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A lower bound is given for the number of primes in a special linear form less than N , under the assumption of the weakened Elliott-Halberstam conjecture.

Introduction

Using the weight function of the form (q,p t -prime numbers) it can be proved that there are infinitely many prime numbers in linear form

p r = 2p u + a.
The main role is played by the upper bound for the sum for numbers of the form

2p 1 p 2 ∈ A = {p-a; p ≤ N, p ∈ P, z ≤ p 1 < y ≤ p 2 , |a| ≤ (log N ) B , B ≥ 3}.

Main results

Theorem 2.1. Assuming (1.2) there are infinitely many primes of the form

p r = 2p u + a,
where a is an arbitrary fixed odd integer.

The proof of Theorem 2.1 is given at the end of the paper. We now give several intermediate theorems and lemmas.

Theorem 2.2. (See Theorem 9.7 (Jurkat-Richert) [START_REF] Fouvry | On the switching principle in sieve theory[END_REF])

Let J = {a(n)} ∞ n=1 be an arithmetic function such that a(n) ≥ 0 f or all n and |J| = ∞ n=1 a(n) < ∞.
Let P be a set of prime numbers (2 ∈ P) and, for z ≥ 2, let

P (z) = p∈P p<z p. Let S(J, P, z) = ∞ n=1 (n,P (z))=1 a(n).
For every n ≥ 1, let g n (d) be a multiplicative function such that 0 ≤ g n (p) < 1 f or all p ∈ P.

Define r(d) by

|J d | = ∞ n=1 d|n a(n) = ∞ n=1 a(n)g n (d) + r(d).
Let Q be a finite subset of P, and let Q be the product of the primes in Q. Suppose that, for some satisfying 0 < < 1 200 , the inequality

p∈P\Q u≤p<z (1 -g n (p)) -1 < (1 + ) log z log u
holds for all n and 1 < u < z. Then for any D ≥ z there is the upper bound (2.1) S(J, P, z) < (F (s) + e 14-s )X + R, and for any D ≥ z 2 there is the lower bound

(2.2) S(J, P, z) > (f (s) -e 14-s )X -R, where s = log D log z , F (s 
) and f (s) are the continuous functions defined as

F (s) = 1+ ∞ n=1 n≡1(mod2) f n (s) f or s ≥ 1; f (s) = 1- ∞ n=2 n≡0(mod2) f n (s) f or s ≥ 2, X = ∞ n=1 a(n) p|P (z) (1 -g n (p)),
and the remainder term is 

R = d|P (z) d<DQ |r(d)|. If there is a multiplicative function g(d) such that g n (d) = g(d) for all n, then X = V (z)|J|, where V (z) = p|P (z) (1 -g(p)).
λ(d) = rs=d δ r η s . Let 0 < < 1 8 , 2 ≤ z ≤ D. Then from Theorem 4 [3] it follows (2.3) S(J, P, z) ≤ X(F ( log D log z ) + E) + l<L d|P (z) λ + l (d)r(J, d).
J,P,z,X are defined as in Theorem 2.2. In this formula, L depends only on and λ + l -is well factorable coefficient of order 1 and of level D, and the constant E satisfies

E = O( + -8 e K (log D) -1 3 ),
where K is some constant > 1. Using the definition given in Theorem 2.2 

F (s) = 2e γ s f or 0 < s ≤ 2 with γ -Euler-Mascheroni constant.
α h β m - 1 ϕ(d) (hm,d)=1 α h β m   = O B N (log N ) B
is true for B ≥ 3, uniformly for |a| ≤ (log N ) B , for any positive , for any ν ( ≤ ν ≤ 1 -), with D = N θ(ν)-, where the function θ(ν) has the following value:

           2 3 -ν 3 f or 1 4 < ν ≤ 2 7 , 1 2 + ν 4 f or 2 7 ≤ ν ≤ 2 5 , 1 -ν f or 2 5 ≤ ν ≤ 1 2 . Lemma 2.5. To estimate the sum 1 2 2n∈A 2n=2p 1 p 2 z≤p 1 <y≤p 2 1
we pass from one set A to another F (switching principle), we obtain

(2.5) 1 2 S(F, P, f ) ≤ 0.1773748 e γ 2 N log N V (z) + O N (log N ) B ,
where

F = {2p 1 p 2 +a : z ≤ p 1 < y ≤ p 2 , 2p 1 p 2 < N, (2p 1 p 2 , N ) = 1, |a| ≤ (log N ) B , B ≥ 3}.
Proof. The remainder term of the sieving function S(F, P, f ) by Lemma 2.3 will be equal to

d λ(d) |F d | - |F | φ(d) = O N (log N ) B
with (2, d) = 1 and D = N θ(ν)-. The minimum value for θ(ν) is defined in Lemma 2.4, i.e

θ log p 1 log N ≥ 4 7 f or z ≤ p 1 ≤ y. Since V (f ) V (z) = log z log f 1 + O 1 log N = 0.50002 + O 1 log N
(using the definition for V (z) in Theorem 2.2) we have

1 2 S(F, P, f ) ≤ 0.50002 7 8 e γ 2 1/3 0.25001 dt t(1 -t)) N log N V (z) + O N (log N ) B .

Proof of Theorem 2.1

Let z(2p + a, N ) be the number of primes of the form p r = 2p u + a ≤ N , where a is an arbitrary fixed odd integer and N > e |a| We give a lower bound for z(2p + a, N ) using the weight function (1.1).

z(2p + a, N ) ≥ 2n∈A n∈{1,p≥z} 1 ≥ 2n∈A (2n,P (z))=1 n∈{1,p≥z} 1 ≥ 2n∈A (2n,P (z))=1 v(2n).
Now open the last sum and applying the switching principle for the set A we obtain

z (2p+a, N ) = S(A, P, z)- 1 2 z≤q<y S(A q , P, z)- 1 2 S(B, P, f )- 1 2 S(F, P, f )-S(E, P, f )+O(N 3 4 ),
where z(2p + a, N ) ≥ z (2p + a, N ),

B = {2p 1 p 2 p 3 +a : z ≤ p 1 < y ≤ p 2 ≤ p 3 , 2p 1 p 2 p 3 < N, (2p 1 p 2 p 3 , N ) = 1, |a| ≤ (log N ) B , B ≥ 3} and E = {2p 1 p 2 +a : y ≤ p 1 < f ≤ p 2 , 2p 1 p 2 < N, (2p 1 p 2 , N ) = 1, |a| ≤ (log N ) B , B ≥ 3}.
The first two sums in z (2p + a, N ) are estimated using the Theorem 2.2 and the weakened Elliott-Halberstam conjecture (1.2) with

f (s) = 2e γ log(s -1) s f or s = log D log z ∈ [3, 4]; F (s q ) = 2e γ s q f or s q = log D q log z ∈ (0, 3].
Acting as in Theorem 10.4 [START_REF] Nathanson | Additive Number Theory: The Classical Bases[END_REF] and Theorem 10.5 [START_REF] Nathanson | Additive Number Theory: The Classical Bases[END_REF], only with the value |a| ≤ (log N ) B , B ≥ 3, z = N 0.25001 and D = N 1-C , C ≈ 0.002 we obtain

S(A, P, z) ≥ (f (s)-e 14-s )V (z) ∞ n=1 a(2n)+O N (log N ) B ≥ 1.0981287 e γ 2 N log N V (z), respectively 1 2 z≤q<y S(A q , P, z) ≤ 0.50002 * e γ N z≤q<y 1 φ(q) log D q + O N (log N ) B ≤ ≤ 0.50002 * e γ 1/3 0.25001 dt t(0.998 -t)) N log N V (z).
The third sum in z (2p + a, N ) is estimated as for Theorem 10.6 [START_REF] Nathanson | Additive Number Theory: The Classical Bases[END_REF], only with the value |a| ≤ (log N ) B , B ≥ 3 and z = N 0.25001 and since

V (f ) V (z) = log z log f 1 + O 1 log N = 0.50002 + O 1 log N
(using the definition for V (z) in Theorem 2.2) we obtain An estimate for the fourth sum is given in Lemma 2.5. 

( 1 . 1 ) 2 z≤q<y q k 2n k - 1 2 2p 1 p 2 p 3 =2n z≤p 1 <y≤p 2 ≤p 3 1 - 1 2 2p 1 p 2 =2n z≤p 1 <y≤p 2 1 - 2p 1 p 2 =2n y≤p 1 ≤f ≤p 2 1 ,

 11223211 v(2n) = 1 -1 (such a weight function v(2n) leaves only prime numbers when sifting (i.e. v(2n) = 1 with n = p ≥ z and v(2n) ≤ 0 for other values of n) x) B , where |a| ≤ (log N ) B ; D = N 1-C ; C ≈ 0.002; B ≥ 3,

Lemma 2 . 3 .

 23 (See Theorem 4, Theorem 1 [3] and Lemma 2 [1]) An arithmetic function λ(d) is said to be well-factorable of level D ≥ 1 if for any R, S ≥ 1 with RS = D there are functions δ r , η s with |δ r |, |η s | ≤ 1 supported on r < R, s < S, such that

Lemma 2 .

 2 4. (See Lemma 6 [1]) We denote by |α h |, |β m | ≤ 1 two sequences with h ∈ [H, 2H) and m ∈ [M, 2M ), also define ν = log H log N , N = 2HM and the following equality

1 B

 1 ; B = 3. We also denote A = {p-a; p ≤ N, p ∈ P, |a| ≤ (log N ) B , B ≥ 3} and P (z) = p∈P p<z p.

1 2 S<y≤p 2 ≤p 3 2p 1 p 2 p 3 ≤N

 123 (B, P, f ) ≤ 0.50002 * e γ V (z) z≤p 1

  It remains to estimate the last sum in z (2p + a, N ). Acting as in Lemma 2.5, we choose the minimum value of the functionθ log p 1 log N ≥ 1 2 f or y ≤ p 1 ≤ f, so we have S(E, P, f ) ≤ 0.50002 * e γ N ) B ≤

 

Acknowledgements

None.

≤ 0.693175 e γ 2 N log N V (z).

Putting together estimates for the sums in z (2p + a, N ), we obtain z(2p+a, N ) ≥ (1.0981287-0.2032878-0.0240915-0.1773748-0.693175)

for sufficiently large N , this proves Theorem 2.1.