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HOLOMORPHIC BUNDLES TRIVIALIZABLE BY PROPER
SURJECTIVE HOLOMORPHIC MAP

INDRANIL BISWAS AND SORIN DUMITRESCU

Abstract. Given a compact complex manifold M , we investigate the holomorphic vector
bundles E on M such that ϕ∗E is trivial for some surjective holomorphic map ϕ, to M , from
some compact complex manifold. We prove that these are exactly those holomorphic vector
bundles that admit a flat holomorphic connection with finite monodromy homomorphism.
A similar result is proved for holomorphic principal G–bundles, where G is a connected
reductive complex affine algebraic group.

1. Introduction

Let M be a compact complex manifold. Let E be a holomorphic vector bundle on M with

the following property: there is a compact complex manifold X, and a surjective holomorphic

map ϕ : X −→ M , such that ϕ∗E is holomorphically trivial. To clarify, the dimension of

X is allowed to be larger than that of M . Note that if the assumption that X is compact is

removed, then every holomorphic vector bundle satisfies this condition. Indeed, the pullback

of E to the total space of the frame bundle for E has a canonical holomorphic trivialization.

However, this total space is never compact.

Let E be a holomorphic vector bundle on M admitting a flat connection D whose mon-

odromy homomorphism

ρ : π1(M, x0) −→ GL(Ex0) ,

where x0 ∈ M is a base point, has finite image. Consider the finite étale Galois covering

f : M̃ −→ M corresponding to the finite index subgroup kernel(ρ) ⊂ π1(M, x0). It is easy

to see that f ∗E is holomorphically trivial. Therefore, E satisfies the condition stated at the

beginning.

Our aim here is to prove a converse of it. More precisely, we prove the following (see

Theorem 4.1):

Theorem 1.1. Let E be a holomorphic vector bundle on a compact complex manifold M

satisfying the condition that there is a compact complex manifold X, and a surjective map

ϕ : X −→ M , such that ϕ∗E is holomorphically trivial. Then E admits a flat holomorphic

connection whose monodromy homomorphism has finite image.

It is easy to see that a holomorphic vector bundle E on M admits a flat holomorphic

connection with finite monodromy if and only if there is a finite étale Galois covering f :

M̃ −→ M such that f ∗E is holomorphically trivial (the “only if” part was explained above).
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2 I. BISWAS AND S. DUMITRESCU

In [No1], Nori characterized such vector bundles in the frame-work of algebraic geometry.

When the base field is the field of complex numbers his result gives the following statement.

For an algebraic vector bundle V on a complex projective variety Y , the following two

conditions are equivalent:

(1) There is a finite étale Galois covering f : Ỹ −→ Y such that f ∗V is algebraically

trivial.

(2) There are finitely many algebraic vector bundles W1, · · · , W` on Y such that

V ⊗k =
⊕̀
j=1

W
⊕ck,j
j

for every k ≥ 1, where ck,j are nonnegative integers.

Any vector bundle satisfying the second condition is called a finite bundle [No1, p. 35,

Definition]. This definition clearly makes sense for holomorphic vector bundles on compact

complex manifolds. A holomorphic vector bundle on a compact complex manifold is finite

if and only if it admits a flat holomorphic connection with finite monodromy [Bi].

Theorem 1.1 is also extended to holomorphic principal G–bundles over M , where G is

a connected reductive complex affine algebraic group (see Lemma 4.2). An application of

Lemma 4.2 is given in the context of holomorphic generalized Cartan geometries in the sense

of [AM, BD] (see Proposition 5.1).

2. Preliminaries

Let M be a connected complex manifold. The holomorphic tangent and cotangent bundles

on M will be denoted by TM and Ω1
M respectively. The exterior product

∧i Ω1
M will be

denoted by Ωi
M .

Let G be a connected complex Lie group. The Lie algebra of G will be denoted by g. Let

p : E −→ M (2.1)

be a holomorphic principal G–bundle on M . Therefore, E is equipped with a holomorphic

action of G on the right which is both free and transitive on the fibers of p. Consider the

holomorphic right action of G on the holomorphic tangent bundle TE induced by the action

of G on E. The quotient

At(E) := (TE)/G (2.2)

is a holomorphic vector bundle over E/G = M ; it is called the Atiyah bundle for E. The

differential

dp : TE −→ p∗TM

of the projection p in (2.1) is G–equivariant for the trivial action of G on the fibers of p∗TM .

The action of G on E produces a holomorphic homomorphism from the trivial holomorphic

bundle

E × g −→ kernel(dp)
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which is an isomorphism. Therefore, we have a short exact sequence of holomorphic vector

bundles on E

0 −→ kernel(dp) = E × g −→ TE
dp−→ p∗TM −→ 0 (2.3)

in which all the homomorphisms are G–equivariant. The quotient kernel(dp)/G is the adjoint

vector bundle ad(E) = E(g), which is the holomorphic vector bundle over M associated to

E for the adjoint action of G on the Lie algebra g. Taking quotient of the bundles in (2.3),

by the actions of G, the following short exact sequence of holomorphic vector bundles on M

is obtained:

0 −→ ad(E) −→ At(E)
d′p−→ TM −→ 0 , (2.4)

where d′p is the descent of the homomorphism dp (see [At2]); this exact sequence is known

as the Atiyah exact sequence for E.

A holomorphic connection on E is a holomorphic homomorphism of vector bundles

D : TM −→ At(E)

such that

(d′p) ◦D = IdTM ,

where d′p is the projection in (2.4) (see [At2]).

We note that giving a holomorphic connection on E is equivalent to giving a g–valued

holomorphic 1–form

ω ∈ H0(E, Ω1
E ⊗C g) (2.5)

on E such that

• the homomorphism ω : TE −→ g is G–equivariant, and

• the restriction of ω to any fiber of p is the Maurer–Cartan form.

The connection homomorphism D : TM −→ At(E) for the connection defined by ω is

uniquely determined by the condition that the image of D corresponds to the kernel of ω.

The curvature of a holomorphic connection D is

K(D) := D ◦D ∈ H0(M, ad(E)⊗ Ω2
M) .

The connection D is called flat (or integrable) if K(D) = 0. This is equivalent to the

Frobenius integrability condition for the distribution on TE defined by the kernel of ω [Eh].

Fix a base point x0 ∈ M and also fix a point z ∈ p−1(x0) ⊂ E. Given a flat holomorphic

connection D on E, by taking parallel translations of z, with respect to D, along loops based

at x0 we obtain the monodromy homomorphism

ρ(D, z) : π1(M, x0) −→ G .

If we replace z by zg, where g ∈ G, then ρ(D, zg)(γ) = g−1ρ(D, z)(γ)g for all γ ∈
π1(M, x0). If the image of ρ(D, z) is a finite group, the flat connection D is said to be

having finite monodromy.

Let E be a holomorphic principal G–bundle over M and D a flat holomorphic connection

on E such that the corresponding monodromy homomorphism

ρ(D, z) : π1(M, x0) −→ G
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has finite image. Then the subgroup kernel(ρ(D, z)) ⊂ π1(M, x0) defines a finite étale

Galois connected covering

f : M̃ −→ M ,

with Galois group Gal(f) = image(ρ(D, z)), such that

f ∗E = M̃ × Ex0 = M̃ ×G ;

here G is identified with the fiber Ex0 of E using the map g −→ zg, g ∈ G. In other words,

the holomorphic principal G–bundle f ∗E is holomorphically trivial.

3. pullback under a surjective map with connected fibers

Let X and M be compact connected complex manifolds and

ϕ : X −→ M (3.1)

a surjective holomorphic map. Let G be a connected complex Lie subgroup of GL(N,C) for

some N ≥ 1.

Proposition 3.1. Assume that for every point x ∈ M , the fiber ϕ−1(x) ⊂ X is connected.

Let E be a holomorphic principal G–bundle over M such that ϕ∗E is holomorphically trivial.

Then E is also holomorphically trivial.

Proof. Let

σ : X −→ ϕ∗E (3.2)

be a holomorphic section of the principal G–bundle ϕ∗E giving a holomorphic trivialization

of it. For any point y ∈ M , the fiber ϕ−1(y) will be denoted by Xy. Consider the restriction

(ϕ∗E)|Xy of the holomorphic principal G–bundle ϕ∗E to Xy ⊂ X. Note that (ϕ∗E)|Xy is

identified with the trivial principal G–bundle Xy × Ey, where Ey is the fiber of E over the

point y ∈ M . Using this identification between (ϕ∗E)|Xy and Xy ×Ey, the restriction σ|Xy

of the section in (3.2) to Xy corresponds to a holomorphic map

σ̂y : Xy −→ Ey . (3.3)

We note that Ey is holomorphically isomorphic to G, and G is a complex Lie subgroup of

GL(N,C). On the other hand, Xy is compact and connected, and hence it does not admit

any nonconstant holomorphic function. Therefore, the function σ̂y in (3.3) is a constant

map. Consequently, the map σ in (3.2) descends to a holomorphic section of E. In other

words, there is a holomorphic section

σ′ : M −→ E

such that ϕ∗σ′ = σ. This section σ′ produces a holomorphic trivialization of E. �

It should be mentioned that Proposition 3.1 is not valid if the assumption — that G is a

complex Lie subgroup of GL(N,C) for some N ≥ 1 — is removed. To see this, let T be a

compact complex torus, and let

φ : FT −→ M
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be a nontrivial holomorphic principal T–bundle; see [Ho] for nontrivial holomorphic torus

bundles and their properties. Now, the fibers of φ are connected, and the principal T–bundle

φ∗ET has a tautological holomorphic trivialization.

4. Pullback of holomorphic principal bundles

4.1. Pullback of holomorphic vector bundles. As beforeX andM are compact complex

manifolds, and ϕ, as in (3.1), is a surjective holomorphic map. We no longer assume that

the fibers of ϕ are connected.

Theorem 4.1. Let V be a holomorphic vector bundle on M such that the holomorphic vector

bundle ϕ∗V is trivial. Then V admits a flat holomorphic connection of finite monodromy.

Proof. Since ϕ is surjective, we have a natural inclusion of coherent analytic sheaves

ι : OM ↪→ ϕ∗OX . (4.1)

We will show that ι(OM) is a direct summand of ϕ∗OX , meaning there is a coherent analytic

sheaf S on M such that

ϕ∗OX = ι(OM)⊕ S . (4.2)

To prove (4.2), let

X
β−→ Z

γ−→ M

be the Stein factorization of the map ϕ (see [GR, p. 213] for Stein factorization). We note

that Z is a normal space because X is normal (see (2) of Stein factorization theorem in [GR,

p. 213]). Since all the fibers of β are connected, we have

γ∗OZ = ϕ∗OX . (4.3)

There is a Zariski open subset U ⊂ M such that

• the restriction γ|γ−1(U) : γ−1(U) =: Ũ −→ U of γ to Ũ is a finite map, and

• the complex codimension of the complement M \ U ⊂ M is at least two.

Over U , we have the trace map

τ ′ : γ∗OŨ −→ OU (4.4)

such that the composition of homomorphisms

OU −→ γ∗OŨ
τ ′−→ OU , (4.5)

where OU −→ γ∗OŨ is the natural homomorphism as in (4.1), coincides with multiplication

by the degree of the map γ.

Now, since OM is locally free, and the complex codimension of the complement M \ U
is at least two, using Hartogs’ extension theorem, the homomorphism τ ′ in (4.4) extends

uniquely to a homomorphism

τ : γ∗OZ −→ OM . (4.6)
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As the composition of homomorphisms in (4.5) is multiplication by the degree of γ, and any

endomorphism of OM is multiplication by a constant function, it follows immediately that

the composition of homomorphisms

OM −→ γ∗OZ
τ−→ OM , (4.7)

where OM −→ γ∗OZ is the natural homomorphism as in (4.1), coincides with multiplication

by the degree of the map γ.

Let

S ⊂ ϕ∗OX
be the subsheaf that corresponds to kernel(τ) ⊂ γ∗OZ (see (4.6)) by the isomorphism in

(4.3). From the above observation, that the composition of homomorphisms in (4.7) coincides

with multiplication by degree(γ), it follows immediately that the isomorphism in (4.2) holds.

Tensoring both sides of (4.2) by V we get

V ⊗ ϕ∗OX = V ⊕ (V ⊗ S) . (4.8)

On the other hand, by the projection formula,

V ⊗ ϕ∗OX = ϕ∗ϕ
∗V . (4.9)

Since ϕ∗V = O⊕rX , where r is the rank of V , combining (4.8) and (4.9) we conclude that

V ⊕ (V ⊗ S) = ϕ∗O⊕rX = (ϕ∗OX)⊕r . (4.10)

In particular, V is a direct summand of (ϕ∗OX)⊕r.

We now recall a result of Atiyah in [At1]. Any torsionfree coherent analytic sheaf E on M

can be expressed as

E =
⊕̀
i=1

Ei ,

where each Ei, 1 ≤ i ≤ ` is an indecomposable torsionfree coherent analytic sheaf, and Ei,
1 ≤ i ≤ `, are unique up to a permutation of {1, · · · , `} [At1, p. 315, Theorem 2]. We

shall apply this theorem of Atiyah to ϕ∗OX , and we shall separate, for our convenience, the

direct summands which are locally free and those which are not locally free.

So ϕ∗OX is expressed as

ϕ∗OX =

(
m⊕
i=1

Wi

)⊕(
n⊕
j=1

Fj

)
, (4.11)

where each Wi, 1 ≤ i ≤ m, is an indecomposable holomorphic vector bundle on M and

each Fj, 1 ≤ j ≤ n, is an indecomposable torsionfree coherent analytic sheaf which is not

locally free. In this case, the above theorem of Atiyah says that {W1, · · · , Wm} are unique

up to a permutation of {1, · · · , m}, and {F1, · · · , Fn} are unique up to a permutation of

{1, · · · , n}.
We noted above that V is a direct summand of (ϕ∗OX)⊕r. Using this and (4.11), from the

above theorem of Atiyah it can be deduced that V is a direct sum of copies of {W1, · · · , Wm},
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meaning

V =
m⊕
i=1

W⊕dii ,

where di are nonnegative integers; by convention,W⊕0i = 0. To see this, first note that from

(4.10) and (4.11),

V ⊕ (V ⊗ S) =

(
m⊕
i=1

Wi

)⊕r⊕(
n⊕
j=1

Fj

)⊕r
.

Now expressing V as a direct sum of indecomposable holomorphic vector bundles, and V ⊗
S as a direct sum of torsionfree indecomposable coherent analytic sheaves, we conclude

from the uniqueness part of the above theorem of Atiyah that V is a direct summand of

(
⊕m

i=1Wi)
⊕r

=
⊕m

i=1W
⊕r
i .

Since ϕ∗V is a holomorphically trivial vector bundle, it follows that ϕ∗V ⊗k = (ϕ∗V )⊗k

is also a holomorphically trivial vector bundle for every integer k ≥ 1. Consequently,

substituting V ⊗k for V in the above argument we conclude that V ⊗k is a direct sum of

copies of {W1, · · · , Wm}, for every k ≥ 1.

We recall from [No1] and [No2] that a holomorphic vector bundle E on M is called a finite

bundle if there are finitely many holomorphic vector bundles B1, · · · , B` on M such that

for every integer k ≥ 1,

E⊗k =
l⊕

j=1

B
⊕ck,j
j ,

where ck,j are nonnegative integers ([No1, p. 35, Definition], [No1, p. 35, Lemma 3.1(d)]),

[No2, p. 80, Definition], [Bi, (2.1)].

The vector bundle V is finite, because V ⊗k is a direct sum of copies of {W1, · · · , Wm},
for every k ≥ 1. Now Theorem 1.1 of [Bi] says that V admits a flat holomorphic connection

with finite monodromy. �

4.2. Reductive structure group. Let G be a connected reductive complex affine algebraic

group. As in (2.1),

p : E −→ M

is a holomorphic principal G–bundle over a compact complex manifold M . Take (X, ϕ) as

in Section 4.1.

Lemma 4.2. If the holomorphic principal G–bundle ϕ∗E is holomorphically trivial, then E

admits a flat holomorphic connection with finite monodromy.

Proof. Let

ρ : G −→ GL(V)

be a faithful algebraic representation, where V is a finite dimensional complex vector space.

Let EV := E(V) be the holomorphic principal GL(V)–bundle obtained by extending the

structure group of E using ρ.
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Since the group G is reductive, the homomorphism of G–modules

ρ : g −→ End(V) = Lie(GL(V))

splits [FH, p. 128, Theorem 9.19]. Fix such a splitting; let

θ : End(V) −→ g (4.12)

be the projection of G–modules corresponding to the chosen splitting.

Assume that ϕ∗E is holomorphically trivial. Then the holomorphic principal GL(V)–

bundle ϕ∗EV is also holomorphically trivial. Now Theorem 4.1 says that EV admits a flat

holomorphic connection D with finite monodromy. Let

ω ∈ H0(EV, Ω1
EV
⊗C End(V)) (4.13)

be a homomorphism as in (2.5) giving a flat holomorphic connection on EV with finite

monodromy.

Let

f : E ↪→ EV

be the natural inclusion map. Consider the g–valued holomorphic 1–form

θ ◦ f ∗ω ∈ H0(E, Ω1
E ⊗C g) ,

where θ is the homomorphism in (4.12) and ω is the 1–form in (4.13). It is straightforward

to check that θ ◦ f ∗ω is a holomorphic connection on E. If K(ω) ∈ H0(M, ad(EV)⊗Ω2
M) is

the curvature of the connection given by ω, then the curvature of the connection on E given

by θ ◦ f ∗ω is

θ ◦ K(ω) ∈ H0(M, ad(E)⊗ Ω2
M) .

Therefore, the connection given by θ ◦ f ∗ω is flat, because K(ω) = 0. The monodromy of

the flat connection defined by θ ◦f ∗ω is finite, because the connection defined by ω has finite

monodromy. �

5. Holomorphic generalized Cartan geometry

Let G be a connected complex Lie group and H ⊂ G a closed connected complex Lie

subgroup. Denote by g the Lie algebra of G.

There is a standard notion of Cartan geometry [Sh]. Roughly speaking a Cartan geometry

with model (G, H) is infinitesimally modeled on the homogeneous space G/H. The Cartan

geometry is flat (i.e., has vanishing curvature) if and only if it is locally isomorphic (not just

infinitesimally) to the homogeneous space G/H in the sense of Ehresmann [Eh] (see also

[Go]).

It is a very stringent condition for a compact complex manifold to admit a holomorphic

Cartan geometry. A more flexible notion of generalized holomorphic Cartan geometry was

introduced in [BD] (see also [AM]). Holomorphic generalized Cartan geometries are stable

under pullback by holomorphic maps [BD].
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A generalized holomorphic Cartan geometry of model (G, H) on a complex manifold M is

given by a holomorphic principal H–bundle EH over M endowed with a g-valued holomorphic

one form on EH such that the following two hold:

(1) ω is H–equivariant with H acting on g via adjoint representation;

(2) the restriction of ω to each fiber of EH coincides with the Maurer–Cartan form

associated to the action of H on EH .

A generalized Cartan geometry is called flat if its curvature K(ω) = dω + 1
2
[ω, ω]g vanishes

identically.

Notice that the standard definition of a Cartan geometry requires that ω realizes a point-

wise linear isomorphism between TEH and g (which implies that the complex dimension of

M coincides with that of G/H).

Denote by EG the holomorphic principal G–bundle constructed from EH by extension of

the structure group using the inclusion map H ↪→ G. Denote by ad(EH) and ad(EG) the

adjoint bundles of EH and EG respectively. Let At(EH) be the Atiyah bundle for EH (see

(2.2)).

A generalized holomorphic Cartan geometry of model (G, H) is equivalently defined (see

[BD]) by a homomorphism Ψ : At(EH) −→ g such that the following diagram commutes:

0 −→ ad(EH) −→ At(EH) −→ TM −→ 0

‖
yΨ

yt
0 −→ ad(EH) −→ ad(EG) −→ ad(EG)/ad(EH) −→ 0

(5.1)

Notice that the top row of the diagram is the exact sequence in (2.4) corresponding to the

principal bundle EH and the bottom row is given by the canonical inclusion of ad(EH) in

ad(EG). The homomorphism t in (5.1) is is uniquely defined by Ψ and the commutativity

of the diagram.

The homomorphism Ψ in (5.1) defines a canonical connection DG on the principal G-

bundle EG and the generalized Cartan geometry is flat (i.e., K(ω) = 0) if and only if

the connection DG is flat (see Proposition 3.4 and Section 3.3 in [BD]). In this case the

monodromy of (EG, DG) is called the monodromy of the generalized Cartan geometry.

Now let G be a connected reductive complex affine algebraic group and H ⊂ G a con-

nected closed algebraic subgroup of it. In the context of generalized Cartan geometries,

Lemma 4.2 has the following consequence.

Proposition 5.1. Take M , X and ϕ as (3.1). Let (EH , ω) be a holomorphic generalized

Cartan geometry on M , with model (G, H), such that the pulled back generalized Cartan

geometry (ϕ∗EH , ϕ
∗ω) on X is flat and has trivial monodromy homomorphism. Then M

admits a flat holomorphic generalized Cartan geometry (EH , ω
′), with model (G,H), whose

monodromy homomorphism has finite image.

Proof. We apply Lemma 4.2 to the principal G–bundle EG. Since the generalized Cartan

geometry (ϕ∗EH , ϕ
∗ω) is flat with trivial monodromy, it follows that ϕ∗EG is flat with triv-

ial monodromy (note that ϕ∗EG coincides with the principal G-bundle associated to ϕ∗EH
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by extension of the structure group). Consequently, ϕ∗EG is holomorphically trivial. Now

Lemma 4.2 implies that EG admits a holomorphic flat connection D′G with finite monodromy.

Together with the reduction of the structure group EH ⊂ EG to the subgroup H the con-

nection D′G defines a holomorphic generalized geometry (EH , ω
′) on M [BD] (Theorem 3.7,

point (3)). Since D′G is flat, the curvature K(ω′) of ω′ vanishes identically. The monodromy

of (EH , ω
′) coincides with that of (EG, D

′
G), so it is finite. �
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