Joel Jung

Patrick Boissonade

VVS: Versatile View Synthesizer for 6-DoF Immersive Video

Immersive video services require the transmission of multiple views captured by a convergent camera array and/or by 360 omni-directional cameras. Unfortunately, to enable a six degrees of freedom (6-Dof) navigation in a scene, displaying captured views is not sufficient. A significant amount of intermediate views have to be synthesized, to render the pixels that perfectly match the motion of the user. This is typically achieved by depth image based rendering. This paper presents the Versatile View Synthesizer, adopted as the reference MPEG-I Visual algorithm for 6-DoF activity. Following strict common test conditions, experimental results report a significant 250% BDrate saving, corresponding to a 1.4dB improvement compared to the previous VSRS4.2 reference algorithm. Those objective results are confirmed by MS-SSIM and VMAF metrics, and by subjective evaluations applied on pre-defined navigation paths.

I. INTRODUCTION

2018 has seen the emergence of several omni-directional capturing devices intended to provide a new way of consuming videos. Those so called "360 cameras", are made of several 2D video cameras, gathered on a spherical rig. The availability of such new panoramic content has created a "buzz" around 360 immersive video, and new kind of display called "Head Mounted Displays" have appeared on the market.

Unfortunately, as of today, the quality of experience when watching natural (not computer generated) 360 content is far from acceptable. Some of the reasons are inherent to the current displays, and are expected to be solved rapidly, such as the resolution. Some others, however, are challenges where new algorithmic designs are mandatory to achieve a real immersive experience, and most importantly to reduce sickness issues [START_REF] Oman | Motion sickness: a synthesis and evaluation of the sensory conflict theory[END_REF]. For instance, the Omni-directional Media Format (OMAF v1) standard, which addresses storage and transmission of omni-directional audio and video, does not at all deal with motion parallax. When the user is moving, the displayed view does not match the expectation of the brain, which causes motion sickness, and possible headache.

Let us assume we define the light-field as the "light flowing in every direction through every point in space" [START_REF] Adelson | The plenoptic function and the elements of early visioncomputational models of visual proc[END_REF]. It is agreed that if a given display manages to render the full lightfield, any viewpoint corresponding to any motion of the user is available. Unfortunately, when a natural scene is captured by omni-directional cameras, by convergent camera arrays, or even by lenslet cameras, only a sub-sampled version of the light-field is indeed captured. Today's challenge consists in properly coding and transmitting this sub-sampled light-field, and to recover as much as possible the full light-field, i.e. the information lost by the capture. The latter process is generally called "view synthesis" and generates any viewpoint from several decoded viewpoints, when the user seamlessly moves with six degrees of freedom (6-DoF), i.e. applies any natural motion, typically and inevitably made of three rotations and three translations. This is the challenge raised by the MPEG-I Visual group: depth map are considered to provide some motion parallax in a limited volume, typically corresponding to a seated user, moving his head. A first standard will be released early 2020, called Metadata for Immersive Video (MIV). It is however not clear whether this new standard is an appropriate starting basis for next generation 6-DoF activities. This is why MPEG-I Visual maintains another anchor, based on MV-HEVC. In particular, at the 124 th MPEG meeting (Oct. 2018), a new view synthesizer algorithm, called Versatile View Synthesizer (VVS) [START_REF] Boissonade | mpeg-i visual] view synthesis algorithm for windowed-6dof[END_REF], has been proposed and adopted for this MV-HEVC anchor as a replacement of the previous 6-DoF reference view synthesis algorithm, known as the View Synthesis Reference Software (VSRS). Under extensive common test conditions (CTCs) defined by the standardization body, VVS outperforms VSRS by 1.4dB, which corresponds to a 250% BD-rate saving (using the usual Bjontegaard metric [START_REF] Bjontegaard | Calculation of average PSNR differences between RDcurves[END_REF]), when considering all sequences of the test-set. Similarly, the MS-SSIM and the VMAF metrics are increased by 0.62 and 15.93 respectively.

After presenting the state of the art of view synthesis in the 6-DoF context in section §II, this paper presents in section §III the advantages and originality of the proposed method compared to classical Depth Image Based Rendering (DIBR) methods, before describing VVS in section §IV. Experimental results, including both objective and subjective analysis are reported and analyzed in section §V, including insights on the complexity. Finally, section §VI concludes the paper.

II. STATE OF THE ART

View synthesis generally uses texture and depth maps of at least two reference views to produce a synthesized intermediate view. This category of methods is largely addressed in the literature: DIBR usually maps a texture pixel in a reference view to a pixel in an intermediate view, by considering the depth information of the pixel. The problem of recovering an information which is occluded in the original views and required in the intermediate view has gathered a lot of attention. For instance, in [START_REF] Koppel | Temporally consistent handling of disocclusions with texture synthesis for depth-image-based rendering[END_REF], a temporally and spatially consistent "hole" filling method is presented, while a Graph Fourier Transform is proposed in [START_REF] Mao | Image interpolation for DIBR viewsynthesis using graph fourier transform[END_REF] to expand the "hole" filling in the synthesized view. Another depth-based inpainting approach relying on coherent tensor based-color and geometry structure propagation is described in [START_REF] Gautier | Depth-based image completion for view synthesis[END_REF]. Speedup of the synthesis is also addressed, for instance in [START_REF] Wegner | Fast view synthesis using platelet-based depth representation[END_REF],

where depth data is modeled as planes, which simplifies the block transformation during the synthesis. All those papers aim at improving a specific part of a typical view synthesis algorithm. Very recently, in [START_REF] Ceulemans | Robust multiview synthesis for wide-baseline camera arrays[END_REF], a complete and original view synthesizer has been proposed. It is based on point-cloud filtering, de-ghosting and depth map filtering, depth-aware Markov Random Fields based dis-occlusion inpainting, and color corrected multi-reference blending.

Several CNN approaches were recently proposed, such as [START_REF] Flynn | Deep stereo: Learning to predict new views from the worlds imagery[END_REF] and [START_REF] Kalantari | Learning-based view synthesis for light field cameras[END_REF]. In the latter, a machine learning approach is used to synthesize new views from a sparse set of input views. The process is split into disparity and color estimation components, with two sequential CNN to model these two components and train both networks simultaneously by minimizing the error between the synthesized and ground truth images. So far, this category of methods lacks robustness and performance varies too much from one content to another, which prevents from using such methods in the applicative immersive video context addressed in this paper.

A remarkable view synthesis approach is proposed in [START_REF] Penner | Soft 3d reconstruction for view synthesis[END_REF]: it uses a soft 3D reconstruction. It preserves depth uncertainty through each stage of 3D reconstruction and rendering. It provides a soft model of the scene geometry that includes continuity across synthesized views and robustness to depth uncertainty. The algorithm is based entirely on O(1) filters, making it conducive to acceleration. It is compared with recent classical and learning-based algorithms. It is robust and works significantly better than the CNN approach proposed in [START_REF] Kalantari | Learning-based view synthesis for light field cameras[END_REF] and is much faster using six CPU cores than the CNN approach [START_REF] Kalantari | Learning-based view synthesis for light field cameras[END_REF] using a GPU. These papers propose smart, original, and efficient approaches for depth image based rendering. In the standardization community, two other software are commonly used, as described in II-A and II-B.

A. VSRS software

The View Synthesis Reference Software (VSRS) was initiated by Nagoya University, and developed in MPEG over the ten last years. One of the first related document is [START_REF] Tanimoto | Experiment of view synthesis using multi-view depth[END_REF], and the software has been improved [START_REF] Wegner | Enhanced view synthesis reference software (vsrs) for free-viewpoint television[END_REF] on a regular basis until recent contributions in 2017 [START_REF] Senoh | View synthesis reference software (vsrs) 4.2 with improved inpainting and hole filing[END_REF]. It takes advantage of forward depth projection, by computing an homography between the reference view and the intermediate view, gaps filling to remove some artifacts resulting from the forward warping, using a set of median filters, and depth merging. Then the reference views are back projected, and merged. A "hole" filling method is applied before filtering (denoising).

It is consequently a major algorithm in this field: VSRS is a very valuable and useful tool for view synthesis research studies. Unfortunately, it comes with a set of major drawbacks [START_REF] Boissonade | mpeg-i visual] tool by tool comparison of vsrs, vsrs-1d, and htm renderer[END_REF]. It is limited to two reference input views, and performs poorly when non horizontal content are considered. While it is more robust than most CNN approaches, it remains a weakness compared to other traditional DIBR methods: the performance of some of its tools can vary from one test sequence to another, and even from one view to another.

B. RVS software

The Reference View Synthesizer (RVS) takes an unlimited number of reference views as an input. It has been initially proposed by the University of Brussels in MPEG-I Visual, and later improved by Philips Research. The method is original, and significantly differs from VSRS, introducing some smart techniques. It is described in [START_REF] Fachada | Depth image based view synthesis wih multiple reference views for virtual reality[END_REF]: a first step consists in warping the reference views using a computed disparity. The references are partitioned in triangles that are warped using computed translation and rotation, and filled with tri-linear interpolation. In a second step, the synthesized views from each references are blended, by comparing the quality of the synthesized pixels. Finally a step of inpainting is applied on the blended view, to fill the dis-occlusions. [START_REF] Fachada | Depth image based view synthesis wih multiple reference views for virtual reality[END_REF] compares RVS to VSRS, claiming 2.5dB PSNR improvements. Unfortunately, those results are obtained without following the CTCs (see section V-A) defined by the MPEG-I Visual group: the method is tested on only one sequence (UnicornA) and do not synthesize the intermediate view from decoded reference views, so it does not consider possible coding artifacts in the reference texture and depth views. A subjective evaluation, using MPEG-I Visual navigation paths, is also missing.

III. ORIGINALITY AND ADVANTAGES OF THE PROPOSED

METHOD

In 2009, [START_REF] Klimaszewski | Distortions of synthesized views caused by compression of views and depth maps[END_REF] was the first paper to report that future 3D video transmission systems would use compression of both multi-view video and depth maps, and to address the problem of quality of views synthesized from transmitted views. Unfortunately, most, if not all of the view synthesis algorithms developed in the meantime, do not take into consideration that the reference texture views and the reference depth views are encoded, and consequently contain typical coding artifacts. These coding artifacts make the task of a synthesis algorithm even more difficult. VVS has been designed from scratch, considering merging the best of existing technologies, and additionally innovating where it was needed. VVS includes several original ideas that are explained and justified in this section. As a first advantage, VVS design is carefully studied to specifically handle input reference views impaired by compression artifacts. A second advantage is that VVS is designed to enhance visual quality, even at the price of lower objective quality.

Step 1, described in section IV-A, sorts the reference views. Reference sorting is frequent in view synthesis algorithms, yet it generally considers the camera parameters to get the positions of the different cameras. This creates several difficulties, as for instance when cameras are close to the scene, but have different orientations. VVS reference sorting method is based on an original metric that represents the quality of the warping between the position to synthesize and the position of the reference view, by analyzing the impact of a virtual shift applied on the depth. Sorting the reference views helps the merging process (section IV-E) when the maximum number of input references to blend is lower than the total number of reference views. As another distinguishable feature, it makes the synthesis result independent from the input order of the references. This important property is not met by most view synthesizer algorithms.

Step 2, described in section IV-B, applies a classical bitdepth re-sampling of the depth maps. It is particularly useful to increase the precision of the backward texture warping, described in section IV-F. In addition, a classical up-sampling of the texture is performed to increase the precision, while in contrary the depth maps are not up-sampled, to preserve edge precision and to avoid foreground/background issues after reprojection.

When synthesizing intermediate viewpoints, handling properly the boundaries between foreground objects and the background is of the highest importance. VVS applies in step 3 an original process, described in section IV-C, to determine the areas where there is a probability to have critical issues between foreground and background after the warping step. For that purpose, binary maps are computed, that represent pixels considered as "safe" or "unsafe" to be warped on the intermediate view position. The information helps especially for natural images with limited depth of field, to remove areas from the background that could contain foreground information. Figure 3 gives an example of such a map for the reference at position x 1 y 2 used to synthesize the intermediate position x 2 y 2 of the Kitchen sequence.

Step 4, described in section IV-D, which consists in warping the depth maps on the position of the view to synthesize, is a classical warping process where VVS does not innovate. It just pays attention to always give priority to the foreground, when two different depth values are competing. Still, in contrary to VSRS for instance, it considers "triangles" instead of "points" warping first because it generates less "holes" in the picture, especially in a critical situation were the content has been captured by an arc oriented rig of cameras, and second because it is less sensitive to the compression artifacts present in the decoded depth maps. After this warping process, a filtering of the "hole" boundaries is additionally applied, to provide smooth transitions between "holes" and warped positions and avoid peak values generally created by triangle warping methods. This differs for instance from RVS which applies a weighted merge based on projection quality.

Step 5, described in section IV-E, differs from what is traditionally proposed in the literature. Depth maps are improved for each reference view, thanks to a conditional depth merging process that consists in modifying some pixels of each depth maps, by weighted averaging of depth values of other references, under predefined conditions. The novelty comes from the weights, that are based on the confidence that the current depth value is not too sensitive to a little variation, to prevent from modifying sensitive depth values, and on the reliability of the depth value itself. The depth merging step includes a projected confidence level determination that is specifically added to handle impairment, such as noise resulting from the capture, or ringing and blocking artifacts resulting from the compression.

The backward warping, step 6, described in section IV-F, is also a classical process, as well as the step 7, described in section IV-G, that generates the projected texture and depth. This process, however, eliminates the references that are too far from the foreground, given that it can happen that from a single position one reference view sees a foreground object while another one sees a background object.

The inpainting technique, step 8, described in section IV-H, that fills the missing pixels in the texture, is inspired by [START_REF] Criminisi | Region filling and object removal by exemplar-based image inpainting[END_REF] for its two first parts. The first one, the picture boundary inpainting, is a required step to handle reference views arrangement, or some specific motions like the step-out, for which picture boundaries can be missing. The second one, the template matching inpainting, modifies the well-known inpainting method: [START_REF] Criminisi | Region filling and object removal by exemplar-based image inpainting[END_REF] was proposed for image restoration: it propagates a texture inside an empty area. In the current context, the inpainting needs to be applied in areas between foreground objects and background. As a consequence, VVS inpainting is fully driven by the depth map, and not only textures but also flat areas are propagated. For the final "hole" filling part, the proposed inpainting approach is similar to VSRS4.2 inpainting.

The temporal blending, step 9, described in section IV-I, as well as the final filtering, step 10, described in section IV-J, are also not present in most of the synthesis algorithms, in particular RVS, VSRS and [START_REF] Penner | Soft 3d reconstruction for view synthesis[END_REF]. First, the temporal processing makes the synthesized sequence temporally more consistent. Designing view synthesis without introducing temporal consistency has the advantage to boost spatial objective metrics, but it has limited sense from a practical point of view. Second, the spatial filtering cleans the borders of the objects. For instance, it is observed in several competing algorithms, that sharp edges are produced on objects boundaries. This creates a "cartoon" effect, which is highly undesirable when the objects are located at a different depth, in the scene. With VVS, those selected areas are spatially filtered, to improve the subjective quality. This step however drastically reduces the objective quality.

IV. DESCRIPTION OF VVS

The Versatile View Synthesizer has initially been proposed in a contribution [START_REF] Boissonade | mpeg-i visual] view synthesis algorithm for windowed-6dof[END_REF] to the MPEG-I Visual group, in the 6-DoF context. It can handle equally ERP (panoramic), semi-ERP, or perspective content. In addition, it is compliant with several YUV formats and bit depths from 8 to 16 bits for depth and texture. A list of N reference views R i , i = 1 . . . N , is considered as an input of VVS. Each reference R i of the view i includes a texture T i , a depth map D i and camera parameters C i . VVS additionally requires the camera parameters C V of the view V to be synthesized. In the 6-DoF context, VVS is typically used on decoded views, as shown in figure 1. The general block diagram of VVS is provided in figure 2: it includes ten steps that are described in the next sections.

A. Step 1: reference view sorting

The depth maps D i with associated camera parameters C i , and the camera parameters C V are used to create a sorted list R i of reference views, so that the references close to V are at the beginning of the list. VVS reference sorting method computes a metric, given by eq. (1), that indicates the quality of the warping. The metric ∆D i corresponds to the minimum variation p of a depth value that can yield to a significant displacement ∆ p in the texture, after projection, when using a new depth value D i (x, y)+p instead of D i (x, y). ∆D i is computed by iterations on p, with Θ = 4 pixels (set empirically).

∆D i = min N p=1 {p}/(∆ p > Θ) (1)
B.

Step 2: pre-processing

The following pre-processing steps are applied:

• The original depth maps D i of the reference views are re-sampled to max(InternalDepthBitDepth + 4, 16) bits, where InternalDepthBitDepth is the original bitdepth. • Z near and Z f ar values are computed for the intermediate view position V to be synthesized, to handle the situations where they differ from one view to another. Z near = min{Z i near } i=1..N and Z f ar = max{Z i f ar } i=1..N , where Z i near and Z i f ar are the distances of the closest and farthest object in the reference i, respectively.

• The textures of the reference views T i are up-sampled at quarter-pel resolution using the H.264/AVC up-sampling filter.

C. Step 3: selection of safe warping areas

The depth maps D i are used to compute binary maps S i , representing "safe" (S i = 0) or "unsafe" (S i = 1) pixels to warp. For each reference i, the construction of the map S i includes the following steps:

• A threshold ∆D i saf e is computed the same way as ∆D i in section IV-A, with similar Θ value.

• A spatial gradient on eight different angles is computed on the depth map D i to provide amplitude and direction for each pixel, and thresholded by ∆D i saf e . The resulting map is filtered in the gradient direction to conserve the most salient points.

• S i is built by considering a 3x3 windows W 3 centered on a pixel (x, y):

S i (x, y) = 1 when D i (x, y) > ∆D i saf e , ∀(x, y) ∈ W 3 , S i (x, y) = 0 otherwise.
In addition to the S i computation, a pruning of the reference views is applied. If a reference has a ratio of "unsafe" pixels is greater than 20% and if at least two reference views are already in the list, then this reference is not added in the list.

D. Step 4: depth warping

The depth maps D i , along with the camera parameters C i , and the maps S i are used to provide depth maps D i V warped on the intermediate view position V . In a first pass, a mapping between the coordinates of the reference view position (x, y) at depth d to the position (x V , y V) of the view is performed with classical 4x4 projection matrices. In a second pass, a projection based on triangles warping is applied. For each pixel position, two triangles ABC and ACD are projected (ABCD is a square). For the triangle ABC the following applies (a similar process applies for ACD): when S i (x B , y B) = 1 or S i (x C , y C) = 1, i.e. when the depth at position B or position C is considered as "unsafe", the triangle ABC is not projected. When S i (x A , y A) = 0, i.e. when the depth at position A is considered as "safe", only A is projected. When S i (x A , y A) = 0, S i (x B , y B) = 0, and S i (x C , y C) = 0, the triangle ABC is projected on the intermediate view position

V as A V B V C V .
The projection itself includes the following steps: for each pixel (x, y) inside the triangle

A V B V C V , weights w A V , w B V , and w C V (w A V +w B V +w C V = 1
) are computed according to the distance between (x, y) and A V , B V and C V respectively. A depth value d new (x, y) is interpolated using the depth values at positions A, B, C and the weights w A V , w B V , and w C V . If no depth value D i (x, y) is available for this pixel (from the projection of a previous pixel), D i w (x, y) is set to d new (x, y), otherwise:

D i w (x, y) = max{d new (x, y), D i (x, y)} (2)
After the projection, the boundaries between "holes" and warped positions can be noisy. A "hole" boundary filtering of the depth map is applied. For each position (x, y), if the number of pixels in a 3x3 window around (x, y), that have no depth value, is above a threshold Θ hole1 = 4, the pixel is considered as a "hole". If the number of "holes" in a 5x5 window W 5 around (x, y) is below a threshold Θ hole2 = 10, the depth is set equal to the median of the depth values inside W 5 . The availability of a depth value D i V at a given position for a given reference is stored in a binary map O i . It means that a valid projection of the reference i exists for V at this position.

E. Step 5: conditional depth merging

The warped depth maps D i V projected on the intermediate view camera position V and the binary maps O i are used to produce depth maps D i V + with increased quality for each reference view. The conditional depth merging consists in modifying some pixels of the depth maps, by weighted averaging of depth values of other references, under predefined conditions described below. The weight is based on the confidence that the current depth value is not too sensitive to a little variation, and the conditions are based on the reliability of the depth value. a) Confidence level computation: a confidence level C i is computed for each reference, in order to give more importance to the reference close to V . The process is similar to the one described in section IV-A, eq. 1. ∆D i represents the accepted error level on the depth, for a given position. From experimental observation, it is considered that a shift of Θ = 3 pixels introduces only blur artifacts, that are not too annoying. C i is set to (∆D i) 2 in order to give more importance to the closest view.

b) Reliability of the depth: a binary map F i indicates for each pixel of each reference view, if the depth value is reliable or not. For each reference, at each pixel, the minimum and the maximum depth values are computed to know where the closest and farthest objects are. Only the references that have a depth value (O i (x, y) = 1) are considered:

D max (x, y) = max i=1..N (O i (x, y) * D i V (x, y)) (3)
D min (x, y) = min i=1..N (O i (x, y) * D i V (x, y)) (4)
The F i map is defined by

F i (x, y) = ((D max (x, y) - D min (x, y)) < Θ merge).
The threshold Θ merge is refined using the projected inter-view variance σ 2 :

σ 2 = H-1 y=0 W -1 x=0 N i=1 (D i V (x, y) - 1 N N i=1 D i V (x, y)) 2 (5)
where H and W are the height and width of the view. This variation on all pixels of the view, between the current depth value and the average depth value on all references is a relevant indicator of noisy depth maps. When σ is high, it is required to merge depth significantly, to handle nonreliable depth maps, at the risk of introducing some blurriness. This is why the threshold Θ merge is computed:

Θ merge = max(2 * √ σ, 1 N N i=1 ∆D i).
The depth is considered reliable when F i (x, y) = 1.

c) Modification of the depth values: for each position where the depth is considered reliable, the depth value is refined, otherwise the depth value is left unchanged:

D i V + (x, y) = N i=1 F i (x, y) * C i * D i V (x, y) * O i (x, y) + 1 -F i (x, y) D i V (x, y) (6)

F. Step 6: backward warping of the textures

The backward warping projects each up-sampled texture views T i on the intermediate view position V , using the depth maps D i V + already projected on the intermediate view position, camera parameters C i and binary maps O i . It generates projected texture views T i V for each reference view. For each pixel (x, y) in the depth map D i V + , if a depth information is available, (x', y') coordinates are computed by projection with 4x4 projection matrices. If (x', y') falls inside the picture, T i V (x, y) is set to T i (x , y), otherwise O i (x, y) is kept equal to 0.

G. Step 7: texture and depth merging

The depth maps D i V + and the texture views T i V projected on the intermediate view camera position V , and the binary maps O i are used to create a single projected texture view T V and a single projected depth map D V .

First, the references to be used are selected, at the pixel level. The maximum depth value d max (x, y) is computed:

d max (x, y) = max i=1..N (D i V + (x, y)).
The reference view R i is used when the following condition is met: |d max (x, y) -D i V + (x, y)| < ∆D. ∆D is a threshold corresponding to the maximal possible variation of the depth that yields a variation in the projection that remains below Θ = 12 pixels, according to eq. 1.

The amount of selected references is clipped so that only the nearest projections are used to limit blur artifacts when blending a large set of references. The references to be used is the same for the texture and for the depths. The merged texture and depth are computed as:

T V (x, y) = 1 card(sRef) i∈sRef T i V (x, y) (7)
D V (x, y) = max i∈sRef (D i V + (x, y)) (8
)
where sRef is the set of selected references.

H. Step 8: inpainting

The projected texture view T V and the projected depth map D V , as well as the maps O i are used to produce an inpainted projected texture view T V , and an inpainting map I V that reflects whether T V (x, y) has been inpainted (I V (x, y) = 1) or not (I V (x, y) = 0). ς(x, y) reflects whether a value exists in T V (x, y) or not, it is initialized to O i (x, y), i.e. ς(x, y) = 0 means that there is a "hole" at position (x, y). The inpainting process is split in three steps. The first step applies inpainting on the borders of the picture. In the second step, partial inpainting is performed with a template matching algorithm. In the third step, all remaining "holes" are inpainted.

a) Picture boundary inpainting: a dedicated inpainting process is applied to fill picture boundaries, with a line expansion algorithm: as soon as ς(0, y) = 0 (the line starts with a "hole"), the "hole" pixels in this line are filled by an 11x11 median value centered at the end of the "hole" when the width of the "hole" line is below a certain threshold, and by a mid gray value otherwise. The same principle is applied in reverse direction, from the end of each line of T V , so when ς(W -1, y) = 0. b) Template matching inpainting: a confidence map C is initialized with C(x, y) = ς(x, y). A pixel (x, y) is considered as an edge if the four following conditions are met:

• ς(x, y) = 1: the pixel is not a "hole".

• C(x, y) ≥ 0: the confidence is sufficient to consider this edge pixel in the next iteration. • ς(x -1, y) = 1 or ς(x + 1, y) = 1 or ς(x, y -1) = 1 or ς(x, y + 1) = 1: at least one point, in 4 connectivity, is not a "hole". • ς(x -1, y) = 0 or ς(x + 1, y) = 0 or ς(x, y -1) = 0 or ς(x, y + 1) = 0: at least one point, in 4 connectivity, is a "hole".

An iteration is done on the edges to determine where inpainting is required. For each edge pixel, a confidence information Cf is computed as the average of the C(x, y) values in a 11x11 window W 11 . The more information is available around a given position (x, y), the higher the confidence Cf . Two vectors are computed for each pixel: the edge normal (n x , n y) and the gradient value (g x , g y). A value Orth is computed as: Orth = n x × g y + n y × g x , to give higher weight to the gradients that are perpendicular to the edge. A value Backg is computed as the normalized maximum depth around the position (x, y), in W 11 . D avg is computed as the average depth around the position (x, y) in W 11 . If the confidence Cf is lower than 0.1, the edge is discarded, otherwise a priority P is computed as:

P = Cf * (Orth + Backg) (9)
The position (x, y) with the highest priority P is kept for the inpainting. It corresponds to the pixel that has the highest confidence with non-flat information (with significant texture gradient, reflected by Cf) and with a texture gradient that is orthogonal to the edge (reflected by Orth), and a pixel corresponding to the background area (reflected by Backg).

A full search with an 11x11 patch size is applied. A search position S, is considered invalid if all pixels in a 5x5 window are available, and if less than two pixels need to be inpainted.

For the valid positions, the average Sum of Square Differences (SSD) between the tested position and the patch to inpaint is computed. Three patch candidates with the lowest SSD are selected and ordered by SSD value. If the second and the third patches both have a SSD three times greater than the first patch, they are discarded. If only one patch candidate is remaining, the inpainting is not performed for this edge, and the edge confidence C(x, y) is set to -1, so that this edge is not selected in the next iterations. If at least two patches are available, and at least one of them has texture information, the texture is set to the average of the two patches and the depth value is filled with the selected edge average depth D avg . The confidence value is set to the selected edge average confidence, the texture information is set to available.

The process is iterated until all points are filled, or confidence becomes too low (< 0.1). The more points in the "hole" are filled, the lower the confidence becomes. c) "Hole" filling: this step is used to fill "holes" where the template matching has failed. For each line segment with ς(x, y) = 0. A spiral search centered on the mid-point of the line segment is performed, where 16 directions d are checked. The search is stopped when spiral radius is above 128 or when all directions are checked. depth d is initialized to D V . For each direction if ς(x, y) = 1 and depth d (x, y) is not set, depth d (x, y) takes the median value of all the depths inside a 7x7 window W 7 .

The reference texture position is set to the (x', y') coordinate having the smallest depth. Then each pixel of T V line segment is filled with median texture inside W 7 centered on (x', y').

I. Step 9: temporal blending

The projected texture view T V , the camera parameter C V , the inpainting map I V associated to T V , and similar data from a previous time instant T V , C V and I V are used to improve the projected texture view T V .

The temporal blending is performed only on pixels for which I V (x, y) = 1 and I V (x, y) = 1. Furthermore as the depth information in the inpainted areas is not reliable, the temporal filtering is only performed if C V equals C V . The following temporal filtering is applied on T V : T V (x, y) = T V (x,y)+15 * T V (x,y) 16

.

J. Step 10: filtering process

The projected texture view T V , its projected depth map D V , and an inpainting map I V are used to provide an improved texture view T V .

A boundary map B map is computed on the depth map D V : the process is similar to the one described in section IV-C. As Θ i saf e can be different in each reference frame, a new Θ V saf e is defined by Θ V saf e = min(Θ i saf e). This threshold allows to distinguish background and foreground areas where warping artifacts remain significant. A pixel is considered as "unsafe" if D i (a, b) > Θ i saf e for each (a, b) ∈ W 3 . For each pixel (x, y) in T V corresponding to a separation between a foreground and a background object (unsafe pixels, B map (x, y) = 1) or corresponding to an inpainted pixel (I V (x, y) = 1), the texture is filtered by a Gaussian filter on a 5x5 window W 5 .

V. EXPERIMENTAL RESULTS

A. Common test conditions

Common test conditions (CTCs) are desirable to conduct coding experiments in a well-defined environment and ease the comparison of different methods. They allow evaluation of coding and synthesis efficiency, objective and subjective quality of 6-DoF solutions. All experiments performed in this section strictly follow the MPEG-I Visual CTCs, specified in [START_REF] Jung | Ctc on 3dof+ and windowed 6dof (v2)[END_REF].

1) Test material: nine test material are considered in [START_REF] Jung | Ctc on 3dof+ and windowed 6dof (v2)[END_REF]. Some sequences are planar arrays of cameras: Painter (4x4), UnicornA (9x9), UnicornB (9x5), Shaman and Kitchen (5x5), Dancing (14x3) and Chef (5x4). Some others are linear arrays of cameras: Kermit (15x1) and Fencing (10x1). Among those, UnicornA and UnicornB are still images, and Shaman, Dancing, Kitchen are computer generated content, and Fencing has an "arc" configuration. Depth maps are provided for the computer generated content, and estimated for the natural content using a reference depth estimation software (DERS7), and further refined.

2) Anchor coding: [START_REF] Jung | Ctc on 3dof+ and windowed 6dof (v2)[END_REF] specifies how the reference views are encoded: MV-HEVC version 13.0, the multi-view extension of HEVC, is used with a serpentine inter-view prediction scheme. 90 frames, and all the views are encoded in IPPP structure, except for the UnicornA and UnicornB content, where only one frame of 25 (5x5) and 15 (5x3) views is encoded, respectively. The QP allocation between texture and depth is given in table I Table I: QP used for depth and texture coding.

3) Anchor synthesis and intermediate view positions for objective evaluation: the objective evaluation only relies on comparisons made on source view positions, to have a ground truth reference which is not synthesized. Results are reported for medium and low bit-rate by considering the QP set {25, 30, 35, 40} and {30, 35, 40, 45} respectively. It includes the synthesized view BD-rate, obtained from:

• the average over each source view position, of the PSNR between the synthesized intermediate view and the original source view, • the total bit-rate required to encode the views (including depths) for all frames. In all the experiments, as requested by the CTCs, VSRS4.2, is used as a reference with two reference frames, the maximum it can support, corresponding to the two nearest neighbors. In addition, we use the promising RVS as an additional anchor with four references. We use neither [START_REF] Penner | Soft 3d reconstruction for view synthesis[END_REF] because the source code is not available, nor recent CNN approaches, not robust enough to support various baselines and contents characteristics considered in the MPEG-I CTCs, keeping in mind that being robust and generic is a must-have, that penalizes VSRS, RVS, and VVS which are not configured for one or another category of content.

4) Subjective evaluation: in a typical 6-DoF immersive scenario, the motion performed by the user is not known at the encoder side. In [START_REF] Jung | Ctc on 3dof+ and windowed 6dof (v2)[END_REF], navigation paths made of intermediate views, intended to simulate typical user's motion are considered for subjective evaluation. The anchor for subjective evaluation follows the predefined path with synthesized views obtained from uncompressed views. The total length of the path is around 15 seconds. As an example, navigation paths for Painter and Kermit sequences are show in figure 4. It sweeps from one view to another, and includes three stops, for which the same view is displayed for three seconds. The other sequences are adopting similar kind of paths, yet adapted to the number of source views. The navigation paths include decoded view positions and intermediate view position, obtained from diagonal, horizontal or vertical references, intermediate views located in the middle of two anchor coded views, or on arbitrary positions. The number of intermediate views between two decoded views has been carefully selected in order to avoid jerkiness, so that the viewer's opinion is driven mainly by synthesis artifacts.

B. Objective results

VVS is designed to improve the subjective quality: this means that some algorithmic choices and some empirically selected thresholds do not provide the highest PSNR. However, assessing the objective quality using traditional metrics remains of interest because it gives a first opinion on the spatial fidelity with the original, when full-reference metrics The depth estimation software needs to be improved to solve such obvious inconsistencies. takes the lead on average on the whole test set.

C. Subjective results

Reliable subjective evaluations are achievable by only a limited number of known laboratories, in order to meet for instance the ITU recommendations. The evaluation performed here is more to be seen as a guided viewing session, with five naive subjects that have scored the proposed navigation paths of four sequences, one QP per sequence, with the Double Stimulus Comparison Scale methodology, with the classical 7-level scale, and under as appropriate as possible room illumination, distance orientation angle, etc. The subjective

Scores

Avg. scores presented in table IV confirm that VVS is between "much better" (+3) and "better" (+2) than VSRS on average and that it is between "slightly worse" (-1) and "slightly better" (+1) than RVS on average. Some snapshots are additionally provided for the Painter, Shaman and Kitchen sequences in figure 10. For Shaman, the main improvements are on the edges, especially on the head of the character, and the sword while he moves forward. The accurate processing of the foreground/background borders takes advantage here. For Painter, the character moves from right to left, and leaves a trail of artifacts in the depth maps. VVS manages to handle some of these artifacts thanks to the accurate depth merging process. Kitchen is a highly challenging sequence, because there are objects located very close to the cameras, producing severe dis-occlusions, and sharp edges with high luminance contrasts. Although the output of VVS is far from perfect, there are some significant improvements especially around the owl, and on several objects borders, like the chairs, the table, and the cupboards. Finally, VVS creates a sequence with a much better temporal consistency in the navigation path. We believe that results obtained with this viewing session confirm the general trend suggested by objective measures, and gives even more confidence in the efficiency of VVS.

VSRS anchor

Painter +2 +1 +1 +2 +2 +1.6 UnicornA +2 +1 +2 +3 +3 +2.2 Kitchen +2 +1 +1 +3 +2 +2.2 Kermit +3 +2 +2 +3 +3 +2.6

RVS anchor

Painter

-1 -1 0 0 -1 -0.6 UnicornA +1 +2 +3 +2 +2 +2 Kitchen 0 -1 0 +1 -1 -0.4 Kermit +2 +1 +1 +1 +1 +1.2

D. Complexity evaluation

Complexity evaluation of algorithms is a tricky task. It depends on the targeted architecture, hardware or software implementation, and can traditionally not be limited to a computational complexity assessment, made of count of operations such as addition, multiplication, if statements, etc. Amount and locality of memory transfers play a large role in the complexity, as well as the general data-dependency flow. Obviously, the degree of parallelism, and the ability to support GPU architecture is also very important. We cannot reasonably perform such a study. We consequently provide, as it is usually requested, runtimes observed to execute the algorithms on CTCs. The runtimes are reported for Intel Xeon E5450 cores at 3 GHz, with 16 GB of RAM. VVS is about six times slower than VSRS4.2, which uses only two references, and two times faster than RVS3.1, which uses the same number of references. Nonetheless, as shown in figure 11, these ratios vary with the sequences, mostly because the runtime spent in the inpainting modules depends on the sequence itself.

In addition, VVS takes advantage of modern multi core CPUs: the code supports multi-threading acceleration, using Open-MP. As an example, on an eight cores processor, the typical runtime can be divided by six or seven.

VI. CONCLUSION

The Versatile View Synthesizer (VVS) algorithm, adopted by the MPEG-I Visual group as a reference software for the 6-DoF activity, is described in this paper. After the presentation of the state of the art methods, including original synthesis techniques and the presentation of two MPEG software, VSRS and RVS, the originality and advantages of VVS are detailed. Then, the ten main blocks of VVS are explained. Common test conditions defined by the standardization committee are described and strictly followed in the experimental results section: the objective gain of VVS is demonstrated, in the specific context of free navigation in a scene, with six degrees of freedom. Although the design of the algorithm has been primarily focused on the subjective quality, significant objective improvements of 251% BD-rate saving at medium bit-rate, on average, and 184% BD-rate saving at low bit-rate are reported compared to VSRS. This represents respectively a 1.4 dB and 1.2 dB improvement. In addition, VVS provides an average 0.3 dB improvement compared to RVS, a recently proposed view synthesizer. Those objective improvements are confirmed by the MS-SSIM and VMAF metrics, and by a subjective viewing session of the navigation paths, highlighting smoother edges and better dis-occlusion handling. Finally, runtimes are investigated, to show that the VVS approach remains realistic in terms of computational complexity, and has a good tradeoff between complexity and efficiency for future immersive video services, being twice faster than RVS. Apart from the intrinsic performances of VVS, several other major advantages are listed compared to existing techniques: VVS is stable among sequences, and views, and its code [START_REF] Boissonade | Vvs software[END_REF] supports multithreading on modern CPU architectures.

The next steps consist in further improving the temporal consistency of the synthesized views, for inpainted and non inpainted areas. In addition, smart reference view selection is under investigation.

Figure 1 :

 1 Figure 1: General framework for synthesis of intermediate views from decoded views, in a typical 6-DoF context.

Figure 2 :

 2 Figure 2: VVS block diagram.

Figure 3 :

 3 Figure 3: Map for the reference at position x 1 y 2 used to synthesize the intermediate position x 2 y 2 of Kitchen.

Figure 4 :

 4 Figure 4: Navigation paths for subjective evaluation for 2D array (left) and 1D array (right) test sequences [11].

Figure 5 :

 5 Figure 5: VVS view by view ∆PSNR, for each sequence of the test-set (anchor: VSRS4.2, negative result corresponds to an improvement).

Figure 6 :Figure 7 :

 67 Figure 6: RD curve of VVS, RVS3.1 and VSRS4.2 (Painter sequence).

Figure 9 :

 9 Figure 9: PSNR evolution according to the QP, for VVS.

Figure 10 :

 10 Figure 10: Visual extracts of Shaman (QP30), Painter (QP25) and Kitchen (QP40) sequences, (left) VVS, (right) VSRS4.2.

Figure 11 :

 11 Figure 11: Runtimes (in seconds) of VSRS, RVS and VVS, for synthesizing one frame of one view (in seconds) for each sequence of the test-set.

 .

		QP1	QP2	QP3	QP4	QP5
	Depth QP	34	39	42	45	48
	Texture QP	25	30	35	40	45

Table II :

 II VVS results vs. VSRS4.2 anchor. Synth. BD-rate (%) (negative value: improvement), ∆PSNR, ∆MS-SSIM, ∆VMAF (positive value corresponds to an improvement). such as the PSNR are used. Given that the PSNR faces difficulties when it comes to evaluating synthesized views, MS-SSIM and VMAF results are additionally provided. In table II, the first column represents the BD-rate considering the average PSNR of synthesized views (Synth.), according to the total bit-rate, while the other columns are the average PSNR, MS-SSIM and VMAF differences for synthesized views. An average of 1.4 dB improvement is achieved at medium bitrate and 1.2 dB at low bit-rate, corresponding to a 251% and 184% improvement of the BD-rate respectively, when comparing VVS to the VSRS4.2 anchor. This is a significant

	Sequence	Synth.	∆ PSNR	∆ MS-	∆ VMAF	Synth.	∆ PSNR	∆ MS-	∆ VMAF	Sequence	Synth.	∆ PSNR	∆ MS-	∆ VMAF	Synth.	∆ PSNR	∆ MS-	∆ VMAF
				SSIM			SSIM					SSIM			SSIM	
			Medium			Low						(*10)			(*10)	
	Painter	-83	1.2	0.21	8.49	-44	1.0	0.36	10.32			Medium			Low		
	UnicornA	-221	1.7	0.04	10.88	-100	1.4	0.04	10.41	Painter	10	-0.2	0.13	5.3	4	-0.1	0.26	7.4
	UnicornB	-98	1.0	0.02	7.25	-44	0.9	0.02	7.32	UnicornA	-56	1.0	0.02	6.8	-33	0.8	0.03	6.5
	Shaman	-190	1.1	0.41	13.33	-107	0.9	0.41	13.53	UnicornB	-52	0.6	0.01	6.2	-26	0.5	0.02	6.4
	Kitchen	-224	1.5	0.25	8.64	-105	1.4	0.32	9.8	Shaman	2	0.0	0.24	7.8	5	-0.1	0.23	7.7
	Dancing	-177	1.1	0.10	10.98	-145	0.9	0.10	10.86	Kitchen	8	-0.2	0.14	4.8	3	-0.1	0.16	4.9
	Chef	-210	0.4	0.28	8.92	-142	0.5	0.31	9.81	Dancing	4	-0.1	0.51	6.1	7	-0.1	0.58	5.9
	Kermit	-703	3.2	3.68	47.83	-614	2.8	3.84	48.25	Chef	-19	0.1	0.21	6.9	-20	0.1	0.22	7.0
	Fencing	-351	1.3	0.59	27.06	-354	1.3	0.48	29.44	Kermit	-128	0.8	1.42	18.4	-50	0.7	1.42	17.9
	Avg.	-251	1.4	0.62	15.93	-184	1.2	0.65	16.63	Fencing	-367	0.7	0.27	12.3	-119	0.7	0.21	12.8
										Avg.	-66	0.3	0.33	8.3	-25	0.3	0.35	8.5

Table III :

 III VVS results vs. RVS3.1 anchor. Chef sequence resulting from unreliable depth maps: for some parts of the scene, some reference views indicate that an objects belongs to the foreground, while others indicate the opposite. It has been decided not to handle this situation, given that, though it is important to deal with inaccurate depth maps, it is not the goal of the view synthesizer to deal with completely incoherent depth maps.

		35 36	VSRS RVS VVS
		34
	PSNR (dB)	33
		32
		31
		30
			objective gain on all sequences, confirmed by an 0.62 MS-SSIM and a 15.93 VMAF difference. Figure 5 represents the difference of average PSNR on all QPs for each view of each sequence. It can be observed that gains are achieved for most of the views of all sequences. Still, there are some inconsistencies on the 2000 4000 6000 8000 10000 12000 bitrate (kb/s)

Table III

 III Painter and Kermit sequences respectively. Figure8represents for VVS, RVS3.1 and VSRS4.2, the PSNR averaged over all QPs. Figure9shows how VVS performance evolves according to the QP. It can be observed that the compression generally has a severe impact on the quality of the synthesis. All those figures highlight that both RVS3.1 and VVS are much more efficient than VSRS4.2 and that VVS

		34	VVS VSRS RVS
		32
	PSNR (dB)	28 30
		26
	reports results when RVS3.1 is set as an anchor. We observe that VVS performs quite well compared to one of the latest and most efficient view synthesizer algorithm. An average of 0.3 dB improvement is achieved at medium bit-rate and low bit-rate. MS-SSIM and VMAF metrics are increased by 0.35 and 8.3 respectively. According to the PSNR, RVS performs better than VVS for sequences with computer generated depths (Shaman, Kitchen, Dancing) or very accurate depths (Painter). However, it fails significantly on sequences with low quality estimated depth maps, which generally corresponds to a realistic situation. According to the other objective metrics, it is always worse than VVS. Figures 6 and 7 show RD curves of the three synthesis algorithms for Painter UnicornA UnicornB Shaman Kitchen Dancing Chef Kermit Fencing 24 Figure 8: Average PSNR (on all QPs) of VVS, RVS3.1, VSRS4.2. Painter UnicornA UnicornB Shaman Kitchen Dancing Chef Kermit Fencing 24 26 28 30 32 PSNR (dB) 34 36 VVS -QP25 VVS -QP30 VVS -QP35 VVS -QP40 VVS -QP45

Table IV :

 IV Subjective scores of VVS versus VSRS and RVS, with DSCS methodology.