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1 ABSTRACT 

The 21st century marks the emergence of “big data” with a rapid increase in the 
availability of data sets with multiple measurements. In neuroscience, brain-imaging 
datasets are more commonly accompanied by dozens or even hundreds of phenotypic 
subject descriptors on the behavioral, neural, and genomic level. The complexity of such “big 
data” repositories offer new opportunities and pose new challenges for systems 
neuroscience. Canonical correlation analysis (CCA) is a prototypical family of methods that is 
useful in identifying the links between variable sets from different modalities. Importantly, 
CCA is well suited to describing relationships across multiple sets of data and so is well 
suited to the analysis of big neuroscience datasets. Our primer discusses the rationale, 
promises, and pitfalls of CCA. 
 

 

Keywords: machine learning, big data, data science, neuroscience, deep 

phenotyping. 
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2 INTRODUCTION 

The parallel developments of large biomedical datasets and increasing 

computational power have opened new avenues with which to understand 

relationships among brain, cognition, and disease. Similar to the advent of 

microarrays in genetics, brain-imaging and extensive behavioral phenotyping yield 

datasets with tens of thousands of variables (Efron, 2010). Since the beginning of the 

21st century, the improvements and availability of technologies, such as functional 

magnetic resonance imaging (fMRI), have made it more feasible to collect large 

neuroscience datasets (Poldrack and Gorgolewski, 2014). At the same time, 

problems in reproducing the results of key studies in neuroscience and psychology 

have highlighted the importance of drawing robust conclusion based on large 

datasets (Open Science Collaboration, 2015). 

The UK Biobank, for example, is a prospective population study with 500,000 

participants and comprehensive imaging data, genetic information, and 

environmental measures on mental disorders and other diseases (Allen et al., 2012; 

Miller et al., 2016). Similarly, the Human Connectome Project (van Essen et al., 2013) 

has recently completed brain-imaging of >1,000 young adults, with high spatial and 

temporal resolution, featuring approximately four hours of brain scanning per 

participant. Further, the Enhanced Nathan Kline Institute Rockland Sample (Nooner 

et al., 2012) and the Cambridge Centre for Aging and Neuroscience (Shafto et al., 

2014; Taylor et al., 2017) offer cross-sectional studies (n > 700) across the lifespan 

(18–87 years of age) in large population samples. By providing rich datasets that 

include measures of brain imaging, cognitive experiments, demographics, and 

neuropsychological assessments, such studies can help quantify developmental 

trajectories in cognition as well as brain structure and function. While “deep” 

phenotyping and unprecedented sample sizes provide opportunities for more robust 

descriptions of subtle population variability, the abundance of measurement for 

each subject does not come without challenges. 

Modern datasets often provide more variables than observations of these 

variable sets (Bzdok and Yeo, 2017; Smith and Nichols, 2018). In this situation, 

classical statistical approaches can often fail to fully capitalize on the potential of 

these data sets. For example, even with large samples the number of participants is 

often smaller than the number of brain locations that have been sampled in high-

resolution brain scans. On the other hand, in datasets with a particularly high 

number of participants, traditional statistical approaches will identify associations 

that are highly statistically significant but may only account for a small fraction of the 

variation in the data (Miller et al., 2016; Smith and Nichols, 2018). In such scenarios, 

investigators who aim to exploit the full capacity of big data sets to reveal important 

relationships between brain, cognition and disease require techniques that are 
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better suited to the nature of their data than are many of the traditional statistical 

tools. 

Canonical correlation analysis (CCA) is one tool that is useful in unlocking the 

complex relationships among many variables in large datasets. A key strength of CCA 

is that it can simultaneously evaluate two different sets of variables, without 

assuming any particular form of precedence or directionality (such as in partial least 

squares, cf. section 4.2). For example, CCA allows a data matrix of brain 

measurements (e.g., connectivity links between a set of brain regions) to be 

simultaneously analyzed with respect to a second data matrix of behavioral 

measurements (e.g., response items from various questionnaires). In other words, 

CCA identifies the source of common statistical associations in two high-dimensional 

variable sets. 

CCA is a multivariate statistical method that was introduced in the 1930s 

(Hotelling, 1936). However, CCA is more computationally expensive than many other 

common analysis tools and so is only recently becoming applicable for biomedical 

research. Moreover, the ability to accommodate two multivariate variable sets 

allows the identification of patterns that describe many-to-many relations. CCA, 

therefore, opens interpretational opportunities that go beyond techniques that map 

one-to-one relations (e.g., Pearson’s correlation) or many-to-one relationships (e.g., 

ordinary multiple regression).  

Early applications of CCA to neuroimaging data focused initially on its ability in 

spatial signal filtering (Cordes et al., 2012; Friman et al., 2004, 2003, 2001; Zhuang et 

al., 2017)  and more recently on the ability to combine different imaging modalities 

together (see Calhoun and Sui, 2016; N. Correa et al., 2010 for review). These include 

functional MRI and EEG  (Sui et al., 2014) and grey and white matter (Lottman et al., 

2018). This work used CCA to help bring together multiple imaging modalities, a 

process often referred to as multi-modal fusion. However, with the recent trend 

towards rich phenotyping and large cohort data collection, the imaging community 

has also recognized the capacity for CCA to provide compact multivariate solutions 

to big data sets.  In this context, CCA can efficiently chart links between brain, 

cognition, and disease (Calhoun and Sui, 2016; Hu et al., 2019; Liu and Calhoun, 

2014; Marquand et al., 2017; Smith et al., 2015; Tsvetanov et al., 2016; Vatansever 

et al., 2017; Wang et al., 2018a; Xia et al., 2018). 

In this context our conceptual primer describes how CCA can deepen 

understanding in fields such as cognitive neuroscience that depend on uncovering 

patterns in complex multi-modal datasets. We consider the computational basis 

behind CCA and the circumstances in which it can be useful, by considering several 

recent applications of CCA in studies linking brain to behavior. Next, we consider the 

types of conclusions that can be drawn from applications of the CCA algorithm, with 

a focus on the scope and limitations of applying this technique. Finally, we provide a 

set of practical guidelines for the implementation of CCA in scientific investigations. 
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3 MODELING INTUITIONS 

One way to appreciate the utility of CCA is by viewing this pattern-learning 

algorithm as an extension of principal component analysis (PCA). This widespread 

matrix decomposition technique identifies a set of latent dimensions as a linear 

approximation of the main components of variation that underlie the information 

contained in the original set of observations. In other words, PCA can re-express a 

set of correlated variables in a smaller number of hidden factors of variation. These 

latent sources of variability are not always directly observable in the original 

measurements, but in combination explain a substantial feature of how the actual 

observations are organized. 

PCA and other matrix-decomposition approaches have been used frequently in 

the domain of personality research. For example, the ‘Big Five’ describes a set of 

personality traits that are identified by latent patterns that are revealed when PCA is 

applied to how people describe other people’s time-enduring behavioral tendencies 

(Barrick and Mount, 1991). This approach tends to produce five reliable components 

that explain a substantial amount of meaningful variation in data gathered by 

personality assessments. A strength of a decomposition method such as PCA is that 

it can produce a parsimonious description of the original dataset by re-expressing it 

as a series of compact dimensional representations. These can also often be 

amenable to human interpretation (such as the concept of introversion). The ability 

to re-express the original data in a more compact form, therefore, has appeal both 

computationally and statistically (because it reduces the number of variables), and 

because it can also aid our interpretations of the problem space (as it did in the case 

of the ‘Big Five’ as main personality traits). 

Although similar to PCA, CCA maximizes the linear correspondence between two 
sets of variables. The CCA algorithm, therefore, seeks dominant dimensions that 
describe shared variation across different sets of measures. In this way, CCA is 
particularly applicable when describing observations that bridge several levels of 
observation. Examples include charting correspondences between i) genetics and 
behavior, ii) brain and behavior, or iii) brain and genetics. In order to fully appreciate 
these features of CCA, it is helpful to consider how the assessment of the association 
between high-dimensional variable sets is achieved. 

3.1 MATHEMATICAL NOTIONS 

Canonical correlation analysis (Hotelling, 1936) determines the relationship 
between variable sets from two domains. Given   and   of dimensions       and 
      on the same set of   observations, the first CCA mode is reflected in a linear 
combination of the variables in   and another linear combination of the variables in 
   

          
             



 

 

 

6 
 

 

 

that maximize the first mode’s correlation 
                           . 

          In addition to optimizing the correspondence between   and   as the first 
canonical mode, it is possible to continue to seek additional pairs of linear 
combinations that are uncorrelated with the first canonical mode(s). This process 
may be continued up to           times. In this primer, we will refer to   and   as 
the canonical vectors, and we will refer to   and   as the canonical variates. The 
canonical correlation denotes the correlation coefficient   of the canonical variates 
(see Figure 1).  
 

Let             =    ,                  
and                  , so 

   
            

                   
   

      

                
 

 
          We can then reduce (1) to          (2) subject to the constraints above.  
Put differently, we define a change of basis (i.e., the coordinate system in which the 
data points live):  

      
   

  

     
   

  

  
     

    
      

    
 

        
 

          The formal relationship between canonical vectors (  and  ) and canonical 
variates (  and   ) can also be expressed as: 

                                                              
    

       

                                                              
    

        

          The relationship between the original data (X and Y) and the canonical variates 
U and V can be understood as the best way to rotate the left variable set and the 
right variable set from their original spaces to new spaces that maximize their linear 
correlation. The fitted parameters of CCA thus describes the rotation of the 
coordinate systems: the canonical vectors encapsulating how to get from the original 
measurement coordinate system to the new latent space, the canonical variates 
encoding the embedding of each data point in that new space. This coordinate 
system rotation is formally related to singular value decomposition (SVD). SVD is 
perhaps the most common means to compute CCA (Healy, 1957). Assuming X and Y 
are centered, the CCA solution can be obtained by applying SVD to the correlation 
matrix       (for detailed mathematical proof, see Uurtio et al., 2017).  

From a practical application perspective, there are three properties of CCA that 
are perhaps particularly relevant for gaining insight into the variable-rich datasets 
available to cognitive neuroscience: (1) joint-information compression, (2) 
multiplicity and (3) symmetry. We consider each of these properties in turn. 
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3.2 JOINT INFORMATION COMPRESSION 

A key feature of CCA is that it identifies the correspondence between two sets of 

variables, typically capturing two different levels of observation (e.g., brain and 

behavior). The salient relations among each set of variables is represented as a linear 

combination within each domain that together reflect conjoined variation across 

both domains. Similar to PCA, CCA re-expresses data in form of high-dimensional 

linear representations (i.e., the canonical variates). Each resulting canonical variate is 

computed from the weighted sum of the original variable as indicated by the 

canonical vector. Similar to PCA, CCA aims to compress the information within the 

relevant data sets by maximizing the linear correspondence between the low-rank 

projections from each set of observations, under the constraint of uncorrelated 

hidden dimensions (cf. multiplicity below). This means that the canonical correlation 

quantifies the linear correspondence between the left and right variable sets based 

on Pearson’s correlation between their canonical variates; how much the right and 

left variable set can be considered to approach each other in a common embedding 

space (Fig 1). Canonical correlation, therefore, can be seen as a metric of successful 

joint information reduction between two variable arrays and, therefore, routinely 

serves as a performance measure for CCA that can be interpreted as the amount of 

achieved parsimony. Analogous to other multivariate modeling approaches, adding 

or removing even a single variable in one of the variable sets can lead to larger 

changes in the CCA solution (Hastie et al., 2001). 

 

 
Fig 1.  A general schematic for Canonical Correlation Analysis (CCA).  
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(A) Multiple domains of data, with p and q variables respectively, measured in the same sample of 

participants can be submitted to co-decomposition by CCA. The algorithm seeks to re-express the 

datasets as multiple pairs of canonical variates that are highly correlated with each other across 

subjects. Each pair of the latent embedding of the left and right variable set is often referred to as 

‘mode’. (B) In each domain of data, the resulting canonical variate is composed of the weighted sum 

of variables by the canonical vector. (C) In a two-way CCA setting, each subject can thus be 

parsimoniously described two canonical variates per mode, which are maximally correlated as 

represented here on the scatter plot. The linear correspondence between these two canonical 

variates is the canonical correlation - a primary performance metric used in CCA modeling. 

3.3 SYMMETRY 

Another important feature of CCA is that the two co-analyzed variable sets can 

be exchanged without altering the nature of the solution. Many classical statistical 

approaches involve ‘independent variables’ or ‘explanatory variables’ which usually 

denote the model input (e.g., several questionnaire response items) as well as 

‘dependent variable’ or ‘response variable’ which describes the model output (e.g., 

total working memory performance). However, such concepts lose their meaning in 

the context of CCA (Friston et al., 2008). Instead, the solutions provided by CCA 

reflect a description of how a unit change in one series of measurements is related 

to another series of measurements in another set of observations. These 

relationships are invariant to changes to which is the left vs. right flanking matrix to 

be jointly analyzed. We call this property of CCA ‘symmetry’. 

The symmetry in analysis and neuroscientific interpretation produced via CCA 

is distinct from many other multivariate methods, in which the dependent and 

independent variables play distinct roles in model estimation. For instance, linear-

regression-type methods account for the impact of a unit change in the (dependent) 

response variable as a function of the (independent) input variable. In this case, 

changing the dependent and independent variables can alter the nature of any 

specific result. A second important characteristic of CCA, therefore, is that the co-

relationship between two sets of variables is determined in a symmetrical manner 

and describes mappings between each domain of data analyzed. 

3.4 MULTIPLICITY 

As third important property of CCA is that it can produce multiple pairs of 

canonical variates, each describing patterns of unique variation in the sets of 

variables. Each CCA mode carries a low-rank projection of the left variable set (one 

canonical variate associated with that mode) and a second linear low-rank projection 

of the right variables (the other canonical variate associated with that mode). After 

extracting the first mode, which describes the largest variation in the observed data 

(cf. above), CCA determines the next pair of latent dimensions whose variation 
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between both variable sets is not accounted for by the first mode. Since every new 

mode is found in the residual variation in the observed data, the classical 

formulation of CCA optimizes the modes to be mutually uncorrelated with each 

other, a property known as orthogonality. The use of orthogonality to constraint CCA 

modes is analogous to what happens using PCA. Consequently, the different modes 

produced by CCA are ordered by the total variation explained in the domain-domain 

associations. To the extent that the unfolding modes are scientifically meaningful, 

interpretations can afford complex data sets to be considered as being made up of 

multiple overlapping descriptions of the processes underlying question. For instance, 

much genetic variability in Europe can be jointly explained by orthogonal directions 

of variation along a north-south axis (i.e., one mode of variation) and a west-east 

axis (i.e., another mode of variation) (Moreno-Estrada et al., 2013). The ability for 

CCA to produce many pairs of canonical variates we refer to as ‘multiplicity’. 

  

Figure 1 illustrates how the three core properties underlying CCA modeling and 

guidance of neuroscientific interpretation make it a particularly useful technique for 

the analysis of modern biomedical datasets – joint information compression, 

symmetry and multiplicity. First, CCA can provide a description that succinctly 

captures variation present across multiple variable sets. Second, CCA models are 

symmetrical in the sense that exchanging the two variable sets makes no difference 

to the results gained. Finally, we can estimate a collection of modes that describe 

the correspondence between two variable sets. As such, CCA modeling does not 

attempt to describe the “true” effects of any single variable (cf. below), instead 

targets the prominent correlation structure shared across dozens or potentially 

thousands of variables (Breiman and Friedman, 1997). Together these allow CCA to 

efficiently uncover symmetric linear relations that compactly summarize complex 

multivariate variable sets. 

3.5 EXAMPLES OF CCA IN CONTEMPORARY COGNITIVE NEUROSCIENCE 

The suitability of CCA to big data sets available in modern neuroscience can be 
illustrated by considering examples of how it has been used to address specific 
questions that bear on the relationships between brain, cognition and disease. In the 
following section we consider 3 examples of how CCA can help describe the 
relationships between phenotypic measurements and neurobiological measurement 
such as brain activity. 

Example 1: Smith and colleagues (2015) employed CCA to uncover brain-

behavior modes of population co-variation in approximately 500 healthy participants 

from the Human Connectome Project (van Essen et al., 2013). These investigators 

aimed to discover whether specific patterns of whole-brain functional connectivity, 

on the one hand, are associated with specific sets of various demographics and 

behaviors on the other hand (see Fig 2 for the analysis pipeline). Functional brain 
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connectivity was estimated from resting state functional MRI scans measuring brain 

activity in the absence of a task or stimulus (Biswal et al., 1995). Independent 

component analysis (ICA; Beckmann et al., 2009) was used to extract 200 network 

nodes from fluctuations in neural activity. Next, functional connectivity matrices 

were calculated based on the pairwise correlation of the 200 nodes to yield a first 

variable set that quantified inter-individual variation in brain connectivity 

“fingerprints” (Finn et al., 2015). A rich set of phenotypic measures including 

descriptions of cognitive performance and demographic information provided a 

second variable set that captured inter-individual variation in behavior. The two 

variable arrays were submitted to CCA to gain insight into how latent dimensions of 

network coupling patterns present linear correspondences to latent dimensions 

underlying phenotypes of cognitive processing and life experience. The statistical 

robustness of the ensuing brain-behavior modes was determined via a non-

parametric permutation approach in which the canonical correlation was the test 

statistic. 

Smith and colleagues identified a single statistically significant CCA mode 

which included behavioral measures that varied along a positive-negative axis; 

measures of intelligence, memory, and cognition were located on the positive end of 

the mode, and measures of lifestyle (such as marijuana consumption) were located 

on the negative end of the mode. The brain regions exhibiting strongest 

contributions to coherent connectivity changes were reminiscent of the default 

mode network (Buckner et al., 2008). It is notable that prior work has provided 

evidence that regions composing the default mode network are associated with 

episodic and semantic memory, scene construction, and complex social reasoning 

such as theory of mind (Andrews-Hanna et al., 2010; Bzdok et al., 2012; Spreng et al., 

2009). The finding of Smith and colleagues (Smith et al., 2015) provide evidence that 

functional connectivity in the default mode network is important for higher-level 

cognition and intelligent behaviors and that have important links to life satisfaction. 

This study illustrates the capacity of CCA for joint compression because it was able to 

successfully extract multivariate descriptions of data sets containing both brain 

measurements and a broad array of demographic and lifestyle indicators. 
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Fig 2. The analysis pipeline of Smith et al., 2015.  

These investigators aimed to discover whether specific patterns of whole-brain functional 

connectivity, on the one hand, are associated with specific sets of correlated demographics and 

behaviors on the other hand. The two domains of the input variables were transformed into principle 

components before the CCA model evaluation. The significant mode was determined by permutation 

tests. The finding of Smith and colleagues (2015) provide evidence that functional connectivity in the 

default mode network is important for higher-level cognition and intelligent behaviors and are closely 

linked to positive life satisfaction. 

 

Example 2: Another use of CCA has been to help understand the complex 

relationship between neural function and patterns of ongoing thought. In both the 

laboratory and in daily life, ongoing thought can often shift from the task at hand to 

other personally relevant characteristics - a phenomenon that is often referred to by 

the term ‘mind-wandering’ (Seli et al., 2018). Studies suggest there is a complex 

pattern of positive and negative associations between states of mind-

wandering(Mooneyham and Schooler, 2013). This apparent complexity raises the 

possibility that mind-wandering is a heterogeneous rather than homogeneous state. 

 

Wang and colleagues (2018b) used CCA to empirically explore this question by 

examining the links between connectivity within the default mode network and 

patterns of ongoing self-generated thought recorded in the lab (Fig 3). Their analysis 

used patterns of functional connectivity within the default mode network as one set 

of observations, and patterns of self-reported descriptions recorded in the 

laboratory across multiple days as the second set of observations (Witten et al., 

2009). The connectivity among 16 regions in the default mode network and 13 self-

reported aspects on mind-wandering experience were fed into a sparse version of 

CCA (see Section 4.2 for further information on this variant of CCA). This analysis 

found two modes, one describing a pattern of positive-habitual thoughts, and a 

second that reflected spontaneous task-unrelated thoughts and both were 
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associated with unique patterns of connectivity fluctuations within the default mode 

network. As a means to further validate the extracted brain-behavior modes in new 

data, follow-up analyses confirmed that the modes were uniquely related to aspects 

of cognition, such as executive control and the ability to generate information in a 

creative fashion, and the modes also independently distinguished well-being 

measures. These data suggest that the default mode network can contribute to 

ongoing thought in multiple ways, each with unique behavioral associations and 

underlying neural activity combinations. By demonstrating evidence for multiple 

brain-experience relationships within the default mode network, the authors 

(2018b) underline that greater specificity is needed when considering the links 

between brain activity and neural experience (see also Seli et al., 2018). This study 

illustrates the property of CCA for multiplicity because it was able to identify multiple 

different patterns of thought each of which could be validated based on their 

associations with other sets of observations. 

 

 
Fig 3. The analysis pipeline of Wang et al., 2018b. 

Wang and colleagues (2018b) used CCA to interrogate the hypothesis that various distinct aspects of 

ongoing thought can track distinct components of functional connectivity patterns within the default 

mode network. Sparse CCA was used to perform feature selection simultaneously with the model 

fitting on the brain-experience data. The identified CCA modes showed robust trait combinations of 

positive-habitual thoughts and spontaneous task-unrelated thoughts with linked patterns of 

connectivity fluctuations within the default mode network. The two modes were also related to 

distinct high-level cognitive profiles respectively. 

 

Example 3: In the final example, Xia and colleagues (2018, see Fig 4) mapped 

item-level psychiatric symptoms to brain connectivity patterns in brain networks 

using resting-state fMRI scans in a sample of roughly 1000 subjects from the 

Philadelphia Neurodevelopmental Cohort. Recognizing the marked level of 
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heterogeneity and comorbidity in existing diagnostic psychiatric diagnoses, these 

investigators were interested in how functional connectivity and individual 

symptoms can form linked dimensions of psychopathology and brain networks (Insel 

and Cuthbert, 2015). Notably, the study used a feature-selection step based on 

median absolute deviation to first reduce the dimensionality of the connectivity 

feature space prior to running CCA. As a result, about 3000 functional edges and 111 

symptom items were analyzed in conjunction. As the number of features was still 

greater than the number of subjects, sparse CCA was used (Witten et al., 2009). This 

variant of the CCA family penalizes the number of features selected by the final CCA 

model. Based on covariation-explained and subsequent permutation testing (Mišić et 

al., 2016), the analysis identified four linked dimensions of psychopathology and 

functional brain connectivity – mood, psychosis, fear, and externalizing behavior. 

Through a resampling procedure that conducted sparse CCA in different subsets of 

the data, the study identified stable clinical and connectional signatures that 

consistently contributed to each of the four modes. The resultant dimensions were 

relatively consistent with existing clinical diagnoses, but additionally cut across 

diagnostic boundaries to a significant degree. Furthermore, each of these 

dimensions were associated with a unique pattern of abnormal connectivity. 

However, a loss of network segregation was common to all dimensions, particularly 

between executive networks and the default mode network. As network segregation 

is a normative feature of network development, loss of network segregation across 

all dimensions suggests that common neurodevelopmental abnormalities may be 

important for a wide range of psychiatric symptoms. Taking advantage of CCA’s 

ability to capture common sources of variation in more than one datasets, these 

findings support the idea behind NIMH Research Domain Criteria that specific circuit-

level abnormalities in the brain’s functional network architecture may give rise to a 

diverse psychiatric symptoms (Cuthbert and Insel, 2013). This study illustrates the 

flexible use of CCA to reveal trans-diagnostic, continuous symptom dimensions 

based on whole-brain intrinsic connectivity fingerprints that can cut across existing 

disease boundaries in clinical neuroscience. 
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Fig 4. The analysis pipeline of Xia et al., 2018.  

Xia and colleagues (2018) were interested in how functional connectivity and individual symptoms 

can form linked dimensions of psychopathology and brain networks. The study took a feature 

selection step based on median absolute deviation in preprocessing to first reduce the dimensionality 

of the functional connectivity measures. A sparse variation of CCA was applied to extract modes of 

linked dimensions of psychopathology and functional brain connectivity. Based on covariation-

explained and subsequent permutation testing, the analysis identified four linked dimensions – mood, 

psychosis, fear, and externalizing behavior – each were associated with a unique pattern of abnormal 

brain connectivity. The results suggested that specific circuit-level abnormalities in the brain’s 

functional network architecture may give rise to diverse psychiatric symptoms. 

 

Example 4: Hu and colleagues (2018) demonstrated the successful application 

of sparse multiple CCA (Witten and Tibshirani, 2009) to imaging epigenomics data of 

Schizophrenia. The multivariate nature of CCA is beneficial in extending our 

understanding of complex disease mechanism such as reflected by gene expressions, 

on the one hand, and high-content measurements of the brain, on the other hand. 

Epigenetics can be characterized into heterogeneous biological processes based on 

single nucleotide polymorphisms (SNPs), mRNA sequencing and DNA methylation to 

the primary tissue or organ level changes in the brain. The complex interplay of 

different genetic features affects gene expression on the regulation system of gene 

expression in tissues and biological structure of DNA. Combined with neuroimaging 

data, this exciting new avenue to chart brain-genetics relationships is an expanding 

field of interest in complex brain related diseases. In particular, sparse multiple CCA 

finds correlations across three or more domains of variables hence a good tool for 

exploring genetics and imaging data. This seminal multi-scale investigation proposed 

an adaptively reweighted sparse multiple CCA based on the conventional sparse 

multiple CCA proposed by Witten et al (2009). However, the conventional SMCCA is 

likely to overlook smaller pairwise covariance’s and/or over-considerate of omics 
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data with larger covariances. The referred study therefore proposed an enhanced 

algorithm variant to relieve the unfair combination by introducing weights 

coefficients in an adaptive manner. The adapted SMCCA was applied to 

schizophrenia subjects as an example. The multi-view analysis combined two genetic 

measures, genomic profiles from 9273 DNA methylation sites and genetic profiles 

from 777365 SNPs loci, for joint consideration with brain activity from resting state 

fMRI data across 116 anatomical regions based on the AAL brain atlas (Tzourio-

Mazoyer et al., 2002). The model hyper-parameter was selected with a 5-fold cross 

validation. The total samples were divided into 5 subgroups, and during each fit-

evaluate step, the authors picked up one subgroup as testing sample and use the 

rest 4 subgroups as training sample set. A score quantifying fitting success was 

determined by the difference between the correlation of training sample and that of 

the test sample, which was used in this particular study to evaluate the performance 

of selecting the sparsity parameters. After the sparsity parameters are selected 

based on the data, a bootstrapping stability selection (Meinshausen and Bühlmann, 

2010) approach was used to select a stable subset of variables that most commonly 

occurred among the 200 bootstrapped samples. The frequency cutoff was set to be 

0.6 based on Meinshausen and Bühlmann’s work (2010). The new algorithmic 

methodology revealed consistent brain regions and genetic variants with the past 

studies, such as (i) hippocampus and fusiform in the fMRI data (Kircher and Thienel, 

2005), (ii) SNPs related to brain development including BSX that has influence on 

methylation level (Park et al., 2007), PFTK1, which is relevant to brain degenerative 

diseases gene THR (Shibusawa et al., 2008), and AMIGO2 which is associated with 

hippocampus (Laeremans et al., 2013), and (iii) neuro tube development pathway in 

DNA methylation that is relevant to brain development (Kamburov et al., 2013). The 

overall experiment has readily showcased the elegant data fusion in an multi-omics 

application to epigenetics and brain imaging integration. The ensuing discoveries in 

primary biology can provide important new perspectives on complex diseases, such 

as schizophrenia, with potential applications to other brain-genetics associated. 

4 INTERPRETATION AND LIMITATIONS OF CCA 

The goal of CCA to achieve a common decomposition of multiple matrices 

makes this modeling tool particularly useful for getting a handle on richly sampled 

descriptions of a population with observations that cross multiple levels of 

investigation. However, it remains a matter of ongoing debate whether this analysis 

technique corresponds more closely to a descriptive re-expression of the data (i.e., 

unsupervised modeling) or should be more readily understood as a form of 

predictive reduced-rank regression (i.e., supervised modeling, cf. Bach and Jordan, 

2005; Breiman and Friedman, 1997; Witten et al., 2009). There are legitimate 

arguments in support of both views. A supervised algorithm depends on a 
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designated modeling target to be predicted from an array of input variables, 

whereas an unsupervised algorithm aims to extract coherent patterns in 

observations without associated ground-truth labels that can be used during model 

estimation (Hastie et al., 2001). It is possible that as the dimensionality of one of the 

variable sets declines to approach the single output of most linear-regression-type 

methods, in which case CCA may be more similar to a more supervised modeling 

approach. Conversely, with increasingly large variable sets on both sides, applying 

CCA is perhaps closer in spirit to an unsupervised modeling approach.  

Whether the investigator considers CCA as either a supervised or unsupervised 

method has a consequence for both the interpretation of the results and their choice 

of eligible strategies to validate the model solutions. For example, cross-validation is 

a technique that is commonly used for supervised model evaluation by comparing 

model-derived predictions in unseen data. In an unsupervised setting, however, 

there is typically no unambiguous criterion for optimization (such as low residual 

sum of squares in supervised linear regression) that could be used for model 

selection or model evaluation, such as in cross-validation schemes (Hastie et al., 

2001). However, cross validation is seldom used to buttress unsupervised model 

solutions, such as clustering methods like k-means or matrix decomposition 

techniques like PCA, because in these cases there is often no label upon which to 

evaluate performance (Bzdok, 2017; Hastie et al., 2001; Pereira et al., 2009). In 

situations when a CCA model describes the data without a known quantity to be 

predicted, cross-validation procedures can evaluate a CCA model by projecting data 

from new, previously unseen individuals using the canonical vectors observed from 

the initial sample. If this is not possible, an alternative validation strategy is to 

demonstrate whether the canonical variates of the obtained CCA solution are useful 

in capturing variation in other unseen measurements in the same set of individuals 

(e.g. Wang et al., 2018a). Yet another validation strategy for CCA is to show that the 

solutions it produces are robust when repeating the analysis on random subsets of 

the (already seen) individuals in so-called split-half analyses (Miller et al., 2016; 

Smith et al., 2015). 

From a formal perspective, the optimization objective governing parameter 

estimation during CCA fitting is unusual for a supervised model because it is based 

on Pearson’s correlation metric. The majority of linear-regression-type predictive 

models have an optimization function that describes the degree of deviation from 

the ground-truth labels, including different residual-sum-of-squares loss functions 

(Casella and Berger, 2002; Hastie et al., 2001). Moreover, the symmetry of the 

variable sets in CCA is another reason why CCA may be considered an example of an 

unsupervised analysis tool. We are not aware of any existing supervised predictive 

model that would yield identical sets of model parameter fits after the independent 

and dependent variables have been swapped (if possible). To conclude, the CCA 
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model is a relatively unique approach that shares features of what are classically 

features of both supervised and unsupervised methods. 

Another way to categorize statistical methods is based on their modeling goal: 

estimation, prediction, or inference (Efron and Hastie, 2016; Hastie and Tibshirani, 

1990). Model estimation refers to the process of adjusting randomly initialized 

parameters by fitting them to the data at hand; an intuitive example of these are 

beta parameters in classical linear regression. As model estimation can often be 

performed without applying the model to unseen observations or assessing the 

fundamental trueness of the effects, some authors recently called this modeling 

regime “retrodiction” (McElreath, 2015; Pearl and Mackenzie, 2018). Prediction is 

concerned with maximizing model fit in terms of optimizing its usefulness for 

predicting unseen data in the future. Finally, drawing inferences on model fits has 

frequently been based on statistical null hypothesis testing and accompanying 

methodology (Wasserstein and Lazar, 2016). This form of drawing rigorous 

conclusions from data is especially useful in the classical analysis paradigm where 

the primary goal is to make precise statements about the contribution of single input 

variables. 

In the context of this tripartite view of general modeling goals, CCA most 

naturally qualifies for the estimation category, rather than either primarily a 

predictive or inferential tool. Because of its exploratory nature, CCA can often be 

useful for applications focused on uncovering parsimonious structure in complex 

high-dimensional spaces as alternative descriptions of the observations at hand. 

Identifying the predictive value of individual variables in new data is not an integral 

part of the optimization objective underlying CCA. In fact, CCA applications often do 

not seek to establish statistically significant links between subsets of the variables in 

each set, because the analytic goal is targeted at relevant patterns found across the 

entirety of both variable arrays. Even if p-values are obtained based on non-

parametric null hypothesis testing in the context of CCA, the particular null 

hypothesis at play (commonly: the left and right variable matrix carry no 

corresponding information) is really centered on the overall robustness of the latent 

space correlations, as measured by the canonical correlations between the 

(projected) variable sets, and is not centered on specific single measurements; let 

alone on any particular link between one measurements from the left and one 

measurements from the right variable set. Thus, using CCA to pinpoint specific 

relations should only be done in a cautious manner. Stated in another way, CCA is 

not an optimal choice when the investigator wishes to make strong statements 

about the relevance and relationships of individual variables of the interrogated 

within a variable sets - a property shared with many other pattern-learning tools. 
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4.1 LIMITATIONS OF CCA 

Having considered the relationship between CCA and existing classifications of 

statistical techniques, we next consider some of the challenges that researchers may 

encounter when considering whether CCA is a good choice for a given data-analysis 

problem. We summarize the choices that a researcher is faced with in the form of a 

flowchart (see Fig 5). As with many statistical approaches, the number of 

observations n in relation to the number of variables p is a key aspect when 

considering whether CCA is likely to be useful (Giraud, 2014; Hastie et al., 2015). 

Ordinary CCA can only be expected to yield useful model fits in data with more 

observations than the number of variables of the larger variable set (i.e.,    

         ). Concretely, if the number of individuals included in the analysis is too 

close to the number of brain or behavior or genomics variables, then CCA will 

struggle to approximate the latent dimensions in the population (but see regularized 

CCA variants below). In these circumstances, even if CCA reaches a solution, without 

throwing an error, the derived canonical vectors can be meaningless (Hastie et al., 

2015). More formally, in such degenerate cases, CCA loses its ability to find unique 

identifiable solutions (despite being a non-convex optimization problem) that 

another laboratory with the same data and CCA implementation could also obtain 

(Jordan, 2018). Additionally, as an important note on reproducibility, with increasing 

number of variables in one or both sets, the ensuing canonical correlation often 

tends to increase due to higher degrees of freedom. An importance consequence is 

that the canonical correlations obtained from CCA applications with differently sized 

variables sets cannot be directly used to decide which of the obtained CCA models 

are “better”. The CCA solution is constraint by the sample as well as the number of 

variables. As a cautionary note, the canonical correlation effect sizes obtained from 

the training data limit statements about how the obtained CCA solution at hand 

would perform on future or other data. 

 

In a similar vein, smaller datasets offering measurements from only a few 

dozen individuals or observations may have difficulty in fully profiting from the 

strengths of multivariate procedure such as CCA. Moreover, the ground-truth effects 

in areas like psychology, neuroscience, and genetics are often small, which are hard 

to detect with insufficient sampling of the variability components. One practical 

remedy that can alleviate modeling challenges in small datasets is using data 

reduction methods such as PCA or other data-reduction method for preprocessing 

each variable before applying CCA (e.g. Smith et al., 2015) or to adopt a sparse 

variant of CCA (see below). Reducing the variable sets according to their most 

important directions of linear variation can facilitate the CCA approach and the 

ensuing solution, including canonical variates, can be translated back to and 

interpreted within the original variable space. These considerations illustrate why 
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CCA applications have long been less attractive in the context of many neuroscience 

studies, while its appeal and feasibility are now steadily growing as evermore rich, 

multi-modal, and open datasets become available (Davis et al., 2014). 

A second limitation concerns the scope of the statistical relationships that CCA 

can discover and quantify in the underlying data. As a linear model, classical CCA 

imposes the assumption of additivity on the underlying relationships to unearth 

relevant linked co-variation patterns, thus ignoring more complicated variable-

variable interactions that may exist in the data. CCA can accommodate any metric 

variable without strict dependence on normality. However, Gaussian normality in 

the data is desirable because CCA exactly operates on differences in averages and 

spreads that parameterize this data distribution. Before CCA is applied to the data, it 

is common practice that one evaluates the normality of the variable sets and 

possibly apply data an appropriate transformation, such as z-scoring (variable 

normalization by mean centering to zero and unit-spread scaling to one) or Box-Cox 

transformations (variable normalization involving logarithm and square-root 

operations). Finally, the relationships discovered by CCA solutions have been 

optimized to highlight those variables whose low-dimensional projection is most 

(linearly) coupled with the low-dimensional projection of the other variable set. As 

such, the derived canonical modes provide only one window into which multivariate 

relationships are most important given the presence of the other variable set, rather 

than identifying variable subsets that are important in the dataset per se. 

 

 
 
Fig 5. A flowchart illustrating the choices when considering the application of CCA a dataset.  

This flowchart summarizes some of the decision choices faced by a researcher when considering 

whether to use CCA to analyze her data. Note some of the choices of CCA variation depend on the 

interpretative context (i.e. conventional vs sparse CCA and sparse CCA vs probabilistic CCA). 
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4.2 COMPARISON TO OTHER METHODS AND CCA EXTENSIONS 

CCA is probably the most general statistical approach to distill the relationships 

between two high-dimensional sources of quantitative measurements. In fact, CCA 

can be viewed as a broad class of methods that generalizes many more specialized 

approaches from the general linear model (GLM Gelman and Hill, 2007). In fact, most 

of the linear models commonly used by behavioral scientists for parametric testing 

(including ANOVA, MANOVA, multiple regression, Pearson’s correlation, and t-test) 

can be interpreted as special cases of CCA (Knapp, 1978; Thompson, 2015). Because 

these techniques are closely related, when evaluating CCA it will often be beneficial 

to more deeply understand the opportunities and challenges of similar approaches. 

 

Related methods: 

i) PCA has certain similarities to CCA, although PCA performs unsupervised matrix 

decomposition of one variable set (Shlens, 2014a).  A shared property of PCA and CCA is 

the orthogonality constraint imposed during structure discovery. As such, the set of 

uncovered sources of variation (i.e., modes) are assumed to be uncorrelated with each 

other in both methods. As an important difference, there are PCA formulations that 

minimize the reconstruction error between the original variable set and the back-

projection of each observation from the latent dimensions of variation (Hastie et al., 

2015). CCA instead directly optimizes the correspondence between the latent 

dimensions directly in the embedding space, rather than the reconstruction loss in the 

original variables incurred by the low-rank bottleneck. Moreover, PCA can be used for 

dimensionality reduction as a pre-processing step before CCA (e.g. Smith et al., 2015). 

ii) Analogous to PCA and CCA, independent component analysis (ICA) also extracts hidden 

dimensions of variation in a potentially high-dimensional variable sets. While CCA is 

concerned with revealing multivariate sources of variation based on linear covariation 

structure, ICA can identify more complicated non-linear relationships in data that can 

capture statistical relationships that go beyond differences in averages and spreads 

(Shlens, 2014b). A second aspect that departs from CCA is the fact that latent 

dimensions obtained from ICA are not naturally ordered from highest to lowest 

contribution in reducing the reconstruction error, which needs to be computed in a 

later step. Another difference between CCA and ICA is how both approaches attempt to 

identify solutions featuring a form of uncorrelatedness. As described earlier, CCA’s uses 

the constraint of orthogonality to obtain uncorrelated latent dimensions; in contrast, 

ICA optimizes the independence between the emerging hidden sources of variation. In 

this context independence between two variables implies their uncorrelatedness, but 

the lack of a linear correlation between the two variables does not ensure the lack of a 

nonlinear statistical relation between the two variables. Finally, it is worth mentioning 

that ICA can also be used as a post-processing step to further inspect effects in CCA 

solutions (Miller et al., 2016; Sui et al., 2010). 

iii) Partial least squares (PLS) regression is more similar to CCA than PCA or ICA. This is 

because PLS and CCA can identify latent dimensions of variation across two variable 

sets (McIntosh et al., 1996). A key distinctive feature of PLS is that the optimization goal 
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is to minimize the covariance rather than the linear correlation. As such, the 

relationship between PLS and CCA can be more formally expressed as: 

                                                              .   

While PLS is consistently viewed and used as a supervised method, it is controversial 

whether CCA should counted as part of the supervised or unsupervised family (see 

above)(Hastie et al., 2001). Further, many PLS and CCA implementations are similar in 

the sense that they impose an orthogonality constraint on the hidden sources of 

variation to be discovered. However, the two methods are also different in the 

optimization objective in the following sense: PLS maximizes the variance of the 

projected dimensions with the original variables of the designed response variables. 

Instead, CCA operates only in the embedding spaces of the left and right variable sets to 

maximize the correlation between the emerging low-rank projections, without 

correlation any of the original measurements directly. CCA thus indirectly identifies 

those canonical vectors whose ensuing canonical variates correlate most. In contrast to 

CCA, PLS is scale-variant (by reliance on the covariance), which leads to different results 

after transforming the variables. 

 

As well as considering the alternative methods, there are also a number of important 

extensions to the CCA model, each of which are optimized with respect to specific 

analytic situations. These different model extension are presented at the foot of 

Figure 5. 

 

Model extensions: 

i. Probabilistic CCA is a modification that motivates classical CCA as a generative 

model (Bach and Jordan, 2005; Klami et al., 2013). One advantage of this CCA variant 

is that it has a more principled definition of the variation to be expected in the data 

and so has more opportunity to produce synthetic but plausible observations once 

the model has been fit. Additionally, because probabilistic CCA allows for the 

introduction of prior knowledge into the model specification, an advantageous 

aspect of many Bayesian models, this approach has been shown to yield more 

convincing results in small biomedical datasets which would otherwise be 

challenging to handle using ordinary CCA (e.g. Fujiwara et al., 2009; Huopaniemi et 

al., 2009). 

ii. Sparse CCA (SCCA Witten et al., 2009) is a variant for identifying parsimonious 

sources of variation by encouraging exactly-zero contributions from many variables 

in each variable set. Besides facilitating interpretation of CCA solutions, the imposed 

  -norm penalty term is also effective in scaling CCA applications to higher-

dimensional variable sets, where the number of variables can exceed the number of 

available observations (Hastie et al., 2015). One consequence of the introduction of 

the sparsity constraint is that it can interfere with the orthogonality constraint of 

CCA. In neuroscience applications, the sparser the CCA modes that are generated, 

the more the canonical variates of the different modes can be correlated with one 

another. Additionally, it is important to note that the variation that each mode 

explains will not decrease in order from the first mode onwards as occurs in ordinary 
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CCA. As a side node, other regularization schemes can also be an interesting 

extension to classical CCA. In particular, imposing an   -norm penalty term stabilizes 

CCA estimation in the wide-data setting using variable shrinkage, without the 

variable-selection property of the sparsity-inducing constraint (Witten and Tibshirani, 

2009). 

iii. Multiset CCA (Parra, 2018) or multi-omics data fusion (Hu et al., 2018) expend the 

analysis for more than two domains of data. In the field of neuroimaging, the 

application of multiset CCA is common blind source separation among subjects or 

among multiple imaging features (e.g. fMRI, structural MRI, and EEG). The 

advantage of multiset CCA is the flexibility in addressing variability in each domain of 

data without projecting data into a common space (c.f. ICA). The sparse variation of 

multiset CCA is also a popular choice to overcome the limitations when handling 

high number of variables. Discriminative CCA, or Collaborative Regression (Gross and 

Tibshirani, 2015; Luo et al., 2016), is a form of multiset sparse CCA (Hu et al., 2018; 

Witten and Tibshirani, 2009). In discriminative CCA, one data domain is a vector of 

labels. The labels help identify label/phenotype related cross-data associations in 

the other two domains, hence created a supervised version of CCA. 

iv. Kernel CCA (KCCA; Hardoon et al., 2004) is an extension of CCA designed to capture 

more complicated nonlinear relationships. Kernels are mapping functions that 

implicitly express the variable sets in richer feature spaces, without ever having to 

explicitly compute the mapping, a method known as the ‘kernel trick’ (Hastie et al., 

2001). KCCA first projects the data into this enriched virtual variable space before 

performing CCA in that enriched input space. It is advantageous that KCCA allows for 

the detection of complicated non-linear relationships in the data. The drawback is 

that the interpretation of variable contributions in the original variable space is 

typically more challenging and in certain cases impossible. Further, KCCA is a 

nonparametric method; hence, the quality of the model fit scales poorly with the 

size of the training set. 

v. Deep CCA (DCCA Andrew et al., 2013) is a variant of CCA that capitalizes on recent  

advances in “deep” neural-network algorithms (Jordan and Mitchell, 2015; LeCun et 

al., 2015). A core property of many modern neural network architectures is the 

capacity to learn representations in the data that emerge through multiple nested 

non-linear transformations. By analogy, DCCA simultaneously learns two deep 

neural network mappings of the two variable sets to maximize the correlation of 

their (potentially highly abstract) latent dimensions, which may remain opaque to 

human intuition. 

5 PRACTICAL CONSIDERATIONS 

After these conceptual considerations, we next consider the implementation of 

CCA. The computation of CCA solutions is possible by built-in libraries in MATLAB 

(canocorr), R (cancor or the PMA package), and the Python machine-learning library 

scikit-learn (sklearn.cross_decomposition.CCA). The sparse CCA mentioned in the 

examples is implemented in R package PMA. These code implementations provide 
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comprehensive documentation for how to deploy CCA. For readers interested in 

reading more on detailed technical comparisons and discussions of CCA variants, 

please refer to the texts in Table 1.  

 

Table 1. Further reading on variations of CCA 

Fusion CCA Calhoun, V.D., Sui, J., (2016). Multimodal Fusion of Brain Imaging Data: A Key to 
Finding the Missing Link(s) in Complex Mental Illness. Biol. Psychiatry Cogn. 
Neurosci. Neuroimaging 1, 230-244.  

Correa, N.M., Adali, T., Li, Y., Calhoun, V.D., (2010). Canonical Correlation Analysis 
for Data Fusion and Group Inferences. IEEE Signal Process Mag 27, 39-50.   

Sui, J., Castro, E., He, H., Bridwell, D., Du, Y., Pearlson, G.D., Jiang, T., Calhoun, V.D., 
(2014). Combination of FMRI-SMRI-EEG data improves discrimination of 
schizophrenia patients by ensemble feature selection. Conf. Proc.  ... Annu. Int. 
Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf. 2014, 3889-
3892.  

CCA 
application 
to signal 
processing 

Cordes, D., Jin, M., Curran, T., Nandy, R., (2012). Optimizing the performance of 
local canonical correlation analysis in fMRI using spatial constraints. Hum. Brain 
Mapp. 33, 2611-2626.  

Friman, O., Borga, M., Lundberg, P., Knutsson, H., (2003). Adaptive analysis of fMRI 
data. Neuroimage 19, 837-845.  

Friman, O., Borga, M., Lundberg, P., Knutsson, H., (2002). Detection of neural 
activity in fMRI using maximum correlation modeling. Neuroimage 15, 386-395.  

Friman, O., Cedefamn, J., Lundberg, P., Borga, M., Knutsson, H., (2001). Detection 
of neural activity in functional MRI using canonical correlation analysis. Magn. 
Reson. Med. 45, 323-330.  

Lottman, K.K., White, D.M., Kraguljac, N. V., Reid, M.A., Calhoun, V.D., Catao, F., 
Lahti, A.C., (2018). Four-way multimodal fusion of 7 T imaging data using an 
mCCA+jICA model in first-episode schizophrenia. Hum. Brain Mapp. 1-14.  

Yang, Z., Zhuang, X., Sreenivasan, K., Mishra, V., Curran, T., Byrd, R., Nandy, R., 
Cordes, D., (2018). 3D spatially-adaptive canonical correlation analysis: Local and 
global methods. Neuroimage 169, 240-255.  

Zhuang, X., Yang, Z., Curran, T., Byrd, R., Nandy, R., Cordes, D. (2017). A Family of 
Constrained CCA Models for Detecting Activation Patterns in fMRI. NeuroImage, 
149:63-84. 

Multipe CCA 
/ Multi-
omics data 
fusion 

Correa, N.M., Eichele, T., Adali, T., Li, Y.-O., Calhoun, V.D., (2010). Multi-set 
canonical correlation analysis for the fusion of concurrent single trial ERP and 
functional MRI. Neuroimage 50, 1438-45. doi:10.1016/j.neuroimage.2010.01.062 

Hu, W., Lin, D., Cao, S., Liu, J., Chen, J., Calhoun, V.D., Wang, Y., (2018). Adaptive 
Sparse Multiple Canonical Correlation Analysis With Application to Imaging 
(Epi)Genomics Study of Schizophrenia. IEEE Trans. Biomed. Eng. 65, 390–399. 
https://doi.org/10.1109/TBME.2017.2771483 

https://doi.org/10.1109/TBME.2017.2771483
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CCA vs 
multivariate 
methods 

Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E., (2010). Multivariate data analysis, 
7th editio. Ed.  

Le Floch, É., Guillemot, V., Frouin, V., Pinel, P., Lalanne, C., Trinchera, L., Tenenhaus, 
A., Moreno, A., Zilbovicius, M., Bourgeron, T., Dehaene, S., Thirion, B., Poline, J.-B., 
Duchesnay, É., (2012). Significant correlation between a set of genetic 
polymorphisms and a functional brain network revealed by feature selection and 
sparse Partial Least Squares. Neuroimage 63, 11-24. 
doi:10.1016/j.neuroimage.2012.06.061 

Liu, J., Calhoun, V.D., (2014). A review of multivariate analyses in imaging genetics. 
Front. Neuroinform. 8, 29. doi:10.3389/fninf.2014.00029 

Parra, L.C., (2018). Multiset Canonical Correlation Analysis simply explained. Arxiv. 

Pituch, K.A., Stevens, J.P., (2015). Applied multivariate statistics for the social 
sciences: Analyses with SAS and IBM’s SPSS, Routledge. 
https://doi.org/10.1017/CBO9781107415324.004 

Sui, J., Adali, T., Yu, Q., Chen, J., Calhoun, V.D., (Sui et al., 2012). A review of 
multivariate methods for multimodal fusion of brain imaging data. J. Neurosci. 
Methods 204, 68-81. doi:10.1016/j.jneumeth.2011.10.031 

CCA vs PLS Grellmann, C., Bitzer, S., Neumann, J., Westlye, L.T., Andreassen, O.A., Villringer, A., 
Horstmann, A., (2015). Comparison of variants of canonical correlation analysis and 
partial least squares for combined analysis of MRI and genetic data. Neuroimage 
107, 289-310. doi:10.1016/j.neuroimage.2014.12.025 

Sun, L., Ji, S., Yu, S., Ye, J., (2009). On the equivalence between canonical 
correlation analysis and orthonormalized partial least squares. Proc. 21st Int. jont 
Conf. Artifical Intell. 

Uurtio, V., Monteiro, J.M., Kandola, J., Shawe-Taylor, J., Fernandez-Reyes, D., 
Rousu, J., (2017). A Tutorial on Canonical Correlation Methods. ACM Comput. Surv. 
50, 1-33. doi:10.1145/3136624 

 

5.1 PREPROCESSING 

Some minimal data preprocessing is usually required as for most machine-

learning methods. CCA is scale-invariant in that standardizing the data should not 

change the resulting canonical correlations. This property is inherited from Pearson’s 

correlation defined by the degree of simultaneous unit change between two 

variables, with implicit standardization of the data. Nevertheless, z-scoring of each 

variable of the measurement sets is still recommended before performing CCA to 

facilitate the model estimation process and to enhance interpretability. To avoid 

outliers skewing CCA  estimation, it is recommended that one applies outlier 

detection and other common data-cleaning techniques (Gelman and Hill, 2007). 

Several readily applicable heuristics exist to identify unlikely variable values, such as 
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replacing extreme values with 5th and 95th percentiles of the respective input 

dimension, a statistical transformation known as ‘winsorizing’. Missing data is a 

common occurrence in large dataset. It is recommended to exclude observations 

with too many missing variables (e.g. those missing a whole domain of a 

questionnaire). Alternatively, missing variables can be “filled in” with mean or 

median when the proportion of missing data is small, or more sophisticated data-

imputation techniques. 

Besides unwarranted extreme and missing values, it is often necessary to 

account for potential nuisance influences on the variable sets. Deconfounding 

procedures are a preprocessing step in many neuroimaging data analysis settings to 

reduce the risk of finding non-meaningful modes of variation (such as motion). The 

same procedures that are commonly applied prior to the use of linear-regression 

analyses can also be useful in the context of CCA. Note that deconfounding is 

typically performed as an independent preceding step because the CCA model itself 

has no explicit noise component. Deconfounding is often carried by creating a 

regression model that captures the variation in the original data that can be 

explained by the confounder. The residuals of such regression modeling will be the 

new “cleaned” data with potential confound information removed. In neuroimaging, 

for example, head motion, age, sex, and total brain volume have frequently been 

considered unwanted sources of influence in many analysis contexts (Baum et al., 

2018; Ciric et al., 2017; Kernbach et al., 2018; Miller et al., 2016; Smith et al., 2015). 

While some previous studies have submit one variable set to a nuisance-removal 

procedure, in the majority of the analysis scenarios the identical deconfounding step 

should probably be applied on each of the variable sets. 

5.2 DATA REDUCTION 

When the number of variables exceeds the number of samples, 

dimensionality-reduction techniques can provide useful data preprocessing before 

performing CCA. The main techniques include features selection based on statistical 

dispersion, such as mean or median absolute deviation, and matrix factorizing 

methods, such as PCA and ICA. The application of PCA to compresses the number of 

variables in each matrix to a smaller set of most explanatory dimension prior to 

performing CCA can allow this technique to be applied to smaller, computationally 

more feasible set of variables (besides a potentially beneficial denoising effect). To 

interpret the CCA solutions in the original data, some authors have related the 

canonical variates with the original data to recover the relevant variate relationships 

with the original variables as captured by each CCA mode. A potential limitation of 

performing the PCA first before CCA is that the assumptions implicit in the PCA 

application carry over into the CCA solution. 
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Another attractive analysis strategy is to post-process the CCA solution via ICA 

(Miller et al., 2016; Sui et al., 2010). Such an analysis tactic can overcome some 

issues of projecting the PCA-compressed data back into the original variable space. 

After CCA has been fitted, the ensuing canonical variates of both the left and right 

side can be concatenated across participants into one array (number of observations 

x 2 x number of modes). ICA is then applied to the aggregated canonical mode 

expressions to recover the independent sources of the variation between 

observations expressed in the embedding space. While incurring additional 

computational load, this approach can be advantageous because CCA can only 

disentangle latent directions of variation in the data up to a random rotation (Miller 

et al., 2016, p. 18). That is, orthogonal rotations between the obtained modes could 

have given an equivalently valid CCA solution (a weakness shared with PCA). The 

latent dimensions described by the obtained canonical vectors and canonical variate 

embeddings can be further disambiguated by the post-hoc ICA step (Sui et al., 2010, 

p. 20). Going beyond discovery of uncorrelated sources of variation, the ICA post-

processing is especially useful in the detection of independent components that 

contribute to the common solution extracted from the two variable sets. The 

CCA+ICA hybrid approach could zoom in more on relationships between the two 

original variable sets in some cases. Yet, additional application of PCA preprocessing 

could influence the outcome of the CCA+ICA approach (Sui et al., 2010). 

5.3 MODEL SELECTION 

CCA allows multiple modes to be calculated from the observed data leading to 

the obvious question of how to choose the optimal number of latent sources of 

variation to be extracted. While various strategies have been proposed, currently 

there is little consensus so far. The ambiguity regarding how to choose the number 

of CCA modes is closely related to issues of choosing the number of clusters in k-

means and other clustering procedures as well as choosing the number of 

components in PCA, ICA, and other matrix decomposition techniques (Eickhoff et al., 

2015). 

To select a useful number of modes, several quality metrics can be used for 

quantifying the variation that can be explained with respect to a notion of the 

optimal sources of variation, without a clear default. Since the canonical variates 

represent the compressed (i.e., projected) information of the original data, the 

canonical modes should bear relation to the original data. Other alternatives include 

assessing the decrease in that reconstruction error metric with the canonical variates 

of one domain to predict the original variables with increasing number of modes 

(Wang et al., 2018b). A drop in the overall data variation captured after adding yet 

another mode for modeling k+1 sources of variation indicates a candidate cut-off at 

k. An important overarching property in this context is that because the modes are 
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constrained by their orthogonality, computing classical CCA with 5 or 50 modes 

produces the same first 5 canonical modes. 

Another tactic relies on determining how many of the extracted modes from 

CCA are statistically robust as indicated by non-parametric permutation tests 

(Kernbach et al., 2018; e.g. Smith et al., 2015). An empirical distribution of canonical 

correlation of each mode can be computed under the null hypothesis that there is no 

coherent relation between the left and right variable set – in which case the 

canonical correlation should fluctuate around chance level. The permutation 

procedure proceeds by random shuffling of the rows or columns of the two variable 

sets to break any existing relationships between the ensuing low-rank projections of 

the two variable sets across observations (Efron, 2012; Nichols and Holmes, 2002). If 

the relation between the two variable sets is random, all derived modes should be 

meaningless. The first mode can be viewed as the strictest measure of null 

hypothesis, because it extracts the highest direction of variation explained in a null 

sample (e.g. Smith et al., 2015). Following many iterations of this process, the 

extracted perturbed mode from the permutation datasets serve to compute the 

chance level of associations between the two variable sets. Each canonical mode 

whose original canonical correlation exceeds the 95% level (significance at p < 0.05) 

or 99.9% level (significance at p < 0.001) can be certified as robust under the null 

hypothesis of absent linkage between the left and right variable set. If the 

investigator wishes to add an explicit correction for multiple comparisons, the p-

value threshold can for instance be divided by the number of modes (i.e., 

Bonferroni's method) or false-discovery rate (FDR) can be used to reduce possible 

type I errors. This approach hence yields one p-value for each of the originally 

obtained CCA modes. Again, please note that no statistical null hypothesis testing is 

performed on any individual variable in this way, illustrating CCA’s native inability to 

make targeted statements about specific isolated input variables. 

Finally, a hold-out framework has been proposed to determine the 

generalizability and statistical significance of discovered CCA modes in sufficiently 

large samples (Ferreira et al., 2018; Monteiro et al., 2016). This analysis scheme 

starts by randomly separating the data into a training set and a holdout set. A CCA 

model is then fitted based on the training set. The data from held-out individuals is 

then projected to the previously obtained CCA embedding (i.e., using the 

precomputed canonical vectors to obtain new embeddings) to generate 

independent hold-out correlations. Then, a permutation test is performed on the 

test data against the left-out correlations. This validation framework can be used to 

explicitly measure the pattern-generalization performance and obtain a p-value for 

the mode. A possible limitation lies in the need to have a reasonably sized hold-out 

set. 

Finally, to explicitly evaluate the contribution of each individual input variable to 

the overall modelling solution, a sensitivity analysis  has been performed for CCA 
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(Kernbach et al., 2018). The impact of each variable was isolated by selectively 

removing all information from a given input variable, including for instance the 

functional connectivity strengths derived from that same brain region, and 

reiterating the CCA procedure based on the reduced data of one variable set and the 

original data from the other variable set. This analysis strategy issued a perturbed set 

of canonical variates under the assumption that, one-by-one, a particular input 

dimension may not have been important to obtain the original canonical modes. The 

degree of alteration in the canonical correlations was quantified by computing 

Pearson’s correlation coefficient between the original and perturbed canonical 

variates. In addition to these point estimates after variable deletion, the induced 

statistical uncertainty was quantified by carrying out bootstrapping analysis. “Shaken 

up” bootstrap datasets were generated from the original participant sample by 

randomly drawing individuals with replacement. In each of these alternative 

datasets, the perturbed CCA was fitted and evaluated in identical fashion. This 

robustness assessment provided population-level uncertainty intervals and hence 

enabled extrapolation of statements on variable importance on data we would 

observe in the future. High correlation between the original canonical variates and 

the canonical variates obtained without the contribution of a specific variable 

indicated that the variable in question was not vital to estimating the original CCA 

correspondence between the two data modalities. This is because removing the 

given variable (and any related information) incurred no dramatic change of the 

original CCA performance metrics. Instead, low correlations pointed towards 

variables that were of special relevance for deriving the co-variation between the 

two levels of observations. This generally applicable variable-deletion scheme can 

determine interpretable contributions of single input variables that play 

disproportionately important roles in highly multivariate analysis tools such as CCA. 

 

6 CODE AVAILABILITY 

MATLAB, Python, and R code of several published CCA project can be found on 
several different repositories. Analysis by Smith and colleagues (2015) is available 
providing details of the CCA implementation in MATLAB and the permutation test 
(https://www.fmrib.ox.ac.uk/datasets/HCP-CCA/). The Python code of nested cross-
validation scheme of Wang and colleague (2018a) is available on GitHub 
(https://github.com/htwangtw/patterns-of-thought) along with pre-modeling data 
scaling. Xia and colleagues (2018) made their R codes on grid search parameter 
selection and permutation test procedures on GitHub 
(https://github.com/cedricx/sCCA/tree/master/sCCA/code/final). We provide a 
reusable Conda environment file containing the key Python and R libraries for CCA 
and the model selection for users to explore the methods 
(https://gist.github.com/htwangtw/492ef08a07b0995049bc76a797dd18bf). 
 

https://www.fmrib.ox.ac.uk/datasets/HCP-CCA/
https://github.com/htwangtw/patterns-of-thought
https://github.com/cedricx/sCCA/tree/master/sCCA/code/final
https://gist.github.com/htwangtw/492ef08a07b0995049bc76a797dd18bf
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7 CONCLUSIONS 

In contemporary biomedical research, complex multivariate relationships are 

expected among body, brain, cognition, and genes. These together are likely to 

provide insight into the cause of diseases and other societal problems. CCA provides 

a simple, effective method for describing the correspondences between two variable 

sets that can be instrumental in describing complex relationships in neuroimaging. 

The appeal of CCA is likely to increase as the detail and quality of multi-modal 

datasets in neuroscience and other biomedical sciences increases. CCA has already 

started to be useful in two of the currently largest brain-imaging collections - the 

Human Connectome Project and UK Biobank. In many of these applications, CCA 

serves as the centerpiece of the analysis workflow. Given its versatility, CCA has the 

capacity to become a core building block of more elaborated data analysis pipelines 

(Calhoun and Sui, 2016; Correa et al., 2010; Liu and Calhoun, 2014), instead of being 

the goal of the analysis itself (Smith et al., 2015). In this way, we hope the present 

primer will help encourage scientists to employ CCA, when appropriate, to quantify 

the multi-form and multi-faceted relationships that underscore many important 

phenomena of the human condition. 
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