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Reaction-diffusion equation on thin porous media

Maŕıa ANGUIANO1

Abstract

We consider a reaction-diffusion equation on a 3D thin porous media of thickness ε which is perforated
by periodically distributed cylinders of size ε. On the boundary of the cylinders we prescribe a dynamical
boundary condition of pure-reactive type. As ε → 0, in the 2D limit the resulting reaction-diffusion equation
has a source term coming from the dynamical-type boundary conditions imposed on boundaries of the original
3D domain.

AMS classification numbers: 35K57; 35B27

Keywords: Homogenization, energy method, dynamical boundary-value problems, porous media, thin films

1 Introduction and setting of the problem

We consider a parabolic problem in a thin porous media Ωε of thickness ε which is perforated by periodically
distributed cylinders (obstacles) of size ε. On the boundary of the cylinders, we prescribe a dynamical boundary
condition of pure-reactive type. The aim of this work is to prove the convergence of the homogenization process
when ε goes to zero.

The asymptotic behavior of the solution of linear parabolic problems with dynamical boundary conditions
of pure-reactive type in periodically perforated domains was analyzed by Timofte in [14]. The author obtained
a new parabolic limiting problem defined on a unified domain with extra terms coming from the influence of
the dynamical boundary conditions. More recently, in [1, 2], we study the nonlinear case where the nonlinearity
appears reflected in the limit equation. However, to our knowledge, there does not seem to be in the literature
any study of the asymptotic behavior of the solution of parabolic models associated with dynamical boundary
conditions of pure-reactive type in a thin porous media. Let us introduce the model we will be involved with in
this paper.

The geometrical setting. The periodic porous media is defined by a domain ω and an associated mi-
crostructure, or periodic cell Y ′ = [−1/2, 1/2]2, which is made of two complementary parts: the obstacle part

F ′, and Y ′f = Y ′ \F ′. More precisely, we assume that ω is a smooth, bounded, connected set in R2, and that F ′

is an open connected subset of Y ′ with a smooth boundary ∂F ′, such that F
′

is strictly included in Y ′.

The microscale of a porous media is a small positive number ε. The domain ω is covered by a regular mesh
of square of size ε: for k′ ∈ Z2, each cell Y ′k′,ε = εk′ + εY ′ is divided in an obstacle part F ′k′,ε and Y ′fk′ ,ε, i.e. is

similar to the unit cell Y ′ rescaled to size ε. We define Y = Y ′ × (0, 1) ⊂ R3, which is divided in an obstacle
part F = F ′ × (0, 1) and Yf = Y ′f × (0, 1), and consequently Yk′,ε = Y ′k′,ε × (0, 1) ⊂ R3, which is also divided in
an obstacle part Fk′,ε and Yfk′ ,ε.

We denote by τ(F
′
k′,ε) the set of all translated images of F

′
k′,ε. The set τ(F

′
k′,ε) represents the obstacles in

R2.
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We define ωε = ω\
⋃

k′∈Kε
F
′
k′,ε ⊂ R2, where Kε = {k′ ∈ Z2 : Y ′k′,ε ∩ ω 6= ∅}, and we define the thin porous

media Ωε ⊂ R3 by
Ωε = {(x1, x2, x3) ∈ ωε × R : 0 < x3 < ε}. (1)

We make the following assumption:

The obstacles τ(F
′
k′,ε) do not intersect the boundary ∂ω.

We define F ε
k′,ε = F ′k′,ε × (0, ε). Denote by Sε the set of the obstacles contained in Ωε. Then, Sε is a finite

union of obstacles, i.e.

Sε =
⋃

k′∈Kε

F
ε

k′,ε.

We define
Ω̃ε = ωε × (0, 1), Ω = ω × (0, 1), Λε = ω × (0, ε). (2)

We observe that Ω̃ε = Ω\
⋃

k′∈Kε
F k′,ε, and we define Fε =

⋃
k′∈Kε

F k′,ε as the set of obstacles contained in

Ω̃ε.

Position of the problem. We consider the following problem for a reaction-diffusion equation with dy-
namical boundary conditions of pure-reactive type on the surface of the obstacles and zero Dirichlet condition
on the exterior boundary, 

∂uε
∂t
−∆uε + κuε = f(x′, t) in Ωε × (0, T ),

∇uε · νε + ε
∂uε
∂t

= ε g(x′, t) on ∂Sε × (0, T ),

uε(x, 0) = u0
ε(x), for x ∈ Ωε,

uε(x, 0) = ψ0
ε(x), for x ∈ ∂Sε,

uε = 0, on ∂Λε × (0, T ),

(3)

where uε = uε(x, t), x = (x′, x3) ∈ Ωε, t ∈ (0, T ) and T > 0. The first equation states the law of standard
diffusion in Ωε, ∆ = ∆x denotes the Laplacian operator with respect to the space variable and κ > 0 is a given
constant. The boundary equation (3)2 is multiplied by ε to compensate the growth of the surface by shrinking
ε, where the value of uε is assumed to be the trace of the function uε defined for x ∈ Ωε, νε is the outer normal
to ∂Sε. The term ∇uε · νε represents the heat flux across the boundary (see Goldstein [11] for more details). We
assume that

u0
ε ∈ L2 (Ω) , ψ0

ε ∈ L2 (∂Sε) , (4)

are given, and that there exists a positive constant C such that

ε−1|u0
ε|2Ωε

+ |ψ0
ε |2∂Sε

≤ C, (5)

where | · |Ωε
and | · |∂Sε

denote the norm in L2(Ωε) and L2(∂Sε), respectively.

Moreover, we assume that

f ∈ L2
(
0, T ;L2 (ω)

)
, g ∈ L2

(
0, T ;H1

0 (ω)
)
, (6)

are given. This choice of f and g is usual when dealing with thin domains. Since the thickness of the domain,
ε, is small then the exterior force can be considered independent of the vertical variable.

In this paper, our main motivation is to study the asymptotic behavior of the solution uε of (3) as ε, the size
of the cylinders and the corresponding thickness of the thin film, tend to zero. We combine the homogenization
techniques used in porous media and in thin film in order to rigorously derive the homogenized model.
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For this purpose, we first perform a change of variables which consists in stretching in the x3-direction by a
factor 1/ε. As in [3], we use the dilatation in the variable x3, i.e.

y3 =
x3

ε
, (7)

in order to have the functions defined in the open set with fixed height Ω̃ε defined by (2). In this sense, we define
ũε by

ũε(x
′, y3, t) = uε(x

′, εy3, t), a.e. (x′, y3, t) ∈ Ω̃ε × (0, T ), (8)

and our goal then is to describe the asymptotic behavior of this new sequence ũε when ε tends to zero.

Using the dilatation in the variable x3 given by (7), we have that ∆uε is transformed into

∆x′ ũε +
1

ε2
∂2
y3
ũε.

The factor 1/ε2 in front of the derivate in the y3 direction means a very fast diffusion in the vertical direction.

In some sense, we have substituted the thin porous media Ωε by a non-thin domain Ω̃ε, but with a very strong
diffusion mechanism in the y3-direction. Because of the presence of this very strong diffusion mechanism, it is
expected that solutions of the problem which satisfies ũε, defined in (20), become homogeneous in the y3-direction
so that the limit solution will not have a dependence in this direction, and therefore, the limit problem will be
two dimensional.

The method we follow in this paper is the so-called energy method of Tartar [15], which has been considered
by many authors (see, for instance, Cioranescu and Donato [5], Conca and Donato [9], Conca et al. [10], Timofte
[14] and [1]) and the technique introduced by Vanninathan [16] for the Steklov problems which transforms surface
integrals into volume integrals. We get the following limit problem to (20), as ε goes to zero.

Theorem 1.1 (Main Theorem). Under the assumptions (5)–(6), assume that (u0
ε, ψ

0
ε) ∈ H1(Ωε) ×H1/2(∂Sε)

and there exists a positive constant C such that

ε−1/2|∇u0
ε|Ωε

≤ C. (9)

Let (uε, ψε) be the unique solution of the problem (3), where ψε is the trace of the function uε defined for x ∈ Ωε

and a.e. t ∈ (0, T ]. Then, there exists an extension Π̃εũε of ũε, where ũε is the dilation of uε given by (8), into
all Ω× (0, T ), such that, as ε→ 0,

Π̃εũε(t)→ u(t) strongly in L2(Ω), ∀t ∈ [0, T ],

where u ∈ L2(0, T ;H1
0 (ω)) is the unique solution of the following problem

( |Y ′f |
|Y ′|

+
|∂F ′|
|Y ′|

)
∂u

∂t
− divx′ (Q∇x′u) +

|Y ′f |
|Y ′|

κu =
|Y ′f |
|Y ′|

f +
|∂F ′|
|Y ′|

g, in ω × (0, T ),

u(x′, 0) = u0(x′), for x′ ∈ ω,

u = 0, on ∂ω × (0, T ).

(10)

The homogenized matrix Q = ((qi,j)), 1 ≤ i, j ≤ 2, which is symmetric and positive-definite, is given by

qi,j =
1

|Y ′|

∫
Y ′
f

(ei +∇y′wi) · (ej +∇y′wj) dy
′, (11)

where wi ∈ Hper \ R, i = 1, 2, is the unique solution of the cell problem
−divy′ (ei +∇y′wi) = 0, in Y ′f ,

(ei +∇y′wi) · ν′ = 0, on ∂F ′,

wi is Y ′ − periodic.

(12)
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Here, ei is the i element of the canonical basis in R2, ν′ is the outer normal to ∂F ′, and Hper is the space of
functions from H1(Y ′f ) which are Y ′-periodic.

The structure of the paper as follows. In Section 2, we introduce some notations which are used in the
paper. In Section 3, we give a weak formulation of the problem, and establish the existence and uniqueness of
solution. In Section 4, we establish the problem which satisfies ũε given by (8). Some a priori estimates for ũε
are rigorously obtained in Section 5. A compactness result is addressed in Section 6. Finally, the main goal of
proving the asymptotic behavior of the solution ũε is achieved in Section 7.

2 Some notations

Along this paper, the points x ∈ R3 will be decomposed as x = (x′, x3) with x′ ∈ R2, x3 ∈ R. We also use the

notation x′ to denote a generic vector of R2. We denote by χΩ̃ε
the characteristic function of the domain Ω̃ε.

We denote by (·, ·)Ωε
(respectively, (·, ·)∂Sε

) the inner product in L2(Ωε) (respectively, in L2(∂Sε)), and by
|·|Ωε

(respectively, |·|∂Sε
) the associated norm. We also denote (·, ·)Ωε

the inner product in (L2(Ωε))
3.

We denote by (·, ·)Ω̃ε
(respectively, (·, ·)∂Fε

) the inner product in L2(Ω̃ε) (respectively, in L2(∂Fε)), and by

|·|Ω̃ε
(respectively, |·|∂Fε

) the associated norm. We also denote (·, ·)Ω̃ε
the inner product in (L2(Ω̃ε))

N , with
N = 2, 3.

We denote by (·, ·)Ω the inner product in L2(Ω), and by |·|Ω the associated norm. We also denote (·, ·)Ω the
inner product in (L2(Ω))3. By ‖·‖Ω we denote the norm in H1(Ω).

We denote by (·, ·)ωε the inner product in L2(ωε) and by | · |ωε the associated norm. We also denote (·, ·)ωε the
inner product in (L2(ωε))

2. By || · ||ωε we denote the norm in H1(ωε), which is associated to the inner product

((·, ·))ωε := (∇x′ ·,∇x′ ·)ωε + (·, ·)ωε
.

By ‖·‖Ω̃ε
we denote the norm in H1(Ω̃ε), which is associated to the inner product

((·, ·))Ω̃ε
:= (∇x′ ·,∇x′ ·)Ω̃ε

+ (∂y3
·, ∂y3

·)Ω̃ε
+ (·, ·)Ω̃ε

.

By || · ||Ω̃ε,T
we denote the norm in L2(0, T ;H1(Ω̃ε)).

By |·|Ω̃ε,T
(respectively |·|∂Fε,T ), we denote the norms in L2(0, T ;L2(Ω̃ε)) and L2(0, T ; (L2(Ω̃ε))

3) (respectively

L2(0, T ;L2(∂Fε))). By | · |Ω,T , we denote the norms in L2(0, T ;L2(Ω)) and L2(0, T ; (L2(Ω))3).

We denote by γ0 the trace operator u 7→ u|∂Ωε . The trace operator belongs to L(H1(Ωε), H
1/2(∂Ωε)), and we

will use ‖γ0‖ to denote the norm of γ0 in this space. Analogously, we denote by γ0 the trace operator ũ 7→ ũ|∂Ω̃ε
.

We will use ‖ · ‖∂Ω̃ε
to denote the norm in H1/2(∂Ω̃ε), which is given by ‖φ̃‖∂Ω̃ε

= inf{‖ṽ‖Ω̃ε
: γ0(ṽ) = φ̃}.

We recall that with this norm, H1/2(∂Ω̃ε) is a Hilbert space.

We denote by Hr
∂Λε

(Ωε) and Hr
∂Λε

(∂Ωε), for r ≥ 0, the standard Sobolev spaces which are closed subspaces
of Hr(Ωε) and Hr(∂Ωε), respectively, and the subscript ∂Λε means that, respectively, traces or functions in ∂Ωε,
vanish on this part of the boundary of Ωε, i.e.

Hr
∂Λε

(Ωε) = {v ∈ Hr(Ωε) : γ0(v) = 0 on ∂Λε},

and
Hr

∂Λε
(∂Ωε) = {v ∈ Hr(∂Ωε) : v = 0 on ∂Λε}.

Let us notice that, in fact, we can consider an element of H1/2(∂Sε) as an element of H
1/2
∂Λε

(∂Ωε), and we can

consider the given ψ0
ε as an element of L2

∂Λε
(∂Ωε).
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We denote by Hr
∂Ω(Ω̃ε) and Hr

∂Ω(∂Ω̃ε), for r ≥ 0, the standard Sobolev spaces which are closed subspaces of

Hr(Ω̃ε) and Hr(∂Ω̃ε), respectively, and the subscript ∂Ω means that, respectively, traces or functions in ∂Ω̃ε,

vanish on this part of the boundary of Ω̃ε, i.e.

Hr
∂Ω(Ω̃ε) = {ṽ ∈ Hr(Ω̃ε) : γ0(ṽ) = 0 on ∂Ω},

and
Hr

∂Ω(∂Ω̃ε) = {ṽ ∈ Hr(∂Ω̃ε) : ṽ = 0 on ∂Ω}.

Let us consider the space
H := L2(Ω̃ε)× L2

∂Ω(∂Ω̃ε),

with the natural inner product ((ṽ, φ̃), (w̃, ϕ̃))H = (ṽ, w̃)Ω̃ε
+ ε(φ̃, ϕ̃)∂Fε

, which in particular induces the norm
|(·, ·)|H given by

|(ṽ, φ̃)|2H = |ṽ|2
Ω̃ε

+ ε|φ̃|2∂Fε
, (ṽ, φ̃) ∈ H.

Let us also consider the space

V1 :=
{

(ṽ, γ0(ṽ)) : ṽ ∈ H1
∂Ω(Ω̃ε)

}
.

We note that V1 is a closed vector subspace of H1
∂Ω(Ω̃ε) × H1/2

∂Ω (∂Ω̃ε), and therefore, with the norm ‖(·, ·)‖V1

given by
‖(ṽ, γ0(ṽ))‖2V1

= ‖ṽ‖2Ω̃ε
+ ‖γ0(ṽ)‖2∂Fε

, (ṽ, γ0(ṽ)) ∈ V1,

V1 is a Hilbert space.

For a vectorial function v = (v′, v3) and a scalar function w, we introduce the operators: ∇ε and divε, by

∇εw = (∇x′w,
1

ε
∂y3w)t, divεv = divx′v′ +

1

ε
∂y3v3. (13)

We denote by |O| the Lebesgue measure of |O| (3-dimensional if O is a 3-dimensional open set, 2-dimensional of
O is a curve).

Finally, we denote by C a generic positive constant, independent of ε, which can change from line to line.

3 Existence and uniqueness of solution of the problem (3)

We state in this section a result on the existence and uniqueness of solution of problem (3).

Definition 3.1. A weak solution of (3) is a pair of functions (uε, ψε), satisfying

uε ∈ C([0, T ];L2(Ωε)), ψε ∈ C([0, T ];L2
∂Λε

(∂Ωε)), for all T > 0, (14)

uε ∈ L2(0, T ;H1
∂Λε

(Ωε)), for all T > 0, (15)

ψε ∈ L2(0, T ;H
1/2
∂Λε

(∂Ωε)), for all T > 0, (16)

γ0(uε(t)) = ψε(t), a.e. t ∈ (0, T ], (17)
d

dt
(uε(t), v)Ωε

+ ε
d

dt
(ψε(t), γ0(v))∂Sε

+ (∇uε(t),∇v)Ωε
+ κ (uε(t), v)Ωε

= (f(x′, t), v)Ωε + ε (g(x′, t), γ0(v))∂Sε

in D′(0, T ), for all v ∈ H1
∂Λε

(Ωε),

(18)

uε(0) = u0
ε, and ψε(0) = ψ0

ε . (19)
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Thanks to [1, Theorem 3.3], we have the following result.

Theorem 3.2. Under the assumptions (4)–(6), there exists a unique solution (uε, ψε) of the problem (3). More-
over, this solution satisfies the energy equality

1

2

d

dt

(
|uε(t)|2Ωε

+ ε|ψε(t))|2∂Sε

)
+ |∇uε(t)|2Ωε

+ κ |uε(t)|2Ωε

= (f(x′, t), uε(t))Ωε + ε (g(x′, t), ψε(t))∂Sε , a.e. t ∈ (0, T ).

4 Dilatation in the variable x3: definition of ũε

In this section, we use the dilatation in the variable x3, i.e. we use (7) in order to have the functions defined in

the open set with fixed height Ω̃ε defined by (2). In this sense, we define ũε ∈ L2(0, T ;H1
∂Ω(Ω̃ε)), for all T > 0,

by (8), and using the transformation (7), the system (3) can be rewritten as

∂ũε
∂t
− divε(∇εũε) + κ ũε = f(x′, t) in Ω̃ε × (0, T ),

∇εũε · ν̃ε + ε
∂ũε
∂t

= ε g(x′, t) on ∂Fε × (0, T ),

ũε(x
′, y3, 0) = ũ0

ε(x′, y3), for (x′, y3) ∈ Ω̃ε,

ũε(x
′, y3, 0) = ψ̃0

ε(x′, y3), for (x′, y3) ∈ ∂Fε,
ũε = 0, on ∂Ω× (0, T ),

(20)

where divε and ∇ε are given by (13), and ν̃ε is the outer normal to ∂Fε.

Taking in (3) as test function ṽ(x′, x3/ε) with ṽ ∈ H1
∂Ω(Ω̃ε), applying the change of variables (7) and taking

into account that dx = εdx′dy3 and dσ(x) = εdσ(x′)dy3, the variational formulation of problem (20) is then the
following one

d

dt

(∫
Ω̃ε

ũε(t)ṽdx
′dy3

)
+ ε

d

dt

(∫
∂Fε

γ0(ũε(t))γ0(ṽ)dσ(x′)dy3

)
+

∫
Ω̃ε

∇εũε(t) · ∇εṽdx
′dy3

+κ

∫
Ω̃ε

ũε(t)ṽdx
′dy3 =

∫
Ω̃ε

f(x′, t)ṽdx′dy3 + ε

∫
∂Fε

g(x′, t)γ0(ṽ)dσ(x′)dy3

in D′(0, T ), for all ṽ ∈ H1
∂Ω(Ω̃ε).

(21)

Moreover, ũε satisfies the energy equality

1

2

d

dt

(
|(ũε(t), γ0(ũε(t)))|2H

)
+ |∇εũε(t)|2Ω̃ε

+ κ |ũε(t)|2Ω̃ε
(22)

= (f(x′, t), ũε(t))Ω̃ε
+ ε (g(x′, t), γ0(ũε(t)))∂Fε , a.e. t ∈ (0, T ).

Considering in (5) the change of variables given in (7), and taking into account that dx = εdx′dy3 and dσ(x) =
εdσ(x′)dy3, we can deduce that

|ũ0
ε|2Ω̃ε

+ ε|ψ̃0
ε |2∂Fε

≤ C. (23)

5 A priori estimates for ũε

Let us obtain some a priori estimates for ũε.

Lemma 5.1. Under the assumptions (4)–(6), there exists a positive constant C independent of ε, such that the
solution ũε of the problem (20) satisfies

|∇εũε|Ω̃ε,T
≤ C, |ũε|Ω̃ε,T

≤ C, (24)
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Maŕıa Anguiano

|ũε(t)|Ω̃ε
≤ C,

√
ε|γ0(ũε(t))|∂Fε

≤ C, (25)

for all t ∈ (0, T ).

Proof. By (22), we have

d

dt

(
|(ũε(t), γ0(ũε(t)))|2H

)
+ 2|∇εũε(t)|2Ω̃ε

+ 2κ |ũε(t)|2Ω̃ε
≤ |(ũε(t), γ0(ũε(t)))|2H + |f(t)|2ωε

+ ε|g(t)|2∂F ′
ε
.

Integrating between 0 and t, we obtain

|(ũε(t), γ0(ũε(t)))|2H + 2min{1, κ}
∫ t

0

(
|∇εũε(s)|2Ω̃ε

+ |ũε(s)|2Ω̃ε

)
ds (26)

≤ |(ũ0
ε, γ0(ũ0

ε))|2H +

∫ t

0

|(ũε(s), γ0(ũε(s)))|2Hds+

∫ T

0

(
|f(s)|2ωε

+ ε|g(s)|2∂F ′
ε

)
ds.

By [1, Lemma 4.1] with p = 2, we can deduce

ε |g(s)|2∂F ′
ε
≤ C

(
|g(s)|2ωε

+ ε2|∇g(s)|2ωε

)
≤ C||g(s)||2ωε

,

which together with (6) gives ∫ T

0

(
|f(s)|2ωε

+ ε |g(s)|2∂F ′
ε

)
ds ≤ C. (27)

Taking into account (23) and (27) in (26) and applying Gronwall Lemma, in particular we obtain (25). Finally,
taking into account (23), (25) and (27) in (26), we get (24).

Now, if we want to take the inner product in (20) with ũ′ε, we need that u′ε ∈ L2(0, T ;H1
∂Ω(Ω̃ε)). However,

we do not have it for our weak solution. Therefore, we use the Galerkin method in order to prove, rigorously,
new a priori estimates for ũε.

On the space V1 we define a continuous symmetric linear operator A1 : V1 → V ′1 , given by

〈A1((ṽ, γ0(ṽ))), (w̃, γ0(w̃))〉 = (∇εṽ,∇εw̃)Ω̃ε
+ κ (ṽ, w̃)Ω̃ε

, (28)

for all ṽ, w̃ ∈ H1
∂Ω(Ω̃ε).

We observe that A1 is coercive. In fact, taking into account that ε < 1, we have

〈A1 ((ṽ, γ0(ṽ)) , (ṽ, γ0(ṽ)))〉 = |∇x′ ṽ|2
Ω̃ε

+
1

ε2
|∂y3

ṽ|2
Ω̃ε

+ κ |ṽ|2
Ω̃ε

(29)

> |∇x′ ṽ|2
Ω̃ε

+ |∂y3 ṽ|2Ω̃ε
+ κ |ṽ|2

Ω̃ε

≥ min {1, κ} ‖ṽ‖2Ω̃ε

=
1

1 + ‖γ0‖2
min {1, κ} ‖ṽ‖2Ω̃ε

+
‖γ0‖2

1 + ‖γ0‖2
min {1, κ} ‖ṽ‖2Ω̃ε

≥ 1

1 + ‖γ0‖2
min {1, κ} ‖(ṽ, γ0(ṽ))‖2V1

,

for all ṽ ∈ H1
∂Ω(Ω̃ε).

Let us observe that the space H1
∂Ω(Ω̃ε) × H1/2

∂Ω (∂Ω̃ε) is compactly imbedded in H, and therefore, for the
symmetric and coercive linear continuous operator A1 : V1 → V ′1 , where A1 is given by (28), there exists a
non-decreasing sequence 0 < λ1 ≤ λ2 ≤ . . . of eigenvalues associated to the operator A1 with limj→∞ λj = ∞,
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and there exists a Hilbert basis of H, {(wj , γ0(wj)) : j ≥ 1}⊂ D(A1), with span{(wj , γ0(wj)) : j ≥ 1} densely
embedded in V1, such that

A1((wj , γ0(wj))) = λj(wj , γ0(wj)) ∀j ≥ 1.

Taking into account the above facts, we denote by

(ũε,m(t), γ0(ũε,m(t))) = (ũε,m(t; 0, ũ0
ε, ψ̃

0
ε), γ0(ũε,m(t; 0, ũ0

ε, ψ̃
0
ε)))

the Galerkin approximation of the solution (ũε(t; 0, ũ0
ε, ψ̃

0
ε), γ0(ũε(t; 0, ũ0

ε, ψ̃
0
ε))) to (20) for each integer m ≥ 1,

which is given by

(ũε,m(t), γ0(ũε,m(t))) =

m∑
j=1

δεmj(t)(wj , γ0(wj)), (30)

and is the solution of

d

dt
((ũε,m(t), γ0(ũε,m(t))), (wj , γ0(wj)))H

+ 〈A1((ũε,m(t), γ0(ũε,m(t)))), (wj , γ0(wj))〉
= (f(t), wj)Ω̃ε

+ ε(g(t), γ0(wj))∂Fε , j = 1, . . . ,m, (31)

with initial data
(ũε,m(0), γ0(ũε,m(0))) = (ũ0

ε,m, γ0(ũ0
ε,m)), (32)

where
δεmj(t) = (ũε,m(t), wj)Ω̃ε

+ (γ0(ũε,m(t)), γ0(wj))∂Fε ,

and (ũ0
ε,m, γ0(ũ0

ε,m)) ∈ span{(wj , γ0(wj)) : j = 1, . . . ,m} converge (when m→∞) to (ũ0
ε, ψ̃

0
ε) in a suitable sense

which will be specified below.

Lemma 5.2. Suppose the assumptions (4)–(6). Then, for any initial condition (u0
ε, ψ

0
ε) ∈ H1(Ωε)×H1/2(∂Sε)

of the problem (3) such that satisfies (9), there exists a positive constant C independent of ε, such that the
solution ũε of the problem (20) satisfies

sup
t∈[0,T ]

‖ũε(t)‖Ω̃ε
≤ C, (33)

|ũ′ε|Ω̃ε,T
≤ C,

√
ε|γ0(ũ′ε)|∂Fε,T ≤ C. (34)

Proof. First, considering in (9) the change of variables given in (7), and taking into account that dx = εdx′dy3

and ∂y3
= ε∂x3

, we can deduce that (ũ0
ε, ψ̃

0
ε) ∈ V1 such that

|∇εũ
0
ε|Ω̃ε

≤ C. (35)

For all m ≥ 1, there exists (ũ0
ε,m, γ0(ũ0

ε,m)) ∈ span{(wj , γ0(wj)) : 1 ≤ j ≤ m}, such that the sequence

{(ũ0
ε,m, γ0(ũ0

ε,m))} converges to (ũ0
ε, ψ̃

0
ε) in V1. Then, taking into account (23) and (35), we know that there

exists a positive constant C such that

|∇εũ
0
ε,m|2Ω̃ε

+ |ũ0
ε,m|2Ω̃ε

≤ C. (36)

For each integer m ≥ 1, we consider the sequence {(uε,m(t), γ0(uε,m(t)))} defined by (30)-(32) with these initial
data. Multiplying by the derivative δ′εmj in (31), and summing from j = 1 to m, we obtain

|(ũ′ε,m(t), γ0(ũ′ε,m(t)))|2H

+
1

2

d

dt
(〈A1((ũε,m(t), γ0(ũε,m(t)))), (ũε,m(t), γ0(ũε,m(t)))〉)

= (f(t), ũ′ε,m(t))Ω̃ε
+ ε(g(t), γ0(ũ′ε,m(t)))∂Fε .

8
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Then, we deduce

|(ũ′ε,m(t), γ0(ũ′ε,m(t)))|2H

+
1

2

d

dt
(〈A1((ũε,m(t), γ0(ũε,m(t)))), (ũε,m(t), γ0(ũε,m(t)))〉)

≤ 1

2
|f(t)|2ωε

+
1

2
|ũ′ε,m(t)|2

Ω̃ε
+ ε

1

2
|g(t)|2∂F ′

ε
+ ε

1

2
|γ0(ũ′ε,m(t))|2∂Fε

.

Integrating now between 0 and t, taking into account the definition of A1 and (29), we obtain that∫ t

0

|(ũ′ε,m(s), γ0(ũ′ε,m(s)))|2Hds+
min{1, κ}
1 + ‖γ0‖2

‖(ũε,m(t), γ0(ũε,m(t)))‖2V1

≤ max{1, κ}
(
|∇εũ

0
ε,m|2Ω̃ε

+ |ũ0
ε,m|2Ω̃ε

)
+

∫ T

0

(|f(s)|2ωε
+ ε|g(s)|2∂F ′

ε
)ds, (37)

for all t ∈ (0, T ).

Taking into account (27) and (36) in (37), we have proved that the sequence {(ũε,m, γ0(ũε,m))} is bounded
in C([0, T ];V1), and {(ũ′ε,m, γ0(ũ′ε,m))} is bounded in L2(0, T ;H), for all T > 0.

If we work with the truncated Galerkin equations (30)-(32) instead of the full PDE, using (29), we note that
the calculations of the proof of Lemma 5.1 can be followed identically to show that {(ũε,m, γ0(ũε,m))} is bounded
in L2(0, T ;V1), for all T > 0.

Moreover, taking into account the uniqueness of solution to (20) and using Aubin-Lions compactness lemma
(e.g., cf. Lions [12]), it is not difficult to conclude that the sequence {(ũε,m, γ0(ũε,m))} converges weakly in

L2(0, T ;V1) to the solution (ũε, γ0(ũε)) to (20). Since the inclusion H1(Ω̃ε) ⊂ L2(Ω̃ε) is compact and ũε ∈
C([0, T ];L2(Ω̃ε)), it follows using [13, Lemma 11.2] that the estimate (33) is proved.

On the other hand, the sequence {(ũ′ε,m, γ0(ũ′ε,m))} converges weakly in L2(0, T ;H) to (ũ′ε, γ0(ũ′ε)), for all
T > 0, and using the lower-semicontinuity of the norm and (37), we get

|ũ′ε|2Ω̃ε,T
+ ε|γ0(ũ′ε)|2∂Fε,T ≤ lim inf

m→∞

(
|ũ′ε,m|2Ω̃ε,T

+ ε|γ0(ũ′ε,m)|2∂Fε,T

)
≤ C lim inf

m→∞

(
|∇εũ

0
ε,m|2Ω̃ε

+ |ũ0
ε,m|2Ω̃ε

+ 1
)

= C
(
|∇εũ

0
ε|2Ω̃ε

+ |ũ0
ε|2Ω̃ε

+ 1
)
,

which, jointly with (23) and (35), implies (34).

5.1 The extension of ũε to the whole Ω× (0, T ): definition of Π̃εũε

Since the solution ũε of the problem (20) is defined only in Ω̃ε × (0, T ), we need to extend it to the whole
Ω× (0, T ). For finding a suitable extension into all Ω× (0, T ), we shall use the following result.

Corollary 5.3 (Corollary 3 in [3]). There exists an extension operator Π̃ε ∈ L(H1
∂Ω(Ω̃ε);H

1
0 (Ω)) and a positive

constant C, independent of ε, such that

Π̃εϕ̃(x′, y3) = ϕ̃(x′, y3), if (x′, y3) ∈ Ω̃ε,

|∇εΠ̃εϕ̃|Ω ≤ C|∇εϕ̃|Ω̃ε
, ∀ ϕ̃ ∈ H1

∂Ω(Ω̃ε).

Let us obtain some a priori estimates for the extension of ũε to the whole Ω × (0, T ). Using Corollary 5.3
together with Lemmas 5.1-5.2, we obtain the following result.

9
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Corollary 5.4. Assume the assumptions in Lemma 5.2. Then, there exists an extension Π̃εũε of the solution
ũε of the problem (20) into Ω× (0, T ), such that

|∇εΠ̃εũε|Ω,T ≤ C, |Π̃εũε|Ω,T ≤ C, (38)

sup
t∈[0,T ]

∥∥∥Π̃εũε(t)
∥∥∥

Ω
≤ C, (39)

|Π̃εũ
′
ε|Ω,T ≤ C, (40)

where the constant C does not depend on ε.

6 A compactness result

In this section, we obtain some compactness results about the behavior of the sequence Π̃εũε satisfying the a
priori estimates given in Corollary 5.4.

Due to the periodicity of the domain Ω̃ε, one has, for ε→ 0, that

χΩ̃ε

∗
⇀
|Y ′f |
|Y ′|

weakly-star in L∞(Ω), (41)

where the limit is the proportion of the material in the cell Y ′.

Set
ξε = ∇x′ ũε in Ω̃ε × (0, T ),

which, by the first estimate in (24), satisfies
|ξε|Ω̃ε,T

≤ C. (42)

Let us denote by ξ̃ε its extension with zero to the whole of Ω× (0, T ), i.e.

ξ̃ε =

{
ξε in Ω̃ε × (0, T ),

0 in (Ω \ Ω̃ε)× (0, T ).
(43)

Proposition 6.1. Under the assumptions in Lemma 5.2, there exists a function u ∈ L2(0, T ;H1
0 (ω)), where u is

independent of y3, (u will be the unique solution of the limit system (10)) and a function ξ ∈ L2(0, T ; (L2(Ω))3)
such that for all T > 0,

Π̃εũε(t) ⇀ u(t) weakly in H1
0 (Ω), ∀t ∈ [0, T ], (44)

Π̃εũε(t)→ u(t) strongly in L2(Ω), ∀t ∈ [0, T ], (45)

ξ̃ε ⇀ ξ weakly in L2(0, T ; (L2(Ω))3), (46)

where ξ̃ε is given by (43).

Proof. The estimates (38) read

|∇x′Π̃εũε|Ω,T ≤ C, |∂y3
Π̃εũε|Ω,T ≤ C ε |Π̃εũε|Ω,T ≤ C. (47)

From the first and the last estimates in (47), we can deduce that {Π̃εũε} is bounded in L2(0, T ;L2(0, 1;H1(ω))),

for all T > 0. Let us fix T > 0. Then, there exist a subsequence {Π̃εũε′} ⊂ {Π̃εũε} and a function u ∈
L2(0, T ;L2(0, 1;H1(ω))) such that

Π̃εũε′ ⇀ u weakly in L2(0, T ;L2(0, 1;H1(ω))), (48)

10
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which implies

∂y3
Π̃εũε′ ⇀ ∂y3

u weakly in L2(0, T ;H−1(0, 1;H1(ω))). (49)

By the second estimate in (47), we can deduce that ∂y3
Π̃εũε′ tends to zero in L2(0, T ;L2(Ω)). From (49) and

the uniqueness of the limit, we have that ∂y3
u = 0, which implies that u does not depend on y3.

On the other hand, by the estimate (40), we see that the sequence {Π̃εũ
′
ε} is bounded in L2(0, T ;L2(Ω)), for

all T > 0. Then, we have that Π̃εũε(t) : [0, T ] −→ L2(Ω) is an equicontinuous family of functions.

By the estimate (39), for each t ∈ [0, T ], we have that {Π̃εũε(t)} is bounded in H1
0 (Ω), so that the compact

embedding H1
0 (Ω) ⊂ L2(Ω), implies that it is precompact in L2(Ω). Then, applying the Ascoli-Arzelà Theorem,

we deduce that {Π̃εũε(t)} is a precompact sequence in C([0, T ];L2(Ω)). Hence, since by (48) we obtain

Π̃εũε′ ⇀ u weakly in L2(0, T ;L2(Ω)),

we have

Π̃εũε′ → u strongly in C([0, T ];L2(Ω)). (50)

The boundedness of {Π̃εũε(t)} in H1
0 (Ω) implies then by a standard argument that

Π̃εũε′(t) ⇀ u(t) weakly in H1
0 (Ω), ∀t ∈ [0, T ].

From (50), in particular, we have

Π̃εũε′(t)→ u(t) strongly in L2(Ω), ∀t ∈ [0, T ].

Finally, from the estimate (42) and (43), we have |ξ̃ε|Ω,T ≤ C, and hence, up a sequence, there exists

ξ ∈ L2(0, T, (L2(Ω))3) such that ξ̃ε′′ ⇀ ξ weakly in L2(0, T ; (L2(Ω))3).

By the uniqueness of solution of the limit problem (10), we deduce that the above convergences hold for the
whole sequence and therefore, by the arbitrariness of T > 0, all the convergences are satisfied, as we wanted to
prove.

7 Homogenized model: proof of Theorem 1.1

In this section, we identify the homogenized model.

Let v ∈ D(Ω) be a test function in (21), with v independent of y3. Then one has

d

dt

(∫
Ω

χΩ̃ε
Π̃εũε(t)vdx

′dy3

)
+ ε

d

dt

(∫
∂Fε

γ0(ũε(t))vdσ(x′)dy3

)
+

∫
Ω

ξ̃ε · ∇x′vdx′dy3

+κ

∫
Ω

χΩ̃ε
Π̃εũε(t)vdx

′dy3 =

∫
Ω

χΩ̃ε
f(t)vdx′dy3 + ε

∫
∂Fε

g(t)vdσ(x′)dy3,

in D′(0, T ).

We consider ϕ ∈ C1
c ([0, T ]) such that ϕ(T ) = 0 and ϕ(0) 6= 0. Multiplying by ϕ and integrating between 0

11
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and T , we have

−ϕ(0)

(∫
Ω

χΩ̃ε
Π̃εũε(0)vdx′dy3

)
−
∫ T

0

d

dt
ϕ(t)

(∫
Ω

χΩ̃ε
Π̃εũε(t)vdx

′dy3

)
dt

−εϕ(0)

(∫
∂Fε

γ0(ũε(0))vdσ(x′)dy3

)
−ε
∫ T

0

d

dt
ϕ(t)

(∫
∂Fε

γ0(ũε(t))vdσ(x′)dy3

)
dt

+

∫ T

0

ϕ(t)

∫
Ω

ξ̃ε · ∇x′vdx′dy3dt+ κ

∫ T

0

ϕ(t)

∫
Ω

χΩ̃ε
Π̃εũε(t)vdx

′dy3dt (51)

=

∫ T

0

ϕ(t)

∫
Ω

χΩ̃ε
f(t)vdx′dy3dt+ ε

∫ T

0

ϕ(t)

∫
∂Fε

g(t)vdσ(x′)dy3dt.

For the sake of clarity, we split the proof in five parts. Firstly, we analyze the integrals on Ω, where we
only require to use Proposition 6.1 and the convergence (41). Secondly, for the integrals on the boundary of
the cylinders we make use of a convergence result based on a technique introduced by Vanninathan [16]. In the
third step, we pass to the limit, as ε → 0 in order to get the limit equation satisfied by u. In the fourth step,

we identify
∫ 1

0
ξdy3 making use of the solutions of the cell-problems (12) and, finally we prove that u is uniquely

determined.

Step 1. In this step, we analyze all the integrals on Ω. Passing to the limit, as ε→ 0, in the integrals on Ω
and taking into account that u is independent of y3:

From (41) and (45), we have, for ε→ 0,∫
Ω

χΩ̃ε
Π̃εũε(t)vdx

′dy3 →
|Y ′f |
|Y ′|

∫
ω

u(t)vdx′,

which integrating in time and using Lebesgue’s Dominated Convergence Theorem, gives∫ T

0

d

dt
ϕ(t)

(∫
Ω

χΩ̃ε
Π̃εũε(t)vdx

′dy3

)
dt→

|Y ′f |
|Y ′|

∫ T

0

d

dt
ϕ(t)

(∫
ω

u(t)vdx′
)
dt,

and

κ

∫ T

0

ϕ(t)

∫
Ω

χΩ̃ε
Π̃εũε(t)vdx

′dy3dt→ κ
|Y ′f |
|Y ′|

∫ T

0

ϕ(t)

∫
ω

u(t)vdx′dt.

By (41) and (45), we have

ϕ(0)

(∫
Ω

χΩ̃ε
Π̃εũε(0)vdx′dy3

)
→ ϕ(0)

|Y ′f |
|Y ′|

∫
ω

u(0)vdx′.

By the assumption (6), (41) and using Lebesgue’s Dominated Convergence Theorem, we get∫ T

0

ϕ(t)

∫
Ω

χΩ̃ε
f(x′, t)vdx′dy3dt→

|Y ′f |
|Y ′|

∫ T

0

ϕ(t)

∫
ω

f(x′, t)vdx′dt.

On the other hand, using (46), we obtain, for ε→ 0∫ T

0

ϕ(t)

∫
Ω

ξ̃ε · ∇x′vdx′dy3dt→
∫ T

0

ϕ(t)

∫
Ω

ξ · ∇x′vdx′dy3dt.

Step 2. Passing to the limit, as ε→ 0, in the surface integrals on the boundary of the cylinders and taking
into account that u is independent of y3:

12
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We make use of the technique introduced by Vanninathan [16] for the Steklov problem which transforms
surface integrals into volume integrals. This technique was already used as a main tool to homogenize the non
homogeneous Neumann problem for the elliptic case by Cioranescu and Donato [5].

Following the technical lemmas contained in [5, Section 3], let us introduce, for any h ∈ Ls′(∂F ), 1 ≤ s′ ≤ ∞,
the linear form µε

h on W 1,s
0 (Ω) defined by

〈µε
h, ϕ〉 = ε

∫
∂Fε

h(x′/ε, y3)ϕdσ(x′)dy3, ∀ϕ ∈W 1,s
0 (Ω),

with 1/s+ 1/s′ = 1, such that
µε
h → µh strongly in (W 1,s

0 (Ω))′, (52)

where 〈µh, ϕ〉 = µh

∫
Ω

ϕdx′dy3, with

µh =
1

|Y ′|

∫
∂F

h(y)dσ(y′)dy3.

In the particular case in which h ∈ L∞(∂F ) or even when h is constant, we have

µε
h → µh strongly in W−1,∞(Ω).

In what follows, we shall denote by µε
1 the above introduced measure in the particular case in which h = 1.

Notice that in this case µh becomes µ1 = |∂F ′|/|Y ′|.
Observe that using [7, Corollary 4.2] with (44), we can deduce, for ε→ 0,

ε

∫
∂Fε

γ0(ũε(t))vdσ(x′)dy3 = 〈µε
1, Π̃εũε|Ω̃ε

(t)v〉 → µ1

∫
ω

u(t)vdx′ =
|∂F ′|
|Y ′|

∫
ω

u(t)vdx′,

which integrating in time and using Lebesgue’s Dominated Convergence Theorem, gives

ε

∫ T

0

d

dt
ϕ(t)

(∫
∂Fε

γ0(ũε(t))vdσ(x′)dy3

)
dt→ |∂F

′|
|Y ′|

∫ T

0

d

dt
ϕ(t)

(∫
ω

u(t)vdx′
)
dt.

Moreover, using [7, Corollary 4.2] with (44), we can deduce, for ε→ 0,

ε

∫
∂Fε

γ0(uε(0))vdσ(x′)dy3 = 〈µε
1, Π̃εũε|Ω̃ε

(0)v〉 → µ1

∫
ω

u(0)vdx′ =
|∂F ′|
|Y ′|

∫
ω

u(0)vdx′.

On the other hand, note that using (52) with s = 2, taking into account (6) and by Lebesgue’s Dominated
Convergence Theorem, we can deduce, for ε→ 0,

ε

∫ T

0

ϕ(t)

∫
∂Fε

g(x′, t)vdσ(x′)dy3dt =

∫ T

0

ϕ(t)〈µε
1, g(x′, t)v〉dt→ |∂F

′|
|Y ′|

∫ T

0

ϕ(t)

∫
ω

g(x′, t)vdx′dt.

Step 3. Passing to the limit, as ε→ 0, in (51): all the terms in (51) pass to the limit, as ε→ 0, and therefore
taking into account the previous steps, we get

−ϕ(0)

( |Y ′f |
|Y ′|

+
|∂F ′|
|Y ′|

)∫
ω

u(0)vdx′ −
( |Y ′f |
|Y ′|

+
|∂F ′|
|Y ′|

)∫ T

0

d

dt
ϕ(t)

∫
ω

u(t)vdx′dt

+

∫ T

0

ϕ(t)

∫
Ω

ξ · ∇x′vdx′dy3dt+ κ
|Y ′f |
|Y ′|

∫ T

0

ϕ(t)

∫
ω

u(t)vdx′dt

=
|Y ′f |
|Y ′|

∫ T

0

ϕ(t)

∫
ω

f(t)vdx′dt+
|∂F ′|
|Y ′|

∫ T

0

ϕ(t)

∫
ω

g(t)vdx′dt.

13
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Hence,
∫ 1

0
ξdy3 verifies ( |Y ′f |

|Y ′|
+
|∂F ′|
|Y ′|

)
∂u

∂t
−divx′

(∫ 1

0

ξdy3

)
+
|Y ′f |
|Y ′|

κu=
|Y ′f |
|Y ′|

f+
|∂F ′|
|Y ′|

g, (53)

in ω × (0, T ).

Step 4. It remains now to identify
∫ 1

0
ξdy3. We shall make use of the solutions of the cell problems (12).

For any fixed i = 1, 2, let us define

Ψiε(x
′) = ε

(
wi

(
x′

ε

)
+ y′i

)
∀x′ ∈ ωε, (54)

where y′ = x′/ε.

Recalling that wi is Y ′-periodic, we obtain, in view of [6, Theorem 2.6], that

PεΨiε ⇀ x′i weakly in H1(ω),

where PεΨiε denotes the extension to ω given in [8, Lemma 1]. Then, by Rellich-Kondrachov Theorem, we can
deduce

PεΨiε → x′i strongly in L2(ω). (55)

Let ∇x′Ψiε be the gradient of Ψiε in ωε. Denote by ∇̃x′Ψiε the extension by zero of ∇x′Ψiε inside the holes.
From (54), we have

∇̃x′Ψiε = ˜∇y′(wi + y′i) = ∇̃y′wi(y
′) + eiχY ′

f
,

and taking into account [6, Theorem 2.6], we have

∇̃x′Ψiε ⇀
1

|Y ′|

∫
Y ′
f

(ei +∇y′wi(y
′)) dy′ weakly in L2(ω). (56)

On the other hand, it is not difficult to see that Ψiε satisfies{ −divx′ (∇x′Ψiε) = 0, in ωε,

∇x′Ψiε · ν′ε = 0, on ∂F ′ε.
(57)

Let v ∈ D(Ω) with v independent of y3. Multiplying the first equation in (57) by vũε and integrating by parts
over ωε, we get ∫

ωε

∇x′Ψiε · ∇x′v ũεdx
′ +

∫
ωε

∇x′Ψiε · ∇x′ ũεvdx
′ = 0. (58)

On the other hand, we multiply system (20) by the test function vΨiε and integrating by parts over Ω̃ε, we
obtain

d

dt

(∫
Ω

χΩ̃ε
Π̃εũεvPεΨiεdx

′dy3

)
+ ε

d

dt

(∫
∂Fε

γ0(ũε)vγ0(Ψiε)dσ(x′)dy3

)

+

∫
Ω̃ε

∇x′ ũε · ∇x′vΨiεdx
′dy3 +

∫
Ω̃ε

∇x′ ũε · ∇x′Ψiεvdx
′dy3 + κ

∫
Ω

χΩ̃ε
Π̃εũεvPεΨiεdx

′dy3 (59)

=

∫
Ω

χΩ̃ε
f(x′, t)vPεΨiεdx

′dy3 + ε

∫
∂Fε

g(x′, t)vγ0(Ψiε)dσ(x′)dy3,

in D′(0, T ).

14
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Using (58) in (59), we have

d

dt

(∫
Ω

χΩ̃ε
Π̃εũεvPεΨiεdx

′dy3

)
+ ε

d

dt

(∫
∂Fε

γ0(ũε)vγ0(Ψiε)dσ(x′)dy3

)

+

∫
Ω

ξ̃ε · ∇x′vPεΨiεdx
′dy3 −

∫
Ω

∇̃x′Ψiε · ∇x′v Π̃εũεdx
′dy3 + κ

∫
Ω

χΩ̃ε
Π̃εũεvPεΨiεdx

′dy3

=

∫
Ω

χΩ̃ε
f(x′, t)vPεΨiεdx

′dy3 + ε

∫
∂Fε

g(x′, t)vγ0(Ψiε)dσ(x′)dy3,

in D′(0, T ).

We consider ϕ ∈ C1
c ([0, T ]) such that ϕ(T ) = 0 and ϕ(0) 6= 0. Multiplying by ϕ and integrating between 0

and T , we have

−ϕ(0)

(∫
Ω

χΩ̃ε
Π̃εũε(0)vPεΨiεdx

′dy3

)
−
∫ T

0

d

dt
ϕ(t)

(∫
Ω

χΩ̃ε
Π̃εũε(t)vPεΨiεdx

′dy3

)
dt

−εϕ(0)

(∫
∂Fε

γ0(ũε(0))vγ0(Ψiε)dσ(x′)dy3

)
− ε

∫ T

0

d

dt
ϕ(t)

(∫
∂Fε

γ0(ũε(t))vγ0(Ψiε)dσ(x′)dy3

)
dt

+

∫ T

0

ϕ(t)

∫
Ω

ξ̃ε · ∇x′vPεΨiεdx
′dy3dt−

∫ T

0

ϕ(t)

∫
Ω

∇̃x′Ψiε · ∇x′v Π̃εũεdx
′dy3dt (60)

+κ

∫ T

0

ϕ(t)

∫
Ω

χΩ̃ε
Π̃εũε(t)vPεΨiεdx

′dy3dt

=

∫ T

0

ϕ(t)

∫
Ω

χΩ̃ε
f(x′, t)vPεΨiεdx

′dy3dt+ ε

∫ T

0

ϕ(t)

∫
∂Fε

g(x′, t)vγ0(Ψiε)dσ(x′)dy3dt.

Now, we have to pass to the limit, as ε→ 0. We will focus on the terms which involve the gradient. Taking
into account (55), we reason as in steps 1 and 2 for the others terms.

Firstly, using (46) and (55), we have∫ T

0

ϕ(t)

∫
Ω

ξ̃ε · ∇x′vPεΨiεdx
′dy3dt→

∫ T

0

ϕ(t)

∫
Ω

ξ · ∇x′v x′idx
′dy3dt,

and by (45), (56) and Lebesgue’s Dominated Convergence Theorem, we obtain∫ T

0

ϕ(t)

∫
Ω

∇̃x′Ψiε · ∇x′v Π̃εũεdx
′dy3dt→

1

|Y ′|

∫ T

0

ϕ(t)

∫
ω

(∫
Y ′
f

(ei +∇y′wi) dy
′

)
· ∇x′v u dx′dt.
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Therefore, when we pass to the limit in (60), we obtain

−ϕ(0)

( |Y ′f |
|Y ′|

+
|∂F ′|
|Y ′|

)(∫
ω

u(0)vx′idx
′
)
−
( |Y ′f |
|Y ′|

+
|∂F ′|
|Y ′|

)∫ T

0

d

dt
ϕ(t)

∫
ω

u(t)vx′idx
′dt

+

∫ T

0

ϕ(t)

∫
Ω

ξ · ∇x′v x′idx
′dy3dt−

1

|Y ′|

∫ T

0

ϕ(t)

∫
ω

(∫
Y ′
f

(ei +∇y′wi) dy
′

)
· ∇x′v u(t) dx′dt

+κ
|Y ′f |
|Y ′|

∫ T

0

ϕ(t)

∫
ω

u(t)vx′idx
′dt

=
|Y ′f |
|Y ′|

∫ T

0

ϕ(t)

∫
ω

f(t)vx′idx
′dt+

|∂F ′|
|Y ′|

∫ T

0

ϕ(t)

∫
ω

g(t)vx′idx
′dt.

Using Green’s formula and equation (53), we have

−
∫ T

0

ϕ(t)

∫
Ω

ξ · ∇x′x′i vdx
′dy3dt+

1

|Y ′|

∫ T

0

ϕ(t)

∫
ω

(∫
Y ′
f

(ei +∇y′wi) dy
′

)
· ∇x′u vdx′dt = 0.

The above equality holds true for any v ∈ D(Ω) independent of y3, and ϕ ∈ C1
c ([0, T ]). This implies that

−
(∫ 1

0

ξdy3

)
· ∇x′x′i +

1

|Y ′|

(∫
Y ′
f

(ei +∇y′wi) dy
′

)
· ∇x′u = 0, in ω × (0, T ).

We conclude that

divx′

(∫ 1

0

ξdy3

)
= divx′ (Q∇x′u) , (61)

where Q = ((qij)), 1 ≤ i, j ≤ 2, is given by

qij =
1

|Y ′|

∫
Y ′
f

(ei +∇y′wi) · ej dy′.

Observe that if we multiply system (12) by the test function wj , integrating by parts over Y ′f , we obtain∫
Y ′
f

(ei +∇y′wi) · ∇y′wjdy
′ = 0,

then we conclude that qij is given by (11).

Step 5. Finally, thanks to (53) and (61), we observe that u satisfies the first equation in (10). A weak
solution of (10) is any function u, satisfying

u ∈ C([0, T ];L2 (ω)), for all T > 0,

u ∈ L2(0, T ;H1
0 (ω)), for all T > 0,( |Y ′f |

|Y ′|
+
|∂F ′|
|Y ′|

)
d

dt
(u(t), v) + (Q∇x′u(t),∇x′v) +

|Y ′f |
|Y ′|

κ(u(t), v) =
|Y ′f |
|Y ′|

(f(t), v) +
|∂F ′|
|Y ′|

(g(t), v), in D′(0, T ),

for all v ∈ H1
0 (ω), and

u(0) = u0.

Since the homogenized matrix Q is positive-definite (see [5, Theorem 4.7]), applying a slight modification of
[12, Chapter 2,Theorem 1.4], we obtain that the problem (10) has a unique solution, and therefore Theorem 1.1
is proved.
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