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Abstract

This paper is devoted to study the controllability of a one-dimensional fluid-particle interaction model
where the fluid follows the viscous Burgers equation and the point mass obeys Newton’s second law. We
prove the null controllability for the velocity of the fluid and the particle and an approximate controllability
for the position of the particle with a control variable acting only on the particle. One of the novelties of our
work is the fact that we achieve this controllability result in a uniform time for all initial data and without
any smallness assumptions on the initial data.
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1 Introduction and main result

In this work, we analyse the global null controllability of a simplified one-dimensional model of fluid-particle
interaction. Here the fluid is governed by the viscous Burgers equation and the particle follows the Newton law.
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More precisely, we consider the following control problem:

∂tu(t, x)− ∂xxu(t, x) + u(t, x)∂xu(t, x) = 0, t ∈ (0, T ), x ∈ (0, 1) \ {h(t)},

u(t, 0) = 0 = u(t, 1), t ∈ (0, T ),

u(t, h(t)) = h′(t), t ∈ (0, T ),

mh′′(t) = J∂xuK(t, h(t)) + g(t), t ∈ (0, T ),

u(0, x) = u0(x), x ∈ (0, 1),

h(0) = h0, h
′(0) = `0.

(1.1)

In the above equation, u(t, x) denotes the fluid velocity and h(t) denotes the position of the particle at time t.
The positive constant m stands for the mass of the particle. The control g(t) corresponds to a force acting only
on the particle.

The symbol JfK(x) refers to the jump of the function f at the point x, precisely

JfK(x) = f(x+)− f(x−),

where f(x+) and f(x−) are the right and the left limits of the function.
This model can be seen as a one-dimensional simplified model for a fluid-structure interaction system. It

was introduced by Vázquez and Zuazua in [18] (without control). The authors analyse in particular its large
time behavior. In [19], the same authors extended their results in the case of a finite number of point particles
by establishing that these solid particles never collide in finite time. The boundary controllability for this model
had been first considered by Doubova and Fernández-Cara in [6]. They proved the local null controllability
by using controls located at x = 0 and x = 1. Later, Liu, Takahashi and Tucsnak [10] established the local
null controllability with only one control (located at one end of (0, 1)). Recently, Imanuvilov obtained a similar
result for the local controllability to trajectories in [8].

Note that the controllability of fluid-structure systems have been also considered in dimension larger than
1. In [13], Raymond and Vanninathan considered a simplified 2D model where the fluid equations are replaced
by the Helmholtz equations and the structure is modeled by a harmonic oscillator. They established exact
controllability results for this model with an internal control only in the fluid part. In [9], the authors established
exact controllability of a 2D fluid-structure system by an internal control in the fluid equation where the fluid is
modeled by the viscous, incompressible Navier-Stokes system and the body is a rigid ball. In [2], Boulakia and
Osses obtained the same result but for a body of more general shape. In [1], Boulakia and Guerrero extended
these results in dimension 3 of space and for a rigid body of general shape. Finally, the authors in [14] prove
the local null controllability for a Boussinesq flow in interaction with a rigid body, in dimension 2 in space and
by acting only on the temperature equation.

All the above works correspond to the case where the control acts on the fluid. Some articles have tackled the
case where the control is supported by the structure. Let us mention the work of [12], where the structure is a
deformable beam located at the boundary of the fluid domain. Here, the author obtains the local stabilization of
the corresponding system. In [16], the authors consider the case of rigid ball moving into viscous incompressible
fluid and obtain an open stabilization result by using for the control an external force of spring’s type. Recently
the same problem has been tackled for the case of a compressible viscous fluid in [15].

Finally, for the one-dimensional case and for a particle supported control, that is for the system (1.1)
considered in this article, Ĉındea et al. obtained in [4] a global result of controllability for the corresponding
fluid-particle system:

Theorem 1.1 ([4]). Assume ε > 0, h0, hT ∈ (0, 1), `0 ∈ R and u0 ∈ L2(0, 1), there exist T > 0 and a control
g ∈ L∞(0, T ) such that the weak solution of the system (1.1) satisfies

|h(T )− hT | < ε, h′(T ) = 0, u(T, ·) = 0.

The main goal of this article is to show that in the above result, one can obtain the controllability for a
uniform time T > 0 with respect to the initial condition. More precisely, our main result is stated below:
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Theorem 1.2. Given ε > 0 and a final state hT ∈ (0, 1), there exists T > 0 with the following property: for
any h0 ∈ (0, 1), `0 ∈ R and u0 ∈ L2(0, 1), there exists a control g ∈ L2(0, T ) such that the weak solution of the
system (1.1) satisfies

|h(T )− hT | < ε, h′(T ) = 0, u(T, ·) = 0. (1.2)

In order to prove Theorem 1.2, we are going to use the local controllability of the system (1.1) obtained in
[4] (see Theorem 2.3 below). This part can be achieved in an arbitrary small time. Thus our aim is to lead the
system to a state where the fluid and particle velocities are small and where the position of the particle is close
to hT . In [4], they obtain this step by using the same method as in [16], that is by a stabilization argument
with a force on the particle acting as spring connecting h(t) to hT . Here, we use instead a nice argument of [5]
for the Burgers equation (without particle) related to the Oleinik inequality for the inviscid Burgers equation
and this allows us to obtain a time T uniform with respect to the initial conditions.

A natural question is to know if one can take T arbitrarily small in Theorem 1.2. The problem is open for
our fluid-structure interaction system, but let us mention that the case of the Burgers equation alone has been
investigated by many authors for different control strategies: [7], [11], [3], etc.

The outline of the remaining part of this work is the following. In Section 2, we recall the definition of a
solution to the system (1.1) and some other important results. Section 3 is devoted to the proof of the main
result Theorem 1.2 where we use an existence result for the viscous Burgers equation in moving domain that is
stated and proved in Section 4.

2 Preliminaries

In Theorem 1.2 or in Theorem 1.1, we have used the notion of weak solutions to (1.1). We give here the precise
definition of such solutions:

Definition 2.1. Given T > 0, u0 ∈ L2(0, 1), h0 ∈ (0, 1), `0 ∈ R and g ∈ L2(0, T ), we say that (h, u) is a weak
solution of (1.1) if

h ∈ H1(0, T ), u ∈ C0([0, T ];L2(0, 1)) ∩ L2(0, T ;H1
0 (0, 1))

if
h(0) = h0, h′(t) = `(t) = u(t, h(t)), h(t) ∈ (0, 1) for almost every t ∈ [0, T ]

and if

1∫
0

u(t, x)ψ(t, x) dx−
1∫

0

u0(x)ψ(0, x) dx−
t∫

0

`(s)ξ′(s) ds+ `(t)ξ(t)− `0ξ(0)−
t∫

0

1∫
0

u(s, x)ψ′(s, x) dx ds

+

t∫
0

1∫
0

∂xu(s, x)∂xψ(s, x) dx ds− 1

2

t∫
0

1∫
0

u2(s, x)∂xψ(s, x) dx ds =

t∫
0

g(s)ξ(s) ds,

holds for all t ∈ [0, T ] and for every (ξ, ψ) satisfying

ξ ∈ H1(0, T ), ψ ∈ H1(0, T ;L2(0, 1)) ∩ L2(0, T ;H1
0 (0, 1)),

ξ(t) = ψ(t, h(t)), t ∈ [0, T ].

Let us mention that the Cauchy problem for system (1.1) is well-posed with the above definition of solutions
(see for instance Theorem 4.1 and Theorem 5.1 in [4]):

Proposition 2.2. For any T > 0, h0 ∈ (0, 1), `0 ∈ R, u0 ∈ L2(0, 1) and g ∈ L2(0, T ), there exists a unique
solution (h, u) of (1.1) on (0, T ∗), where T ∗ is the minimum between T and the first time Tc of contact (h(Tc) = 0
or h(Tc) = 1).
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Theorem 1.2 is based on a local null-controllability result obtained in [4]. In fact, they prove that the fluid
velocity and the particle velocity can be driven to rest whereas the particle position can be driven to any h1 ∈ S,
where

S = {a ∈ (0, 1) ; a is an irrational algebraic number}.

More precisely, their result states as follows (see [4, Theorem 9.1]):

Theorem 2.3. Assume T > 0 and h1 ∈ S. There exists δ > 0 such that for any u0 ∈ L2(0, 1), h0 ∈ (0, 1),
`0 ∈ R satisfying

‖u0‖2L2(0,1) + |`0|2 6 δ2, |h0 − h1| < δ,

there exists a control g ∈ C0([0, T ]) such that the weak solution of (1.1) satisfies

u(T ) = 0, h′(T ) = 0, h(T ) = h1.

We recall that S is dense in (0, 1). One can see this classical fact by using that
√

2 + Q is dense in R and
that, for any r ∈ Q,

√
2 + r is a root of (X − r)2 − 2 showing that it is algebraic. Consequently, there exists

h1 ∈ S such that
|h1 − hT | < ε. (2.1)

3 Proof of Theorem 1.2

As explained in the previous section, in order to apply Theorem 2.3, we first consider h1 ∈ S such that (2.1)
holds and we are going to show that there exists a time T > 0 such that for any h0 ∈ (0, 1), `0 ∈ R and
u0 ∈ L2(0, 1), there exists a control g ∈ L2(0, T ) such that the solution of the system (1.1) satisfies

h(T ) = h1, h′(T ) = 0, u(T, ·) = 0. (3.1)

We are now in a position to prove Theorem 1.2:

Proof of Theorem 1.2. The proof is divided into several steps:
Step 1: Parabolic smoothing of (1.1) with g = 0. Using Proposition 2.2, for g = 0, there exists a weak solu-

tion on [0, τ) for some τ > 0. In particular, there exists an arbitrary small T0 > 0 such that

h(T0) ∈ (0, 1), u(T0, ·) ∈ H1
0 (0, 1), u(T0, h(T0)) = h′(T0) = `(T0).

Step 2 : Particle at final position . We claim that for any T1 > T0, there is a control g ∈ L2(T0, T1) such
that the corresponding weak solution (u, h) of (1.1), with initial conditions

h(T0) ∈ (0, 1), u(T0, ·) ∈ H1
0 (0, 1), h′(T0) = `(T0),

attains the final position (u(T1, ·), h(T1)) ∈ H1
0 (0, 1)× (0, 1) satisfying

h(T1) = h1, h′(T1) = 0.

We prove this claim by controlling the position and the velocity of the particle. The control g during this
step is given a posteriori (see (3.4)).

Observe that for any T1 > T0, there exists h̃ ∈ C∞([T0, T1]; (0, 1)) such that

h̃(T0) = h(T0), h̃′(T0) = h′(T0), h̃(T1) = h1, h̃′(T1) = 0. (3.2)

Indeed, there exists a (unique) polynomial φ of order 3 such that

φ(T0) = arcsin(2h(T0)− 1), φ(T1) = arcsin(2h1 − 1), φ′(T0) =
2h′(T0)√

1− (2h(T0)− 1)2
, φ′(T1) = 0.
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Then we set

h̃(t) =
(1 + sinφ(t))

2
∈ (0, 1),

and we verify that h̃ satisfies (3.2).
Using Theorem 4.1 stated and proved below in Section 4, we deduce the existence and uniqueness of

ũ ∈ C0([T0, T1];H1(0, 1)) ∩ L2(T0, T1;H2((0, 1) \ {h̃(t)})) ∩H1(T0, T1;L2(0, 1))

to the problem

∂tũ(t, x)− ∂xxũ(t, x) + ũ(t, x)∂xũ(t, x) = 0, t ∈ (T0, T1), x ∈ (0, 1) \ {h̃(t)},

ũ(t, 0) = ũ(t, 1) = 0, t ∈ (T0, T1),

ũ(t, h̃(t)) = h̃′(t), t ∈ (T0, T1),

ũ(T0, x) = u(T0, x), x ∈ (0, 1).

(3.3)

Note that here we used that after Step 1, u(T0, ·) ∈ H1
0 (0, 1), and u(T0, h(T0)) = `(T0).

We can now define the control g of this step by the formula

g(t) := mh̃′′(t)− J∂xũK(t, h̃(t)), t ∈ (T0, T1), (3.4)

we have g ∈ L2(T0, T1) and we see that the solution (h, u) of (1.1) associated with g is exactly (h̃, ũ). In
particular, we have

h(T1) = h1, h′(T1) = 0, u(T1, ·) ∈ H1
0 ((0, h1) ∪ (h1, 1)). (3.5)

Step 3 : Uniform decay of the fluid velocity u. We claim that there exists T2 > 0 and a control g ∈ L2(T1, T2)
such that in (T1, T2), there is a weak solution of (1.1), with initial conditions

h(T1) ∈ (0, 1), u(T1, ·) ∈ H1
0 (0, 1), h′(T1) = 0,

and final position as (u(T2, ·), h(T2)) ∈ H1
0 (0, 1)× (0, 1) satisfying

h(T2) = h1, h′(T2) = 0,

and the fluid velocity u sufficiently small.
This step is the only one where we need to take a time large enough. We consider the Burgers equation in

the two intervals (0, h1) and (h1, 1):{
∂tu(t, x)− ∂xxu(t, x) + u(t, x)∂xu(t, x) = 0, t > T1, x ∈ (0, 1) \ {h1},

u(t, 0) = u(t, h1) = u(t, 1) = 0, t > T1,
(3.6)

with the initial condition u(T1, ·) obtained at the previous step (see (3.5)). Classical results on the viscous
Burgers equation show that there exists a unique strong solution

u ∈ C0([T1,∞);H1(0, 1)) ∩ L2(T1,∞;H2((0, h1) ∪ (h1, 1)) ∩H1(T1,∞;L2(0, 1)).

Moreover (see, for instance [5, Lemma 9]), we have that

− (1− x)

t− T1
6 u(t, x) 6

x

t− T1
, ∀ t > T1, x ∈ (0, 1). (3.7)

In particular, there exists T2 > T1 such that

‖u(T2, ·)‖L2(0,1) 6 δ, (3.8)

5



where δ is the constant appearing in Theorem 2.3.
During this step, we take

g(t) = −J∂xuK(t, h1), ∀ t ∈ (T1, T2) (3.9)

so that
h(t) = h1, ∀ t ∈ (T1, T2)

satisfies the fourth equation of (1.1). In particular, (h, u) is the weak solution of (1.1) associated with g in
(T1, T2).

Step 4. Local null controllability. We apply the local controllability result given by Theorem 2.3 and obtain
a control g in (T2, T ) such that

h(T ) = h1, h′(T ) = 0, u(T, ·) = 0. (3.10)

This completes the proof of Theorem 1.2.

4 Burgers equation in a time varying domain

We recall in this section a standard result on the viscous Burgers equation in a moving domain since we use it
in the proof of Theorem 1.2. In this section, we thus consider a given h ∈ H2(0, T ; (0, 1)) and we consider the
following Burgers system:

∂tu(t, x)− ∂xxu(t, x) + u(t, x)∂xu(t, x) = 0 t ∈ (0, T ), x ∈ (0, 1) \ {h(t)},

u(t, 0) = u(t, 1) = 0, t ∈ (0, T ),

u(t, h(t)) = h′(t), t ∈ (0, T ),

u(0, x) = u0(x), x ∈ (0, 1).

(4.1)

Theorem 4.1. Let h ∈ H2(0, T ; (0, 1)) and u0 ∈ H1(0, 1) with

u0(h(0)) = h′(0).

Then, for any T > 0, the problem (4.1) admits a unique solution

u ∈ C0([0, T ];H1(0, 1)) ∩ L2(0, T ;H2((0, 1) \ {h(t)}) ∩H1(0, T ;L2(0, 1)).

The proof of Theorem 4.1 is standard: first we observe that it is sufficient to work on the Burgers equation
written on (0, h(t)), the proof is the same for the other interval. Then we consider a lift of the boundary
condition: we define for any t ∈ (0, T ):

v(t, x) = u(t, x)− h′(t) x

h(t)
, x ∈ (0, h(t)),

and
v0(x) = u0(x)− h′(0)

x

h(0)
, x ∈ (0, h(0)),

so that v satisfies
∂tv − ∂xxv + v∂xv +

h′

h
v +

h′

h
x∂xv +

h′′

h
x = 0 t ∈ (0, T ), x ∈ (0, h(t)),

v(t, 0) = v(t, h(t)) = 0 t ∈ (0, T ),

v(0, x) = v0(x) x ∈ (0, h(0)).

(4.2)

We set
h0 = h(0).
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Then we use a change of variables to write the above system in the cylinder (0, T )× (0, h0):

y =
h0
h(t)

x, x =
h(t)

h0
y, V (t, y) = v

(
t,
h(t)

h0
y

)
, v(t, x) = V

(
t,
h0
h(t)

x

)
.

Some calculation yields
∂tV −

(
h0
h

)2

∂yyV +
h0
h
V ∂yV +

h′

h
V +

h′′

h0
y = 0 t ∈ (0, T ), y ∈ (0, h0),

V (t, 0) = V (t, h0) = 0 t ∈ (0, T ),

V (0, y) = v0(y) x ∈ (0, h0).

(4.3)

Then, the above system can be solved by the Galerkin method, using similar techniques as for the Navier-Stokes
system (see for instance [17, pp.17-25]).
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