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Abstract

Numerical simulators are essential for understanding, modeling and predicting physical phenomena. How-
ever, the available information about some of the input variables is often limited or uncertain. Global
sensitivity analysis (GSA) then aims at determining (qualitatively or quantitatively) how the variability
of the inputs affects the model output. However, from reliability and risk management perspectives, GSA
might be insufficient to capture the influence of the inputs on a restricted domain of the output (e.g., a
distribution tail). To remedy this, we define and use in this work target (TSA) and conditional sensitivity
analysis (CSA), which aim respectively at measuring the influence of the inputs on the occurrence of the
critical event, and on the output within the critical domain (ignoring what happens outside). As illustrated
in the applications, these two notions can widely differ.

From existing GSA measures, we propose new operational tools for TSA and CSA. We first focus on the
popular Sobol indices and show their practical limitations for both TSA and CSA. Then, the Hilbert-Schmidt
Independence Criterion (HSIC), a dependence measure recently adapted for GSA purposes and well-suited for
small datasets, is considered. TSA and CSA adaptations of Sobol and HSIC indices, and associated statistical
estimators, are defined. Alternative CSA Sobol indices are thus defined to overcome the dependence of inputs
induced by the conditioning. Moreover, to cope with the loss of information (especially when the critical
domain is associated to a low probability) and reduce the variability of estimators, transformation of the
output using weight functions is also proposed.

These new TSA and CSA tools are tested and compared on analytical examples. The efficiency of HSIC-
based indices clearly appear, as well as the relevancy of smooth relaxation. Finally, these latter indices
are applied and interpreted on a nuclear engineering use case simulating a severe accidental scenario on a
pressurized water reactor.
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1. Introduction

Nowadays, many phenomena are modeled by mathematical equations which are implemented to obtain
complex numerical simulators. These computer codes are used to model and predict some underlying physical
phenomena. Finally, the analysis of the simulation results can be helpful for decision-making, especially
when decisions involve important financial, societal and safety stakes. However, these codes often take a
large number of input parameters characterizing the studied phenomenon or related to its physical and
numerical modeling. The available information about some of these parameters is often limited or uncertain.
The uncertainties mainly arise from the lack of knowledge about the underlying physics and about the
characterization of the input parameters of the model. There are also additional sources of uncertainty
arising from the particular choice of conception or scenario parameters. Consequently, many of the input
parameters are uncertain (or considered as such) and it is important to assess how these uncertainties can
affect the model output. Sensitivity analysis (SA) methods are performed to evaluate how input uncertainties
contribute, qualitatively or quantitatively, to the variation of the output. In a probabilistic framework, the
uncertain parameters are modeled by random variables characterized by probability distributions. In this
paper, no distinction is made between the modeling of epistemic nor aleatory uncertainties as the proposed
methods remain blind to this kind of distinction (as soon as the probabilistic framework holds).

Sensitivity analysis aims at determining how the variability of the input parameters affects the value of
the output or the quantity of interest [IL [2, B]. It thus allows to identify and perhaps quantify, for each
input parameter or group of parameters, its contribution to the variability of the output. Many authors
agree to distinguish several purposes for SA called "SA-settings" in the literature [I}, [4]. The purpose can
be to prioritize input parameters in order of influence on the output variability, or to separate the inputs
into two groups: those which mostly influence the output uncertainty and those whose influence can be
neglected. This task is known as "screening". Another one, called "factor mapping", aims at getting a finer
identification of functional relationship between some specific values in input and output regions of interest.
This last use of SA consists in determining which values of these inputs are responsible of the occurrence of
the phenomenon in a given domain. More generally, SA results provide valuable information for the impact
of uncertain inputs, the comprehension of the model and the underlying physical phenomenon. It can also
be used for various purposes: reducing uncertainties by targeting characterization efforts on most influential
inputs, simplifying the model by setting non-influential inputs to reference values, or validating the model
with respect to (w.r.t.) the phenomenon under study.

In this work, we focus on specific domains of values of the phenomenon and we want to determine which
inputs contribute the most in the occurrence of the phenomenon in a given domain. For this, we first define
the notion of target sensitivity analysis (TSA) which aims at measuring the influence of the inputs over a

restricted domain of the studied phenomenon, and in particular over the occurrence of the phenomenon in



35

40

45

50

55

60

this restricted domain. Such domain of interest would usually be extreme and relatively rare, constituting
a risk or an opportunity. It will be called a critical domain in this paper. Alternatively, we also define the
conditional sensitivity analysis (CSA) which evaluates the influence of the inputs on the output within this
critical domain only, ignoring what happens outside. Let us underline that those two notions can widely
differ. Note that this point will be further illustrated by the numerical applications proposed in this paper.

In this framework, we aim at proposing new methods and tools for both TSA and CSA purposes. Global
SA (GSA) has been an active research field for several decades but, to the best of our knowledge, it seems
that target SA, in the sense that we understand, has only been deeply studied in the reliability community
(see, e.g., [A] for a review) but still remains an open field in the SA community. Unlike a previous document
by the first two authors [6], which provides much more theoretical arguments and a more extensive analysis,
the goal here is to propose operational tools for both TSA and CSA and to illustrate how these tools can
be efficiently used to treat industrial applications. Their practical characteristics are further investigated,
such as convergence according to the size of the sample. Besides, the applications we have to deal with, are
mostly involving expensive-to-evaluate complex simulators with a large number of inputs (e.g., from a few
dozens to a hundred). Thus, one often has only access to a limited number of code simulations (e.g., from a
hundred to a thousand samples). Consequently, these core constraints have to be taken into account when
selecting and proposing dedicated tools. Finally, we also want to illustrate how the information provided

can be used in a complementary way for physical interpretation.

In the next section, we first propose a brief review on GSA approaches before focusing on existing
tools for TSA. Our contributions in this framework are then introduced. Then, in Section [3] we propose
a dedicated framework for TSA and CSA and then introduce several dedicated extensions of usual GSA
measures. More precisely, we focus on the usual and widely used Sobol indices and a dependence measure,
namely the Hilbert-Schmidt independence criterion (HSIC). The new proposed TSA and CSA tools are then
tested and compared on two analytical examples in Section [d] Finally, in Section [f] an further application
of the most relevant and adapted tools is proposed, on a use case simulating a severe accidental scenario on

nuclear reactor.

Before that, we introduce a few notations. Mathematically, the numerical simulator (or model) can be

modeled by assuming a deterministic input-output function M(-) given by:

X — Y
M: (1)
X — Y =MX)
where Y is the output variable of interest (considered as a single scalar output here). It is assumed that the
methodology proposed in this paper is non-intrusive w.r.t. the model. The uncertain inputs are supposed

to be independent and are treated in a probabilistic framework by assuming, first, a probability space

Q, A,P). The inputs are gathered in a d-dimensional random vector X := (X1, Xo,...,Xy)" with finite
( p g



65

70

75

80

85

90

95

second moments (X € Ly(P)) and distributed according to a continuous joint probability distribution Px :=
Hle Px, over a measurable space X := Hle X; with X C R%. For each realization of the input vector
X (w), denoted by x := (21, T2,...,24) " € R% an observed scalar output value y = M(x) is obtained. Thus,
by propagating the uncertainties through M(-), one can assume a probabilistic structure for the output
which is a random variable characterized by a distribution Py over a measurable space ) C R. Finally, the
restricted or critical domain of interest previously mentioned is noted C C Y and associated to a critical

probability Pr(Y € C) = Py (C).

2. From global to target sensitivity analysis: a brief review

2.1. Global sensitivity analysis: from Sobol indices to HSIC measures

To assess and quantify the global impact of each input uncertainty on the output, statistical methods
have been developed for GSA purposes ([2 [B]). These methods are mostly based on the use of Monte Carlo
simulations obtained from the model, i.e., on a random sampling of inputs according to their probability
distributions. Common GSA methods include the Derivative-based Global Sensitivity Measures (known
as "DGSM indices', see [7] for a review). The construction of these indices is based on a generalization
of local sensitivity measures by averaging partial derivatives w.r.t. each input over its range of variation.
However, estimating these indices requires a large number of code calls, which considerably limits their use
in the case of expensive models. To overcome this disadvantage, efficient estimation strategies based on
the use of metamodels have been proposed in the literature (see, e.g., [8] for the use of polynomial chaos
expansions and [9] for the use of Gaussian process regression). Another widely used approach for GSA relies
on the decomposition of the output variance (called the "ANOVA decomposition" for ANalysis Of VAriance),
originally introduced by [10], where each term of the decomposition represents the part of the contribution
of an input (or a group of inputs) to the output variance. Thus, Sobol indices can be directly derived
from this decomposition ([I1, 12]). On the one hand, these indices are easily interpretable which made them
very popular in many research fields. On the other hand, their expressions involve multidimensional integrals
whose estimation by Monte Carlo methods requires, in practice, a large number of model simulations (several
tens of thousands). Their direct estimation is thus intractable for expensive-to-evaluate simulators under
strict budget constraints. Several studies have proposed improvements, e.g., either by using quasi Monte
Carlo sampling schemes or by constructing more efficient estimators (see [I3] for a review). Despite that,
the number of model calls using these methods is still rather high and again, a possible option is to estimate
these indices using metamodels (see, e.g., [14, [I5] [10]).

Dependence measures, recently introduced in the GSA community by [I7] and [I8], enable to overcome
several of the limitations listed above. First, these measures quantify, from a probabilistic point of view,

the dependence between each input and the output of interest. Reciprocally, they allow (under some as-
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sumptions that will be detailed further) to fully characterize the independence between the two variables
considered (the nullity of the measure being equivalent to the independence). These measures can be used
quantitatively to prioritize the inputs in order of influence on the output, as well as qualitatively to perform
the screening of inputs, for instance by using statistical tests like those proposed by [19] or [20]. Among the
existing dependence measures in the literature, we can first mention the dissimilarity measures introduced
by [21]. The underlying idea consists in comparing the probability distribution of the output with its dis-
tribution when a given input is fixed. These measures actually belong to a broader class based on Csiszéar
f-divergence (|22]). This latter includes several older notions of dependence such as the Hellinger distance
([23]), the Kullback-Leibler divergence ([24]) or the total variation distance ([25]). Moreover, in [I7], the
author also highlights the links between Csiszar f-divergences and the mutual information introduced by [26]
as well as with the least-squares mutual information (][27]).Despite their interesting theoretical properties,
the estimation of measures based on Csiszar f-divergences is, in practice, costly in terms of the number of
simulations, particularly for large dimensional problems. Note that, even a first-order Sobol index can also

be defined as a very simple dissimilarity measure ([I7]).

Finally, other dependence measures whose estimation suffers less from the so-called "curse of dimension-
ality" have been investigated by [I7]. Among them, one can mention the distance correlation which is based
on characteristic functions ([28]). It has been shown that this measure has good properties for testing the
independence between two random variables for large dimensional problems (|29, [30]). Moreover, this mea-
sure is part of a larger class of dependence measures (|29]), built upon the use of mathematical objects called
"characteristic kernels" ([31]). These characteristic-kernel-based dependence measures are highly effective
for testing the independence between random variables of various types (e.g., scalars, vectors, categorical
variables). Among them, the Hilbert-Schmidt Independence Criterion, denoted "HSIC" ([32]), generalizes
the notion of covariance between two random variables and thus enables to capture a very wide spectrum
of forms of dependence between the variables. For this reason, [I7], then [20] investigated the use of HSIC
measures for GSA purposes and compared them to Sobol indices. Note that the HSIC measure is identical
to the distance correlation for a particular choice of kernels ([29]). As illustrated by [20], HSIC indices also
have a twofold advantage in terms of estimation: first, a low estimation cost (in practice, a few hundred
simulations compared to several tens of thousands for Sobol indices) and second, their estimation for all
inputs does not depend on the number of inputs d. In addition, HSIC-based statistical independence tests
have also been developed by [19], in an asymptotic framework. More recently, extensions to a non-asymptotic
framework and aggregated versions of these tests have been proposed, respectively by [20] and [33]. These
works have also shown the effectiveness and highlighted the interest of using HSIC-based statistical tests for

screening purposes. For all these reasons, a strong focus will be put on HSIC measures in the present work.
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2.2. Regional, quantile-oriented and reliability sensitivity analysis

If GSA methods are not originally designed to achieve TSA (or CSA), it appears that a range of methods
have already been proposed in literature to achieve similar goals. This subsection aims at reviewing a few

of them and discussing their known advantages and limits.

2.2.1. Regional sensitivity analysis

One of the first contributions in a TSA-like purpose comes from [34], motivated by environmental appli-
cations. The proposed methodology compares the distribution of the inputs within a critical domain against
their distribution outside. The authors proposed to use the Kolmogorov distance as follows:

sup, IFxjyec(®) — Fxpyeyc(@)]
where Fx|4 is the cumulative distribution function (CDF) of X conditioned by an event A € A of nonzero
probability. Such an approach is called "regional SA" by the authors. Note that using a similar terminology
would not fully meet our purpose here because of the fact that this method focuses on SA within the critical
domain (which is a CSA purpose) rather than its occurrence. Therefore, the term "regional" does not clearly
make a distinction between TSA and CSA.

Using a comparison between CDFs conditionally to the critical domain seems a good choice for CSA as it
involves only two conditionings, which facilitates the estimation, for instance with Monte Carlo simulations.
However, one difficulty, mentioned by the authors and common to all TSA methods, arises when the critical
probability Py (C) is low. Another deficiency pointed out by the authors is the difficulty to study inputs
in interaction. From this viewpoint, one can note that a metric comparing CDFs can be extended to a
multidimensional framework, which would allow to regroup several inputs. However, the particular metric
used here, namely the infinity norm over the differences, is sensitive to outliers. Both aspects make it

particularly unsuitable for categorical inputs (e.g., a binary event such as a threshold exceeding).

2.2.2. Quantile-oriented sensitivity analysis

Recently, [35] proposed a generic framework called "goal-oriented SA". The idea is to generalize the
Sobol indices which measures a distance between expectations (Var EY|X]|=E [(E [Y]X] —E[Y])QD
to any other statistic defined by means of a contrast function (y,d). For instance, the generalization
of the Sobol index to a statistic defined by another contrast function ¢ becomes: minger E [¢(Y,0)] —
E [minger E [(Y, 0)|X]], provided that the random variable mingeg E [1(Y, 0)| X] is well defined. Note that
taking v (y, 0) = (y—0)? yields to first-order Sobol index. Moreover, in order to study critical quantities of in-
terest (e.g., quantiles), one can consider, for a level & €]0, 1], the contrast function ¥ (y,6) = (y—0)(1y<¢—cv).

However, resulting indices turn out to be difficult to estimate in practice, as shown by [36] and [37].
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Still considering quantile-oriented SA, one can mention the recent adaptation of Sobol indices proposed by
[38] where expectations are replaced by quantiles: E [(F;lx (o) — F;l(a))Q] where Fy, ! is the generalized
inverse of a CDF. The efficiency of different estimation strategies is investigated (brute force Monte Carlo
and double-loop reordering approach) and some theoretical links with Sobol indices are proposed.

In a nutshell, these methods arise some limitations w.r.t. the objectives of the present paper: first, a rather
high cost of estimation; second, a less straightforward interpretation than the sensitivity of the occurrence

of a phenomenon, or of the variation of a phenomenon in a critical domain.

2.2.3. Reliability-oriented sensitivity analysis

If TSA has not been explicitly defined in the GSA community, it appears that such a similar problem
has been intensively studied in the reliability community. These methods have been often gathered under
the terminology "reliability SA" ([39]) or "reliability-oriented SA" ([5}, 40]).

In the first place, one can mention the ones developed in the context of approzimation methods such
as the First-/Second-Order Reliability Methods (FORM/SORM). The aim of these algorithms is to find
the most probable failure point and then to construct a first- or second-order approximation of the failure
domain boundary around this point [41]. These algorithms compute the failure probability by solving an
optimization problem. In such a context, local gradients of the failure probability can be directly obtained
from the FORM approximation ([42]). In addition, variance-based indices (called importance factors) can
also be obtained as a by-product of the FORM analysis ([43]). Similar indices have been recently proposed
in the SORM context by [44]. Finally, one can mention the omission sensitivity factors introduced by [45]
which consist in estimating a conditional reliability index w.r.t. to a fixed input.

As a second category of TSA-like methods, one can mention the ones developed in the context of simula-
tion methods such as crude Monte Carlo sampling, importance sampling, subset sampling and other variants
(see, e.g., [46] for a review of these algorithms). A large panel of local sensitivity indices based on derivatives
of the failure probability w.r.t. various input modeling choices (e.g., distribution parameters or model param-
eters), have been proposed for several simulation algorithms (see, e.g., [47, 48] [49]). These algorithms rely
on the calculation of score functions as by-products of the reliability estimation [50} [5I]. If these approaches
are suited for rare event estimation purposes, they remain local and do not really fulfill any TSA or CSA
purposes.

Finally, a third category could be mentioned. This last one gathers a set of GSA methods which have been
adapted to the reliability context. One can mention the various extensions of the Sobol indices considering
other quantities of interests than the model output (see, e.g., [52] for the failure probability case and [53] for

the indicator function case). Considering the case of the Sobol indices adapted to the indicator function of
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the critical event (as proposed by [53] and then studied by [39]), one gets for the first-order index:

1001 = ST @

where 1¢(y) = 1ify € C, 0 otherwise. Similar extensions can be defined to get higher order (interactions) and
total Sobol indices. Efficient estimation strategies of these indices have been proposed in [54] [40]. However,
as pointed out in [39, ], these indices reach some limits in terms of interpretability when considering rare
events. This is due to the fact that, most of the time, reaching the critical domain (or the failure domain)
can be seen as a consequence of a specific combination of the inputs. Therefore, one can get low values for
the first-order indices and total indices close to unity. Finally, as illustrated in [5, Chap. 7], estimating the
total indices can be a challenging task as input dimension gets larger. To finish with, one can mention that
other indices have been proposed in the literature (see, e.g., [53] for moment-independent measures and [506]
for the perturbed-law indices, which are dedicated to robustness analysis).

As a conclusion, it appears that most of the indices presented above do not meet the TSA/CSA purposes.
As for the reliability-oriented Sobol indices, if they could be potential candidates, their estimation and
interpretation remain tricky. Thus, in the following, we focuse on two specific measures to provide tools
for TSA and CSA: firstly, adapted versions of the Sobol indices (which will serve as a reference); secondly,
adapted versions of the HSIC measures. The first choice is motivated by the popularity of the indices and
their recent adaptations which have provided a first step towards TSA purposes. As for the second choice, it
is justified by the good theoretical and practical properties of the HSIC and associated estimators (further
detailed in subsection, even for a small learning dataset. This last point is particularly important in the

case of our expensive simulators.

3. Proposed tools and measures for target and conditional sensitivity analysis

The model M(-) is considered to be a best-estimate black box model for which only input-output
observations (or realizations) are available. Thus, in the following, one assumes that a finite n-sample
(X(i)’ y(l)) I<icn
the input samples (X))

of the inputs/output couple, with Y = M(X®), for i = 1,...,n, is available. Moreover,
L<i<n, are independent and identically distributed (i.i.d.) according to the law of the
inputs Px. To obtain SUC}; :; sample, a crude Monte Carlo procedure is used (neither adaptive sampling nor
importance sampling methods are considered here). From a pragmatic point of view, one should note that
this work falls within a more general methodological framework about uncertainty management in industrial
numerical simulation (as presented in [57]). The aim is to focus on typical applications for which only a
single i.i.d. input-output sample is available. This sample has to be used for all the traditional steps of the

uncertainty treatment process. As an example, this sample can be used for both GSA purposes, building a

metamodel and during the uncertainty propagation phase, as illustrated in [58], [59]. However, if the objective



220

225

230

235

240

245

is only to perform TSA or CSA and if the sampling design can be well chosen, it is obvious that goal-oriented
sampling methods (e.g., importance sampling), which would add simulations in the critical area, would be
perfectly suited and relevant to improve the estimation of TSA and CSA indices. These considerations are
left for future work.

Before proposing extensions of Sobol indices and HSIC measures for TSA and CSA, a first subsection
focuses on providing formal explanations about the core concepts of TSA and CSA and introducing a few

common tools and notations extensively used in the following parts.

3.1. What is behind target and conditional SA?

As introduced in Section [I} we are interested in this work to determine which inputs contribute the most
to a critical phenomenon such that “Y belongs to a given critical domain C”. Behind this general objective,

two questions can arise:

e The most straightforward is “Which inputs influence the occurrence of the event {Y € C}?” We
define it as target sensitivity analysis (TSA) which aims at measuring the influence of the inputs
over the restricted domain of the studied phenomenon C, and in particular over the occurrence of the
phenomenon in this restricted domain. Naturally, this occurrence can be defined with the indicator

function 1¢(-) of the critical domain.

e Complementary, this first problem can be completed by another type of question about the influence
of the inputs on Y within the critical domain only, ignoring what happens outside. We define this
as conditional sensitivity analysis (CSA). In other words, knowing that we are in a given critical

configuration, which input variables will drive the phenomenon.

For the first objective, the natural idea is to extend sensitivity measures to the binary variable 1¢(Y).
However, this transformation might result in a significant loss of the information conveyed by the relative
values of Y, especially for samples which are close (but outside) the critical domain. Indeed, all the data
outside C are summed up to zero whereas a sample very close to the critical border is much more informative
than a distant one. This is all the more unfavorable when the critical probability Py (C) is low and when a
limited number of observations is assumed (as very often, e.g., in the context of nuclear safety applications).
Note that, even if this problem is not considered here, a "hard thresholding" is all the more questionable in
the case of a noisy simulator.

In the context of risk analysis, one would prefer to improve conservatism of the statistical procedures.
Thus, to overcome this drawback, we propose to use a weighted thresholding transformation (or "smooth
thresholding") in order to relax the binary assumption. For this, we consider a decreasing distance d¢ : Y —
R, between each point and the critical domain C. The closer is an observation to the critical domain, the

more likely it is to convey similar information. By doing this, one obviously assumes some kind of regularity
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of the phenomenon’s statistical properties. When ) lies in an Euclidean space, we propose to consider the
weight function we exp(y) := exp(—de(y)/s), where de(y) := inf, ec ||y — ¥'||. Here, the exponential function
encodes multiplicative contributions, and s € R is a smoothing parameter depending typically on a measure
of dispersion of the values of Y. Note that, other kind of relaxation function based on logistic function has
been proposed by [60]), still for SA purposes, but in an optimization context. In the following, the generic
notation w : Y — [0, 1] will be used to denote any kind of weight functions (here, 1l¢() or we exp(+). As a
result, any sensitivity measure between a group of inputs X and w(Y) yields a "target" sensitivity measure
(or index).

Now, concerning CSA, a natural idea to study the behavior of Y within the critical domain consists in
conditioning Y by the event {Y € C}. For a given initial probability space (2, A,P), if A € A is an event of
nonzero probability, then conditioning by A simply means providing the measurable space (£,.4) with the

probability measure P 4, defined as P| a(B) = PEDB(Q?) for all B € A. Applied to Y conditioned by {Y € C},
Jplel le(y)dPy
f le(y dPy Py (C)
resulting probability dlstrlbutlon is therefore the probability distribution absolutely continuous w.r.t. Py

one gets: Py |ryecy(B) = The probability density of Y|{Y € C} is therefore . The
whose density is proportional to the indicator function, ignoring a normalization factor. Let PS/C denote this
probability measure Py weighted by 1¢. Now, just as for TSA where a smooth relaxation of the indicator
function has been proposed, it might be useful to consider extensions of conditioning allowing to take into
account some of the information outside (but closed to) the critical domain. For this, one can generalize the
previous weighted probability to any weight function w(-) such that:

u fB dP v _ [ _w(y)

provided that E [w(Y)] is not zero (i.e., w(Y") is a positive nonzero random variable over (2, A, Py)). Under

this formalism, provided that the expectations exist, we have for conditional expectations:

Iy, Yw( )dPy_ W(Y)
L wViapy [E[W(Y)}Y] @

Similarly, any sensitivity measure is defined depending on a (usually implicit) probability space on X and

EY|Y €Cl =Ey~pplY] =

Y. Moreover, we have Y = M(X). Therefore, when conditioning by {Y € C}, we change the underlying
probability measures: ¥ ~ P, X ~ P¥¢, and (X,Y) ~ P(”“g(yy).

3.2. TSA and CSA from Sobol indices
3.2.1. Reminders about Sobol indices and their estimators

Assumed that inputs are independent, and following the ANOVA decomposition, first-order Sobol indices
can be defined for any input (X;),.,<, by

Var [E [Y|X;]]

S1(X5Y) = = o (5)

10
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Any higher order index can be defined similarly, as well as any total index, usually denoted St ([13]).

In the general framework, the estimation of Sobol index involves the expensive estimation of conditional
expectation (e.g., E [IE [Y|X,;]2] ). To overcome this limitation, well-known pick-freeze approaches have been
proposed ([I3]). By denoting X_; = {X,}i<j<aq \ X; and remembering that ¥ = M(X) = M(X;,X_;),

pick-freeze estimators are based on the judicious following decomposition:
E[E[V]Xi)*] = EIM(X:, X)X E [M(X;, XL,)|Xi] (6)

where X’ .

; is an ii.d. copy of X_;. This decomposition is valid if X; and X_; are independent. From

this decomposition, natural estimators can be deduced, considering an i.i.d. n-sample of the corresponding
outputs (Y,Y’) with ¥ = M(X;,X_;) and Y’ = M(X;,X’,). Note that this method yields to a total
cost of model evaluation in O(nd) to compute the full set of first-order and total in