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Abstract
The aimof the Laser Interferometer Space Antenna (LISA) is to detect gravitational waves through a
phasemodulation in long (2.5Mkm) laser light links between spacecraft. Among other noise sources
to be addressed are the phase fluctuations caused by a possible angular jitter of the emitted beam. The
present paper follows our preceding one (Vinet et al 2019Class. Quant. Grav. 36, 205 003) based on an
analytical study of the farfield phase.We address here a numerical treatment of the phase, tofirst
order in the emittedwavefront aberrations, but without any assumptions on the static bias term.We
verify that, in the phase change, the higher order terms in the staticmispointing are consistent with the
results found in our preceding paper.

1. Introduction

After the successful observations by the ground based gravitational wave (GW)detectors operated by the LIGO
ScientificCollaboration and theVirgoCollaboration inUS and in Europe [1], a new impulse has been given to
an old and ambitious project, supported successively by theNASA and the ESA, called LISA (Laser
Interferometer Space Antenna) [2]. LISA aims at detectingGWs in the very low frequency band (milliHertz),
where a number of signals are expected, particularly from events involving directly or indirectly supermassive
black holes. Continuous signals emitted by binary compact stars or pulsars are also in that low frequency band.

The principle of the LISAMission [3] is to read theGWsignal in the propagation time (or equivalently phase)
of a light beam froman emitter laser to a receiver photodetector, both in heliocentric orbits, through a 2.5Mkm
path in space. It is clear that addressing a target ofmeter size at such a distance is by itself a challenge. Among all
possible spurious effects able to perturb themeasurement, there is thus a possiblemisalignment of the emitted
beamdue to any permanent (mechanical) or transient (intrinsic laser jitter)mispointing.We have addressed the
question in a recent paper [4], wherewe used an analytical approach.We have shown that spurious effects are
due to the conjunction of three elements:

• Some imperfections (aberrations) in the telescope used to enlarge the laser beam,which is necessary to temper
the diffraction at a long distance. These aberrations are scaled by a length parameterσ [m] that expresses how
much the emittedwavefront departs from an ideal plane;

• A static pointing error θ0;

• A jitter of the laser beam θ1(t).

Analytical approaches are based on afirst order theory inσ/λ, which seems reasonable, regarding the present
state-of-the-art inmirror technology (stimulated, for example, by ground basedGWdetectors’ demands). In
our preceding approach, we furthermore adopted a first order treatment of θ0. Higher orders can be addressed,
but at the price an increasing complexity of the formulas, reducing their practical interest.

In the present paper, we relax thefirst order approximation condition on θ0, which is possible using
numericalmethods. This numerical approach allows for the presentation of only some special examples, but
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provides a check on how the preceding (analytically obtained)numerical conclusions are relevant. This study
should also be useful for any systemwhere a laser beam is emitted and then detected at a very large distance.

The organization of this paper is as follows. In section 2we present the theoretical derivation for the phase
error introduced by static and transientmispointing of the LISA telescope. Section 3 contains the numerical
calculation of the phase. A conclusion is given in section 4. Section 5 is anAnnex that provides a comparison
with the results presented in our previous publication [4].

2. Theory

Weconsider a special link from an emitter spacecraft (SC) to a receiver SC. The emitter SC emits light of
wavelengthλ through a telescope of aperture (half-diameter) a. The aimof this telescope is to increase thewidth
of an initial Gaussian beamup to the finalGaussian radius parameterw. (x, y, z) represents the coordinate system
inwhich z is along the light propagation path; if (x, y,0) are the coordinates in the plane containing the emitting

aperture, the emitted amplitudeA0 of the assumedGaussian beamwould be (with º +r x y2 2 ):

( ) ( ) ( ) ( ) ( ) ( )= - = >A x y r w r a A x y r a, , 0 exp , , , 0 0 10
2 2

0

under ideal conditions. Unfortunately, themirrors building the telescope are not perfect and distortions of the
phase surface, called aberrations, exist. It has been shown [4] that those defects, coupledwithmispointing and
fluctuations (jitter) can cause a phase noise at reception. It is essential to assess this noise and compare it to the
sensitivity level required by LISA.

Wemay represent the global wavefront aberration as a phase factor k F(x, y) applied toA0, in such away that
the actual emitted amplitude is now

( ) ( ) [ ( )] ( ) ( )p l= ´ ºA x y A x y ikF x y k, , 0 , , 0 exp , 2 . 20

It is conventional to expand aberrations in a circular pupil in a series of Zernike functions [5]. The Zernike
functions are:
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( ) ( ) ( )!
![( ) ]![( ) ]!

( )( )
( )

år r= -
-

+ - - -=

-
-R

n s

s n m s n m s
1

2 2
5n

m

s

n m
s n s

0

2
2

and

( )
( )

( )

p d
º

+
+

c
n2 1

1
.n

m

m,0

The polar coordinates are defined by ( )r f r f= =x a y acos , sin . An expansion of F in a series of Zernike
functions is thus:

( ) [ ] ( ) ( )( ) ( )å s f s f= + ¢F x y c m m R r a, cos sin 6
n m

n
m

n m n m n
m

,
, ,

The s s¢,n m n m, , have the following definitions:

( ) ( ) ( ) ( )( )òs r f r r fº
D

R F x y m d d, cos , 7n m n
m

,

and

( ) ( ) ( ) ( )( )òs r f r r f¢ º
D

R F x y m d d, sin . 8n m n
m

,

Theσʼs have thus the dimension of a length.Δ is the disk of radius a in the plane z=0.Wenow consider, as we
did in our preceding paper [4], that the beam is emittedwith amispointing error that contains both a static value
defined by the angles (θ0,ψ0), and a dynamic jitter defined by angles (θ1(t),ψ1(t)). This gives an additional phase
factor in equation (2):

[ ( ) ( )] ( )q y q y q y q y+ + +ikx ikyexp cos cos sin sin , 90 0 1 1 0 0 1 1

which finally with ( f fº ºx r y rcos , sin ) leads to the aberrated andmispointed amplitude:

( ) ( ) ( )( ) ( )= ´ ´ q f y-A x y A x y e e, , 0 , , 0 , 10ikF x y ikr
0

, cos

2
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where

⎡
⎣⎢
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with dy y yº -0 1. Now, if we consider the far propagated field amplitudeB(x, y, L) at a distance L, it is well
known that it amounts (Fraunhofer regime) to computing the Fourier transformof ( )A x y, , 0 namely:
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with ( º ºp kx L q ky L, ). For a geometry like that for LISAwhere the beam exiting one telescope has awaist
~a, and the beamobserved by the receiving telescope has an aperature radius also of a, the condition for the
amplitude of the electric field to be uniform to better than x%across this area is
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l
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At the very long distance for the LISA arms, L∼ 2.5 Mkm, the amplitude inside a disk of radius a (∼15 cm), is
practically constant and given simply by
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If we assume veryweak aberration amplitudes ( s s l¢,n m n m, , ), we can expand tofirst order thefirst
exponential factor, andwrite:
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the Jm being the Bessel functions of the 1st kind. The parameterw (the telescope’s aperture a being fixed) has an
optimumvalue resulting froma compromise between diffraction losses (too smallw) and clipping losses (too
largew). The optimumvalue (see [4]) is a/w=1.12.However clipping losses result in scattered light issues
which are attenuated by taking a slightly suboptimal value a/w=1.5. This is why in this sequel article we
compare the results obtainedwith these two possible options. From equation (17)we see that (tofirst order in
F/λ) only even terms inmwill contribute to the phase ofB(0, 0, L), and thus bothm and n are even. Eventually
the spurious phase is:
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3.Numerical

As described above, for the evaluation of the noisy phasewe essentially have to compute:

( ) ( )
( )

( )W º
W

W
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,

,

,
21n m

n m
,

2 ,2

Integrals of the kind (equations (18) and (19)) can be easily numerically integrated by Simpson’s rule. An
excellent precision is reachedwith a sampling rate of 1000.We have checked that integrals similar to the ones in
equations (18) and (19), but for whichwe have an analytical expression, can be computedwith a relative accuracy
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much better than 10−9.We recall that the parameterΩ is ( )q q dy q dyW = + = W +ka kacos cos0 1 0 1 , (see
equation (11) atfirst order in θ1)where qW = ka0 0 is due to the staticmispointing (weuse the value 700 nRad as
in [4]) and θ1 the (much smaller) jitter. In order to obtain a first order expansion in qka 1, we need the derivative
¢G (with respect toΩ) ofG=N/D for W ~ 0.620 . Owing to thewell knownproperties of Bessel functions, we

have
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so that the coefficient we need to evaluate the spectral density of the noise due to the jitter is determined (for
Zernike indices ( )n m2 , 2 ) by:
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with the scaling lengths:
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If nowweneed the spectral density of the equivalent displacement δL, we simply have
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Table 1 gives the coefficients ( )( )g Wn
m

2
2

0 for thefirstNoll indices (units are [m]). Noll indices are frequently
employed to have a one-index list of Zernike functions [6].We give the corresponding (n,m)Zernike indices.
The coefficients are computed for the two reference values of a/w: 1.12 and 1.50.

We also show infigure 1 the same data plotted on a logarithmic scale. Figure 2 gives an idea of the
dependence of themost significant scale factors ( )g n

m
2
2 with respect to the ratio a/w.

In the veryworst case, if all aberrations accumulate with the samemagnitudeσ and identical signs, and
assumingψ=0, the resulting global scaling factorwould be:

( )åg gº


.
n m

n
m

, 0
2
2

The sum is formally infinite, but converges in practice because of the rapid decrease of the ( )g n
m

2
2 . For example the

result obtained forNoll indicesN�28 andwith a ratio =a w 1.12 is γ∼0.13m;with a ratio a/w=1.5 the
result is similar.

With a noise spectral density of angular jitter ~qS 10 nRd Hz1 2
1

, the spectral density of wavefront
displacementwould be roughly:

( ) ( )s
l

g
s
l

= ´ ´ ´d
-S f 10 m Hz 1300 pm Hz , 22L

1 2 8

slightly larger than the result given in [4], equation (48),where the factorwas 1200 m Hz insteadof 1300 m Hz .
See in the followingAnnex, section5, a detailed comparisonbetween thepresent numerical results and the
estimations given inourprecedingpaper [4].

We can also compare our order ofmagnitude calculations with the estimates given by Sasso et al [7]. Their
estimate, given by their table 3, is δL=0.07 pm/nrad for an amplitude of Zernike ofλ/20. If we look at our
equation (22), and ignoring the spectral densities, withσ/λ∼ 1/20, one has δL∼ 65 pm for θ1=10 nrad, or
6.5 pm/nrad, which is two orders ofmagnitude higher. Also, we have used 700 nrad for the staticmispointing
where a value of 10 nrad is used in [7]. However wemust keep inmind that we have cumulated all aberrations in
aworst case scenario, whereas their approach is based onMonte-Carlomethods, inwhich some defects can
randomly cancel others.
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4. Conclusion

It appears that the estimations based on an expansion inΩ0 limited to the second order, as presented in our
preceding paper [4], slightly underestimate the noise by a few percent for thefirst Zernike contributions. The
global result obtained forworst case conditions is also slightly higher, due to contributions of several (small)
higher order terms not taken into account in our preceding theoretical presentation.On the other hand, our
preceding paper gave no estimations of scaling factors values form�4, whereas the numerical treatment
presented here does, showing that those values aremuch smaller for higher order Zernike n>2, as expected.

The attitude jitter of a SC can induce a noise in the distance determination of the associated laser link. This is
not the only example of tilt-to-lengh coupling, which can also arise in the interferometeric system for a LISA test
mass because of SC jitter with respect to the reflected laser beam from the testmass. In addition, noise can come
from the jitter at the local SCwith respect to the laser beam from a far SC [8]. Consequently, wavefront error, as
discussed in this article, contributes only to a part of the total tilt-to-length coupling for LISA.

Table 1. Scaling lengths ( )gn
m (units=[m]) forNoll

indicesN [6] equivalent to Zernike indices (n,m) for
two different a/w ratios.

N : ( ∣ ∣)n m, ( )gn
m [m] [ ]( )g mn

m

a/w=1.12 a/w=1.5

4 (2, 0) 0.4553E-01 0.3843E-01

6 (2, 2) 0.4913E-01 0.3558E-01

11 (4, 0) 0.1537E-01 0.2304E-01

12 (4, 2) 0.1391E-01 0.1889E-01

14 (4, 4) 0.5422E-03 0.3494E-03

22 (6, 0) 0.2542E-02 0.6750E-02

24 (6, 2) 0.2169E-02 0.5327E-02

26 (6, 4) 0.1091E-03 0.1356E-03

28 (6, 6) 0.2078E-05 0.1266E-05

37 (8, 0) 0.2783E-03 0.1307E-02

38 (8, 2) 0.2313E-03 0.1015E-02

40 (8, 4) 0.1408E-04 0.3251E-04

42 (8, 6) 0.3214E-06 0.3772E-06

44 (8, 8) 0.4053E-08 0.2389E-08

56 (10, 0) 0.2276E-04 0.1891E-03

58 (10, 2) 0.1869E-04 0.1458E-03

60 (10, 4) 0.1324E-05 0.5589E-05

62 (10, 6) 0.3504E-07 0.7695E-07

64 (10, 8) 0.5068E-09 0.5723E-09

66 (10,10) 0.4785E-11 0.2762E-11

Figure 1.Values of ( )( )g Wn
m

0 [m], for a/w=1.5 (red diamonds, and a/w=1.12 (green circles) versusNoll indexN [6] and
corresponding ( )-  n n m n, Zernike indices.
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The subject of wavefront errors and beam jitter in the LISA optical systemhas, of course, been the subject of
other studies [7, 9]. Formany years this has been recognized as an important problem for LISA [10].

As discussed in this paper, the analysis and study of the far-field laser phase and intensity are critical for
ensuring that the LISAGWdetector operates at its desired sensitivity. The numerical results presented in this
paper extend our previous analytic work [4], and help to display how aberrations in the LISA telescope plus
pointing errors can create phase noise after the beamhas traveled 2.5 Mkm.

5. Annex

In order to compare the numerical results presented herewith the analytic results of our preceding paper [4],
simply take the very first Noll indices [6] and a ratio a/w=1.5. For n=2,m=0, andwith a noise spectral
density of angular jitter of 10nRad/ Hz , wefind

( )( )
s
l

s
l

= ´ ´ ´ = ´ ´d
- - -S f Hz3.843 10 10 m Hz 3.843 10 m .L, 2,0

1 2 2,0 2 8 2,0 10

In our preceding paper [4], we had (equation (47))with a coefficient a = 2.4251 :

( )( )
s
l

s
l

= ´ ´ ´ = ´ ´d
- -S f Hz1.55 10 2.425 m Hz 3.759 10 m .L, 2,0

1 2 2,0 10 2,0 10

For n=2,m=2, the sameway:

( )( )
s
l

s
l

= ´ ´ ´ = ´ ´d
- - -S f Hz3.558 10 10 m Hz 3.558 10 m ,L, 2,2

1 2 2,2 2 8 2,2 10

in our preceding paper, with a coefficientβ1=2.247:

( )( )
s
l

s
l

= ´ ´ ´ = ´ ´d
- -S f Hz1.55 10 2.247 m Hz 3.483 10 m .L, 2,2

1 2 2,2 10 2,2 10

It can be seen that the results are very similar, up to a few percent. This small difference is due to a better
(numerical) evaluation of integrals involving Bessel functions.
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