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Abstract

Numerical simulators are essential for understanding, modeling and predicting physical phenomena. How-

ever, the available information about some of the input variables is often limited or uncertain. Global

sensitivity analysis (GSA) then aims at determining (qualitatively or quantitatively) how the variability

of the inputs affects the model output. However, from reliability and risk management perspectives, GSA

might be insufficient to capture the influence of the inputs on a restricted domain of the output (e.g., a

distribution tail). To remedy this, we define and use in this work target (TSA) and conditional sensitivity

analysis (CSA), which aim respectively at measuring the influence of the inputs on the occurrence of the

critical event, and on the output within the critical domain (ignoring what happens outside). As illustrated

in the applications, these two notions can widely differ.

From existing GSA measures, we propose new operational tools for TSA and CSA. We first focus on the

popular Sobol indices and show their practical limitations for both TSA and CSA. Then, the Hilbert-Schmidt

Independence Criterion (HSIC), a dependence measure recently adapted for GSA purposes and well-suited for

small datasets, is considered. TSA and CSA adaptations of Sobol and HSIC indices, and associated statistical

estimators, are defined. Alternative CSA Sobol indices are thus defined to overcome the dependence of inputs

induced by the conditioning. Moreover, to cope with the loss of information (especially when the critical

domain is associated to a low probability) and reduce the variability of estimators, transformation of the

output using weight functions is also proposed.

These new TSA and CSA tools are tested and compared on analytical examples. The efficiency of HSIC-

based indices clearly appear, as well as the relevancy of smooth relaxation. Finally, these latter indices

are applied and interpreted on a nuclear engineering use case simulating a severe accidental scenario on a

pressurized water reactor.
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1. Introduction

Nowadays, many phenomena are modeled by mathematical equations which are implemented to obtain

complex numerical simulators. These computer codes are used to model and predict some underlying physical

phenomena. Finally, the analysis of the simulation results can be helpful for decision-making, especially

when decisions involve important financial, societal and safety stakes. However, these codes often take a5

large number of input parameters characterizing the studied phenomenon or related to its physical and

numerical modeling. The available information about some of these parameters is often limited or uncertain.

The uncertainties mainly arise from the lack of knowledge about the underlying physics and about the

characterization of the input parameters of the model. There are also additional sources of uncertainty

arising from the particular choice of conception or scenario parameters. Consequently, many of the input10

parameters are uncertain (or considered as such) and it is important to assess how these uncertainties can

affect the model output. Sensitivity analysis (SA) methods are performed to evaluate how input uncertainties

contribute, qualitatively or quantitatively, to the variation of the output. In a probabilistic framework, the

uncertain parameters are modeled by random variables characterized by probability distributions. In this

paper, no distinction is made between the modeling of epistemic nor aleatory uncertainties as the proposed15

methods remain blind to this kind of distinction (as soon as the probabilistic framework holds).

Sensitivity analysis aims at determining how the variability of the input parameters affects the value of

the output or the quantity of interest [1, 2, 3]. It thus allows to identify and perhaps quantify, for each

input parameter or group of parameters, its contribution to the variability of the output. Many authors

agree to distinguish several purposes for SA called "SA-settings" in the literature [1, 4]. The purpose can20

be to prioritize input parameters in order of influence on the output variability, or to separate the inputs

into two groups: those which mostly influence the output uncertainty and those whose influence can be

neglected. This task is known as "screening". Another one, called "factor mapping", aims at getting a finer

identification of functional relationship between some specific values in input and output regions of interest.

This last use of SA consists in determining which values of these inputs are responsible of the occurrence of25

the phenomenon in a given domain. More generally, SA results provide valuable information for the impact

of uncertain inputs, the comprehension of the model and the underlying physical phenomenon. It can also

be used for various purposes: reducing uncertainties by targeting characterization efforts on most influential

inputs, simplifying the model by setting non-influential inputs to reference values, or validating the model

with respect to (w.r.t.) the phenomenon under study.30

In this work, we focus on specific domains of values of the phenomenon and we want to determine which

inputs contribute the most in the occurrence of the phenomenon in a given domain. For this, we first define

the notion of target sensitivity analysis (TSA) which aims at measuring the influence of the inputs over a

restricted domain of the studied phenomenon, and in particular over the occurrence of the phenomenon in
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this restricted domain. Such domain of interest would usually be extreme and relatively rare, constituting35

a risk or an opportunity. It will be called a critical domain in this paper. Alternatively, we also define the

conditional sensitivity analysis (CSA) which evaluates the influence of the inputs on the output within this

critical domain only, ignoring what happens outside. Let us underline that those two notions can widely

differ. Note that this point will be further illustrated by the numerical applications proposed in this paper.

In this framework, we aim at proposing new methods and tools for both TSA and CSA purposes. Global40

SA (GSA) has been an active research field for several decades but, to the best of our knowledge, it seems that

target SA, in the sense that we understand, has only been deeply studied in the reliability community (see,

e.g., [5] for a review) but still remains an open field in the SA community. Unlike a previous working report

by one of the authors [6], which provides much more theoretical arguments and a more extensive analysis,

the goal here is to propose operational tools for both TSA and CSA and to illustrate how these tools can45

be efficiently used to treat industrial applications. Some new estimators are also proposed. In addition, the

practical characteristics of TSA and CSA tools are further investigated, such as convergence according to

the size of the sample. Besides, the applications we have to deal with, are mostly involving expensive-to-

evaluate complex simulators with a large number of inputs (e.g., from a few dozens to a hundred). Thus, one

often has only access to a limited number of code simulations (e.g., from a hundred to a thousand samples).50

Consequently, these core constraints have to be taken into account when selecting and proposing dedicated

tools. Finally, we also want to illustrate how the information provided can be used in a complementary way

for physical interpretation.

In the next section, we first propose a brief review on GSA approaches before focusing on existing tools for

TSA. Our contributions in this framework are then introduced. Then, in Section 3, we propose a dedicated55

framework for TSA and CSA and then introduce several dedicated extensions of usual GSA measures. More

precisely, we focus on the usual and widely used Sobol indices and a dependence measure, namely the

Hilbert-Schmidt independence criterion (HSIC). The new proposed TSA and CSA tools are then tested and

compared on two analytical examples in Section 4. Finally, in Section 5, a further application of the most

relevant and adapted tools is proposed, on a use case simulating a severe accidental scenario on nuclear60

reactor.

Before that, we introduce a few notations. Mathematically, the numerical simulator (or model) can be

modeled by assuming a deterministic input-output functionM(·) given by:

M :

∣∣∣∣∣∣ X −→ Y

X 7−→ Y =M(X)
(1)

where Y is the output variable of interest (considered as a single scalar output here). It is assumed that the

methodology proposed in this paper is non-intrusive w.r.t. the model. The uncertain inputs are supposed

to be independent and are treated in a probabilistic framework by assuming, first, a probability space
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(Ω,A,P). The inputs are gathered in a d-dimensional random vector X := (X1, X2, . . . , Xd)> with finite65

second moments (X ∈ L2(P)) and distributed according to a continuous joint probability distribution PX :=∏d
i=1 PXi

over a measurable space X :=
∏d
i=1 Xi with X ⊆ Rd. For each realization of the input vector X(ω),

denoted by x := (x1, x2, . . . , xd)> ∈ Rd, an observed scalar output value y = M(x) is obtained. Thus, by

propagating the uncertainties throughM(·), one can assume a probabilistic structure for the output which

is a random variable characterized by a distribution PY over a measurable space Y ⊆ R. We also assume70

that Y ∈ L2(P). Finally, the restricted or critical domain of interest previously mentioned is noted C ⊂ Y

and associated to a critical probability P(Y ∈ C) = PY (C).

2. From global to target sensitivity analysis: a brief review

2.1. Global sensitivity analysis: from Sobol indices to HSIC

To assess and quantify the global impact of each input uncertainty on the output, statistical methods75

have been developed for GSA purposes ([2, 3]). These methods are mostly based on the use of Monte Carlo

simulations obtained from the model, i.e., on a random sampling of inputs according to their probability

distributions. Common GSA methods include the Derivative-based Global Sensitivity Measures (known

as "DGSM indices", see [7] for a review). The construction of these indices is based on a generalization

of local sensitivity measures by averaging partial derivatives w.r.t. each input over its range of variation.80

However, estimating these indices requires a large number of code calls, which considerably limits their use

in the case of expensive models. To overcome this disadvantage, efficient estimation strategies based on

the use of metamodels have been proposed in the literature (see, e.g., [8] for the use of polynomial chaos

expansions and [9] for the use of Gaussian process regression). Another widely used approach for GSA relies

on the decomposition of the output variance (called the "ANOVA decomposition" for ANalysis Of VAriance),85

originally introduced by [10], where each term of the decomposition represents the part of the contribution of

an input (or a group of inputs) to the output variance. Sensitivity indices, namely the Sobol indices, are then

directly derived from this decomposition ([11, 12]). On the one hand, these indices are easily interpretable

which made them very popular in many research fields. On the other hand, their expressions involve

multidimensional integrals whose estimation by Monte Carlo methods requires, in practice, a large number90

of model simulations (several tens of thousands). Their direct estimation is thus intractable for expensive-

to-evaluate simulators under strict budget constraints. Several studies have proposed improvements, e.g.,

either by using quasi Monte Carlo sampling schemes or by constructing more efficient estimators (see [13]

for a review). Despite that, the number of model calls using these methods is still rather high and again, a

possible option is to estimate these indices using metamodels (see, e.g., [14, 15, 16]).95

Dependence measures, recently introduced in the GSA community by [17] and [18], enable to overcome

several of the limitations listed above. First, these measures quantify, from a probabilistic point of view, the
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dependence between each input and the output of interest. Reciprocally, they allow (under some assumptions

that will be detailed further) to fully characterize the independence between the two variables considered

(the nullity of the measure being in this case equivalent to the independence). These measures can be used100

quantitatively to prioritize the inputs in order of influence on the output, as well as qualitatively to perform

the screening of inputs, for instance by using statistical tests like those proposed by [19] or [20]. Among

the existing dependence measures in the literature, we can first mention the dissimilarity measures (between

distributions) introduced by [21]. The underlying idea consists in comparing the probability distribution of

the output with its distribution when a given input is fixed. These measures actually belong to a broader105

class based on Csiszár f -divergence ([22]). This latter includes several older notions of dissimilarity between

distributions, such as the Hellinger distance ([23]), the Kullback-Leibler divergence ([24]) or the total variation

distance ([25]). Moreover, in [17], the author also highlights the links between Csiszár f -divergences and the

mutual information introduced by [26] as well as with the least-squares mutual information ([27]). Despite

their interesting theoretical properties, the estimation of measures based on Csiszár f -divergences is, in110

practice, costly in terms of the number of simulations, particularly for large dimensional problems. Note

that, even a first-order Sobol index can also be defined as a very simple dissimilarity measure ([17]).

Finally, other dependence measures whose estimation suffers less from the so-called "curse of dimension-

ality" have been investigated by [17]. Among them, one can mention the distance correlation which is based

on characteristic functions ([28]). It has been shown that this measure has good properties for testing the in-115

dependence between two random variables for large dimensional problems ([29, 30]). Moreover, this measure

turns out to be a special case of a larger class of dependence measures ([29]), built upon the use of mathe-

matical objects called "characteristic kernels" ([31]). These characteristic-kernel-based dependence measures

are highly effective for testing the independence between random variables of various types (e.g., scalars,

vectors, categorical variables). Among them, the Hilbert-Schmidt Independence Criterion, denoted "HSIC"120

([32]), generalizes the notion of covariance between two random variables and thus enables to capture a very

wide spectrum of forms of dependence between the variables. For this reason, [17], then [20] investigated

the use of HSIC for GSA purposes and compared it to Sobol indices. Note that the HSIC is identical to

the distance covariance for a particular choice of kernels ([29]). As illustrated by [20], HSIC also has a

twofold advantage in terms of estimation: first, a low estimation cost (in practice, a few hundred simulations125

compared to several tens of thousands for Sobol indices) and second, its estimation for all inputs does not

depend on the number of inputs d. In addition, HSIC-based statistical independence tests have also been

developed by [19], in an asymptotic framework. More recently, extensions to a non-asymptotic framework

and aggregated versions of these tests have been proposed, respectively by [20] and [33]. These works have

also shown the effectiveness and highlighted the interest of using HSIC-based statistical tests for screening130

purposes. For all these reasons, a strong focus will be put on HSIC-based indices in the present work.
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2.2. Regional, quantile-oriented and reliability sensitivity analysis

If GSA methods are not originally designed to achieve TSA (or CSA), it appears that a range of methods

have already been proposed in literature to achieve similar goals. This subsection aims at reviewing a few

of them and discussing their known advantages and limits.135

2.2.1. Regional sensitivity analysis

One of the first contributions in a TSA-like purpose comes from [34], motivated by environmental appli-

cations. The proposed methodology compares the distribution of the inputs within a critical domain against

their distribution outside. The authors proposed to use the Kolmogorov distance as follows:

sup
x∈X

|FX|Y ∈C(x)− FX|Y ∈Y\C(x)|

where FX|A is the cumulative distribution function (CDF) of X conditioned by an event A ∈ A of nonzero

probability. Such an approach is called "regional SA" by the authors. Note that using a similar terminology

would not fully meet our purpose here because of the fact that this method focuses on SA within the critical

domain (which is a CSA purpose) rather than its occurrence. Therefore, the term "regional" does not clearly140

make a distinction between TSA and CSA.

Using a comparison between CDFs conditionally to the critical domain seems a good choice for CSA as it

involves only two conditionings, which facilitates the estimation, for instance with Monte Carlo simulations.

However, one difficulty, mentioned by the authors and common to all TSA methods, arises when the critical

probability PY (C) is low. Another deficiency pointed out by the authors is the difficulty to study inputs145

in interaction. From this viewpoint, one can note that a metric comparing CDFs can be extended to a

multidimensional framework, which would allow to regroup several inputs. However, the particular metric

used here, namely the infinity norm over the differences, is sensitive to outliers. Both aspects make it

particularly unsuitable for categorical inputs (e.g., a binary event such as a threshold being exceeded).

2.2.2. Quantile-oriented sensitivity analysis150

Recently, [35] proposed a generic framework called "goal-oriented SA". The idea is to generalize the Sobol

indices, whose definition involves the calculation of the variance of a conditional expectation (e.g., , for the

first-order index, one has S1(X,Y ) = Var [E [Y |X]] /Var [Y ]). However, Sobol indices can be seen as involving

a distance between expectations, simply by noticing that Var [E [Y |X]] = E
[
(E [Y |X]− E [Y ])2

]
. Therefore,

one can extend such a definition to any other statistic defined by means of a contrast function ψ(y, θ). For155

instance, the generalization of the Sobol index to a statistic defined by another contrast function ψ becomes:

minθ∈R E [ψ(Y, θ)]−E [minθ∈R E [ψ(Y, θ)|X]], provided that the random variable minθ∈R E [ψ(Y, θ)|X] is well

defined. Note that the first-order Sobol index is obtained with the contrast function ψ(y, θ) = (y − θ)2.

Moreover, in order to study critical quantities of interest, the authors focus on quantiles and consider the
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contrast function ψ(y, θ) = (y− θ)(1y≤θ −α), for a given level α ∈]0, 1[. However, resulting indices turn out160

to be difficult to estimate in practice, as shown by [36] and [37].

Still considering quantile-oriented SA, one can mention the recent adaptation of Sobol indices proposed by

[38] where expectations are replaced by quantiles: E
[(
F−1
Y |X(α)− F−1

Y (α)
)2
]
where F−1

Y is the generalized

inverse of a CDF. The efficiency of different estimation strategies is investigated (brute force Monte Carlo

and double-loop reordering approach) and some analytical comparisons with Sobol indices are proposed.165

Unfortunately, these methods have some limitations w.r.t. the objectives of the present paper: first,

a rather high cost of estimation; second, a less straightforward interpretation than the sensitivity of the

occurrence of a phenomenon, or of the variation of a phenomenon in a critical domain.

2.2.3. Reliability-oriented sensitivity analysis

If TSA has not been explicitly defined in the GSA community, it appears that such a similar problem170

has been intensively studied in the reliability community. These methods have been often gathered under

the terminology "reliability SA" ([39]) or "reliability-oriented SA" ([5, 40]).

In the first place, one can mention the ones developed in the context of approximation methods such as

the First-/Second-Order Reliability Methods (FORM/SORM). The aim of these algorithms is to find the

most probable failure point and then to construct a first- or second-order approximation of the failure domain175

boundary around this point [41]. These algorithms compute the failure probability (or a reliability index,

which is obtained as a transformation of the failure probability) by solving an optimization problem. In such

a context, gradients of the failure probability w.r.t. input distribution parameters can be directly obtained

from the FORM approximation ([42]). In addition, variance-based indices (called importance factors) can

also be obtained as a by-product of the FORM analysis ([43]). Similar indices have been recently proposed180

in the SORM context by [44]. Finally, one can mention the omission sensitivity factors introduced by [45]

which consist in estimating the reliability index w.r.t. to a an input fixed at its median value.

As a second category of TSA-like methods, one can mention the ones developed in the context of simula-

tion methods such as crude Monte Carlo sampling, importance sampling, subset sampling and other variants

(see, e.g., [46] for a review of these algorithms). A large panel of local sensitivity indices based on deriva-185

tives of the failure probability w.r.t. various input modeling choices (e.g., distribution parameters or model

parameters), have been proposed for several simulation algorithms (see, e.g., [47, 48, 49]). These algorithms

rely on the calculation of score functions as by-products of the reliability estimation [50, 51]. If these ap-

proaches are suited for rare event estimation purposes, they remain local (in the sense of the limited part of

the input space which is explored by the use of derivatives) and very specific as they only apply to failure190

probabilities, or rely on some strong assumptions about the phenomenon of interest (linear or quadratic

behavior at failure). Thus, they do not really fulfill the TSA or CSA purposes as pursued in this paper.

Finally, a third category could be mentioned. This last one gathers a set of GSA methods which have been
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adapted to the reliability context. One can mention the various extensions of the Sobol indices considering

other quantities of interests than the model output (see, e.g., [52] for the failure probability case and [53] for

the indicator function case). Considering the case of the Sobol indices adapted to the indicator function of

the critical event (as proposed by [53] and then studied by [39]), one gets for the first-order index:

S1(X, 1C(Y )) = Var [E [1C(Y )|X]]
Var [1C(Y )] (2)

where 1C(y) = 1 if y ∈ C, 0 otherwise. Similar extensions can be defined to get higher order (interactions) and

total Sobol indices. Efficient estimation strategies of these indices have been proposed in [54, 40]. However,

as pointed out in [39, 5], these indices reach some limits in terms of interpretability when considering rare195

events. This is due to the fact that, most of the time, reaching the critical domain (or the failure domain)

can be seen as a consequence of a specific combination of the inputs. Therefore, one can get low values for

the first-order indices and total indices close to unity. Finally, as illustrated in [5, Chap. 7], estimating the

total indices can be a challenging task as input dimension gets larger. To finish with, one can mention that

other indices have been proposed in the literature (see, e.g., [55] for moment-independent indices and [56] for200

the perturbed-law indices, which are dedicated to robustness analysis), however, the corresponding indices

are not within the scope of this paper.

As a conclusion, it appears that most of the indices presented above do not fully meet the TSA/CSA

purposes. Thus, in the following, we focuse on two specific measures to provide tools for TSA and CSA:

first, adapted versions of the Sobol indices on the indicator function (which will serve as a reference); second,205

adapted versions of the HSIC. The first choice is motivated by the popularity of the indices and their recent

adaptations which have provided a first step towards TSA purposes. As for the second choice, it is justified

by the good theoretical and practical properties of the HSIC and associated estimators (further detailed in

subsection 3.3), even for a small learning dataset. This last point is particularly important in the case of our

expensive simulators.210

3. Proposed tools and measures for target and conditional sensitivity analysis

This section focuses on some of the tools introduced in [6], but further justifies their construction and in-

troduces new estimators for some of them. For more theoretical considerations and discussions, the interested

reader should refer to the report [6].

The model M(·) is considered to be a best-estimate black box model for which only input-output215

observations (or realizations) are available. Thus, in the following, one assumes that a finite n-sample(
X(i), Y (i))

1≤i≤n of the inputs/output couple, with Y (i) =M(X(i)), for i = 1, . . . , n, is available. Moreover,

the input samples
(
X(i))

1≤i≤n are independent and identically distributed (i.i.d.) according to the law of the

inputs PX. To obtain such a sample, a crude Monte Carlo procedure is used (neither adaptive sampling nor
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importance sampling methods are considered here). From a pragmatic point of view, one should note that220

this work falls within a more general methodological framework about uncertainty management in industrial

numerical simulation (as presented in [57]). The aim is to focus on typical applications for which only a

single i.i.d. input-output sample is available. This sample has to be used for all the traditional steps of the

uncertainty treatment process. As an example, this sample can be used for both GSA purposes, building a

metamodel and during the uncertainty propagation phase, as illustrated in [58, 59]. However, if the objective225

is only to perform TSA or CSA and if the sampling design can be well chosen, it is obvious that goal-oriented

sampling methods (e.g., importance sampling), which would add simulations in the critical area, would be

better suited and relevant to improve the estimation of TSA and CSA indices. These considerations are left

for future work.

Before proposing extensions of Sobol indices and HSIC for TSA and CSA, a first subsection focuses on230

providing formal explanations about the core concepts of TSA and CSA and introducing a few common tools

and notations extensively used in the following parts.

3.1. What is behind target and conditional SA?

As introduced in Section 1, we are interested in this work to determine which inputs contribute the most

to a critical phenomenon such that “Y belongs to a given critical domain C”. Behind this general objective,235

two questions can arise:

• The most straightforward is “Which inputs influence the occurrence of the event {Y ∈ C}?” We

define it as target sensitivity analysis (TSA) which aims at measuring the influence of the inputs

over the restricted domain of the studied phenomenon C, and in particular over the occurrence of the

phenomenon in this restricted domain. Naturally, this occurrence can be defined with the indicator240

function 1C(·) of the critical domain.

• Complementary, this first problem can be completed by another type of question about the influence

of the inputs on Y within the critical domain only, ignoring what happens outside. We define this

as conditional sensitivity analysis (CSA). In other words, knowing that we are in a given critical

configuration, which input variables will drive the phenomenon.245

For the first objective, the natural idea is to directly extend sensitivity measures to the binary variable

1C(Y ). However, this transformation might result in a significant loss of the information conveyed by the

relative values of Y , especially for samples which are close (but outside) the critical domain. Indeed, all

the data outside C are summed up to zero whereas a sample very close to the critical border is much more

informative than a distant one. This is all the more unfavorable when the critical probability PY (C) is low250

and when a limited number of observations is assumed (as very often, e.g., in the context of nuclear safety
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applications). Note that, even if this problem is not considered here, a "hard thresholding" is all the more

questionable in the case of a noisy simulator.

To overcome such a limitation, we propose to use a weighted thresholding transformation (or "smooth

thresholding") in order to relax the binary assumption. For this, we consider a decreasing distance dC : Y →255

R+ between each point and the critical domain C. The closer is an observation to the critical domain, the

more likely it is to convey similar information. By doing this, one obviously assumes some kind of regularity

of the phenomenon’s statistical properties. More generally, when Y lies in an Euclidean space, we propose

to consider the weight function wC,exp(y) := exp(−dC(y)/s), where dC(y) := infy′∈C ‖y − y′‖. Here, the

exponential function encodes multiplicative contributions, and s ∈ R is a smoothing parameter depending260

typically on a measure of dispersion of the values of Y . Note that, other kind of relaxation function based

on logistic function has been proposed by [60]), still for SA purposes, but in an optimization context. In

the following, the generic notation w : Y → [0, 1] will be used to denote any kind of weight functions (here,

functions 1C(·) or wC,exp(·)). As a result, any sensitivity measure between a group of inputs X and w(Y )

yields a "target" sensitivity measure (or index).265

Now, concerning CSA, a natural idea to study the behavior of Y within the critical domain consists in

conditioning Y by the event {Y ∈ C}. For a given initial probability space (Ω,A,P), if A ∈ A is an event of

nonzero probability, then conditioning by A simply means providing the measurable space (Ω,A) with the

probability measure P|A, defined as P|A(B) := P(B∩A)
P(A) for all B ∈ A. Applied to Y conditioned by {Y ∈ C},

one gets: PY |{Y ∈C}(B) =
∫
B

1C(y)dPY∫
Y 1C(y)dPY

. The probability density of Y |{Y ∈ C} is therefore 1C(y)dPY
PY (C) . The

resulting probability distribution is therefore the probability distribution absolutely continuous w.r.t. PY
whose density is proportional to the indicator function, ignoring a normalization factor. Let P 1C

Y denote this

probability measure PY weighted by 1C . Now, just as for TSA where a smooth relaxation of the indicator

function has been proposed, it might be useful to consider extensions of conditioning allowing to take into

account some of the information outside (but closed to) the critical domain. For this, one can generalize the

previous weighted probability to any weight function w(·) such that:

PwY (B) =
∫
B
w(y)dPY∫

Ω w(y)dPY
=
∫
B

w(y)
E [w(Y )]dPY (3)

provided that E [w(Y )] is not zero (i.e., w(Y ) is a positive nonzero random variable over (Ω,A,P)). Note

that, under this formalism and provided that the expectations exist, we have for conditional expectations:

E [Y |Y ∈ C] = EY∼Pw
Y

[Y ] =
∫
Y Y w(Y )dPY∫
Y w(Y )dPY

= E
[

W (Y )
E [W (Y )]Y

]
. (4)

Similarly, any sensitivity measure is defined depending on a (usually implicit) probability space on X and

Y . Moreover, we have Y = M(X). Therefore, when conditioning by {Y ∈ C}, we change the underlying

probability measures: Y ∼ PwY , X ∼ PwX , and (X, Y ) ∼ Pw(X,Y ).

10



3.2. TSA and CSA from Sobol indices

3.2.1. Reminders about Sobol indices and their estimators270

Assumed that inputs are independent, and following the ANOVA decomposition, first-order Sobol indices

can be defined for any input (Xi)1≤i≤d by:

S1(Xi, Y ) = Var [E [Y |Xi]]
Var [Y ] . (5)

Any higher order index can be defined similarly, as well as any total index, usually denoted ST ([13]).

In the general framework, the estimation of Sobol index involves the expensive estimation of conditional

expectation (e.g., E
[
E [Y |Xi]2

]
). To overcome this limitation, well-known pick-freeze approaches have been

proposed ([13]). By denoting X−i = {Xj}1≤j≤d \ Xi and remembering that Y = M(X) = M(Xi,X−i),

pick-freeze estimators are based on the judicious following decomposition:

Var
[
E [Y |Xi]2

]
= Cov

[
M(Xi,X−i),M(Xi,X′−i)

]
(6)

where X′−i is an i.i.d. copy of X−i. This decomposition is valid if Y =M(Xi,X−i) and Y ′ =M(Xi,X′−i)

are of the same law and independent conditionally to Xi. This condition is ensured if Xi and X−i are

independent. From this decomposition, natural estimators can be deduced, considering an i.i.d. n-sample of

the corresponding outputs (Y, Y ′). Note that this method yields a total cost of model evaluation in O(nd)275

to compute the full set of first-order and total indices (more details and associated references can be found

in [13]).

3.2.2. Adaptation for TSA

As mentioned previously, Sobol indices can be directly extended to the binary transformation (see Eq. (2))

and more generally with any transformation w(·). For any input (Xi)1≤i≤d, the first-order target Sobol index,

denoted T-S1,w, is given by:

T-S1,w(Xi, Y ) = Var [E [w(Y )|Xi]]
Var [w(Y )] . (7)

Any higher order index can be defined similarly, as well as any total index.

3.2.3. Adaptation for CSA280

Based from the notations introduced in subsection 3.1, the conditional first-order Sobol index is given

by considering S1(Xi, Y ) under (Xi, Y ) ∼ Pw(Xi,Y ) (and similarly for any higher order index). Even if the

definition of this index is theoretically possible1, this induces somes problems in practice in terms of estima-

tion. Indeed, even if the inputs are initially independent under PX, they are (usually) not anymore under

1Putting aside the fact that such an index could lead sometimes to a wrong interpretation, as the ANOVA and the unicity

of the decomposition are not ensured anymore.
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PwX . Consequently, usual pick-freeze estimators cannot be used anymore. Solutions proposed for dependent285

inputs could be adapted ([61]), but they would probably require to explicit the conditional probability PwX
and especially the conditional covariance which is almost impossible in practice.

To overcome this limitation and avoid being under PwX , we propose to consider an alternative transforma-

tion of Y , while staying under probability PX. For this, a first idea could be to consider the transformation

w(Y )Y to account for the belonging to the critical region but also the value of Y . However, the fact that

w(Y )Y vanishes away from the critical domain seems arbitrary: the value zero might not be meaningful

w.r.t. the possible values of Y . Since Sobol index is a measure of variance, it still seems relevant to replace

the value zero by a constant value over, but equal to the expectation of the resulting transformation. Con-

sequently, the regions where w(Y ) vanishes, would then not contribute to the variance of the phenomenon.

To obtain this, we define the following transformation:

Ỹw = w(Y )Y + (1− w(Y ))y0 where y0 = E [w(Y )Y ]
E [w(Y )] , in order to have y0 = E

[
Ỹw

]
. (8)

Observe that y0 is also EY∼Pw
Y

[Y ]. For the particular case w(·) = 1C(·), we logically obtain y0 = E [Y |Y ∈ C].

Building Sobol indices from Ỹw, we thus obtain what we call hybrid conditional Sobol indices:

C-S1,w(Xi, Y ) =
Var

[
E
[
Ỹw|Xi

]]
Var

[
Ỹw

] . (9)

Any higher order index, as well as total index can be defined similarly.

Contrary to the initial formulation of conditional index, the hybrid index C-S1,w(Xi, Y ) is defined under290

probability PX and can be estimated with any usual method, such as the usual pick-freeze one.

3.3. TSA and CSA from HSIC

The Hilbert-Schmidt Independence Criterion (HSIC) proposed by [62] rests upon kernel-based approaches

for detecting dependence, and more particularly, on cross-covariance operators in Reproducing Kernel Hilbert

Spaces (RKHS).295

3.3.1. Reminders and statistical inference about HSIC

Let Fi : Xi → R and G : Y → R be two universal RKHS equipped with their kernels κi(·, ·) and κ(·, ·),

and dot products 〈·, ·〉Fi
and 〈·, ·〉G respectively. Under these hypotheses, the generalized cross-covariance

operator C(Xi,Y )[·] is defined, for any functions f ∈ Fi and g ∈ G, by:

〈f, C(Xi,Y )[g]〉Fi
= Cov (f(Xi), g(Y )) (10)

which generalizes the notion of covariance between Xi and Y . Therefore, a larger panel of input-output

dependency can be captured by this operator. The HSIC is then defined as as the square Hilbert-Schmidt

12



norm of the cross-covariance operator:

HSIC(Xi, Y )Fi,G = ||C(Xi,Y )||2HS =
∑
l,m

〈ul, C(Xi,Y )[vm]〉Fi
(11)

where (ul)l≥0 and (vm)m≥0 are orthonormal bases of, respectively, Fi and G.

Due to RKHS properties (known as the “kernel trick”), [62] show that HSIC can be expressed only using

kernels:

HSIC(Xi, Y )Fi,G = E
[
κi(Xi, X

′

i)κ(Y, Y
′
)
]

+ E
[
κi(Xi, X

′

i)
]
E
[
κ(Y, Y

′
)
]

(12)

− 2E
[
κi(Xi, X

′

i)κ(Y, Y
′′
)
]

where (X ′

i , Y
′) and (X ′

i , Y
′′) are i.i.d. copies of (Xi, Y ). This last equation highlights interesting estimation

properties since it only involves expected values which are simpler to estimate than variances of conditional

expected values (such as in the Sobol indices).300

Authors of [62] propose to estimate each HSIC(Xi, Y ) by the following estimator:

ĤSIC(Xi, Y ) = 1
n2

∑
1≤k,j≤n

(Li)k,jLk,j + 1
n4

∑
1≤k,j,q,r≤n

(Li)k,jLq,r −
2
n3

∑
1≤k,j,r≤n

(Li)k,jLj,r (13)

where Li and L are the Gram matrices defined for all k, j ∈ {1, . . . , n} by (Li)k,j = κi (X(k)
k , X

(j)
k ) and

(L)k,j = κ
(
Y (k), Y (j)).

This V-statistic estimator can also be written in the following more compact form (see [62]):

ĤSIC(Xi, Y ) = 1
n2Tr(LiHLH) (14)

where Tr(·) is the usual trace operator andH the matrix whose components are defined for all k, j ∈ {1, . . . , n}

by Hk,j = δk,j − 1/n, with δk,j the Kronecker symbol between k and j which is equal to 1 if i = j and 0

otherwise.305

Note that neither the HSIC definition nor its estimator requires the independence of inputs.

From this HSIC, [17] defines a normalized (with values belonging to [0, 1]) sensitivity index which makes

its interpretation easier:

R2
HSIC(Xi, Y ) = HSIC(Xi, Y )√

HSIC(Xi, Xi) HSIC(Y, Y )
. (15)

In practice, R2
HSIC(Xi, Y ) is estimated via a plug-in approach from ĤSIC(Xi, Y ).

Finally, a fundamental property of HSIC is that HSIC(Xi, Y )Fi,G = 0 if and only if Xi and Y are

independent, as long as the associated RKHS are universal. For example, Gaussian and Laplace kernels

generate universal RKHSs. The Gaussian kernel, which is classically used for real variables, is defined by:

κ(x, x
′
) = exp

(
−λ‖x− x′‖22

)
(16)
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where λ is a fixed positive real parameter, also called the “bandwidth parameter” of the kernel. Usually, one

uses in practice λ = 1/σ2 with σ2 being the empirical variance of the sample of X. The property of formally

characterizing the independence makes the HSIC naturally relevant for GSA purpose. Moreover, statistical310

independence tests based on HSIC can be built to make the interpretation more robust and perform an

objective screening despite the potential fluctuations of the estimates ([20]).

3.3.2. Adaptation for TSA

HSIC (and R2
HSIC) can be directly extended to any transformation w(Y ). For any input (Xi)1≤i≤d, the

target indices are given by:

T-HSICw(Xi, Y ) = HSIC(Xi, w(Y )); (17)

T-R2
HSIC,w(Xi, Y ) = HSIC(Xi, w(Y ))√

HSIC(Xi, Xi) HSIC(w(Y ), w(Y ))
. (18)

Estimators similar to Eq. (14) can be directly built. The only precaution lies in the adaptation of the

kernel for the transformation of Y if the binary transformation w(·) = 1C(·) is used. In this case, the use of315

the categorical kernel κ(z, z′) = δzz′ defined for a binary variable z, is recommended, as underlined by [17]

and [63]. On the other hand, for the transformation wC,exp(·), any characteristic kernel dedicated to real

variables, such as Gaussian or Laplace kernels, can be used.

3.3.3. Adaptation for CSA

For its conditional version, HSIC(Xi, Y ) must be estimated under (Xi, Y ) ∼ Pw(Xi,Y ). Contrary to Sobol

indices, the problem of non-independence of the inputs under PwX no longer exits, since independence of the

inputs is not assumed in the HSIC definition. Regarding its estimation, since HSIC can be defined through

kernel distances and expressed as expectations of kernels (Eq. (12)), we obtain from Eq. (4) (Section 3.1):

HSIC(Xi,Y )∼Pw

(Xi,Y )
(Xi, Y ) = E(Xi,Y )∼Pw

(Xi,Y )
[κi(Xi, X

′

i)κ(Y, Y
′
)] + EXi∼Pw

Xi
[κi(Xi, X

′

i)]EY∼Pw
Y

[κ(Y, Y
′
)]

− 2E(Xi,Y )∼Pw

(Xi,Y )
[κi(Xi, X

′

i)κ(Y, Y
′′
)]

= E
[
κi(Xi, X

′

i)κ(Y, Y
′
)w̄(Y )w̄(Y ′)

]
+ E

[
κi(Xi, X

′

i)w̄(Y )w̄(Y ′)
]
E
[
κ(Y, Y

′
)w̄(Y )w̄(Y ′)

]
− 2E

[
κi(Xi, X

′

i)κ(Y, Y
′′
)w̄(Y )w̄(Y ′′)]

]
(19)

where w̄(Y ) = w(Y )
E [w(Y )] (remember that (X ′

i , Y
′) and (X ′

i , Y
′′) are still i.i.d. copies of (Xi, Y )).320

The two conditional indices obtained are, respectively, the conditional HSIC (denoted by C-HSICw(Xi, Y ))

and the conditional R2
HSIC (denoted by C-R2

HSIC,w(Xi, Y )).

Similarly to Eq. (14), we propose the following estimator for C-HSICw(Xi, Y ):

̂C-HSICw(Xi, Y ) = 1
n2Tr (WLiWH1LH2) , (20)
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where:

• W is the matrix of empirical normalized weights defined by W = Diag
(̂̄w(Y (j))

)
1≤j≤n

with ̂̄w(Y ) =
w(Y )

Σni=1w(Y (i))
;325

• H1 = In −
1
n
UW and H2 = In −

1
n
WU , with In the identity matrix of size n and U a matrix filled

with 1.

The proof of the trace formulation of the estimator is similar than those provided in [33] (Appendix A),

for the estimation of HSIC under alternative distribution of the input. One has simply to consider dPX

and dPwX = w(Y (x))
E [w(Y )]dPX as the alternative and prior distributions, which are denoted f̃ and f in [33]330

respectively.

4. Numerical tests

In this section, numerical illustrations and comparisons of the proposed Sobol and HSIC-based tools for

TSA and CSA purposes are investigated. For this, some examples already introduced in [6] are considered.

However, more extensive numerical tests are realized. These examples also demonstrate that TSA and CSA335

explore aspects of a model which are both different from GSA and valuable for practitioners.

For this, we consider here the following indices:

• First-order target Sobol indices: T-S1,w(Xi, Y ), given by Eq. (7) and estimated by pick-freeze method;

• First-order hybrid conditional Sobol indices: C-S1,w(Xi, Y ), given by Eq. (9) also estimated by pick-

freeze method;340

• Normalized target HSIC: T-R2
HSIC,w(Xi, Y ) given by Eq. (18) and estimated from formula (14) applied

with w(Y ) and plug-in approach;

• Normalized conditional HSIC: C-R2
HSIC,w(Xi, Y ) defined from Eq. (19) and estimated with formula

(20) and plug-in approach.

Note that the index w denotes the weight function which is, in the following, either 1C or the smooth345

relaxation wC defined in Eq. (21).

We suppose here that the critical domain C is defined by Y exceeding a given critical value such that:

C = {y ∈ Y | y ≥ c}, with c chosen as the 90%-quantile of Y , c = F−1
Y (0.9). Consequently, we propose to

use the following wC(·) function:

wC(y) = exp
(
−max(c− y, 0)

s σY

)
(21)
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where σY is an estimation of the standard deviation of Y , and s = 1/5 a tuning parameter of the smoothness,

chosen so that wC(·) almost vanishes one standard deviation away from C. Note that this value of s is

empirically chosen as offering a reasonable numerical trade-off. Its impact could be further investigated in

future studies.350

Remark 1. The choice of a quantile as a threshold value is arbitrary and is used here for illustrative pur-

poses. Another level of quantile, or more generally, another threshold value could be considered. All the tools

remain generic and usable, as long as the critical domain is of nonzero probability. However, practical limits

must be kept in mind if the critical domain is associated to extremely rare events: it is necessary to have a

reasonable number of simulations inside or closed to the critical domain. In the case of rare events, adaptive355

sampling (not developed here, as explained in Section 3) will have to be considered to ensure a sufficient

number of samples falling into the critical domain.

Remark 2. The relaxation function wC(·) allows a compromise between “brute” TSA and a better exploita-

tion of the available information. It provides some kind of interpolation between GSA and TSA. This com-

promise is represented in Eq. (21) by the smoothing parameter s. As explained, we propose the reasonable360

choice s = 1/5, confirmed from our practical experience feedback. However, it might also be possible to choose

s so as to control that a certain percentage of data is taken into account in the TSA. For example, for a

90%-quantile, s can be chosen such as wC = 0.5 for y equals to the 80%-quantile. s can also be adapted

according to the number of simulations. Higher value of s can be chosen for smaller size sample, but while

keeping in mind that notion of “target” SA will be all the more relaxed. Anyway, deeper studies about the365

practical value of s could be further investigated.

Remark 3. For the HISC, Gaussian kernels will be used for X as for Y , with the usual parametrization

λ = 1/σ2 with σ2 being the empirical variance of the sample of X and Y , respectively. An exception will be

made for the T-HSICw when w = 1C: in this case, the categorical kernel ([63]) will be used for w(Y ), as

previously explained in Section 3.3.2.370

4.1. Presentation of test case analytical functions

To illustrate TSA and CSA and compare the different indices and estimators, we first consider two

analytical models. The first one, defined in dimension d = 2, is given as follows:

M1 : X 7→ Y = min(X1, X2),

where inputs X1 and X2 are two independent random variables, following respectively a standard normal

distribution, and a uniform distribution over [0, 1]. Despite a very simple formulation, M1 exhibits a very

strong non-linearity, as shown by Figure 1(a). Conditional distributions are also illustrated by Figure 1(c)

and 1(d). The critical value, namely the 90%-quantile of Y , is c ' 0.62 forM1.375
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Figure 1: Model M1 – Contour plot (a), probability distribution of the output Y (b), conditional distributions (c and d) with

conditional expectation in solid line, 90%-quantile in dotted line (c ' 0.62), [25%-quantile; 75%-quantile] area in dark grey and

[1%-quantile; 99%-quantile] area in light grey.
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We then explore the more complicated Ishigami function which is well-known from the sensitivity analysis

community. This model, illustrated by Figure 2, is defined in dimension d = 3 by:

M2 : X 7→ Y = sin(X1) + a sin2(X2) + bX4
3 sin(x1),

where a, b ∈ R+; all inputs X1, X2 and X3 are independent and uniformly distributed over [−π, π].

Figure 2: Model M2 – Contour plot (a), probability distribution of the output Y (b), conditional distributions (c and d) with

conditional expectation in solid line, 90%-quantile in dotted line (c ' 6.12), [25%-quantile; 75%-quantile] area in dark grey and

[1%-quantile; 99%-quantile] area in light grey.

The influence of the factor X2 is purely additive, its importance being modulated by the parameter a.

The influence of the factor X1 includes an additive part and an interaction with the factor X3, the balance

being tuned by parameter b. We set here the parameters a = 5 and b = 0.1. In this case, and for reference,

the first-order Sobol indices are analytically known: S1(X1, Y ) = 0.40, S1(X2, Y ) = 0.29 and S1(X3, Y ) = 0,380

while total-order ones are ST (X1, Y ) = 0.71, ST (X2, Y ) = 0.29, and ST (X3, Y ) = 0.31. Finally, the critical

value, namely the 90%-quantile of Y , is c ' 6.12 forM2.
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4.2. Numerical experiments and results

For each test case, i.i.d. input samples of size n = 1000 are first simulated and propagated through the

model. Then, Sobol and HSIC-based TSA and CSA indices listed at the beginning of Section 4 are estimated.385

The process is repeated hundred times to capture the variance due to sampling. The reference values for each

indices are computed from a sample of size n = 105 (asymptotic convergence of estimators being allowed for

this size). Results are given by Figures 3 and 4 for M1 and M2, respectively. Note that Sobol-based and

HSIC-based indices are compared here, for one input, from a sample of same size n. However, it is important

to keep in mind that Sobol-based indices are computed by the pick-freeze method with n simulations for each390

input which yields a total of nd simulations, while HSIC-based indices are computed with the same sample

for all the inputs. This is a significant advantage of HSIC-based indices, especially for large dimensional

cases.

The modelM1 clearly illustrates that the information provided by GSA, TSA and CSA can sometimes

differ significantly. Indeed, if we consider GSA, the input X1 (standard normal variable) is much more395

important than X2 (uniform variable). This is not surprising, since X1 presents more variability and takes

values far below and above the minimum of X2. Sobol and R2
HSIC indices clearly reflect that.

TSA results indicate that the ordering of the inputs is the same, although the relative importance

difference is lower. This can be explained by the fact that X1 has a lower probability to be above the critical

value c = 0.62 than X2 (probability around 0.27 and 0.4 for X1 and X2, respectively), hence X1 is still400

determining again the outcome of having {y ≥ c}. But, in the same time, the variability of X1 below the

threshold has no influence anymore. Moreover, as highlighted by the works of [39], Sobol indices lead to

high values of interaction indices (sum of first indices around 0.5), which complicates the interpretation in

terms of ranking. Furthermore, the estimators of Sobol indices are much less precise than the HSIC-based

indices for GSA, also and above all, for TSA. Even in the case where hard thresholding w = 1C is considered405

(significant loss of information), T-R2
HSIC,w still clearly identifies the correct order of the inputs. It also

can be noted that the smoothed versions of T-S1,w and T-R2
HSIC,w, obtained with w = wC , present less

variability while still ordering correctly the inputs. In practice, this makes possible to exploit in a more

intensive manner the available information, which reduces the variance of statistical estimators. In return,

smoothed indices make some kind of interpolation (or compromise) between TSA and GSA. Consequently,410

the tuning parameter s should not be chosen too large to stay close to the TSA purpose (as stated in Remark

2, Section 4).

CSA results provide a whole different information: now X2 is more important than X1. Indeed, condi-

tionally to both X2 and X1 being no less than c, X2 varies in [c, 1] while X1 varies in [c,+∞], in such a

way that the former has more chance to determine the value of their minimum. This is clearly captured415

by C-S1,w and C-R2
HSIC,w indices, but the difference is again less marked for the former, whose accuracy
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Figure 3: Model M1 – Global (black), target (blue) and conditional (green) SA indices, estimated from samples of size n = 1000.

Reference values are given by red circles.
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Figure 4: Model M2 – Global (black), target (blue) and conditional (green) SA indices, estimated from samples of size n = 1000.

Reference values are given by red circles.
21



of estimators and provided information are less precise. Note that the transformation proposed by Eq. (8)

which yields the hybrid Sobol index (Eq. (9)), allows to capture the CSA information, while remaining under

the comfortable assumption of independence. Finally, once again smooth relaxation significantly reduces the

variance of estimators, but it can also distort the information conveyed by CSA, especially for imprecise in-420

dices or for which the ranking is not very pronounced (case of hybrid Sobol indices). Contrariwise, relaxation

is very relevant for the indices with a high screening power, such as HSIC-based ones.

Remark 4. Although R2
HSIC is a normalized index which lies in [0, 1], its value can only be interpreted in

terms of ranking of the inputs, its value depending on the considered kernels (and underlying RKHS). This

explains why the values T-R2
HSIC,wC

and T-R2
HSIC,1C

quantitatively differ. Even between two characteristic425

kernels, one can moreover have a greater power of discrimination than the other and more quickly identify

the good ranking. To perform a robust screening, it is necessary to use statistical tests of independence built

upon HSIC. This point will be discussed in the perspectives.

If we now observe the results of Ishigami model M2 given by Figure 4, it appears that the relative

influences of the inputs are different in each analysis case. In GSA, the input X1 is the most important,430

and the inputs X2 and X3 have lower importance, being ranked differently according to Sobol and HSIC-

based indices. In TSA, X3 now has similar importance to that of X1, while X2 has much less. Indeed,

the combined effect of X1 and X3 easily exceeds the critical value c = 6.12, while the isolated action of X2

can only approach c (since a = 5 is significantly less than c). As previously, T-R2
HSIC,w indices offer more

precision than T-S1,w and lead to a more pronounced and clearer ranking. As for CSA inM1, the smooth435

relaxation is relevant for T-R2
HSIC,w (reduction of the variability of the estimators) but modifies too much

the results of T-S1,w indices.

Considering now the CSA results, X3 becomes the more dominant input: the term X4
3 presents steep

derivatives in the area of high values and strongly influences the Y value, within the critical domain. More-

over, this chaotic influence is difficult to capture: estimators C-S1,w and C-R2
HSIC,w are thus very variables.440

Note that the influence of X3 is better captured by C-R2
HSIC,w if smoothing transformation is used.

Finally, the relevance of smoothing relaxation for HSIC-based indices is confirmed and illustrated by

the convergence plots given by Figures 5 and 6, for M1 and M2 respectively. From n = 200 and for both

models, T-R2
HSIC,wC

correctly order the inputs while this distinction is sometimes not yet clearly observed

for T-R2
HSIC,1C

, due to the large estimation error. Similar results are obtained for conditional HSIC-based445

indices, not provided here for the sake of brevity.
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(a) T-R2
HSIC,1C

(b) T-R2
HSIC,wC

Figure 5: Model M1 – Convergence plots of T-R2
HSIC indices, with the indicator function 1C (a) and the smooth relaxation

wC (b).

(a) T-R2
HSIC,1C

(b) T-R2
HSIC,wC

Figure 6: Model M2 – Convergence plots of T-R2
HSIC indices, with the indicator function 1C (a) and the smooth relaxation

wC (b).
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5. Application on a nuclear safety use case

We consider here a nuclear safety use-case, treated in [58] and based on thermal-hydraulic computer

experiments. A HSIC-based GSA was performed by the authors in order to identify the non-influential

inputs and rank the influential ones. This step is preliminary to the sequential building of a joint Gaussian450

process metamodel, with the group of influential inputs as explanatory variables. This metamodel is then

used to accurately estimate Sobol sensitivity indices and high-order quantiles of the output.

We propose here to apply our TSA and CSA HSIC-based indices on the same learning sample to identify

the inputs influencing the exceeding of a given quantile and compare to GSA results.

5.1. Description of the use case455

In support of regulatory work and nuclear power plant design and operation, safety analysis considers the

so-called “Loss Of Coolant Accident” which takes into account a double-ended guillotine break with a specific

size piping rupture. The use-case under study does not focus on a full realistic model of a reactor but a

simplified one (e.g., regarding both physical phenomena and dimensions of the system). The numerical model

is based on code CATHARE2 (V2.5_3mod3.1) which simulates the time evolution of physical quantities460

during a thermal-hydraulic transient. It simulates a test carried out on the Japanese mock-up “Large Scale

Test Facility” in the framework of the OECD/ROSA-2 project. The model used is representative of an

Intermediate Break Loss Of Coolant Accident (IBLOCA) [64]. The mock-up represents a reduced scale

Westinghouse PWR (1/1 ratio in height and 1/48 in volume), with two loops (instead of three or four loops

on an actual reactor) and an electric powered heating core (10 MWe), see Figure 7. It operates at the same465

pressure and temperature values as the reference PWR. The simulated accidental transient is an IBLOCA

with a break on the cold leg and no safety injection on the broken leg.

Figure 7: IBLOCA model – Hot and cold legs of the Large Scale Test Facility.
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In this use-case, d = 27 scalar input variables of CATHARE2 code are uncertain, defined by their proba-

bility density function (pdf). These pdf are uniform, log-uniform, normal or log-normal. They correspond to

various system parameters such as, for instance, boundary conditions, critical flow rates, interfacial friction470

coefficients, condensation coefficients and heat transfer coefficients. Only uncertainties related to physical

parameters are considered here and no uncertainty on scenario variables (initial state of the reactor before

the transient) is taken into account. Table 1 provides more details about these uncertain inputs and their

probability density functions. The nature of these uncertainties appears to be epistemic since they arise

from a lack of knowledge on the true value of these parameters. The output variable of interest is a single475

scalar which is the maximal peak cladding temperature (PCT) during the accident transient (as an example,

see the peak in Figure 8). This quantity is derived from the physical outputs provided by CATHARE2 code.

Figure 8: IBLOCA model – Physical simulation output of the model with CATHARE2 code: maximal rod cladding temperature

during the transient.

5.2. GSA, TSA and CSA results

As detailed in [58], a sample of n = 500 CATHARE2 simulations is available built from a space-filling

design and following the prior distributions of inputs defined in Table 1. The histogram of the obtained480

values for the output of interest, namely the PCT, is given by Figure 9 (temperature is in ◦C). A kernel

density estimator of the data is also added on the plot. We focus on the 90%-quantile of the PCT which is

empirically estimated here to q0.9 ' 722.9.

From the learning sample of n = 500 simulations, R2
HSIC indices are estimated with λ = 1/σ2 and σ2

being the empirical variance of the sample. Significant values are given by Table 22. Analyzing these results485

2Note that GSA HSIC-based independence tests ([20]), not detailed here, are performed to screen the significantly influential

inputs
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Table 1: IBLOCA model – List of the 27 uncertain input parameters and associated physical models in CATHARE2 code.

Type of inputs Inputs pdfa Physical models

Heat transfer X1 N Departure from nucleate boiling

in the core X2 U Minimum film stable temperature

X3 LN HTCb for steam convection

X4 LN Wall-fluid HTC

X5 N HTC for film boiling

Heat transfer in the steam X6 LU HTC forced wall-steam convection

generators (SG) U-tube X7 N Liquid-interface HTC for film condensation

Wall-steam friction in core X8 LU

Interfacial friction X9 LN SG outlet plena and crossover legs together

X10 LN Hot legs (horizontal part)

X11 LN Bend of the hot legs

X12 LN SG inlet plena

X13 LN Downcomer

X14 LN Core

X15 LN Upper plenum

X16 LN Lower plenum

X17 LN Upper head

Condensation X18 LN Downcomer

X19 U Cold leg (intact)

X20 U Cold leg (broken)

X27 U Jet

Break flow X21 LN Flashing (undersaturated)

X22 N Wall-liquid friction (undersaturated)

X23 N Flashing delay (undersaturated)

X24 LN Flashing (saturated)

X25 N Wall-liquid friction (saturated)

X26 LN Global interfacial friction (saturated)

aU , LU , N and LN respectively stands for uniform, log-uniform, normal and log-normal probability distributions.
bHeat Transfer Coefficient.

leads to notice the large influence of X10 (the interfacial coefficient in the horizontal part of the hot legs),

followed by X12 (the interfacial friction coefficient in the steam generator inlet plena) and X2 (the minimum

stable film temperature in the core). Then, a last group of six inputs have a lower influence (but rather

similar in terms of order of magnitude): namely X14, X9, X22, X15, X6 and X13. Finally, the other 18 input

variables are non-influential. If the estimates fluctuate a little bit due to the small dataset, these results are490
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Figure 9: IBLOCA model – Histogram of the PCT from the learning sample of n = 500 simulations.

relevant regarding precedent studies (see, e.g., in [58]).

Table 2: IBLOCA model – Normalized HSIC-based sensitivity indices R2
HSIC for the influential inputs.

Inputs X10 X12 X2 X14 X9 X22 X15 X6 X13

R2
HSIC 0.43 0.04 0.03 0.02 0.02 0.02 0.01 0.01 0.01

We now compute normalized target and conditional HSIC-based indices regarding the critical event of

exceeding the 90%-quantile q0.9 of the PCT, with the smooth relaxation and similar parametrization as in

Section 4 (s = 1/5). Results are given in Table 3. Two interesting features can be highlighted from such an

analysis:495

• First, one can notice that TSA confirms the crucial underlying role played by X10 and X12 in the

global phenomenon of interest. Nonetheless, it also reveals the role played by both X14 (the interfacial

friction coefficient of the core) and X9 (the interfacial friction coefficient of the steam generator outlet

plena and crossover legs together) on the occurrence of the critical event. Finally, it appears that X6

(the HTC forced wall-steam convection coefficient), which had a nonnegligible influence from the GSA500

point of view, now has a minimal influence from a TSA point of view;

• Second, one can see that CSA results are, not only very informative, but also highlights complex

underlying behaviors. As one may notice, by conditioning w.r.t. the critical event, X22 (the wall-liquid

friction coefficient of the undersaturated break flow) appears to have a similar influence as X10 and

X12. Moreover, X13 (the interfacial friction coefficient of the downcomer) becomes more influential505

within the critical domain.

First attempts of physical interpretation can be based on these results, supplemented by some scatterplots
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Table 3: IBLOCA model – Normalized target and conditional HSIC-based sensitivity indices for the influential inputs.

Inputs X10 X12 X2 X14 X9 X22 X15 X6 X13

T-R2
HSIC,wC

0.30 0.05 0.02 0.03 0.03 0.02 0.01 0 0.02

C-R2
HSIC,wC

0.09 0.07 0.03 0.02 0.02 0.10 0.01 0.01 0.04

of the PCT w.r.t to the key inputs identified by GSA, TSA and CSA. These scatterplots are given by Figure

10. The predominant global influence of X10 is clearly observed. Moreover, as already explained in [58],

larger values of X10 in the horizontal part of the hot legs lead to larger values of the PCT. This can be510

explained by the increase of vapor which brings the liquid in the horizontal part of hot legs, leading to a

reduction of the liquid water return from the rising part of the U-tubes of the SG to the core (through

the hot branches and the upper plenum). Since the amount of liquid water available to the core cooling is

reduced, higher PCTs are observed. However, beyond a value (X10 > 3), the water nonreturn effect seems

to have been reached and X10 appears to be less influential. This explains its predominance in GSA and515

TSA, but less in CSA. As revealed by CSA results, the wall to liquid friction (in under-saturated break flow

conditions) in the break line X22 and the interfacial friction coefficient in the SG inlet plena X12 are very

influential on the highest PCT values, beyond q0.9. This is consistent with the previous interpretation of

[58] and scatterplots: low values of X22 lead to higher break flow rates, resulting in a loss of the primary

water mass inventory at the higher break, and thus a more significant core uncovering (then higher PCT).520

For X12, its higher values lead to a greater supply (by the vapor) of liquid possibly stored in the water plena

to the rest of the primary loops (then lower PCT).

Figure 10: IBLOCA model – Scatterplots with local polynomial regression of PCT according to X10, X12 and X22.

As a consequence, this application clearly illustrates how TSA and CSA results provide complementary

insights about the phenomenon under study. Coupled with a standard GSA analysis, they enable to un-

derstand more deeply the underlying behavior of the code (and, at least, of the physics). One of the best525

advantage of the provided tools remain in their ability to be used through a single learning sample, with-

out requiring the construction and use of a metamodel. On the contrary, the provided information can be
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judiciously used to then build a metamodel from a limited number of inputs, e.g., for the identification of

penalizing configurations as in [59].

To strengthen these results and study their robustness, the next subsection proposes a numerical conver-530

gence analysis.

5.3. Convergence analysis

In this subsection, a numerical convergence analysis is performed using 100 bootstrap repetitions. Note

that, for the sake of clarity in the convergence plots, a focus has been put on the minimal set of influential

variables (i.e., X10, X12, X22 and X9). Results are given by Figure 11.535

They confirm the predominance of X10 in terms of both global and target influence, which is detected

from very small sample size (n = 100). However, looking closely at CSA results, it appears that CSA is more

difficult to estimate and much less discriminating: the coefficient of variations are rather large, especially for

small-size learning samples. First, the difficult estimate is explained by the more complex information that

CSA considers, and which suffers more from the loss of information. Second, the weak discriminating power540

is due to the fact that the behavior within the critical domain is mainly driven by a combination of the

inputs rather than single identifiable influences. In other words, these variables might be highly dependent

within the critical domain. However, we observe see that X22 clearly stands out from the larger size samples.

Figure 11: IBLOCA model – Convergence plots of GSA, TSA and CSA HSIC indices.

Note that the quantile estimation error was not discussed here. For large sample sizes and for not too

extreme quantiles, we argue that this error will have little influence on the TSA and CSA results. But it545

will be less the case for small samples. In this case, the estimation error should be taken into account with

bootstrap approaches.

6. Conclusion

As part of sensitivity analysis (SA) of numerical simulators in presence of uncertain inputs, this work

focuses the analysis towards a restricted domain of the output distribution (e.g., a distribution tail). As550

illustrated in a safety nuclear use case, this domain may correspond in practice to a critical domain of
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the studied phenomenon. To capture the influence of the uncertain inputs on this restricted domain, the

notions of target (TSA) and conditional (CSA) sensitivity analyses are defined. TSA aims at measuring

the influence of the inputs on the occurrence of the critical event, while CSA measures its influence within

the critical domain (ignoring what happens outside). Both specific sensitivity analyses have numerous555

applications, particularly in safety and risk assessment studies. Furthermore, as underlined and illustrated

in our numerical applications, these two notions can also widely differ.

Starting from existing global SA (GSA) measures, we propose new operational tools dedicated to TSA

and CSA. For this, we first focus our attention on the usual and popular sensitivity indices based variance de-

composition, namely Sobol indices. Then, the Hilbert-Schmidt Independence Criterion (HSIC), a dependence560

measure recently adapted for GSA purposes and well-suited for a small learning dataset, is also considered.

Adapted versions of Sobol and HSIC are proposed for TSA and CSA, as well as associated statistical estima-

tors. More specifically, alternative Sobol indices are defined for CSA to overcome the dependence of inputs

induced by the conditioning. Furthermore, to cope with the loss of information (especially when the critical

event is associated to a low probability) and reduce the variability of estimators, a transformation of the565

output using smooth weight functions is also proposed for all the TSA and CSA indices.

Then, the proposed tools are illustrated and compared on several analytical test cases. These experiments

clearly illustrate the interest and the complementarity of the information provided by TSA and CSA, relative

to that provided by GSA. Results also show the efficiency of HSIC-based indices which are relevant tools for

GSA, TSA and CSA. Their estimators offer a good compromise between bias and variance, while presenting570

efficient ranking performance (from few hundred of simulations) and requiring much less simulations than

estimators of Sobol-based indices. The relevancy of smooth relaxation also clearly appears for TSA and CSA

HSIC-based indices. It offers a compromise between "brute” goal-oriented SA and a better exploitation of

the available information, which yields a significant reduction of the variance of statistical estimators. This

compromise is tuned by a smoothing parameter. But, in return, the relaxation should not be set too large575

in order to remain close to the notion of TSA. Finally, TSA and CSA HSIC-based indices are applied on

a nuclear engineering use case which simulates a severe accidental scenario on a pressurized water reactor.

With several tens of uncertain inputs, this provides a practical illustration, more realistic and challenging.

This application also shows how TSA and CSA, coupled with a standard GSA analysis, enable to further

understand the behavior of the code and modeled physics.580

In perspective of this work, it is planned to further study the impact of the smoothing parameter used

in the relaxation. A reasonable choice is proposed here but it might also be possible to choose it so as to

control that a certain percentage of data is taken into account. It can also be adapted according to the

number of simulations, in particular for very small samples.585

30



More ambitiously, we believe that it is essential to develop the use of statistical independence tests

associated to our TSA and CSA indices. This will provide a more rigorous and accurate statistical framework,

and will allow a more objective conclusion on significantly influential inputs. The adaptation of the available

HSIC-based tests ([20]) to TSA-HSIC is relatively direct, contrary to the extension to CSA-HSIC which is

subject to a modification of the asymptotic law under independence. Moreover, the impact of the smooth590

relaxation on the power of independence tests should also be assessed. Finally, if the objective is only to

perform a TSA or CSA of the model and if the choice of sampling is possible, it is obvious that goal-oriented

sampling methods such as importance sampling would be of great interest. Indeed, by adding simulations in

the critical area, these methods would significantly improve the estimation of TSA and CSA indices. This

may be the subject of future work.595
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