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A Semi-Analytical Model Of High Permittivity
Dielectric Ring Resonators for Magnetic Resonance

Imaging
Marine A.C. Moussu, Redha Abdeddaim, Marc Dubois, Elodie Georget, Andrew G. Webb, Member, IEEE,
Elizaveta Nenasheva, Pavel Belov, Stanislav Glybovski, Member, IEEE, Luisa Ciobanu, and Stefan Enoch

Abstract—Magnetic Resonance Imaging (MRI) is an imaging
technique exploiting the magnetic resonance of specific nuclear
spins, like protons. In this paper, MR probes based on dielectric
ring resonators are investigated from a theoretical approach. We
take advantage of the high-permittivity and low-losses properties
of the ceramic material used for manufacturing these probes
for microscopy applications. Magnetic Resonance Microscopy
(MRM) aims at imaging tiny samples with a sufficient resolu-
tion to distinguish small details. In this framework, compact
resonators, called volume probes, contain the investigated sample
and are used for both signal transmission and reception. The
new developed semi-analytical model enables estimation of the
frequency of the first transverse electric mode of a cylindrical
resonator. It also provides a method to compute the correspond-
ing magnetic field distribution, the dielectric losses contributions
from the probe and the sample, and Signal-to-Noise Ratio (SNR).
The proposed approach aims at providing design guidelines for
dielectric probes.

Index Terms—Dielectric Resonators, Magnetic Resonance Mi-
croscopy, Signal-to-Noise Ratio, Transverse Electric Mode

I. INTRODUCTION

MAGNETIC Resonance Microscopy (MRM) is an
imaging technique which uses the principles of

magnetic resonance imaging (MRI) to produce images with
a spatial resolution of less than 100 microns on at least one
of the three dimensions [1]. Typical sample sizes are several
millimeters or less, which places high demands on achieving
the optimum Signal-to-Noise Ratio (SNR). For these reasons,
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MRM is usually performed using magnets with static field
B0 of more than 7 T and up to 22 T, which is currently the
strongest available magnet for imaging [1]. At such ultra
high magnetic field, the reference probe for volume imaging
is often a solenoid, with diameter closely matching that of
the sample. The solenoid produces a large, homogeneous
radiofrequency (RF) field B1 used for excitation, but also
a high electric field which can produce heating due to
resistive losses in conductive samples [2]. Researchers have
recently introduced configurations based on ceramic dielectric
resonator to reduce contribution to the noise due to the
electric field in the sample [3], [4], [5].
These resonators have been successively introduced in
microwave engineering. They are used to significantly reduce
the size of microwave circuits, especially in the evergrowing
field of telecommunications [6]. They are exploited as
antennas (TE mode with high quality factor) [7], [8], [9] and
filters (HEM mode with low Q-factor) [10], [9], [11]. Electron
Paramagnetic Resonance (EPR) is another application of such
resonators to concentrate the magnetic field into a specific
region [3].

In MRM, to compete with the solenoid coil, the first
transverse electric mode of a cylindrical dielectric cavity,
the so-called TE01δ , has a maximum axial magnetic field in
its center together with a minimum of the electric field [6].
Fig. 1 describes the placement of this probe within the bore
of an MRI magnet. In this position, the orthogonality of B1

and B0 needed for spins excitation and signal detection, is
guaranteed by the axial direction of the main B1 component
related to this mode. Several prototypes of ceramic rings were
experimentally compared to a commercial reference probe
and provided equivalent or higher SNR [4], [5].

While the theoretical model for solenoid coils used as
MR probes has been well developed [12], [13], no detailed
theoretical model was so far proposed for MR probes
based on dielectric ring resonators. However, such a model
could give the possibility of adjusting ceramics properties
and resonator dimensions to design dielectric probes with
maximum efficiency for a given sample.

The resonant frequencies, the field distribution and the
quality factor of cylindrical dielectric resonators have been
investigated for many years. From the literature, two types of
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approaches can be distinguished:
• Accurate and rigorous methods with high computational

cost, allowing to determine both the resonant frequencies
and the field distribution while considering complex
configurations (shielded dielectric resonator, in a waveg-
uide, isolated, on a substrate... etc). Among others, these
methods are the surface integral intequation solved with
the method of moments [14], the perturbational approach
with asymptotic expansions [15], [16], the finite elements
method [17] and the mode matching methods for solving
the corresponding boundary value problem [11], [10], [6].

• Simplified models that provide an approximated estima-
tion of the characteristics of a given mode, most of the
time the first TE or TM mode:

– Perfect Magnetic Conductor walls are assumed at the
lateral boundaries of the resonator like in [18], [8],
or the second-order Cohn’s model for both isolated
or shielded resonator [19];

– The tangential field continuity is ensured at the
resonator lateral boundaries and/or at its terminal
ends, like in the Itoh and Rudoka’s model [20].

More recently, such an approximated theoretical model of
cylindrical dielectric resonators first TE mode, based on the
lumped-elements equivalent circuit approach, has been devel-
oped for EPR applications [21], [22].

In this paper, we present a model describing the excited field
distribution of the ceramic probe: the first transverse electric
mode (TE01δ) of a cylindrical, high-permittivity resonator.
Our model is described as ”semi-analytical” in the follow-
ing, because it is based on the analytical expression of the
electromagnetic (EM) field but requires the numerical solving
of a set of equations to estimate the wavenumbers describing
the field. In this approach, the ceramic probe consists in a
dielectric ring (green on Fig. 1) containing a sample medium
(light blue). A formula is proposed for the resonant frequency
of this system, which is approximated to that of a filled
disk, assuming that the effect of the hole is negligible for
the frequency. The field distribution is computed from the
description of the electromagnetic (EM) field in the sample,
within the dielectric ring, and around it. This semi-analytical
approach is then used to derive a quantitative estimation of the
reachable SNR performance of ceramic probes. The practical
example used is designed for a Larmor frequency fL = 730
MHz and previously presented experimentally in Reference
[23], with a ring of given height of 10 mm, outer diameter
18 mm and inner diameter 5.6 mm, and dielectric material of
relative permittivity 536 and loss tangent 8·10−4.

II. TE01δ MODE DESCRIPTION

The principle of the dielectric probe presented in this
paper relies on the excitation of its first TE mode, which
magnetic field distribution in the sample is similar to that of
the solenoid coil while its electric field spatial behavior is
radically different. In this part, we provide semi-analytic tools
to describe the EM field of the exploited TE01δ , in order to,
in next section, derive an expression for the dielectric losses
induced by this probe.

Fig. 1. Configuration of the setup: the axis of the dielectric probe is
perpendicular to the MRI system axis.

Fig. 2. TE01δ mode of a ring resonator (schematic field lines), notations
and coordinates system

The ceramic probe is a cylindrical ring resonator, as rep-
resented in Fig. 2, made of a material with a very high-
permittivity (to ensure a good mode confinement), low-loss
(to lower the probe intrinsic losses) dielectric material sur-
rounded by a low-permittivity medium (air). Due to the high
permittivity contrast between the background material and the
resonator, the electromagnetic field distribution at resonance
can be assumed to be mainly confined within the resonator.
The reflection coefficient between air and high-permittivity
dielectric material, equal to

(√
εr − 1

)
/
(√
εr + 1

)
[24], is

indeed close to 1. In this context, first analytical approaches
of cylindrical dielectric resonators are based on the assumption
of Perfect Magnetic Conductor (PMC) boundary conditions at
the lateral frontiers of the structure [18], [25].
The resonant modes of such a cylindrical structure are clas-
sified following the same notations as for metallic cavities,
except that the integer numbers quantifying the wavenumbers
are replaced by non-integer numbers [26]. In cylindrical coor-
dinates (ρ, θ, y), a transverse electric mode is fully described
by its axial magnetic component Hy whose generic expression
within the cavity is given for a disk resonator in Eq. (1) [27],
[25].

Hy = A cos (nθ + φ) Jn (αρ) cos (βy + ψ) (1)

The mode nomenclature for a dielectric cavity is of the
form TEnm(p+δ) in reference to metallic cavities, where
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n is the integer number for the field angular variations,
m an integer number describing the order of radial field
variations, and p+ δ (p integer, δ a number between 0 and 1)
quantifying the product βL of the axial wavenumber β with
the resonator height L. The first transverse electric mode
of a cylindrical resonator, named TE01δ , corresponds to an
electromagnetic field with a cylindrical symmetry with respect
to the resonator axis (no angular variation). In the center, the
electric field E decreases to zero while the magnetic field H
is maximum and mainly parallel to the resonator axis [6], [3],
two features of great interest for the B1 field of a MRM probe.

A. Disk resonator frequency estimation

In this section, several approaches for estimating the TE01δ

mode eigenfrequency of a cylindrical dielectric resonator,
neglecting dielectric losses within the resonator material, are
presented. In the microwave resonators literature, one can
found a wide variety of methods developed to estimate the
TE01δ mode frequency with different levels of accuracy. A
first starting point is to approximate the value of the resonant
frequency of the isolated resonator by Eq. (2) [6], with fMHz
the frequency in MHz, εr the relative permittivity, rd the disk
radius and L the disk height. This equation was deduced
by fitting simulation data, and despite a limited domain of
validity (radius over height ratio: 0.5 < rd/L < 2 and relative
permittivity: 30 < εr < 50) where accuracy is ensured around
2%, it can be used to give a reasonable approximation for any
high permittivity disk resonator.

fMHz =
3400
√
εrrd,cm

(rd

L
+ 3.45

)
(2)

To extend the validity range of the estimation in terms of
resonator parameters, the simplest approach in terms of com-
putational cost consists in considering the cylindrical dielec-
tric resonator as a shortened section of an infinite dielectric
waveguide with no field leakages on its lateral boundaries. The
radial wavenumber α is the same as for a circular waveguide
with Perfect Magnetic Conductor (PMC) lateral boundaries
α = x01

rd
where x01 is the first zero of the Bessel function of

the first kind, of order zero, and rd the cylinder radius [19].
The axial wavenumbers (β2 = εrk

2
0 −α2 within the dielectric

and γ2 = k2
0−α2 outside, k0 the wavenumber in vacuum) are

related to the resonant frequency fcutoff = k0c0/(2π) (with
c0 the speed of light in vacuum) through the transcendental
equation β tan

(
βL
2

)
= γ, as covered in Ref. [25] under the

description of the cut-off waveguide approach. This method
usually underestimates the resonant frequency of the first TE
mode [20].

An empirical formula was also proposed in [28], [29] to
provide a reliable estimation of the resonant frequency fempirical
(Eq. (3)).

fempirical =
2.9c

2πrdε0.46
r

[
0.7 + 0.3

rd

L
− 0.03

(rd

L

)2
]

(3)

Similarly to the method presented in [30], the resonant
frequency fres is estimated as the average of the two last

approaches, as expressed in Eq. (4).

fres =
1

2
(fempirical + fcutoff) (4)

For comparison to a reference method, the gold-standard
resonance frequency of the same dielectric disk fref,disk is cal-
culated using numerical simulations with the eigenmode solver
of CST Microwave Studio. The reliability of the proposed
method that provides the approximated value fres (Eq. (4)),
was investigated by comparison with the numerical simula-
tions, for discretized values among the following parameter
ranges:
• Relative permittivity εr varying from 200 to 1000;
• Disk height L from 5 to 20 mm;
• Disk radius rd from 5 to 15 mm.
In Fig. 3, the resonant frequency is calculated with Eq.

(4) for a continuous range of height, and discrete values of
the disk radius and relative permittivity. The comparison of
these results to the gold standard is quantified through the
relative error defined in Eq. (5). For the considered ranges
of parameters, the proposed estimation fres has a maximum
relative error of 5.3 %, all other cases have an error less than
5 % and more than half are below 3 %, which validates this
approach.

Ef,ref =
|fres − fref,disk|

fref,disk
× 100 ∝ Eq. (6) (5)

The MRM ceramic probe studied is described as a high-
permittivity (εd = ε0εr) ring resonator (outer radius rd, inner
radius rh, height L), filled with a lower-permittivity (εs)
material representing the sample (cylinder of radius rh and
height L). Such a structure has resonant modes that can be
described in the same manner as for a disk of same high-
permittivity εr than the probe [17]. In the particular case of the
first TE mode, equating the field distribution of the probe and
the disk resonators is even a reasonable assumption. Indeed,
the first TE mode features are affected in proportion to the
electric and magnetic energies stored in the involved volume
[31], which coarsely depends on the quantity ∆ε × Vsamp
(∆ε = εs − εd, Vsamp the sample volume). In particular, in
first approximation, the mode frequency varies from the value
fdisk for the disk to fprobe for the probe according to Eq. (6)
from [31].

fprobe − fdisk

fdisk
≈

−
∫∫∫

Vsamp
∆ε|
−→
E disk|2d3r∫∫∫

VringUVsamp

(
εd|
−→
E disk|2 + µ0|

−→
H disk|2

)
d3r

(6)
From this expression, it can be seen that the TE mode

frequency is affected by the permittivity contrast between
the dielectric ring and the sample. More precisely, as the
sample has a lower permittivity than the ring material, the
permittivity contrast ∆ε is negative and the frequency shift
is therefore positive. In the framework of MRI, it means that
the working frequency of the dielectric probe depends on the
sample, and therefore must be adjusted on demand at the
desired nucleus Larmor frequency. To do so, several methods
have been developed, including coupling with copper foils [4]
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Fig. 3. Comparison between numerical simulations and semi-analytical method (Eq. (4)) of TE01δ eigenmode frequency estimation as a function of the
disk height (L), radius (rd) and permittivity (blue: 200, orange: 500, green: 800, purple: 1000). Lines represent the results from the semi-analytical method
proposed in this paper (fres, Eq. (4)), and markers represent CST results. For each curve, the maximum, minimum and averaged value of the relative error
∆(f) are indicated.

or with a second dielectric resonator [5], and thermostating
the probe to change its permittivity as it depends on the
temperature [23]. On the other side, the sample volume Vsamp
is in the region where the E-field distribution is minimum, as it
vanishes in the center of the structure. In this work, we assume
the same field distribution for the system {ring + sample}
as for the disk when estimating the mode frequency in this
section, and the SNR factor in section IV. This hypothesis is
valid while the permittivity contrast, together with the sample
over disk radii ratio rh/rd, have reasonable values, as presented
in the following.

Figure 4 illustrates the influence of the sample on the TE01δ

mode frequency in the case of a probe with outer radius rd
= 10 mm, height L = 10 mm and varying permittivity εr
and sample properties rh and εr,samp. The frequencies used
in this part are estimated with the Eigenmode solver of CST
Studio. For three values of relative permittivity of the dielectric
material constituting the probe εr (200, 500 and 800), the
relative variation Ef,disk/probe between the disk frequency fref,disk
and the probe one fref,probe is estimated (Eq. 7).

Ef,disk/probe =
|fref,probe − fref,disk|

fref,disk
× 100 (7)

The sample permittivity range covers covers a wide variety

of biological samples. As expected from Eq. (6), the relative
variation is a linear function of the sample permittivity. A
general observation from this figure is that the radii ratio rh/rd
has a dominant influence over the frequency variation, all the
more than the relative permittivity of the probe ring is high.
Indeed, while the sample radius rh is smaller than 0.4 times
the probe radius rd, the frequency shift due to the sample is
inferior to 5% for all the considered permittivities.

B. Field distribution

As for the resonance frequency of the TE01δ mode of a disk
resonator, several approaches have been proposed to estimate
the corresponding EM-field distribution: rigorous numerical
methods with heavy computation cost, and simplified models
which error depends on the rudeness of the hypothesis [6].
Among the second category, the approach proposed by Sheen
[32] is an interesting trade-off between accurary of the field
distribution and simplicity of implementation. In [32], it is
presented for the parallel-plate dielectric disk, meaning the
disk is placed between two conducting plates. In the following,
we propose a similar method for the parallel-plate dielectric
ring. In both methods, the field distribution is estimated for
lossless dielectric materials.
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Fig. 4. Quantification of the TE01δ mode frequency shift between the disk resonator and the dielectric probe (for both, numerical simulations results with
CST Eigenmode Solver). The probe ring has its relative permittivity equal to 200 (left), 500 (center) and 800 (right). The frequency variation is plotted as a
function of the sample permittivity and for several discrete values of the radii ratio. Curves in dashed lines correspond to systematic frequency shift inferior
to 5%.

This method, for computing the field distribution of the ring
resonator TE01δ mode, is based on the part-by-part subdivi-
sion of the space surrounding the resonator. These regions
are indexed from I → IX and are represented in Fig. 5.
Each of these regions corresponds to a homogeneous relative
permittivity distribution: region I represents the sample, region
II the ceramic material constitutive of the probe, and regions
III → IX the surrounding media which are here taken as air
(εr,III→IX = 1).

VI

Air

III

Air

IX

Air

VI

Air

IX

Air

h

VII

Air

II

 

I

Dielectric 

sample

III

Air

II

 

V

Air

V

Air

VIII

Air

VIII

Air

y

y = L/2

y = -L/2

y = 0

Conducting

plate (PEC)
IV

Air

 = r
h

 = r
d

Fig. 5. Part by part space subdivision for field estimation.

The next step consists in analytically describing the mode
in a cylindrical coordinate system (ρ, θ, y). According to its
specifications, this TE mode has a cylindrical symmetry, which
means that only three field components are nonzero [6], [27]:
Hy , Eθ and Hρ. Solving the Helmholtz’s equation in cylindrical

coordinates leads to the following field expression properties
[6]:

• the radial variation involves linear combinations of the
Bessel functions J and Y or the modified Bessel function
K, with the radial wavenumber kρ,i in region i;

• the axial variation is expressed with a sinusoidal function
and the axial wavenumber ky,i in region i.

The wavenumber components in region i are related to the
total wavenumber in vacuum k0 by Eq. (8).

k2
ρ,i + k2

y,i = εr,ik
2
0 (8)

The model is based on the assumption of purely propagative
EM field in the probe, with real wavenumbers kρ,II = αII
and ky,II = β in the dielectric ring, that imposes the mode.
Leakages through the resonator boundaries are also consid-
ered. In the sample (region I), the axial wavenumber is real
by field continuity with the ring, but the radial wavenumber
αI is defined by the relative values of k0 and kρ,II. Outside
the probe, the field is either propagative either evanescent in
one or two directions, y and ρ. For evanescent contributions,
the corresponding wavenumber is imaginary: kρ,i = jνi and
ky,i = jγi.

The field expressions for Hy and Eθ are given in Eqs. (9)
and (10), respectively. The third component Hρ can be derived
from Hy and its expression is provided in regions I, IV and VII
(Eq. (11)) only since the others are unused in the following
section for calculations.
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HI
y = aIJ0 (αIρ) cos (βy)

HII
y = aII [J0 (αIIρ) + ξY0 (αIIρ)] cos (βy)

HIII
y = aIIIK0 (νIIIρ) cos (βy)

HIV
y = aIVJ0 (αIρ) sinh [γ (y − ylim)]

HV
y = aV [J0 (αIIρ) + ξY0 (αIIρ)] sinh [γ (y − ylim)]

HVI
y = aVIK0 (νIIIρ) sinh [γ (y − ylim)]

HVII
y = aVIIJ0 (αIρ) sinh [−γ (y + ylim)]

HVIII
y = aVIII [J0 (αIIρ) + ξY0 (αIIρ)] sinh [−γ (y + ylim)]

HIX
y = aIXK0 (νIIIρ) sinh [−γ (y + ylim)]

(9)

EI
θ = aI

jωµ0

αI
J1 (αIρ) cos (βy)

EII
θ = aII

jωµ0

αII
[J1 (αIIρ) + ξY1 (αIIρ)] cos (βy)

EIII
θ = −aIII

jωµ0

νIII
K1 (νIIIρ) cos (βy)

EIV
θ = aIV

jωµ0

αI
J1 (αIρ) sinh [γ (y − ylim)]

EV
θ = aV

jωµ0

αII
[J1 (αIIρ) + ξY1 (αIIρ)]

× sinh [γ (y − ylim)]

EVI
θ = −aVI

jωµ0

νIII
K1 (νIIIρ) sinh [γ (y − ylim)]

EVII
θ = aVII

jωµ0

αI
J1 (αIρ) sinh [−γ (y + ylim)]

EVIII
θ = aVIII

jωµ0

αII
[J1 (αIIρ) + ξY1 (αIIρ)]

× sinh [−γ (y + ylim)]

EIX
θ = −aIX

jωµ0

νIII
K1 (νIIIρ) sinh [−γ (y + ylim)]

(10)

HI
ρ = −aI

β

αI
J1 (αIρ) sin (βy)

HIV
ρ = aIV

γ

αI
J1 (αIρ) cosh [γ (y − ylim)]

HVII
ρ = −aVII

γ

αI
J1 (αIρ) cosh [−γ (y + ylim)]

(11)

The axial wavenumber γ is the same in absolute value be
it for y > L

2 (regions IV, V and VI) or y < −L2 (regions
VIII, IX and X) since the resonator is at equal distance from
the conducting plates. The E-field cancellation on the PEC
boundaries gives ylim = h

2 . In the following examples, h is
taken equal to 11 cm, that corresponds to the shielded bore
diameter of the MRI device used in [23].

The wavenumber components are determined using the
tangential field continuity conditions in (12): HI

y = HII
y and

EI
θ = EII

θ at ρ = rh, HII
y = HIII

y and EII
θ = EIII

θ at ρ = rd, and
EI
θ = EIV

θ and HI
y = HIV

y at y = ±L2 . The latest is written only
at y = +L

2 as it gives the same equation than in y = −L2 .

aIJ0 (αIrh) = aII [J0(αIIrh) + ξY0(αIIrh)]
aI

αI
J1 (αIrh) =

aII

αII
[J1(αIIrh) + ξY1(αIIrh)]

aII [J0(αIIrd) + ξY0(αIIrd)] = aIIIK0 (νIIIrd)
aII

αII
[J1(αIIrd) + ξY1(αIIrd)] = −aIII

νIII
K1 (νIIIrd)

aI cos

(
βL

2

)
= aIV sinh

(
γ
L− h

2

)
−aIβ sin

(
βL

2

)
= aIVγ cosh

(
γ
L− h

2

)
(12)

Combining the first four equations of (12) and (8) leads to
the set of equations (13), which is equivalent to the eigenvalue
problem of a circular dielectric waveguide as presented in [33].
This type of system of equations admits complex solutions, as
demonstrated in [34]. It is numerically solved with respect
to the real variable β. The solutions of this system can be
graphically represented by distinct curves representing the
wavenumber k0 as a function of β. The dispersion curves of
the first three modes of such waveguide are given as example
in Fig. 6. The lowest frequency curve is the first order mode
of the corresponding infinite dielectric waveguide and is the
solution considered in the following.

J1(u)

uJ0(u)
=

1

v

J1(v) + ξY1(v)

J0(v) + ξY0(v)

− K1(x)

xK0(x)
=

1
rd
rh
v

J1( rd
rh
v) + ξY1( rd

rh
v)

J0( rd
rh
v) + ξY0( rd

rh
v)

u = rh

√
εr,sampk2

0 − β2

v = rh

√
εrk2

0 − β2

x = rd

√
−k2

0 + β2

ξ =
uJ0(u)J1(v)− vJ0(v)J1(u)

vY0(v)J1(u)− uJ0(u)Y1(v)

(13)

Next, combining the last two equations of (12) and (8)
leads to the set of equations (14), which is equivalent to
the eigenvalue problem of a planar dielectric waveguide [25].
In the same manner, (14) is numerically solved with respect
to β. It gives several solutions depicting the different planar
waveguide modes, as illustrated by the dashed dispersion
curves in Fig. 6.

β tan

(
β
L

2

)
= γ coth

(
γ
h− L

2

)
γ =

√
(εr − 1) k2

0 − β2

(14)

The modes of the dielectric resonators are deduced from
the intersection of the abovementioned two sets of solutions.
The lowest β intersection point corresponds to the first order
mode of the planar waveguide combined with the first order
mode of the circular waveguide, that is, the TE01δ mode of
the dielectric resonator, as illustrated in Fig. 6. The other
wavenumber components are deduced from the β value using
Eq. (8).
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Fig. 6. Dispersion curves of the infinite dielectric circular (solid lines) and
planar (dashed lines) waveguides corresponding to the cylindrical resonator
from Reference [23] (with εr,samp = 50). Only the three (respectively two) first
modes of the circular (resp. planar) waveguide can be seen in the considered
ranges of frequencies and β values. The first TE mode of this ring resonator
is shown with a red circle at the intersection point of the first waveguides
modes.

Fig. 7 shows examples of field maps estimated with this
approach for a dielectric ring of outer radius rd = 10 mm,
height L = 10 mm and relative permittivity εr = 500, filled
with a sample of varying radius rh and relative permittivity
εr,samp = 50. The smaller the ratio rh/rd, the more the magnetic
field is confined within the sample with high intensity, while
the region in which the electric field is minimum is only
slightly affected in terms of lateral dimensions when the
sample diameter increases, as can be seen on Fig. 7 (bottom
line).

The validity of this approach to estimate the field distri-
bution is compared with numerical simulations from CST
Studio Eigenmode solver. In particular, it is quantified through
the field normalized root mean squared error FD-NRMSE
expressed in Eq. (15): at each point rn of the selected grid Ω,
the relative error between the reference field component Uref
and the SAM field component U is computed, and the FD-
NRMSE is the squared sum of all these error terms divided
by the number of points of the grid NΩ

pts.

FD-NRMSE =
1

NΩ
pts

NΩ
pts∑

n=1

(
U (rn)− Uref (rn)

Uref (rn)

)2

(15)

Fig. 8 provides quantitative values of this error. The
reference field is exported from numerical simulations (CST
Studio, Eigenmode Solver). The figure displays the FD-
NRMSE computed in the sample along the lines of equation
y = 0 (top graph) and ρ = 0. It is plotted as a function
of the relative permittivity of the dielectric material of the
probe. In each case, the TE01δ mode of the corresponding
disk resonator is adjusted to the Larmor frequency at 17.2 T
(730 MHz) via its diameter, as covered in section II-A. The
resonator height is kept equal to 10 mm. The FD-NRMSE
never exceeds 5 %. Increasing the permittivity, which involves
a higher confinement of the mode in the probe, also leads

to an improvement in the accuracy of the semi-analytical
method regarding the radial field distribution.

III. POWER LOSSES ESTIMATION

When designing a dielectric probe for MRI, one key
feature that must be quantified is the proportion of input
power lost during acquisition, be it in the probe itself or in the
sample. This is a necessary step to estimate the noise induced
by these losses. In this section, we propose a simplified
approach to estimate the contributions to power losses from
the probe and from the sample. This will be used in the next
section to evaluate the SNR provided by a dielectric probe
as a function of its geometrical and electromagnetic properties.

When an object of volume Ω and material of complex
permittivity ε = ε′ − jε′′ (with our notations, ε′ = ε0εr ≥ 0
and ε′′ = ε′ tan δ) is immersed in an electromagnetic field,
energy is dissipated in the form of heat [35].

This is caused by two phenomenon: electric conduction if
the density of free electrons is non zero, and bound charges
polarization [24]. In our notation, the material loss tangent
includes both contributions: tan δ = tan δ—cond + tan δ—polar.
Power losses in the object are expressed as the integral over
its volume Ω, of the power losses density p, as in Eq. (16)
[35].

Ploss =

∫
Ω

p (r) d3r

p =
1

2
ωε′′|
−→
E |2

(16)

High-permittivity materials that can be used to build dielec-
tric probe are ceramics, as in [4], [5], [23]. Such materials are
described by their experimentally measured real permittivity
and total loss tangent [36]. Biological samples on the other
hand are electrically conductive with a significant contribution
as they contain water. In that case, the power loss density
reduces to Eq. (17).

psamp =
1

2
σ|
−→
E |2 (17)

Noise (loss) involved in the signal acquisition during MRM
experiment comes from the resistance of the dielectric ring
resonator and from the conductive sample placed within the
ring. As evoked in section II, the TE01δ eigenmode of the
ring resonator is very similar to that of the corresponding disk
resonator (no hole). Therefore, in order to provide analytical
expressions for the dielectric losses in each subvolume, the
following approximations are used:

1) Losses in the dielectric resonator are small enough not to
influence the field distribution. Therefore, the EM field
expression used for computing dielectric losses is that
of a lossless resonator.

2) The electric field distribution of the ring resonator
• is assumed equal to that of the disk resonator(−→

E disk (r)
)

;
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Fig. 7. Normalized field maps for a dielectric ring (permittivity 500, height 10 mm, outer diameter 20 mm) filled with a sample of permittivity 50 for
different inner to outer radii ratios. Top line: modulus of the total magnetic field. Middle line: modulus of the total electric field. Bottom line: field lines of
the total electric (blue solid line) and magnetic (orange dotted line) fields in the center of the resonator (y = 0). The maps and field lines are normalized to
the maximum value of the field modulus. Linear color scale from 0 to 1.

• and the field leakages through lateral boundaries can
be neglected. As a result, the radial wavenumber α
is quantified as x01/rd where x01 is the first zero of
the zero-th order Bessel function of the first kind:
J0 (x01) = 0.

3) The magnetic field decrease within the sample is due to
its relative permittivity being different from that of the
ring and quantified by the so-called penalty coefficient
τ = Hsample

0 /Hdisk
0 with H0 = |−→H (ρ = 0, z = 0) |. The

field decrease, and the way the coefficient is estimated,
are illustrated in Fig. 9. Its maximum value is 1, that
corresponds to the disk (∆εr = 0) and it decreases
toward zero with the increasing permittivity contrast.
In practice, τ is estimated from the semi-analytically
computed distributions considering field leakages at the
boundaries, by comparing the H0 value in the disk and
in the sample excited by the ring resonator, with a cor-
recting factor applied to ensure the following condition:
|−→H ring (ρ = rh, z = 0) | = |−→H disk (ρ = rh, z = 0) |.

The two contributions for losses are therefore expressed as
following.

Ring resonator losses:

Pring
loss =

1

2
ε0εrω tan δ

∫
Vring

|
−→
E disk (r) |2d3r (18)

Pring
loss = ∆ε0εrω tan δLeff

(
Hdisk

0

)2 ∫ rd

rh

ρJ2
1 (αρ) dρ (19)

∆ = 2π
(ωµ0

2α

)2

(20)

Leff =

(
1 +

sin (βL)

βL

)
L (21)

Pring
loss,norm = ∆ε0εrω tan δLeff

∫ rd

rh

ρJ2
1 (αρ) dρ (22)
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Sample losses:

Psample
loss =

1

2
σsampleτ

2

∫
Vsamp

|
−→
E disk (r) |2d3r

= ∆σsampleLeff
(
τHdisk

0

)2 ∫ rh

0

ρJ2
1 (αρ) dρ

(23)

Psample
loss,norm = ∆σsampleLeff

∫ rh

0

ρJ2
1 (αρ) dρ (24)

To fully develop these expressions for dielectric losses, the
integrals of the square of the first kind, first order Bessel
function J1 are derived from Eq. (25) from [37] generalized
to arbitrary boundaries in Eq. (26).

∀u ∈ R,∫ u

0

ρJ2
1 (αρ) dρ =

u2

2

[
J2

1 (αu)− J0 (αu) J2 (αu)
] (25)

∀ (u, v) ∈ R2,∫ u

v

ρJ2
1 (αρ) dρ =

u2

2

[
J2

1 (αu)− J0 (αu) J2 (αu)
]

− v2

2

[
J2

1 (αv)− J0 (αv) J2 (αv)
] (26)

The model developed for the dielectric losses estimation
was compared to numerical simulations performed with the
CST Microwave Studio Eigenmode solver, which ignores
material losses. In particular, a comparison was performed
on the penalty factor τ and the normalized power losses
term τ2Psample

loss,norm + Pring
loss,norm in the case of a dielectric ring

of permittivity 500, height 10 mm and outer diameter 20 mm;
the ceramic loss tangent was 10−3.
Regarding the validation of the penalty factor estimation, the
sample permittivity varied between 1 and 100 and the inner
over outer diameters ratio r = rh/rd was 0.2, 0.3 and 0.5; while
the normalized power losses were studied for ratio equal to 0.3
for varying sample properties (permittivity and conductivity).
The penalty factor τ quantifies the decrease of H-field in the
center of the sample, due to permittivity contrast between
the ceramic material and the sample medium. As illustrated
on Fig. 10, the lower the sample permittivity, the lower the
penalty factor and the H-field magnitude. The magnetic field
also decreases when increasing the sample diameter, that is the
r ratio, and so does the error on the penalty factor estimation,
which is otherwise barely affected by the sample permittivity
value. For the three r ratio values considered here 0.2, 0.3 and
0.5, the maximum relative errors between the semi-analytical
method and the full-wave simulations are 2.4%, 5.6% and
15.8%, respectively. In the last case, the model fails to describe
properly the H-field distribution. The reason for this is that,
as can be observed in Fig. 7, the E-field can no longer be
assumed to be zero in the sample as its diameter increases. In
consequence, we consider that the model should not be used
for a diameter ratio higher than 0.5.

Fig. 11 represents the relative error between normalized
total power losses from the developed model for the field
distribution and the Eigenmode solver. The error is less than
5.1% in all the configurations considered here, that already
cover a wide range of biological samples.

IV. SIGNAL-TO-NOISE RATIO ESTIMATION

The Signal-to-Noise Ratio (SNR) factor, defined in Eq. (27),
can be expressed in terms of Hprobe

0 the magnetic field in
the sample and Pprobe

loss the total dielectric losses (from probe
and sample). This quantity uSNR (Eq. (27)) is useful not
only in designing a ceramic probe with optimal parameters,
but also to compare this probe performance to other MRM
coil types, for example the commonly-used solenoid. It is
equivalent, ignoring a multiplication factor of

√
2, to the

resonator efficiency used by Mett et al. in their lumped-
elements quivalent circuit approach [21], [22].

uprobe
SNR =

Hprobe
0√
Pprobe

loss

(27)
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Fig. 11. Comparison of semi-analytical model and numerical simulations
results in terms of normalized power losses term τ2Psample

loss,norm + Pring
loss,norm, as

a function of the sample conductivity.

Considering the model hypothesis presented in III, the
magnetic field within the sample is expressed as the product
of the penalty factor τ with the H-field amplitude in the disk
Hdisk0 . The power losses, accounting for electric field-sample
interactions, are expressed by Eqs. (19) and (23). The H-
field amplitude in the disk simplifies between numerator and
denominator, and Eq.(27) becomes:

uDR
SNR =

τHdisk
0√

Psample
loss + Pring

loss

=
τ√

τ2Psample
loss,norm + Pring

loss,norm

(28)

The model proposed for the SNR factor estimation, herein
after named SAM (Semi-Analytical Model) was compared in
the case of a ceramic resonator prototype (outer diameter rd

= 18 mm, inner diameter rh = 5.6 mm, height L = 10 mm,
relative permittivity εr = 536, loss tangent tanδ = 8.10−4) and
was experimentally validated in [23]. In this paragraph, we
compare the SNR factor provided by this probe, as a function
of the sample conductivity, for two distinct values of sample
relative permittivities, 50 and 81. Numerical simulations were
performed using CST Microwave Studio, Frequency Domain
Solver, with the dielectric ring resonator and a sample of
diameter 4.5 mm and height 20 mm. In this configuration,
the probe was fed through inductive coupling with a 3-mm
loop placed at 3.8 mm from it , and is placed in the center
of a metallic cylindrical shell representing the MR device
bore (material: Perfect Electric Conductor, total length along
z-axis: 600 mm, diameter: 91 mm). This is the most realistic
case, compared to the simulations with the Eigenmode Solver
in which no source is exciting the resonant mode. The SAM
was also compared to a ”combined method”, in which the
SNR factor is computed by estimating each variable in
Eq. (27) with the discretized E-field (mesh step 0.2 mm)
exported from the simulation software (Eigenmode solver).
In particular, dielectric losses are derived by integrating the
squared E-field multiplied by the local loss term (Eq. (16))
with the rectangle rule. Fig. 12 summarizes these results
and Table I gives an example of numerical values for the
computed parameters of Eq. (27).

Fig. 12. Comparison, in terms of SNR factor, of semi-analytical model
(SAM) with numerical simulations results (Frequency domain solver of CST
Microwave Studio) and Eq. (28) applied to the E-field distribution from the
software Eigenmode solver (combined).

TABLE I
COMPUTED VARIABLES FOR A SAMPLE OF PERMITTIVITY 50 AND

CONDUCTIVITY 1 S/M.

SAM Eigenmode solver
τ 0,77 0,81

Ploss,norm 0,30.10−5 0,31.10−5

uSNR 445 463

For both permittivities, the CST, combined method and
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SAM curves all follow the same decreasing trend when the
sample conductivity is increased. The maximum relative error
value between the semi-analytical and combined methods,
and the realistic numerical simulations, was estimated at 8%
and 5%, respectively. Both approaches produce results which
are on the same order as errors intrinsic to experimental
measurements of SNR in MRM, and these results also validate
the approximations from Section III.

In the framework of the development of a Magnetic Res-
onance Microscopy probe, comparison of the SNR reachable
by the dielectric probe with the conventional probe designs is
of great interest in order to maximize the achievable SNR. In
the case of the proposed sample and MR system described in
Section I, the reference volume probe is the solenoid probe,
and the SNR factor can be expressed following the guidelines
described in [38], [39]. An example of such comparative study
can be found in [23].

V. DISCUSSION

The theoretical tools presented in this paper aims at assisting
the design of dielectric probes for MRI. In this framework, the
proposed approach is a simplified modeling of such resonator
that enables to estimate its first TE mode frequency and the
expected SNR factor, without relying on numerical simulations
on initial examination. As presented in the previous sections,
the accuracy of this method is satisfying for designing an
optimized first prototype of such probe. It was tested for
realistic values of ceramic material permittivities [36] and
usual values of biological samples permittivities (1 - 100) in
the magnetic resonance imaging frequency range (100 MHz
to 1 GHz). However, another aspect that was not undertaken
previously is its computation time. Table II illustrates this
point for the probe developed for [23], and for two different
samples. The provided delays are averaged over 10 trials for
each computed variables (frequency and SNR factor) and for
each method. The margin of error is not provided if it is strictly
sub-second. The computation is performed on a computer with
64 Go of RAM and an Intel Xeon processor (CPU E5-1630
v4). Regarding the SNR factor estimation with the Frequency
domain solver of CST Studio (frequency range 700 - 780 MHz,
tetrahedral mesh), the effective estimation delay is the given
value, corresponding to the solver time, plus the time to tune
and match the feeding loop at the desired Larmor frequency.
From these results, there is no doubt that the theoretical
approach is much faster than the numerical simulations.

VI. CONCLUSION

In summary, this paper addresses the topic of ceramic probes
developed for Magnetic Resonance Microscopy. In particular,
it proposes a semi-analytical model, based on the study of the
first transverse electric mode of a high-permittivity dielectric
ring, to estimate its resonance frequency and a measure of
the SNR, and evaluate the imaging performance of such
probe. The knowledge of this quantity enables comparison
with standard probe configurations and can be used as design
guideline to optimize the dielectric ring electromagnetic and
geometrical properties.
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