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M AGNETIC Resonance Microscopy (MRM) is an imaging technique which uses the principles of magnetic resonance imaging (MRI) to produce images with a spatial resolution of less than 100 microns on at least one of the three dimensions [START_REF] Ciobanu | Microscopic Magnetic Resonance Imaging: A Practical Perspective[END_REF]. Typical sample sizes are several millimeters or less, which places high demands on achieving the optimum Signal-to-Noise Ratio (SNR). For these reasons, MRM is usually performed using magnets with static field B 0 of more than 7 T and up to 22 T, which is currently the strongest available magnet for imaging [START_REF] Ciobanu | Microscopic Magnetic Resonance Imaging: A Practical Perspective[END_REF]. At such ultra high magnetic field, the reference probe for volume imaging is often a solenoid, with the diameter closely matching that of the sample. The solenoid produces a large, homogeneous radiofrequency (RF) field B 1 used for excitation, but also a high electric field which can produce heating due to resistive losses in conductive samples [START_REF] Chen | Low-temperature magnetic resonance imaging with 2.8 µm isotropic resolution[END_REF]. Researchers have recently introduced configurations based on ceramic dielectric resonators to reduce the noise contribution due to the electric field in the sample [START_REF] Webb | Dielectric materials in magnetic resonance[END_REF], [START_REF] Haines | High Q calcium titanate cylindrical dielectric resonators for magnetic resonance microimaging[END_REF], [START_REF] Neuberger | Design of a ceramic dielectric resonator for NMR microimaging at 14.1 Tesla[END_REF]. These resonators have been successfully ntroduced in microwave engineering. They are used to significantly reduce the size of microwave circuits, especially in the evergrowing field of telecommunications [START_REF] Kajfez | Dielectric Resonators[END_REF]. They are exploited as antennas (TE mode with high quality factor) [START_REF] Leung | Dielectric resonator antennas: From the basic to the aesthetic[END_REF], [START_REF] Long | The resonant cylindrical dielectric cavity antenna[END_REF], [START_REF] Fiedziuszko | Dual-mode dielectric resonator loaded cavity filters[END_REF] and filters (Hybrid Electric and Magnetic (HEM) mode with low Q-factor) [START_REF] Liang | Modeling of cylindrical dielectric resonators in rectangular waveguides and cavities[END_REF], [START_REF] Fiedziuszko | Dual-mode dielectric resonator loaded cavity filters[END_REF], [START_REF] Chen | Dielectric ring resonators loaded in waveguide and on substrate[END_REF]. Electron Paramagnetic Resonance (EPR) is another application of such resonators to concentrate the magnetic field into a specific region [START_REF] Webb | Dielectric materials in magnetic resonance[END_REF].

In MRM, to compete with the solenoid coil, the first transverse electric mode of a cylindrical dielectric cavity, the so-called TE 01δ is employed as it has a maximum axial magnetic field in its center together with a minimum electric field [START_REF] Kajfez | Dielectric Resonators[END_REF]. Fig. 1 describes the placement of this probe within the bore of an MRI magnet. In this position, the orthogonality of B 1 and B 0 needed for spins excitation and signal detection, is guaranteed by the axial direction of the main B 1 component related to this mode. Several prototypes of such eramic rings were experimentally compared to a commercial reference probe and provided equivalent or higher SNR [START_REF] Haines | High Q calcium titanate cylindrical dielectric resonators for magnetic resonance microimaging[END_REF], [START_REF] Neuberger | Design of a ceramic dielectric resonator for NMR microimaging at 14.1 Tesla[END_REF].

While the theoretical model for solenoid coils used as Magnetic Resonance (MR) probes has been well developed [START_REF] Minard | Solenoidal microcoil design-Part II: Optimizing winding parameters for maximum signal-to-noise performance[END_REF], [START_REF] Hoult | The signal-to-noise ratio of the nuclear magnetic resonance experiment[END_REF], no detailed theoretical model was so far proposed for MR probes based on dielectric ring resonators. However, such a model could give the possibility of adjusting ceramics properties and resonator dimensions to design dielectric probes with maximum efficiency for a given sample.

The resonant frequencies, the field distribution and the quality factor of cylindrical dielectric resonators have been investigated for many years. From the literature, two types of approaches can be distinguished:

• Accurate and rigorous methods with high computational cost, allowing to determine both the resonant frequencies and the field distribution while considering complex configurations (shielded dielectric resonator, in a waveguide, isolated, on a substrate, and so on). Among others, these methods are the surface integral equation solved with the method of moments [START_REF] Kajfez | Computed modal field distributions for isolated dielectric resonators[END_REF], the perturbational approach with asymptotic expansions [START_REF] Van Bladel | On the resonances of a dielectric resonator of very high permittivity[END_REF], [START_REF] Smedt | Correction due to a finite permittivity for a ring resonator in free space[END_REF], the finite elements method [START_REF] Verplanken | The magnetic-dipole resonances of ring resonators of very high permittivity[END_REF] and the mode matching methods for solving the corresponding boundary value problem [START_REF] Chen | Dielectric ring resonators loaded in waveguide and on substrate[END_REF], [START_REF] Liang | Modeling of cylindrical dielectric resonators in rectangular waveguides and cavities[END_REF], [START_REF] Kajfez | Dielectric Resonators[END_REF]. • Simplified models that provide an approximated estimation of the characteristics of a given mode, most of the time the first TE or TM mode:

-Perfect Magnetic Conductor walls are assumed at the lateral boundaries of the resonator like in [START_REF] Yee | Natural resonant frequencies of microwave dielectric resonators (correspondence)[END_REF], [START_REF] Long | The resonant cylindrical dielectric cavity antenna[END_REF], or the second-order Cohn's model for both isolated or shielded resonator [START_REF] Cohn | Microwave bandpass filters containing high-Q dielectric resonators[END_REF]; -The tangential field continuity is ensured at the resonator's lateral boundaries and/or at its terminal ends, like in the Itoh and Rudoka's model [START_REF] Itoh | New method for computing the resonant frequencies of dielectric resonators (short papers)[END_REF].

More recently, such an approximated theoretical model of cylindrical dielectric resonators first TE mode, based on the lumped-elements equivalent circuit approach, has been developed for EPR applications [START_REF] Mett | Dielectric microwave resonators in TE 011 cavities for electron paramagnetic resonance spectroscopy[END_REF], [START_REF] Mett | Rutile dielectric loop-gap resonator for X-band EPR spectroscopy of small aqueous samples[END_REF].

In this paper, we present a model describing the excited field distribution of the ceramic probe: the first transverse electric mode (TE 01δ ) of a cylindrical, high-permittivity resonator. Our model is described as "semi-analytical" in the following, because it is based on the analytical expression of the electromagnetic (EM) field but requires the numerical solving of a set of equations to estimate the wavenumbers describing the field. In this approach, the ceramic probe consists in a dielectric ring (green in Fig. 1) containing a sample medium (light blue). A formula is proposed for the resonant frequency of this system, which is approximated to that of a filled disk, assuming that the effect of the hole is negligible. The field distribution is computed from the description of the electromagnetic (EM) field in the sample, within the dielectric ring, and around it. This semi-analytical approach is then used to derive a quantitative estimation of the reachable SNR performance of ceramic probes. The practical example used is designed for a Larmor frequency f L = 730 MHz and previously presented experimentally in Reference [START_REF] Moussu | Systematic analysis of the improvements in magnetic resonance microscopy with ferroelectric composite ceramics[END_REF], with a ring of given height of 10 mm, outer diameter 18 mm and inner diameter 5.6 mm, and dielectric material of relative permittivity 536 and loss tangent 8•10 -4 .

Figure 1. Configuration of the setup: the axis of the dielectric probe is perpendicular to the MRI system axis.

II. TE 01δ MODE DESCRIPTION

The principle of the dielectric probe presented in this paper relies on the excitation of its first TE mode, which magnetic field distribution in the sample is similar to that of the solenoid coil while its electric field spatial behavior is radically different. In this part, we provide semi-analytic tools to describe the EM field of the exploited TE 01δ , in order to, in section III, derive an expression for the dielectric losses induced by this probe. The ceramic probe is a cylindrical ring resonator, as represented in Fig. 2, made of a material with a very highpermittivity (to ensure a good mode confinement), low-loss (to lower the probe intrinsic losses) dielectric material surrounded by a low-permittivity medium (air). Due to the high permittivity contrast between the background material and the resonator, the electromagnetic field distribution at resonance can be assumed to be mainly confined within the resonator. The reflection coefficient between air and high-permittivity dielectric material, equal to √ r -1 / √ r + 1 [START_REF] Orfanidis | Electromagnetic waves and antennas[END_REF], is indeed close to 1. In this context, first analytical approaches of cylindrical dielectric resonators are based on the assumption of Perfect Magnetic Conductor (PMC) boundary conditions at the lateral frontiers of the structure [START_REF] Yee | Natural resonant frequencies of microwave dielectric resonators (correspondence)[END_REF], [START_REF] Zhang | Electromagnetic Theory for Microwaves and Optoelectronics[END_REF]. The resonant modes of such a cylindrical structure are clas-sified following the same notations as for metallic cavities, except that the integer numbers quantifying the wavenumbers are replaced by non-integer numbers [START_REF] Mongia | Dielectric resonator antennas-a review and general design relations for resonant frequency and bandwidth[END_REF]. In cylindrical coordinates (ρ, θ, y), a transverse electric mode is fully described by its axial magnetic component H y whose generic expression within the cavity is given for a disk resonator in Eq. (1) [START_REF] Pozar | Microwave Engineering[END_REF], [START_REF] Zhang | Electromagnetic Theory for Microwaves and Optoelectronics[END_REF].

H y = A cos (nθ + φ) J n (αρ) cos (βy + ψ)

The mode nomenclature for a dielectric cavity is of the form TE nm(p+δ) in reference to metallic cavities, where n is the integer number for the field angular variations, m an integer number describing the order of radial field variations, and p + δ (p integer, δ a number between 0 and 1) quantifies the product βL of the axial wavenumber β with the resonator height L. The first transverse electric mode of a cylindrical resonator, named TE 01δ , corresponds to an electromagnetic field with a cylindrical symmetry with respect to the resonator axis (no angular variation). In the center, the electric field E decreases to zero while the magnetic field H is maximum and mainly parallel to the resonator axis [START_REF] Kajfez | Dielectric Resonators[END_REF], [START_REF] Webb | Dielectric materials in magnetic resonance[END_REF], two features of great interest for an MRM probe.

A. Disk resonator frequency estimation

In this section, several approaches for estimating the TE 01δ mode eigenfrequency of a cylindrical dielectric resonator, neglecting dielectric losses within the resonator material, are presented. In the microwave resonators literature, one can found a wide variety of methods developed to estimate the TE 01δ mode frequency with different levels of accuracy. A first starting point is to approximate the value of the resonant frequency of the isolated resonator by Eq. (2) [START_REF] Kajfez | Dielectric Resonators[END_REF], with f MHz the frequency (in megaherz), r the relative permittivity, r d the disk radius and L the disk height. This equation was deduced by fitting simulation data, and despite a limited domain of validity (radius over height ratio: 0.5 < r d /L < 2 and relative permittivity: 30 < r < 50) where accuracy is ensured around 2%, it can be used to give a reasonable approximation for any high permittivity disk resonator.

f MHz = 3400 √ r r d,cm r d L + 3.45 (2) 
To extend the validity range of the estimation in terms of resonator parameters, the simplest approach in terms of computational cost consists in considering the cylindrical dielectric resonator as a shortened section of an infinite dielectric waveguide with no field leakages on its lateral boundaries. The radial wavenumber α is the same as for a circular waveguide with Perfect Magnetic Conductor (PMC) lateral boundaries α = x01 r d where x 01 is the first zero of the Bessel function of the first kind, of order zero, and r d the cylinder radius [START_REF] Cohn | Microwave bandpass filters containing high-Q dielectric resonators[END_REF]. The axial wavenumbers (β 2 = r k 2 0 -α 2 within the dielectric and γ 2 = k 2 0 -α 2 outside, k 0 the wavenumber in vacuum) are related to the resonant frequency f cutoff = k 0 c 0 /(2π) (with c 0 the speed of light in vacuum) through the transcendental equation β tan βL 2 = γ, as covered in Ref. [START_REF] Zhang | Electromagnetic Theory for Microwaves and Optoelectronics[END_REF] under the description of the cut-off waveguide approach. This method usually underestimates the resonant frequency of the first TE mode [START_REF] Itoh | New method for computing the resonant frequencies of dielectric resonators (short papers)[END_REF].

An empirical formula was also proposed in [START_REF] Kishk | Bandwidth enhancement for split cylindrical dielectric resonator antennas[END_REF], [START_REF] Rotaru | Numerical investigation on compact multimode dielectric resonator antennas of very high permittivity[END_REF] to provide a reliable estimation of the resonant frequency f empirical (Eq. ( 3)).

f empirical = 2.9c 2πr d 0.46 r 0.7 + 0.3 r d L -0.03 r d L 2 (3) 
Similar to the method presented in [START_REF] Garault | Higher accuracy for the resonance frequencies of dielectric resonators[END_REF], the resonant frequency f res is estimated as the average of the two last approaches, as expressed in Eq. [START_REF] Haines | High Q calcium titanate cylindrical dielectric resonators for magnetic resonance microimaging[END_REF].

f res = 1 2 (f empirical + f cutoff ) (4) 
For comparison to a reference method, the gold-standard resonance frequency of the same dielectric disk f ref,disk is calculated using the numerical simulations with the eigenmode solver of CST Microwave Studio. The reliability of the proposed method that provides the approximated value f res (Eq. ( 4)), was investigated by comparison with the numerical simulations, for discretized values among the following parameter ranges:

• Relative permittivity r varying from 200 to 1000;

• Disk height L from 5 to 20 mm;

• Disk radius r d from 5 to 15 mm. In Fig. 3, the resonant frequency is calculated with Eq. ( 4) for a continuous range of heights, and discrete values of the disk radius and relative permittivity. The comparison of these results to the gold standard is quantified through the relative error defined in Eq. ( 5). For the considered ranges of parameters, the proposed estimation f res has a maximum relative error of 5.3 %, all other cases have an error less than 5 % and more than half are below 3 %, which validates this approach.

E f,ref = |f res -f ref,disk | f ref,disk × 100 (5) 
The MRM ceramic probe studied is described as a highpermittivity ( d = 0 r ) ring resonator (outer radius r d , inner radius r h , height L), filled with a lower-permittivity ( s ) material representing the sample (cylinder of radius r h and height L). Such a structure has resonant modes that can be described in the same manner as for a disk of same highpermittivity r than the probe [START_REF] Verplanken | The magnetic-dipole resonances of ring resonators of very high permittivity[END_REF]. In the particular case of the first TE mode, equating the field distribution of the probe and the disk resonators is even a reasonable assumption. Indeed, the first TE mode features are affected in proportion to the electric and magnetic energies stored in the involved volume [START_REF] Harrington | Time-harmonic electromagnetic fields[END_REF], which coarsely depends on the quantity ∆ × V samp (∆ = sd , V samp the sample volume). In particular, in first approximation, the mode frequency varies from the value f disk for the disk to f probe for the probe according to Eq. ( 6) from [START_REF] Harrington | Time-harmonic electromagnetic fields[END_REF].

f probe -f disk f disk ≈ - Vsamp ∆ | - → E disk | 2 d 3 r VringUVsamp d | - → E disk | 2 + µ 0 | - → H disk | 2 d 3 r (6) 
Figure 3. Comparison between numerical simulations and semi-analytical method (Eq. ( 4)) of TE 01δ eigenmode frequency estimation as a function of the disk height (L), radius (r d ) and permittivity (blue: 200, orange: 500, green: 800, purple: 1000). Lines represent the results from the semi-analytical method proposed in this paper (fres, Eq. ( 4)), and markers represent CST results. For each curve, the maximum, minimum and averaged value of the relative error ∆(f) are indicated.

From this expression, it can be seen that the TE mode frequency is affected by the permittivity contrast between the dielectric ring and the sample. More precisely, as the sample has a lower permittivity than the ring material, the permittivity contrast ∆ is negative and the frequency shift is therefore positive. In the framework of MRI, it means that the working frequency of the dielectric probe depends on the sample, and therefore must be adjusted on demand at the desired nucleus Larmor frequency. To do so, several methods have been developed, including coupling with copper foils [START_REF] Haines | High Q calcium titanate cylindrical dielectric resonators for magnetic resonance microimaging[END_REF] or with a second dielectric resonator [START_REF] Neuberger | Design of a ceramic dielectric resonator for NMR microimaging at 14.1 Tesla[END_REF], and thermostating the probe to change its permittivity as it depends on the temperature [START_REF] Moussu | Systematic analysis of the improvements in magnetic resonance microscopy with ferroelectric composite ceramics[END_REF]. On the other side, the sample volume V samp is in the region where the E-field distribution is minimum, as it vanishes in the center of the structure. In this work, we assume the same field distribution for the system {ring + sample} as for the disk when estimating the mode frequency in this section, and the SNR factor in section IV. This hypothesis is valid while the permittivity contrast, together with the sample over disk radii ratio r h /r d , have reasonable values, as presented in the following.

Figure 4 illustrates the influence of the sample on the TE 01δ mode frequency in the case of a probe with outer radius r d = 10 mm, height L = 10 mm, varying permittivity r and sample properties r h and r,samp . The frequencies used in this part are estimated with the Eigenmode solver of CST Studio. For three values of relative permittivity of the dielectric material constituting the probe r (200, 500 and 800), the relative variation E f,disk/probe between the disk frequency f ref,disk and that of the probe f ref,probe is estimated (Eq. 7).

E f,disk/probe = |f ref,probe -f ref,disk | f ref,disk × 100 (7) 
The sample permittivity range covers covers a wide variety of biological samples. As expected from Eq. ( 6), the relative variation is a linear function of the sample permittivity. A general observation from this figure is that the radii ratio r h /r d has a dominant influence over the frequency variation, all the more than the relative permittivity of the probe ring is high. Indeed, while the sample radius r h is smaller than 0.4 times the probe radius r d , the frequency shift due to the sample is inferior to 5% for all permittivities considered.

B. Field distribution

As for the resonance frequency of the TE 01δ mode of a disk resonator, several approaches have been proposed to estimate the corresponding EM-field distribution: rigorous numerical methods with heavy computation cost, and simplified models which the error depends on the rudeness of the hypothesis [START_REF] Kajfez | Dielectric Resonators[END_REF]. Among the second category, the approach proposed by Sheen [START_REF] Sheen | A dielectric resonator method of measuring dielectric properties of low loss materials in the microwave region[END_REF] is an interesting trade-off between accurary of the field distribution and simplicity of implementation. In [START_REF] Sheen | A dielectric resonator method of measuring dielectric properties of low loss materials in the microwave region[END_REF], it is presented for the parallel-plate dielectric disk, meaning that the disk is placed between two conducting plates. In the following, we propose a similar method for the parallel-plate dielectric ring. In both methods, the field distribution is estimated for lossless dielectric materials. This method, for computing the field distribution of the ring resonator TE 01δ mode, is based on the part-by-part subdivision of the space surrounding the resonator. These regions are indexed from I → IX and are represented in Fig. 5. Each of these regions corresponds to a homogeneous relative permittivity distribution: region I represents the sample, region II the ceramic material constitutive of the probe, and regions III → IX the surrounding media which are here taken as air ( r,III→IX = 1).

The next step consists in analytically describing the mode in a cylindrical coordinate system (ρ, θ, y). According to its specifications, this TE mode has a cylindrical symmetry, which means that only three field components are nonzero [START_REF] Kajfez | Dielectric Resonators[END_REF], [START_REF] Pozar | Microwave Engineering[END_REF]: H y , E θ and H ρ . Solving the Helmholtz's equation in cylindrical coordinates leads to the following field expression properties [START_REF] Kajfez | Dielectric Resonators[END_REF]:

• the radial variation involves linear combinations of the Bessel functions J and Y or the modified Bessel function K, with the radial wavenumber k ρ,i in region i; • the axial variation is expressed with a sinusoidal function and the axial wavenumber k y,i in region i. The wavenumber components in region i are related to the total wavenumber in vacuum k 0 by Eq. ( 8).

k 2 ρ,i + k 2 y,i = r,i k 2 0 ( 8 
)
The model is based on the assumption of purely propagative EM field in the probe, with real wavenumbers k ρ,II = α II and k y,II = β in the dielectric ring, that imposes the mode. Leakages through the resonator boundaries are also considered. In the sample (region I), the axial wavenumber is real by field continuity with the ring, but the radial wavenumber α I is defined by the relative values of k 0 and k ρ,II . Outside the probe, the field is either propagative either evanescent in one or two directions, y and ρ. For evanescent contributions, the corresponding wavenumber is imaginary: k ρ,i = jν i and k y,i = jγ i .

The field expressions for H y and E θ are given in Eqs. ( 9) and [START_REF] Liang | Modeling of cylindrical dielectric resonators in rectangular waveguides and cavities[END_REF], respectively. The third component H ρ can be derived from H y and its expression is provided in regions I, IV and VII (Eq. ( 11)) only since the others are unused in the following for calculations.

H I y = a I J 0 (α I ρ) cos (βy) H II y = a II [J 0 (α II ρ) + ξY 0 (α II ρ)] cos (βy) H III y = a III K 0 (ν III ρ) cos (βy) H IV y = a IV J 0 (α I ρ) sinh [γ (y -y lim )] H V y = a V [J 0 (α II ρ) + ξY 0 (α II ρ)] sinh [γ (y -y lim )] H VI y = a VI K 0 (ν III ρ) sinh [γ (y -y lim )] H VII y = a VII J 0 (α I ρ) sinh [-γ (y + y lim )] H VIII y = a VIII [J 0 (α II ρ) + ξY 0 (α II ρ)] sinh [-γ (y + y lim )] H IX y = a IX K 0 (ν III ρ) sinh [-γ (y + y lim )] (9) 
E I θ = a I jωµ 0 α I J 1 (α I ρ) cos (βy) E II θ = a II jωµ 0 α II [J 1 (α II ρ) + ξY 1 (α II ρ)] cos (βy) E III θ = -a III jωµ 0 ν III K 1 (ν III ρ) cos (βy) E IV θ = a IV jωµ 0 α I J 1 (α I ρ) sinh [γ (y -y lim )] E V θ = a V jωµ 0 α II [J 1 (α II ρ) + ξY 1 (α II ρ)]
× sinh [γ (y -y lim )]

E VI θ = -a VI jωµ 0 ν III K 1 (ν III ρ) sinh [γ (y -y lim )] E VII θ = a VII jωµ 0 α I J 1 (α I ρ) sinh [-γ (y + y lim )] E VIII θ = a VIII jωµ 0 α II [J 1 (α II ρ) + ξY 1 (α II ρ)] × sinh [-γ (y + y lim )] E IX θ = -a IX jωµ 0 ν III K 1 (ν III ρ) sinh [-γ (y + y lim )] (10) 
H I ρ = -a I β α I J 1 (α I ρ) sin (βy) H IV ρ = a IV γ α I J 1 (α I ρ) cosh [γ (y -y lim )] H VII ρ = -a VII γ α I J 1 (α I ρ) cosh [-γ (y + y lim )] (11) 
The axial wavenumber γ is the same in absolute value be it for y > L 2 (regions IV, V and VI) or y < -L 2 (regions VIII, IX and X) since the resonator is at equal distance from the conducting plates. The E-field cancellation on the PEC boundaries gives y lim = h 2 . In the following examples, h is taken equal to 11 cm, that corresponds to the shielded bore diameter of the MRI device used in [START_REF] Moussu | Systematic analysis of the improvements in magnetic resonance microscopy with ferroelectric composite ceramics[END_REF].

The wavenumber components are determined using the tangential field continuity conditions in [START_REF] Minard | Solenoidal microcoil design-Part II: Optimizing winding parameters for maximum signal-to-noise performance[END_REF] 

a I J 0 (α I r h ) = a II [J 0 (α II r h ) + ξY 0 (α II r h )] a I α I J 1 (α I r h ) = a II α II [J 1 (α II r h ) + ξY 1 (α II r h )] a II [J 0 (α II r d ) + ξY 0 (α II r d )] = a III K 0 (ν III r d ) a II α II [J 1 (α II r d ) + ξY 1 (α II r d )] = - a III ν III K 1 (ν III r d ) a I cos βL 2 = a IV sinh γ L -h 2 -a I β sin βL 2 = a IV γ cosh γ L -h 2 (12 
) Combining the first four equations of ( 12) and ( 8) leads to the set of equations [START_REF] Hoult | The signal-to-noise ratio of the nuclear magnetic resonance experiment[END_REF], which is equivalent to the eigenvalue problem of a circular dielectric waveguide as presented in [START_REF] Snitzer | Cylindrical dielectric waveguide modes[END_REF]. This type of system of equations admits complex solutions, as demonstrated in [START_REF] Shestopalov | On a Rigorous Proof of the Existence of Complex Waves in a Dielectric Waveguide of Circular Cross Section[END_REF]. It is numerically solved with respect to the real variable β. The solutions of this system can be graphically represented by distinct curves representing the wavenumber k 0 as a function of β. The dispersion curves of the first three modes of such waveguide are given as example in Fig. 6. The lowest frequency curve is the first order mode of the corresponding infinite dielectric waveguide and is the solution considered in the following.

J 1 (u) uJ 0 (u) = 1 v J 1 (v) + ξY 1 (v) J 0 (v) + ξY 0 (v) - K 1 (x) xK 0 (x) = 1 rd rh v J 1 ( rd rh v) + ξY 1 ( rd rh v) J 0 ( rd rh v) + ξY 0 ( rd rh v) u = r h r,samp k 2 0 -β 2 v = r h r k 2 0 -β 2 x = r d -k 2 0 + β 2 ξ = uJ 0 (u)J 1 (v) -vJ 0 (v)J 1 (u) vY 0 (v)J 1 (u) -uJ 0 (u)Y 1 (v) (13) 
Next, combining the last two equations of ( 12) and (8) leads to the set of equations ( 14), which is equivalent to the eigenvalue problem of a planar dielectric waveguide [START_REF] Zhang | Electromagnetic Theory for Microwaves and Optoelectronics[END_REF]. In the same manner, ( 14) is numerically solved with respect to β. It gives several solutions depicting the different planar waveguide modes, as illustrated by the dashed dispersion curves in Fig. 6.

β tan β L 2 = γ coth γ h -L 2 γ = ( r -1) k 2 0 -β 2 (14) 
The modes of the dielectric resonators are deduced from the intersection of the abovementioned two sets of solutions. The lowest β intersection point corresponds to the first order mode of the planar waveguide combined with the first order mode of the circular waveguide, that is, the TE 01δ mode of the dielectric resonator, as illustrated in Fig. 6. The other wavenumber components are deduced from the β value using Eq. ( 8). Fig. 7 shows examples of field maps estimated with this approach for a dielectric ring of outer radius r d = 10 mm, height L = 10 mm and relative permittivity r = 500, filled with a sample of varying radius r h and relative permittivity r,samp = 50. The smaller the ratio r h /r d , the more the magnetic field is confined within the sample with high intensity, while the region in which the electric field is minimum is only slightly affected in terms of lateral dimensions when the sample diameter increases, as can be seen on Fig. 7 (bottom line).

The validity of this approach to estimate the field distribution is compared with numerical simulations from CST Studio Eigenmode solver. In particular, it is quantified through the FielD Normalized Root Mean Squared Error FD-NRMSE expressed in Eq. ( 15): at each point r n of the selected grid Ω, the relative error between the reference field component U ref and the SAM field component U is computed, and the FD-NRMSE is the squared sum of all these error terms divided by the number of points of the grid N Ω pts .

FD-NRMSE

= 1 N Ω pts N Ω pts n=1 U (r n ) -U ref (r n ) U ref (r n ) 2 (15) 
Fig. 8 provides quantitative values of this error. The reference field is exported from numerical simulations (CST Studio, Eigenmode Solver). The figure displays the FD-NRMSE computed in the sample along the lines of equation y = 0 (top graph) and ρ = 0. It is plotted as a function of the relative permittivity of the dielectric material of the probe. In each case, the TE 01δ mode of the corresponding disk resonator is adjusted to the Larmor frequency at 17.2 T (730 MHz) via its diameter, as covered in section II-A. The resonator height is kept equal to 10 mm. The FD-NRMSE never exceeds 5 %. Increasing the permittivity, which involves a higher confinement of the mode in the probe, also leads to an improvement in the accuracy of the semi-analytical method regarding the radial field distribution.

III. POWER LOSSES ESTIMATION

When designing a dielectric probe for MRI, one key feature that must be quantified is the proportion of input power lost during acquisition, be it in the probe itself or in the sample. This is a necessary step to estimate the noise induced by these losses. In this section, we propose a simplified approach to estimate the contributions to power losses from the probe and from the sample. This will be used in section IV to evaluate the SNR provided by a dielectric probe as a function of its geometrical and electromagnetic properties.

When an object of volume Ω and material of complex permittivity = -j (with our notations, = 0 r ≥ 0 and = tan δ) is immersed in an electromagnetic field, energy is dissipated in the form of heat [START_REF] Petit | Ondes électromagnétiques en radioélectricité et en optique, 2nde édition[END_REF]. This is caused by two phenomenon: electric conduction if the density of free electrons is non zero, and bound charges polarization [START_REF] Orfanidis | Electromagnetic waves and antennas[END_REF]. In our notation, the material loss tangent includes both contributions: tan δ = tan δ -cond + tan δ -polar . Power losses in the object are expressed as the integral over its volume Ω, of the power losses density p, as in Eq. ( 16) [START_REF] Petit | Ondes électromagnétiques en radioélectricité et en optique, 2nde édition[END_REF].

P loss = Ω p (r) d 3 r p = 1 2 ω | - → E | 2 (16) 
High-permittivity materials that can be used to build dielectric probe are ceramics, as in [START_REF] Haines | High Q calcium titanate cylindrical dielectric resonators for magnetic resonance microimaging[END_REF], [START_REF] Neuberger | Design of a ceramic dielectric resonator for NMR microimaging at 14.1 Tesla[END_REF], [START_REF] Moussu | Systematic analysis of the improvements in magnetic resonance microscopy with ferroelectric composite ceramics[END_REF]. Such materials are described by their experimentally measured real permittivity and total loss tangent [START_REF] Nenasheva | Low loss microwave ferroelectric ceramics for high power tunable devices[END_REF]. Biological samples on the other hand are electrically conductive with a significant contribution as they contain water. In that case, the power loss density reduces to Eq. [START_REF] Verplanken | The magnetic-dipole resonances of ring resonators of very high permittivity[END_REF].

p samp = 1 2 σ| - → E | 2 (17) 
Noise (loss) involved in the signal acquisition during MRM experiments comes from the resistance of the dielectric ring resonator and from the conductive sample placed within the ring. As evoked in section II, the TE 01δ eigenmode of the ring resonator is very similar to that of the corresponding disk resonator (no hole). Therefore, in order to provide analytical expressions for the dielectric losses in each subvolume, the following approximations are used:

1) Losses in the dielectric resonator are small enough not to influence the field distribution. Therefore, the EM field expression used for computing dielectric losses is that of a lossless resonator.

2) The electric field distribution of the ring resonator • is assumed equal to that of the disk resonator -→ E disk (r) ;

• and the field leakages through lateral boundaries can be neglected. As a result, the radial wavenumber α is quantified as x 01 /r d where x 01 is the first zero of the zero-th order Bessel function of the first kind: J 0 (x 01 ) = 0.

3) The magnetic field decrease within the sample is due to its relative permittivity being different from that of the ring and quantified by the so-called penalty coefficient

τ = H sample 0 /H disk 0 with H 0 = | - → H (ρ = 0, z = 0) |.
The field decrease, and the way the coefficient is estimated, are illustrated in Fig. 9. Its maximum value is 1, that corresponds to the disk (∆ r = 0) and it decreases toward zero with the increasing permittivity contrast. In practice, τ is estimated from the semi-analytically computed distributions considering field leakages at the boundaries, by comparing the H 0 value in the disk and in the sample excited by the ring resonator, with a correcting factor applied to ensure the following condition:

| - → H ring (ρ = r h , z = 0) | = | - → H disk (ρ = r h , z = 0) |.
The two contributions for losses are therefore expressed as following.

Ring resonator losses: Sample losses:

P ring loss = 1 2 0 r ω tan δ Vring | - → E disk (r) | 2 d 3 r (18) 
P ring loss = ∆ 0 r ω tan δL eff H disk 0 2 rd rh ρJ 2 1 (αρ) dρ (19) 
∆ = 2π ωµ 0 2α 2 (20) 
L eff = 1 + sin (βL) βL L (21) 
P ring loss,norm = ∆ 0 r ω tan δL eff rd rh ρJ 2 1 (αρ) dρ (22) 
P sample loss = 1 2 σ sample τ 2 Vsamp | - → E disk (r) | 2 d 3 r = ∆σ sample L eff τ H disk 0 2 rh 0 ρJ 2 1 (αρ) dρ (23) 
P sample loss,norm = ∆σ sample L eff r h 0 ρJ 2 1 (αρ) dρ (24) 
To fully develop these expressions for dielectric losses, the integrals of the square of the first kind, first order Bessel function J 1 are derived from Eq. ( 25) from [START_REF] Bowman | Introduction to Bessel functions[END_REF] generalized to arbitrary boundaries in Eq. [START_REF] Mongia | Dielectric resonator antennas-a review and general design relations for resonant frequency and bandwidth[END_REF].

∀u ∈ R, u 0 ρJ 2 1 (αρ) dρ = u 2 2 J 2 1 (αu) -J 0 (αu) J 2 (αu) (25) 
∀ (u, v) ∈ R 2 , u v ρJ 2 1 (αρ) dρ = u 2 2 J 2 1 (αu) -J 0 (αu) J 2 (αu) - v 2 2 J 2 1 (αv) -J 0 (αv) J 2 (αv) (26) 
The model developed for the dielectric losses estimation was compared to numerical simulations performed with the CST Microwave Studio Eigenmode solver, which ignores material losses. In particular, a comparison was performed on the penalty factor τ and the normalized power losses term τ 2 P sample loss,norm + P ring loss,norm in the case of a dielectric ring of permittivity 500, height 10 mm and outer diameter 20 mm; the ceramic loss tangent was 10 -3 . Regarding the validation of the penalty factor estimation, the sample permittivity varied between 1 and 100 and the inner over outer diameters ratio r = r h /r d was 0.2, 0.3 and 0.5; while the normalized power losses were studied for ratio equal to 0.3 for varying sample properties (permittivity and conductivity). The penalty factor τ quantifies the decrease of H-field in the center of the sample, due to permittivity contrast between the ceramic material and the sample medium. As illustrated on Fig. 10, the lower the sample permittivity, the lower the penalty factor and the H-field magnitude. The magnetic field also decreases when increasing the sample diameter, that is the r ratio, and so does the error on the penalty factor estimation, which is otherwise barely affected by the sample permittivity value. For the three r ratio values considered here 0.2, 0.3 and 0.5, the maximum relative errors between the semi-analytical method and the full-wave simulations are 2.4%, 5.6% and 15.8%, respectively. In the last case, the model fails to describe properly the H-field distribution. The reason for this is that, as can be observed in Fig. 7, the E-field can no longer be assumed to be zero in the sample as its diameter increases. In consequence, we consider that the model should not be used for a diameter ratio higher than 0.5. Fig. 11 represents the relative error between normalized total power losses from the developed model for the field distribution and the Eigenmode solver. The error is less than 5.1% in all the configurations considered here, that already cover a wide range of biological samples.

IV. SIGNAL-TO-NOISE RATIO ESTIMATION

The Signal-to-Noise Ratio (SNR) factor, defined in Eq. ( 27), can be expressed in terms of H probe 0 , the magnetic field in the sample,and P probe loss , the total dielectric losses (from probe and sample). This quantity u SNR (Eq. ( 27)) is useful not only in designing a ceramic probe with optimal parameters, but also to compare this probe performance to other MRM coil types, for example the commonly-used solenoid. u SNR is equivalent, ignoring a multiplication factor of √ 2, to the resonator efficiency used by Mett et al. in their lumpedelements quivalent circuit approach [START_REF] Mett | Dielectric microwave resonators in TE 011 cavities for electron paramagnetic resonance spectroscopy[END_REF], [START_REF] Mett | Rutile dielectric loop-gap resonator for X-band EPR spectroscopy of small aqueous samples[END_REF]. Considering the model hypothesis presented in III, the magnetic field within the sample is expressed as the product between the penalty factor τ and the H-field amplitude in the disk, H disk 0 . The power losses, accounting for electric fieldsample interactions, are expressed by Eqs. [START_REF] Cohn | Microwave bandpass filters containing high-Q dielectric resonators[END_REF] and [START_REF] Moussu | Systematic analysis of the improvements in magnetic resonance microscopy with ferroelectric composite ceramics[END_REF]. The H-field amplitude in the disk simplifies between numerator and denominator, and Eq.( 27) becomes: 

u probe SNR = H probe 0 P probe loss ( 27 
)
The model proposed for the SNR factor estimation, herein after named SAM (Semi-Analytical Model) was applied to the case of a ceramic resonator prototype (outer diameter r d = 18 mm, inner diameter r h = 5.6 mm, height L = 10 mm, relative permittivity r = 536, loss tangent tanδ = 8.10 -4 ) and was experimentally validated in [START_REF] Moussu | Systematic analysis of the improvements in magnetic resonance microscopy with ferroelectric composite ceramics[END_REF]. In this paragraph, we compare the SNR factor provided by this probe, as a function of the sample conductivity, for two distinct values of sample relative permittivities, 50 and 81. Numerical simulations were performed using CST Microwave Studio, Frequency Domain Solver, with the dielectric ring resonator and a sample of diameter 4.5 mm and height 20 mm. In this configuration, the probe was fed through inductive coupling with a 3-mm loop placed at 3.8 mm from it , and is placed in the center of a metallic cylindrical shell representing the MR device bore (material: Perfect Electric Conductor, total length along z-axis: 600 mm, diameter: 91 mm). This is the most realistic case, compared to the simulations with the Eigenmode Solver in which no source is exciting the resonant mode. The SAM was also compared to a "combined method", in which the SNR factor is computed by estimating each variable in Eq. ( 27) with the discretized E-field (mesh step 0.2 mm) exported from the simulation software (Eigenmode solver). In particular, dielectric losses are derived by integrating the squared E-field multiplied by the local loss term (Eq. ( 16)) with the rectangle rule. Fig. 12 summarizes these results and Table I gives an example of numerical values for the computed parameters of Eq. ( 27). For both permittivities, the CST, combined method and SAM curves all follow the same decreasing trend when the sample conductivity is increased. The maximum relative error value between the semi-analytical and combined methods, and the realistic numerical simulations, was estimated at 8% and 5%, respectively. Both approaches produce results which are on the same order as errors intrinsic to experimental measurements of SNR in MRM, and these results also validate the approximations from Section III.

In the framework of the development of a Magnetic Resonance Microscopy probe, comparison of the SNR reachable by the dielectric probe with the conventional probe designs is of great interest in order to maximize the achievable SNR. In the case of the proposed sample and MR system described in Section I, the reference volume probe is the solenoid probe, and the SNR factor can be expressed following the guidelines described in [START_REF] Minard | Solenoidal microcoil design. Part I: Optimizing rf homogeneity and coil dimensions[END_REF], [START_REF] Minard | Solenoidal microcoil design-Part II: Optimizing winding parameters for maximum signal-to-noise performance[END_REF]. An example of such comparative study can be found in [START_REF] Moussu | Systematic analysis of the improvements in magnetic resonance microscopy with ferroelectric composite ceramics[END_REF].

V. DISCUSSION

The theoretical tools presented in this paper aim at assisting the design of dielectric probes for MRI. In this framework, the proposed approach is a simplified modeling of such resonator that enables to estimate its first TE mode frequency and the expected SNR factor, without relying on numerical simulations on initial examination. As presented in the previous sections II to IV, the accuracy of this method is satisfying for designing an optimized first prototype of such probe and was tested for realistic values of ceramic material permittivities [START_REF] Nenasheva | Low loss microwave ferroelectric ceramics for high power tunable devices[END_REF] and usual values of biological samples permittivities (1 -100) in the magnetic resonance imaging frequency range (from 100 MHz to 1 GHz). However, another aspect that was not undertaken previously is the computation time. Table II illustrates this point for the probe developed in [START_REF] Moussu | Systematic analysis of the improvements in magnetic resonance microscopy with ferroelectric composite ceramics[END_REF], and for two different samples. The provided delays are averaged over 10 trials for each computed variable (frequency and SNR factor) and for each method. The margin of error is not provided if it is strictly sub-second. The computation is performed on a computer with 64 Go of RAM and an Intel Xeon processor (CPU E5-1630 v4). Regarding the SNR factor estimation with the Frequency domain solver of CST Studio (frequency range 700 -780 MHz, tetrahedral mesh), the effective estimation delay is the given value, corresponding to the solver time, plus the time to tune and match the feeding loop at the desired Larmor frequency. From these results, there is no doubt that the theoretical approach is much faster than the numerical simulations.

VI. CONCLUSION

In summary, this paper addresses the topic of ceramic probes developed for Magnetic Resonance Microscopy. In particular, it proposes a semi-analytical model, based on the study of the first transverse electric mode of a high-permittivity dielectric ring, to estimate its resonance frequency and a measure of the SNR for evaluating the imaging performance of such probe. The knowledge of this quantity enables the comparison with standard probe configurations and can be used as design guideline to optimize the dielectric ring electromagnetic and geometrical properties. 

Figure 2 .

 2 Figure 2. TE 01δ mode of a ring resonator (schematic field lines), notations and coordinates system
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 4 Figure 4. Quantification of the TE 01δ mode frequency shift between the disk resonator and the dielectric probe (for both, numerical simulations results with CST Eigenmode Solver). The probe ring has its relative permittivity equal to 200 (left), 500 (center) and 800 (right). The frequency variation is plotted as a function of the sample permittivity and for several discrete values of the radii ratio. Curves in dashed lines correspond to systematic frequency shift inferior to 5%.
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 5 Figure 5. Part by part space subdivision for field estimation.
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 6 Figure 6. Dispersion curves of the infinite dielectric circular (solid lines) and planar (dashed lines) waveguides corresponding to the cylindrical resonator from Reference [23] (with r,samp = 50). Only the three (respectively two) first modes of the circular (resp. planar) waveguide can be seen in the considered ranges of frequencies and β values. The first TE mode of this ring resonator is shown with a red circle at the intersection point of the first waveguides modes.
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 7 Figure 7. Normalized field maps for a dielectric ring (permittivity 500, height 10 mm, outer diameter 20 mm) filled with a sample of permittivity 50 for different inner to outer radii ratios. Top line: modulus of the total magnetic field. Middle line: modulus of the total electric field. Bottom line: field lines of the total electric (blue solid line) and magnetic (orange dotted line) fields in the center of the resonator (y = 0). The maps and field lines are normalized to the maximum value of the field modulus. Linear color scale from 0 to 1.
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 819 Figure 8. Error on the field distribution within the sample depending on the relative permittivity r of the probe dielectric material, for 3 values of ratio r = r h /r d
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 10 Figure 10. Comparison of the value of the penalty factor estimated with the developed field distribution model, to the value from numerical simulations, as a function of the sample permittivity.
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 11 Figure 11. Comparison of semi-analytical model and numerical simulations results in terms of normalized power losses term τ 2 P sample loss,norm + P ring loss,norm , as a function of the sample conductivity.
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 2 P sample loss,norm + P ring loss,norm

Figure 12 .

 12 Figure 12. Comparison, in terms of SNR factor, of semi-analytical model (SAM) with numerical simulations results (Frequency domain solver of CST Microwave Studio) and Eq. (28) applied to the E-field distribution from the software Eigenmode solver (combined).
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Table I COMPUTED

 I VARIABLES FOR A SAMPLE OF PERMITTIVITY 50 AND CONDUCTIVITY 1 S/M.

		SAM	Eigenmode solver
	τ	0,77	0,81
	P loss,norm	0,30.10 -5	0,31.10 -5
	u SNR	445	463
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