + 1) -2β = (r + 1) -3 , we get (4.10) from (4.8) and (4.9). Let 2 < β < 3. Then we have the inequality (4.11) (r + 1) -β ≤ (bb 0 ) 3-β (r + 1) -3 + (bb 0 ) 1+ǫ-β (r + 1) -1-ǫ for every b, b 0 > 1, provided ǫ ≪ β -1. We choose b 0 such that b 1-β 0 We also let τ 2 = b 3-β θ -1+α = (hτ ) -1 θ 2α , θ -1+α b -β+1 = ǫ.

  Clearly, to get Theorem 1.2 it suffices to prove the following Proposition 4.2. There exist constants C, c > 0 such that the estimate (2.7) holds for all ν ≥ cτ with M ν