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Abstract. This work investigates the problem of signal recovery from undersampled noisy sub-Gaussian mea-
surements under the assumption of a synthesis-based sparsity model. Solving the `1-synthesis basis pursuit
allows for a simultaneous estimation of a coefficient representation as well as the sought-for signal. However,
due to linear dependencies within redundant dictionary atoms it might be impossible to identify a specific
representation vector, although the actual signal is still successfully recovered. The present manuscript studies
both estimation problems from a non-uniform, signal-dependent perspective. By utilizing recent results on the
convex geometry of linear inverse problems, the sampling rates describing the phase transitions of each for-
mulation are identified. In both cases, they are given by the conic Gaussian mean width of an `1-descent cone
that is linearly transformed by the dictionary. In general, this expression does not allow a simple calculation by
following the polarity-based approach commonly found in the literature. Hence, two upper bounds involving
the sparsity of coefficient representations are provided: The first one is based on a local condition number and
the second one on a geometric analysis that makes use of the thinness of high-dimensional polyhedral cones
with not too many generators. It is furthermore revealed that both recovery problems can differ dramatically
with respect to robustness to measurement noise – a fact that seems to have gone unnoticed in most of the
related literature. All insights are carefully undermined by numerical simulations.

Key words. Compressed sensing, inverse problems, sparse representations, redundant dictionaries, non-
uniform recovery, Gaussian mean width, circumangle.

1 Introduction

In the last two decades, the methodology of compressive sensing promoted the use of sparsity based
methods for many signal processing tasks. Following the seminal works of Candès, Donoho,
Romberg and Tao [CRT06a; CT06; Don06], a vast amount of research has extended the under-
standing, how additional structure can be exploited for solving ill-posed inverse problems. The
classical setup in this area considers a non-adaptive, linear measurement model, which reads as fol-
lows:

Model 1.1: Linear Noisy Measurements

Let x0 ∈ Rn be a fixed vector, which is typically referred to as the signal. Assume that we
are given m measurements y ∈ Rm of x0 via the linear acquisition model

y = Ax0 + e,

where A ∈ Rm×n is the so-called measurement matrix and e ∈ Rm models measurement noise
with ‖e‖2 ≤ η for some η ≥ 0.

The goal of compressive sensing is to solve this inverse problem by reconstructing an approx-
imation of the signal x0 from its indirect measurements y. Remarkably, even if m � n, this task
can be achieved by incorporating additional information during the reconstruction process. Most
classical compressive sensing works directly assume that x0 is s-sparse, i.e., that at most s � n
entries of x0 are nonzero or in symbols ‖x0‖0 = # supp(x0) ≤ s. However, this assumption
is hardly satisfied in any real-world application. Nevertheless, many signals allow for sparse
representations using specific transforms, such as Gabor dictionaries, wavelet systems or data-
adaptive representations, which are inferred from a given set of training samples. Such a model
is referred to as synthesis formulation, since it assumes that there exists a matrix D ∈ Rn×d and a
low-complexity representation z0 ∈ Rd such that x0 can be “synthesized” as

x0 = D · z0. (1.1)

Following the standard terminology of the field, the matrix D = [d1, . . . , dd] will be henceforth
refered to as dictionary and its columns as dictionary atoms. It can be expected that the coefficient
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(a) (b)

Figure 1: Phase transitions of coefficient and signal recovery by `1-synthesis. Subfigure 1(a) shows
the empirical probability that atomic coefficient representations are successfully recovered via solving
(BPcoef

η=0), whereas Subfigure 1(b) shows the empirical probability for the associated signal reconstruc-
tion by (BPsig

η=0). The underlying dictionary is a redundant Haar wavelet frame with three decompo-
sition levels and the defining s-sparse coefficients are chosen at random; see Section 5.3 for a precise
documentation of the experiment. The brightness of each pixel reflects the observed probability of
success, reaching from certain failure (black) to certain success (white). The dotted line shows our pre-
dictions for the location of the phase transitions, see Theorem 3.6 and Theorem 3.8, respectively.

vector z0 is dominated by just a few large entries, provided that D allows to capture the signal’s
inherent structure reasonably well.

The synthesis formulation of compressive sensing exploits such a representation model, for in-
stance, by employing greedy-based reconstruction algorithms or by utilizing the sparsity-promoting
effect of the `1-norm. In this work, we will consider the following convex program, which we refer
to as synthesis basis pursuit for coefficient recovery:

Ẑ := argmin
z∈Rd

‖z‖1 s.t. ‖y− ADz‖2 ≤ η. (BPcoef
η )

Under suitable assumptions, one might hope that solutions ẑ of this minimization program ap-
proximate z0 reasonably well. Indeed, if D = Id, the formulation (BPcoef

η ) turns into the classical
basis pursuit. It allows to recover any s-sparse vector z0 with overwhelming probability, if A
additionally follows a suitable random distribution and m & s · log(2n/s) [FR13].

In many practical and theoretical situations, it turns out that using redundant dictionaries, i.e.,
choosing d� n, is beneficial. For instance, the stationary wavelet transform overcomes the lack of
translation invariance and learned dictionaries typically infer a larger set of convolutional filters,
which are adapted to a particular data distribution. If D does not form a basis, representations
as in (1.1) are not necessarily unique anymore. Hence, it is not to be expected that a specific
representation can be identified by solving (BPcoef

η ). However, in many situations of interest, the
representation vector itself is irrelevant and a recovery of the actual signal x0 is of primary interest.
Thus, one rather cares about the synthesis basis pursuit for signal recovery, which amounts to solving

X̂ := D ·
(

argmin
z∈Rd

‖z‖1 s.t. ‖y− ADz‖2 ≤ η

)
. (BPsig

η )

In the noiseless case (i.e., when e = 0 and η = 0), it might be the case that Ẑ 6= {z0}, but there
is still hope that X̂ = D · Ẑ = {x0}. In other words, although solving (BPcoef

η ) might fail in iden-
tifying a specific coefficient representation, it is still possible that the actual signal is successfully
recovered by a subsequent synthesis with D.
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1.1 What This Paper Is About

The goal of this work is to broaden the understanding of the conditions that guarantee coeffi-
cient and signal recovery by solving (BPcoef

η ) and (BPsig
η ), respectively. To that end, we believe that

addressing the following, non-exhaustive list of questions will be of particular importance:

(Q1) Under which circumstances does coefficient and signal recovery differ, i.e., when is it im-
possible to reconstruct a specific coefficient representation although the signal itself might
still be identified?

(Q2) If possible, how many measurements are required to reconstruct a specific coefficient rep-
resentation? Analogously, how many measurements are required to recover the associated
signal?

(Q3) In case that coefficients and signals can both be identified, are there still differences between
the two formulations, for instance with respect to robustness to measurement noise?

Set out to find answers to these questions, we first restrict ourselves to the following sub-
Gaussian measurement model, which will be considered in this work unless stated otherwise:

Model 1.2: Sub-Gaussian Measurement Model

Let a ∈ Rn be an isotropic (E[aaT ] = Id), zero mean, sub-Gaussiana random vector with
‖a‖ψ2

≤ γ. The sampling matrix A is formed by drawing m independent copies a1, . . . , am

of a and setting

A =

−aT
1−
...

−aT
m−

 .

aA random variable a is sub-Gaussian if ‖a‖ψ2
:= supq≥1 q−1/2(E[|a|q])1/q < ∞, with ‖·‖ψ2

being the sub-Gaussian
norm of a. For a random vector a ∈ Rn the sub-Gaussian norm is then given by ‖a‖ψ2

:= supv∈Sn−1 ‖〈a, v〉‖ψ2
and a is called sub-Gaussian if ‖a‖ψ2

< ∞; see for instance [Ver12] for further details.

This model has been established as a somewhat classical benchmark setup in the context of com-
pressive sensing. It allows us to follow the methodology initiated in [MPT07; RV07] and extended
in [ALMT14; CRPW12; Sto09; Tro15]. In a nutshell, the aim is to determine the sampling rate of a
convex program (i.e., the number of required measurements for successful recovery) by calculat-
ing the so-called Gaussian mean width.

We now briefly outline our work and summarize its main contributions:

(C1) A cornerstone of our analysis is formed by the set of minimal `1-representers of x0:

Z`1 := argmin
z∈Rd

‖z‖1 s.t. x0 = Dz. (BP`1 )

Independently of Model 1.2, Section 3.1 reveals that if Z`1 = {z0}, exact recovery of z0
via (BPcoef

η=0) is equivalent to perfect recovery of x0 by solving (BPsig
η=0). Furthermore, exact

recovery of a coefficient vector z0 by (BPcoef
η=0) is only possible, if z0 is the unique minimal

`1-representer of x0 = Dz0, i.e., if Z`1 = {z0}.

(C2) In Section 3.2 and Section 3.3, it will be shown that the sampling rate of both formulations
can be expressed by the squared conic mean width w2

∧(D · D), where D denotes the de-
scent cone of the `1-norm at any z`1 ∈ Z`1 (see Section 2 for a brief summary of the general
recovery framework and definitions of these notions). This observation holds uncondition-
ally true in the case of signal recovery by (BPsig

η ). For coefficient recovery the additional
assumption that Z`1 is a singleton needs to be satisfied.

(C2’) While w2
∧(D · D) forms a precise description of the sampling rate, it is a quantity that is

hard to analyze and compute, in general. Therefore, an important goal of our work is to
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derive more informative upper bounds for this expression. First, under the assumption that
Z`1 = {z`1} is a singleton, we show a condition number bound that relates w2

∧(D · D) to the
classical complexity w2

∧(D) . s · log(2n/s), where s = ‖z`1‖0 (see Section 4.1).

The second upper bound of Section 4.2 is central to our work. It is based on a geomet-
ric analysis that makes use of generic arguments from high-dimensional convex geometry.
In comparison to the first bound, it is more general since we do not assume that Z`1 is a
singleton. Hence, it particularly addresses the recovery of signals, without requiring the
identification of a coefficient representation. The resulting upper bound on the conic mean
width relies on the thinness of high-dimensional polyhedral cones with not exponentially
many generators. We believe that such an argument might be of general interest beyond
its application to the synthesis formulation of compressive sensing. Again, w2

∧(D · D) is
related to the sparsity of a minimal `1-representation and a further geometrical parameter
(referred to as circumangle) that measures the narrowness of the associated cone.

(C3) Lastly, our recovery statements reveal that recovery of signals by (BPsig
η ) is robust to mea-

surement noise without any further restrictions. In contrast, the robustness of coefficient
recovery via solving (BPcoef

η ) is influenced by an additional factor that is related to the con-
vex program (BP`1 ).

All our findings are underpinned by extensive numerical experiments; see Section 5. As a first
“teaser” we refer the reader to Figure 1, which displays two phase transition plots and our sampling
rates for a redundant Haar wavelet system D.

1.2 Related Literature

In the following, we first briefly discuss some historical references that are of general interest for
`1-norm minimization, sparse representations in redundant dictionaries and compressive sens-
ing. Subsequently, we focus on the existing literature on the synthesis formulation in more depth.

1.2.1 Some Historical Landmarks

The idea of promoting sparsity in discrete or continuous dictionaries by `1-norm minimization
can be traced back to the works of Beurling [Beu38] and Krein [Kre38]. Motivated by questions
in Banach space geometry, first theorems establishing sparsity of solutions of related minimiza-
tion problems can be found in the 1940’s [Zuh48]. In his PhD-thesis of 1965, Logan utilized `1-
minimization for sparse frequency estimation [Log65] and in the 1970’s it was employed for solv-
ing deconvolution problems in geophysics [CM73; TBM79]. Of particular importance became the
so-called Rudin-Osher-Fatemi-model [ROF92], which pioneered the use of total variation minimiza-
tion for image processing tasks.

The field of sparse representations arose with the development of (greedy) algorithms for find-
ing expansions in redundant dictionaries such as time-frequency systems [MZ93; PRK93]. Sub-
sequently, the work [CDS98] triggered notable interest in achieving this task by solving the basis
pursuit (BP`1 ); see for instance [DE03; DH01; EB02]. A special emphasis was thereby given to
unions of orthogonal bases [CR06; EB02; GN03]. Next to the classical concepts of coherence and
spark, which are uniform across all s-sparse signals, also the non-uniform notions of dual certifi-
cates and exact recovery conditions were progressively introduced [Fuc04; Fuc05; Tro04; Tro06].

Under the notion of compressive sensing, Candès, Romberg and Tao [CRT06a; CRT06b] and
Donoho [Don06] first proposed to capitalize on randomized models in the basis pursuit. In
these works, the structured dictionary D is replaced by a random matrix A, which follows for
instance Model 1.2. Such a design allows to overcome severe shortcomings of previous results, in
particular the quadratic/square root-bottleneck; see next subsection or [FR13, Chapter 5.4]. Indeed,
under such a randomness assumption, it can be shown that any s-sparse vector can be recovered
with overwhelming probability if the number of measurements obeys m & s · log(2n/s). These
seminal works can furthermore be acknowledged for highlighting the remarkable potential of
sparsity-based methods for many signal recovery tasks.
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1.2.2 Results on the Synthesis Formulation of Compressed Sensing

An important insight on solving the inverse problem of Model 1.1 by means of redundant dictio-
naries was provided by Elad, Milanfar and Rubinstein [EMR07]. Therein, the authors compare
two different formulations: The synthesis basis pursuit (BPsig

η ) and an alternative formulation,
which is referred to as `1-analysis basis pursuit:

minx∈Rn ‖Ψx‖1 s.t. ‖y− Ax‖2 ≤ η.

The analysis operator Ψ ∈ Rd×n is thereby chosen in such a way that the coefficient vector Ψx0
is of low-complexity. It turns out that the latter formulation and the program (BPsig

η ) are only
equivalent if Ψ (or D) forms a basis. In particular for redundant choices of Ψ and D, the geometry
of both formulations departs significantly from each other. While the synthesis variant appears to
be more natural from a historical perspective, its analysis-based counterpart gained considerable
attention in the past years [CENR11; GNEGD14; KNW15; KR15; KRZ15; NDEG13]. Recently, the
non-uniform approach of [GKM20] revealed that the measure of “low-complexity” in the analysis
model goes beyond pure sparsity of Ψx0. Instead, a novel sampling-rate bound was proposed that
is based on a generalized notion of sparsity, taking the support and the coherence structure of the
underlying analysis operator into account.

The earliest reference that deals with the synthesis formulation for the recovery of coefficient
vectors appears to be by Rauhut, Schnass and Vandergheynst [RSV08]. Therein, the formulation
(BPcoef

η ) is studied under a randomized measurement model. The main result roughly reads as
follows: Assume that the dictionary D satisfies a restricted isometry property (RIP) with sparsity
level s. If the random matrix A ∈ Rm×n follows Model 1.2 and m & s · log(n/s), then the com-
position AD will also satisfy an RIP with sparsity level s with high probability. This property
then implies stable and robust recovery of all s-sparse coefficient vectors by solving (BPcoef

η ). The
assumption that D satisfies an RIP is crucial for the previous result. It can be for instance achieved
if the dictionary is sufficiently incoherent, i.e., if it satisfies

µ(D) := maxi 6=j
∣∣〈di, dj

〉∣∣ /(‖di‖2 ·
∥∥dj
∥∥

2) ≤ 1/(16 · (s− 1)). (1.2)

However, as the authors of [RSV08] point out, such a coherence-based estimate is rather crude and
suffers from the so-called square-root bottleneck: The Welch bound [FR13, Theorem 5.7] reveals
that condition (1.2) can only be satisfied for mild sparsity values s .

√
n.

In [CWW14], Chen, Wang and Wang study conditions for signal recovery via a dictionary-
based null space property (NSP): For a given dictionary D, a matrix A is said to satisfy the D-NSP
of order s, if for any index set S ⊆ [d] with #S ≤ s and any h ∈ D−1(ker A \ {0}), there exists
z ∈ ker D, such that ‖hS + z‖1 < ‖hSc‖1. It can be shown that this condition is necessary and
sufficient for the uniform recovery of all signals x0 = Dz0 with ‖z0‖0 ≤ s via (BPsig

η ). Note that
the D-NSP is in general weaker than requiring that AD satisfies the standard NSP. This means
that the previous result is addressing signal recovery without necessarily requiring coefficient
recovery. However, the authors then show that under the additional assumption that D is of full
spark (i.e., every n columns of D are linearly independent), both conditions are in fact equivalent.
Hence, in this case, signal and coefficient recovery are also equivalent. In the recent work [CCL19],
this serves as a motivation to study coefficient recovery by analyzing how many measurements
are required in order to guarantee that AD has an NSP. To that end, a result is provided that is
conceptually similar to [RSV08], however, it reduces the assumptions on D. Instead of requiring
that D satisfies an RIP, the authors operate under the weaker assumption that D satisfies an NSP.
The main result essentially reads as follows: Under a sub-Gaussian measurement setup similar
to Model 1.2 and under the assumption that D satisfies an NSP of order s, a number of m &
s · log(n/s) measurements guarantees that also AD satisfies an NSP. This condition then allows
for robust recovery of all s-sparse coefficient vectors by solving (BPcoef

η ).
To the best of our knowledge, the only work that provides a bound on the required number

of measurement for signal recovery (without necessarily requiring coefficient recovery) is the
tutorial [Ver15, Theorem 7.1]: Assume that ‖di‖2 ≤ 1, i ∈ [d] and that x0 = Dz0 for an s-sparse
representation z0 ∈ Rd. For a Gaussian measurement matrix A ∈ Rm×n, Vershynin establishes
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the following recovery bound in expectation:

E ‖x̂− x0‖2 ≤ c ·
√

s·log(d)
m · ‖z0‖2 +

√
2π · η√

m ,

where c is a constant and x̂ ∈ X̂ is a solution of (BPsig
η ). Note that we have slightly adapted the

statement of [Ver15, Theorem 7.1] for a better match with our setup. Due to the first summand on
the right hand side, the previous error bound is suboptimal, cf. Theorem 3.8. In particular, it does
not guarantee exact recovery from noiseless measurements. We emphasize that parts of our work
are inspired by Vershynin, who also studies the gauge of the set K = D · Bd

1 in [Ver15].
We conclude by mentioning a few more works in the literature on synthesis based compressed

sensing that appear to be of less relevance for this work. The influential paper [CRPW12] stud-
ies signal recovery via atomic minimization, however, it does not provide specific insights when
redundant dictionaries are used. In [DNW13], a (theoretical) CoSaMP algorithm is adapted to
the recovery of signals with sparse representations in redundant dictionaries. Based on the D-
RIP [CENR11] and on a connection to the analyis formulation with so-called optimal dual frames,
[LLMLY12] derives a theorem concerning signal recoery. Finally, [SF09] provides numerical ex-
periments, which empirically compare the analysis and the synthesis formulation.

1.2.3 The Gap that We Intend to Fill

In order to obtain statements that are uniform across all s-sparse signals, most existing results
assume that the dictionary D satisfies strong assumptions, e.g., incoherent atoms, an NSP or an
RIP [CCL19; CWW14; RSV08]. Such notions are well established and allow for appealing results
that often resemble known principles of compressive sensing. However, in many situations of
interest, these assumptions are too restrictive. In particular, redundant representation systems
(such as Gabor systems, wavelets, curvelets, . . . ) or data-adaptive dictionaries do not satisfy any
such property. Their atoms are typically highly coherent and share many linear dependencies.
We aim to address this issue by following a local, non-uniform approach, which avoids strong
assumptions on the dictionary. We believe that such a signal-dependent refinement is crucial for
redundant representation systems, cf. [GKM20].

Similarly, it is occasionally argued that distinguishing signal and coefficient recovery is of minor
importance, cf. [CCL19]. This is justified by the observation that exact recovery of coefficients
and signals is equivalent if D is in general position. However, due to the linear dependencies in
many structured representation systems, such an argumentation is often not valid. Indeed, simple
numerical experiments with popular dictionaries reveal that signal recovery can be frequently
observed without reconstructing a specific coefficient representation, see Figure 1 and Section 5.
Hence, we believe that it is important to study both formulations and to identify under which
conditions coefficient recovery might be expected, see (C1) above.

To the best of our knowledge, this is the first work that provides a precise description of the
phase transition behavior of both formulations, see (C2). While the identified conic mean width
of a linearly transformed set w2

∧(D · D) is a rather implicit quantity, it constitutes an important
step towards the understanding of `1-synthesis. By deriving more explicit upper bounds on the
sampling rate, coefficient sparsity is identified as an important factor. However, additional prop-
erties that account for the local geometry are also taken into account, see (C2’).

Last but not least, we establish that both formulations behave differently with respect to robust-
ness to measurement noise, see (C3). To the best of our knowledge, this aspect has gone unnoticed
in the literature so far, although it might have dramatic implications on the reconstruction quality
of coefficient representations.

1.3 Notation

For the convenience of the reader, we have collected the most important and frequently used
objects in Table 1.

Throughout this manuscript we will use the following notation and conventions: for an integer
n ∈ N we set [n] := {1, 2, . . . , n}. If I ⊆ [n], we let I c := [n] \ I denote the complement of I in
[n]. Vectors and matrices are symbolized by lower- and uppercase bold letters, respectively. Let
x = (x1, . . . , xn) ∈ Rn. For an index set I ⊆ [n], we let the vector xI ∈ R#I denote the restriction
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Notation Term
x0 ∈ Rn (ground truth) signal vector
A ∈ Rm×n measurement matrix
e ∈ Rm, with ‖e‖2 ≤ η (adversarial) noise
y = Ax0 + e ∈ Rm linear, noisy measurements of x0

d1, . . . , dd ∈ Rn dictionary atoms
D = [d1, . . . , dd] ∈ Rn×d dictionary
x̂ ∈ Rn a solution of (BPsig

η )
X̂ = D · Ẑ ⊆ Rn solution set of (BPsig

η )
z`1 ∈ Rd a minimal `1-decomposition of x0 in D, i.e., a solution of (BP`1 )
Z`1 ⊆ Rd solution set of (BP`1 )
z0 ∈ Rd a sparse representation of x0 in D, without z0 ∈ Z`1 , in general
ẑ ∈ Rd a solution of (BPcoef

η )
Ẑ ⊆ Rd solution set of (BPcoef

η )

Table 1: A summary of the central notations used in this work.

to the components indexed by I . The support of x is defined by the set of its non-zero entries
supp(x) := {k ∈ [n] | xk 6= 0} and the sparsity of x is ‖x‖0 := # supp(x). For 1 ≤ p ≤ ∞, ‖ · ‖p
denotes the `p-norm on Rn. The associated unit ball is given by Bn

p := {x ∈ Rn | ‖x‖p ≤ 1} and the
Euclidean unit sphere is Sn−1 := {x ∈ Rn | ‖x‖2 = 1}. The i-th standard basis vector of Rn is refered
to as ei and Id ∈ Rn×n denotes the identity matrix. Furthermore, let cone(K) denote the conic hull
of a set K ⊂ Rn. If L ⊂ Rn is a linear subspace, the associated orthogonal projection onto L is given
by PL ∈ Rn×n. Then, we have PL⊥ = Id−PL, where L⊥ ⊂ Rn is the orthogonal complement of
L. The letter c is usually reserved for a (generic) constant, whose value could change from time
to time. We refer to c as a numerical constant if its value does not depend on any other involved
parameter. If an (in-)equality holds true up to a numerical constant c, we sometimes write a . b
instead of a ≤ c · b. For a matrix A ∈ Rm×n we let ‖A‖2 denote its spectral norm. For a set K ⊆ Rn,
λ ∈ R and A ∈ Rm×n we set λ · K := {λk : k ∈ K} and A · K := {Ak : k ∈ K}. Lastly, the term
orthonormal basis is abbreviated by ONB.

2 A Primer on the Convex Geometry of Linear Inverse Problems

In this section, we give a brief introduction to a well-established methodology that addresses the
recovery of structured signals from independent linear random measurements. This summary
mainly serves the purpose of introducing the required technical notions for our subsequent anal-
ysis of the `1-synthesis formulation. It is inspired by [ALMT14; CRPW12; Tro15] and we refer the
interested reader to these works for a more detailed discussion of the presented material.

2.1 Minimum Conic Singular Value

Assume that Model 1.1 is satisfied. For a robust recovery of x0 from its linear, noisy measurements
y, we consider the generalized basis pursuit

min
x∈Rn

f (x) s.t. ‖y− Ax‖2 ≤ η, (BP f
η)

where f : Rn → R is a convex function that is supposed to reflect the “low complexity” of the
signal x0. Hence, the previous minimization problem searches for the most structured signal that
is still consistent with the given measurements y.

The recovery performance of (BP f
η) can be understood by a fairly standard geometric analysis.

It seeks to understand the geometric interplay of the structure-promoting functional f and the
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measurement matrix A in a neighborhood of the signal vector x0. To that end, we first introduce
the following notions of descent cones and minimum conic singular values.

Definition 2.1 (Descent cone) Let f : Rn → R be a convex function and let x0 ∈ Rn. The descent
set of f at x0 is given by

D( f , x0) := {h ∈ Rn : f (x0 + h) ≤ f (x0)} ,

and the corresponding descent cone is defined by D∧( f , x0) := cone(D( f , x0)).

The notion of minimum conic singular values describes the behavior of a matrix A when it is
restricted to a cone C ⊆ Rn.

Definition 2.2 (Minimum conic singular value) Consider a matrix A ∈ Rm×n and a cone C ⊆ Rn.
The minimum conic singular value of A with respect to the cone C is defined by

λmin (A; C) := inf
x∈C∩Sn−1

‖Ax‖2 .

The following result characterizes exact recoverability of the signal x0 and provides a determin-
istic error bound for the solutions to (BP f

η). The statement is an adapted version of Proposition 2.1
and Proposition 2.2 in [CRPW12]; see also Proposition 2.6 in [Tro15].

Proposition 2.3 (A deterministic error bound for (BP f
η)) Assume that x0, A, y, e and η follow Model

1.1 and let f : Rn → R be a convex function. Then the following holds true:

(a) If η = 0, exact recovery of x0 by solving (BP f
η=0) is equivalent to λmin (A;D∧( f , x0)) > 0.

(b) In addition, any solution x̂ of (BP f
η) satisfies

‖x0 − x̂‖2 ≤
2η

λmin (A;D∧( f , x0))
. (2.1)

2.2 Conic Mean Width

While Proposition 2.3 provides an elegant analysis of the solutions to the optimization problem
(BP f

η), it can be difficult to apply. The notion of a minimum conic singular value is related to the
concept of co-positivity [HS10c] and its computation is known to be an NP-hard task for general
matrices and cones [HS10c; MK87].

However, when A is chosen at random, sharp estimates can be obtained by exploring a con-
nection to the statistical dimension or Gaussian mean width. These geometric parameters stem from
geometric functional analysis and convex geometry (e.g., see [GM04; Gor85; Gor88; Mil85]), but
they also show up in Talagrand’s γ2-functional in stochastic processes [Tal14], or under the name
of Gaussian complexity in statistical learning theory [BM02]. Their benefits for compressive sens-
ing have first been exploited in [MPT07; RV07]. More important for our work is their use in the
more recent line of research [ALMT14; CRPW12; Sto09; Tro15], which aims for non-uniform signal
recovery statements.

Definition 2.4 Let K ⊆ Rn be a set.

(a) The (global) mean width of K is defined as

w(K) := E

[
sup
h∈K
〈g, h〉

]
,

where g ∼ N (0, Id) is a standard Gaussian random vector.

(b) The conic mean width of K is given by

w∧(K) := w(cone(K) ∩ Sn−1).
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We refer to w∧(D( f , x0)) as the conic mean width of f at x0.

The next theorem is known as Gordon’s Escape Through a Mesh and dates back to [Gor88]. The
version presented here follows from [LMPV17].

Theorem 2.5 (Theorem 3 in [LMPV17]) Assume that A satisfies the assumption in Model 1.2 and let
K ⊆ Sn−1 be a set. Then there exists a numerical constant c > 0 such that, for every u > 0, we have

inf
x∈K
‖Ax‖2 >

√
m− 1− c · γ2 · (w(K) + u), (2.2)

with probability at least 1− e−u2/2. If a ∼ N (0, Id), we have c = γ = 1.

Thus, a straightforward combination the error bound in (2.1) and the estimate in (2.2) for the
set K = D∧( f , x0) ∩ Sn−1 reveals that robust recovery via (BP f

η) is possible if the number of sub-
Gaussian measurements obeys

m ≥ c2 · γ4 · w2
∧(D( f , x0)) + 1.

In the case of Gaussian measurements, it is known that this bound yields a tight description of
the so-called phase transition of (BP f

η=0). Indeed, for a convex cone C ⊆ Rn it can be shown
that λmin (A; C) = 0 with high probability when m ≤ w2

∧(C)− c · w∧(C), where c > 0 denotes
a numerical constant. Applying this statement to the descent cone D∧( f , x0) reveals that exact
recovery of x0 by solving (BP f

η=0) fails with high probability when

m ≤ w2
∧(D( f , x0))− c · w∧(D( f , x0)).

Hence, exact signal recovery by solving (BP f
η=0) obeys a sharp phase transition at m ≈ w2

∧(D( f , x0))

Gaussian measurements. We refer to [ALMT14] and [Tro15, Remark 3.4] for more details on this
matter and conclude our discussion by the following summary:

Robust signal recovery via the generalized basis pursuit (BP f
η) is characterized by the minimum

conic singular value λmin (A;D∧( f , x0)). The required number of sub-Gaussian random mea-
surements can be determined by the conic mean width of f at x0, in symbols w2

∧(D( f , x0)).

3 Coefficient and Signal Recovery

Our study of the synthesis formulation in this section is based on the differentiation between
coefficient and signal recovery. First, we introduce the set of minimal `1-representers in Section 3.1
and discuss its importance for the relationship between both formulations. Section 3.2 is then
dedicated to the fact that signal recovery via (BPsig

η ) can be cast as an instance of atomic norm
minimization, in which the gauge of the synthesis defining polytope is minimized. Finally, in
Section 3.3, we derive two non-uniform recovery theorems that determine the sampling rates of
robust coefficient and signal recovery, respectively.

3.1 Recovery and Minimal `1-Representers

In this section, we discuss how the uniqueness of a minimal `1-representer impacts coefficient
and signal recovery.

Definition 3.1 (Minimal `1-representers) The set of minimal `1-representers of a signal x0 with re-
spect to a dictionary D is defined by

Z`1 := argmin
z∈Rd

‖z‖1 s.t. x0 = Dz. (BP`1 )

In general, Z`1 may not be a singleton. Indeed, a coefficient vector z`1 can only be the unique
minimal `1-representer of the associated signal x0 = Dz`1 , if the set of atoms {di : i ∈ supp(z`1)}
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is linearly independent [FR13, Theorem 3.1]. However, many dictionaries of practical interest
possess linear dependent and coherent atoms. Hence, typical notions that would certify unique-
ness for all signals with sparse representations in D (e.g., the NSP [FR13, Theorem 4.5]) are not
expected to hold for such dictionaries.

The following simple lemma shows that exact coefficient recovery by solving (BPcoef
η=0) requires

Z`1 to be a singleton. Otherwise, it is impossible to recover a specific coefficient representation,
while a retrieval of the signal by (BPsig

η=0) might still be possible.

Lemma 3.2 Assume that x0, A and y follow Model 1.1 with η = 0. Let D ∈ Rn×d be a dictionary such
that x0 ∈ ran(D).

(a) Assume that x0 = Dz0 and that we wish to reconstruct z0. If Z`1 6= {z0}, then recovering z0 by
solving (BPcoef

η=0) is impossible.

(b) Signal recovery by solving (BPsig
η=0), i.e., having X̂ = {x0}, is equivalent to the condition Z`1 = Ẑ.

A short proof of the previous result is given in Appendix A.1. Thus, under the assumption that
x0 has a unique minimal `1-representer, exact coefficient recovery by (BPcoef

η=0) and signal recovery
by (BPsig

η=0) are equivalent.

3.2 Signal Recovery and the Convex Gauge

The literature on compressive sensing predominantly focuses on a recovery of coefficient rep-
resentations. However, if the goal is to recover the associated signal, this approach may be in-
sufficient for structured dictionaries, as argued previously. In this section, we express the initial
optimization problem over the coefficient domain (BPsig

η ) as a minimization problem over the sig-
nal space. The `1-ball Bd

1 in the coefficient domain is thereby mapped to the convex body D · Bd
1,

which is referred to as synthesis defining polytope in [EMR07]. The formulation (BPsig
η ) can be equiv-

alently expressed as a constrained minimization of its corresponding convex gauge.

Definition 3.3 (Convex gauge) Let K ⊆ Rn be a closed convex set that contains the origin. The
gauge of K (also referred to as Minkowski functional) is defined as

pK(x) := inf {λ > 0 : x ∈ λ · K} .

For a symmetric set (i.e., −K = K) the gauge defines a semi-norm on Rn, which becomes a norm
if K is additionally bounded.

The following lemma provides an alternative characterization of the solutions X̂ to (BPsig
η ).

Lemma 3.4 Assume that x0, A, y, e and η follow Model 1.1 and let D ∈ Rn×d be a dictionary. Then we
have:

X̂ = argmin
x∈Rn

pD·Bd
1
(x) s.t. ‖y− Ax‖2 ≤ η. (3.1)

A short proof for his equivalence is given in Appendix A.2. Under the heading of atomic
norm minimization, problems of the form (3.1) were previously considered in greater generality
in [CRPW12]: Given a collection of atoms A ⊆ Rn, Chandrasekaran et al. study the geometry of
signal recovery based on minimizing the associated gauge pconv(A) in (3.1). It turns out that many
popular methods such as classical `1-, or nuclear norm-minimization can be cast in such a form,
e.g., by choosingA as the set of one-sparse unit-norm vectors, or the set of rank-one matrices with
unit-Euclidean-norm. Note that in the considered case of signal recovery via (BPsig

η ), one would
choose the atoms A = {±di : i ∈ [d]} to obtain conv(A) = D · Bd

1. With this reformulation it is
evident that dictionary atoms that are convex combinations of the remaining atoms in A can be
removed without altering X̂ [EMR07, Corollary 1].

For some specific problem instances novel sampling rate bounds are derived in [CRPW12].
Although this work plays a key role for the foundation of our work, we wish to emphasize that
no explicit insights or bounds are derived in the case of signal recovery with dictionaries. In
particular, the connection between (BPsig

η ) and (BPcoef
η ) has not been studied.
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With regard to the recovery framework of Section 2.1, it is of interest to determine the descent
cone of the functional pD·Bd

1
at x0. The following lemma shows how this cone is related to descent

cones of the `1-norm in the coefficient space.

Lemma 3.5 Let D ∈ Rn×d be a dictionary and let x0 ∈ ran(D). For any z`1 ∈ Z`1 we have

D∧(pD·Bd
1
, x0) = D · D∧(‖·‖1 , z`1) and D(pD·Bd

1
, x0) = D · D(‖·‖1 , z`1).

The proof is given in Appendix A.3.

3.3 Sampling Rates for Signal and Coefficient Recovery

The purpose of this section is to determine the sampling rates for robust coefficient and signal
recovery from sub-Gaussian measurements.

Coefficient recovery With Lemma 3.2 in mind, studying coefficient recovery is meaningful only
if the signal x0 has a unique minimal `1-representer z`1 with respect to D. Proposition 2.3 implies
that this condition can be equivalently expressed by

λmin (D;D∧(‖·‖1 , z`1)) > 0.

Equipped with this assumption, we now state our main theorem regarding the recovery of coef-
ficient vectors via (BPcoef

η ).

Theorem 3.6 (Coefficient recovery) Assume that x0, A, y, e and η follow Model 1.1, where A is drawn
according to the sub-Gaussian Model 1.2 with sub-Gaussian norm γ. Let D ∈ Rn×d be a dictionary and
z`1 ∈ Rd be a coefficient vector for the signal x0 = Dz`1 ∈ Rn, such that

λmin (D;D∧(‖·‖1 , z`1)) > 0.

Then there exists a numerical constant c > 0 such that for every u > 0, the following holds true with
probability at least 1− e−u2/2: If the number of measurements obeys

m > m0 := c2 · γ4 · (w∧(D · D(‖·‖1 ; z`1)) + u)2 + 1, (3.2)

then any solution ẑ to the program (BPcoef
η ) satisfies

‖z`1 − ẑ‖2 ≤
2η

λmin (D;D∧(‖·‖1 ; z`1)) · (
√

m− 1−
√

m0 − 1)
. (3.3)

If a ∼ N (0, Id), then c = γ = 1.

A proof is given in Appendix A.4. Before turning towards signal recovery, let us highlight a
few observations regarding the previous theorem.

Remark 3.7 (a) Note that Theorem 3.6 does not assume anything on the dictionary D and the
coefficient representation z`1 , except for λmin (D;D∧(‖·‖1 , z`1)) > 0, which is a necessary
condition for the theorem to hold true. As pointed out above, it reflects that z`1 is a unique
`1-representer of x0 with respect to D, i.e., that z`1 is the unique solution to (BP`1 ). In general,
verifying this property is involved (cf. the discussion in Section 2.2) and forms a trail of
research on its own, e.g., see [Mal09, Chapter 12] or [CK13, Chapter 9]. In this regard, we
think that an important contribution of Theorem 3.6 is that it allows to isolate the minimum
prerequisite of a unique `1-representer in D from the actual task of compressive coefficient
recovery.

(b) Equation (3.2) identifies w2
∧(D · D(‖·‖1 ; z`1)) as the essential component of the sampling

rate for coefficient recovery by (BPcoef
η ). Indeed, the proof reveals (in combination with the

discussion subsequent to Theorem 2.5) that m0 is a tight description of the required number
of noiseless Gaussian measurements for exact recovery.
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(c) Lastly, the error bound (3.3) shows that coefficient recovery is robust to measurement noise,
provided that λmin (D;D∧(‖·‖1 , z`1)) � 0; cf. the numerical experiments in Section 5,
which confirm this observation. However, we note that this bound might not be tight, in
general (cf. the intermediate inequality (A.1) in the proof, which is not necessarily sharp).

♦

Signal recovery Considering signal recovery by (BPsig
η ), a combination of the gauge formulation

(3.1), its description of the descent cone in Lemma 3.5, and Theorem 2.5 directly yields the next
result.

Theorem 3.8 (Signal recovery) Assume that x0, A, y, e and η follow the measurement Model 1.1, where
A is drawn according to the sub-Gaussian Model 1.2 with sub-Gaussian norm γ. Let D ∈ Rn×d be a
dictionary with x0 ∈ ran(D) and pick any z`1 ∈ Z`1 .
Then there exists a numerical constant c > 0 such that for every u > 0, the following holds true with
probability at least 1− e−u2/2 : If the number of measurements obeys

m > m0 := c2 · γ4 · (w∧(D · D(‖·‖1 ; z`1)) + u)2 + 1, (3.4)

then any solution x̂ to the program (BPsig
η ) satisfies

‖x0 − x̂‖2 ≤
2η√

m− 1−
√

m0 − 1
. (3.5)

If a ∼ N (0, Id), then c = γ = 1.

Let us discuss the previous result in view of its counterpart for coefficient recovery, Theo-
rem 3.6.

Remark 3.9 (a) Similarly as for coefficient recovery, (3.4) identifies w2
∧(D · D(‖·‖1 ; z`1)) as the

main quantity of the sampling rate for signal recovery by (BPsig
η ). An important difference

is that the set minimal of `1-representers is not required to be a singleton: The descent cone
in the signal space may be evaluated at any possible z`1 ∈ Z`1 and the resulting sampling
rate for signal recovery does not depend on this choice.

(b) In the case of noiseless Gaussian measurements, the number m0 is a tight description of the
phase transition of signal recovery, cf. the discussion subsequent to Theorem 2.5.

(c) While the sampling rates for coefficient and signal recovery are similar, the error bounds of
the two theorems differ. The inequality (3.5) does not involve the minimal conic singular
value as in Theorem 3.6. This suggests the following noteworthy consequence: In the case of
simultaneous coefficient and signal recovery, the robustness to noise of (BPcoef

η ) and (BPsig
η )

might still be different. Indeed, while a reconstruction of x0 is independent of the value of
λmin (D;D∧(‖·‖1 , z`1)) – in fact, even 0 is allowed–, the error with respect to z`1 is directly
influenced by it. We emphasize that the bound (3.5) cannot be retrieved from the analysis
conducted for coefficient recovery. Indeed, the estimate (3.3) of Theorem 3.6 only implies
that

‖x0 − x̂‖2 = ‖D(z`1 − ẑ)‖2 ≤
‖D‖2

λmin (D;D∧(‖·‖1 , z`1))
· 2η√

m− 1−
√

m0 − 1
,

which is worse than (3.5), in general.
♦

While the bound (3.4) is accurate for an exact recovery from noiseless measurements, it can
be improved when an approximate recovery of x0 is already sufficient. This is reflected by the
following proposition on stable recovery, which is an adaptation of a result in [GKM20]; see Ap-
pendix A.5 for a proof. Note that such an argumentation does not allow for a similar statement
about stable coefficient recovery, due to the product AD in (BPcoef

η ).
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Proposition 3.10 (Stable signal recovery) Assume that x0, A, y, e and η follow the measurement Model 1.1,
where A is drawn according to the sub-Gaussian Model 1.2 with sub-Gaussian norm γ. Let D ∈ Rn×d be
a dictionary with x0 = Dz0. For a desired precision ε > 0 let

z∗ ∈ argmin
z:‖x0−Dz‖2≤ε
‖z0‖1=‖z‖1

w∧(D · D(‖·‖1 ; z)). (3.6)

Then there exists a numerical constant c > 0 such that for every r > 0 and u > 0 the following holds true
with probability at least 1− e−u2/2: If the number of measurements obeys

m > m̃0 := c2 · γ4 ·
(

r + 1
r
· [w∧(D · D(‖·‖1 ; z∗)) + 1] + u

)2
+ 1,

then any solution x̂ to (BPsig
η ) satisfies

‖x0 − x̂‖2 ≤ max
(

rε,
2η√

m− 1−
√

m̃0 − 1

)
.

If a ∼ N (0, Id), then c = γ = 1.

The previous result extends Theorem 3.8 by an intuitive trade-off regarding stable signal re-
covery: By allowing for a lower recovery precision ε > 0, the number of required measurements
m̃0 can be significantly lowered in comparison to m0 in (3.4). Indeed, (3.6) searches for surrogate
representations z∗ of x0 in D that yield a minimal sampling rate. Note that the original coefficient
vector z0 is not required to be a minimal `1-representer of x0 with respect to D. Thus, Proposi-
tion 3.10 enables to trade off the required number of measurements against the desired recovery
accuracy. The factor r > 0 is an additional oversampling parameter that may assist in balancing
out this trade-off.

We emphasize that this approach to stability is centered around a Euclidean approximation in
the signal domain Rn. This is in stark contrast to a stability theory in the coefficient domain,
which is typically based on an approximation of compressible vectors by ordinary best s-term
approximations. We refer to Section 2.4 and 6.1 in [GKM20] as well as Section 2.4 in [GMS20] for
more details on the presented approach to stable recovery and related results in the literature.

Remark 3.11 The normalization condition ‖z0‖1 = ‖z‖1 in (3.6) can be discarded at the expense
of a slightly worse error bound. Under the same conditions as in Proposition 3.10, we can also
derive the following result. Set ε > 0 and let

x∗ ∈ argmin
‖x−x0‖2≤ε

w∧(D(pD·Bd
1
; x)) and K = D(pD·Bd

1
, x∗).

For every u > 0 and
m > m̃0 := c2 · γ4 · (w∧(K) + u)2 + 1,

the inequality

‖x0 − x̂‖2 ≤
4(η + ε(

√
m + Cγ2 + u))√

m− 1−
√

m̃0 − 1
+ ε (3.7)

holds true with probability larger than 1 − 2e−u2
for some constant C depending only on the

distribution of A. For instance, letting m = rm̃0 with r > 1 as an oversampling factor, the latter
bound essentially becomes:

‖x0 − x̂‖2 .
4η

(
√

r− 1)m̃0
+

4ε
√

r
(
√

r− 1)
+ ε.

♦

We conclude this section by an illustration of stable recovery in two simple examples.
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Example 3.12 (a) Assume that D = Id and let x0 ∈ Rn denote a fully populated vector, which
is without loss of generality assumed to be positive and nonincreasing. Standard results on
the computation of the conic mean width (see for instance [Tro15, Example 4.3]) stipulate
that w2

∧(D(‖·‖1 ; x0)) = n. Hence, it is impossible to exactly recover x0 from noiseless com-
pressive measurements. However, if we are satisfied with an approximate recovery of x0,
we can set the precision for instance to ε = 3 · σs(x0)1/

√
s, where σs(x0)p denotes the `p-

error of the best s-term approximation to x0. Then, the surrogate vector x∗ ∈ Rn defined as
x∗i := x0,i + σs(x0)1/s for i = 1, . . . , s and x∗i := 0 for i = s + 1, . . . , n, satisfies ‖x∗‖1 = ‖x0‖1.
A straightforward calculation shows that ‖x∗ − x0‖2

2 ≤ σs(x0)
2
1/s + σs(x0)

2
2, which even-

tually leads to ‖x∗ − x0‖2 ≤ 3 · σs(x0)1/
√

s. Furthermore, a computation of the conic
mean width yields that w2

∧(D(‖·‖1 ; x∗)) . 2s log(n/s). Hence, Proposition 3.10 shows that
(BPsig

η=0) allows for the reconstruction of an approximation x̂ from m & 2s log(n/s) noise-
less sub-Gaussian measurements that satisfies ‖x0 − x̂‖2 . 3 · σs(x0)1/

√
s. A comparison

with [FR13, Theorem 4.22 and Section 11.1] shows that such a stability result is essentially
optimal.

(b) Let us provide another simple result highlighting the important difference between signal
and coefficient recovery. Consider a dictionary consisting of a convolution with a low pass
filter h ∈ Rn, i.e., for any z ∈ Rd, Dz = h ? z. The problem (BPsig

η ) then becomes a decon-
volution problem and it could be turned to a super-resolution problem by considering non
integer shifts of the kernel. In this setting, it is well known [CF14] that coefficients of the
form z0 = [1,−1, 0, . . . , 0] are hard to recover by solving (BPcoef

η ) since h ? z0 ' 0. There is
a minimum separation distance to respect to guarantee the recovery of sparse spikes with
arbitrary signs. We can however use the result (3.7) by setting ε = ‖Dz0‖2. In that case, we
obtain m̃0 = c2γ4u2 + 1 by picking x? = 0. Hence, we can recover an ε-approximation of
x0 = Dz0 with a few measurements.

♦

4 Upper Bounds on the Conic Gaussian Width

The previous results identify the conic mean width w2
∧(D · D(‖·‖1 ; z`1)) as the key quantity that

controls coefficient and signal recovery by `1-synthesis. However, this expression does not con-
vey an immediate understanding without further simplification. While tight and informative
upper bounds are available for simple dictionaries such as orthogonal matrices, the situation be-
comes significantly more involved for general, possibly redundant transforms. Indeed, note that
the polar cone of D · D(‖·‖1 ; z`1) is given by (D · D(‖·‖1 ; z`1))◦ = (DT)−1(D(‖·‖1 ; z`1)◦). The
appearance of the preimage (DT)−1 hinders the application of the standard approach based on
polarity; see for instance [ALMT14, Recipe 4.1].

Hence, the goal of this section is to provide two upper bounds for w2
∧(D · D(‖·‖1 ; z`1)) that

are more accessible and intuitive: Section 4.1 is based on a local conditioning argument, and
addresses recovery when a unique minimal `1-representer exists. The second bound of Section 4.2
follows a geometric analysis that explores the thinness of high-dimensional polyhedral cones with
not too many generators. This approach possesses a broader scope and plays a central role in our
work.

4.1 A Condition Number Bound

In this section, we aim at “pulling” the dictionary D “out of” the expression w2
∧(D · D(‖·‖1 ; z`1)),

in order to make use of the fact that w2
∧(D(‖·‖1 ; z`1)) is well understood. We begin by introducing

the following notation of a local condition number.

Definition 4.1 (Local condition number) Let D ∈ Rn×d be a dictionary and let C ⊆ Rd be closed
convex cone. Then, we define the local condition number of D with respect to C by

κD,C :=
‖D‖2

λmin (D; C)
,
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with the convention κD,C = +∞ if λmin (D; C) = 0. We also use the notation κD,z0
:= κD,D∧(‖·‖1;z0)

,
which we refer to as local condition number of D at z0 with respect to the `1-norm.

Before the previous quantity will be used to simplify w2
∧(D · D(‖·‖1 ; z`1)), we first comment on

the origin of its name and give an intuitive interpretation of its meaning in the following remark.

Remark 4.2 (a) First, recall that the classical, generalized condition number of a matrix is de-
fined as the ratio of the largest and the smallest nonzero singular value. Hence, referring to
κD,C as a local condition number is motivated by the fact that it can also be written as

κD,C =
‖D‖2

λmin (D; C)
=

λmax

(
D; Rd

)
λmin (D; C)

,

where λmax

(
D; Rd

)
:= maxz∈Rd∩Sd−1 ‖Dz‖2 = ‖D‖2 is the largest singular value of D.

(b) Furthermore, note that κD,z0
acts as a local measure for the conditioning of D at z0 with

respect to the `1-norm. It quantifies how robustly z0 can be recovered as the minimal `1-
representer of x0 = Dz0: Consider the perturbation ẑ0 = z0 + ê, where ê ∈ Rd with
‖ê‖2 ≤ η̂. Thus, in the signal domain we obtain ‖Dz0 − D · ẑ0‖2 = ‖Dê‖2 ≤ ‖D‖2 · η̂.
Proposition 2.3 then yields that any solution ẑ of the program

min
z∈Rd
‖z‖1 s.t. ‖Dẑ0 − Dz‖2 ≤ ‖D‖2 · η̂

satisfies

‖z0 − ẑ‖2 ≤
2 · ‖D‖2 · η̂

λmin (D;D∧(‖·‖1 ; z0))
. κD,z0

· η̂,

which shows that κD,z0
can be seen as a measure for the stability of z0 with respect to `1-

minimization with D.
♦

The following proposition provides a generic upper bound for the conic mean width of a lin-
early transformed cone.

Proposition 4.3 Let C ⊆ Rd denote a closed convex cone. For any dictionary D ∈ Rn×d, we have

w2
∧(D · C) ≤ κ2

D,C ·
(

w2
∧(C) + 1

)
. (4.1)

Proof. See Appendix B. �

Note that for sparse coefficient vectors z0 the quantity w2
∧(D(‖·‖1 ; z0)) is well understood and

has been frequently calculated in the literature, see for instance [Tro15, Example 4.3]. It turns out
that it can be bounded from above by

w2
∧(D(‖·‖1 ; z0)) ≤ 2s log(d/s) + 2s,

where s = # supp(z0). Hence, we directly obtain the following corollary.

Corollary 4.4 If z`1 is the unique minimal `1-representer of the associated signal x0 = Dz`1 , the critical
number of measurements m0 in (3.2) and (3.4) satisfies

m0 ≤ c2 · γ4 ·
(

κD,z`1 ·
(

w2
∧(D(‖·‖1 ; z`1)) + 1

)1/2
+ u

)2
+ 1 . κ2

D,z`1 · s log(d/s),

where s = # supp(z`1).

We have assumed z`1 to be a unique minimal `1-representer since otherwise the previous state-
ment becomes meaningless due to κD,z`1 = +∞. Thus, the condition number bound of Corol-
lary 4.4 foremost addresses coefficient recovery via (BPcoef

η ), as well as a reconstruction of signals
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with unique minimal `1-representers in D by (BPsig
η ). In both cases, m & κ2

D,z`1 · s log(d/s) sub-
Gaussian measurements are sufficient (recall that the two formulations might nevertheless differ
with respect to robustness to measurement noise). Hence, the results of this section identify the
following three decisive factors for successful recovery:

(i) The uniqueness of z`1 as the minimal `1-representer of x0 = Dz`1 ;

(ii) The complexity of z`1 with respect to `1-norm, which is measured by w2
∧(D(‖·‖1 ; z`1)), or

by its sparsity s = # supp(z`1);

(iii) The quantity κD,z`1 , which resembles a local measure for the conditioning of D at z`1 .

We demonstrate in the numerical experiments of Section 5.1 that such a condition number ap-
proach might be accurate for some specific problems, however, it is overly pessimistic in general.
Indeed, it is possible that w2

∧(D · D(‖·‖1 ; z`1)) ≤ w2
∧(D(‖·‖1 ; z`1)), but κD,z`1 � 1. We suspect

that a more accurate description might require a detailed analysis of random conic spectra [ST03].

Remark 4.5 (a) In the case D = Id, observe that Corollary 4.4 is consistent with standard
compressed sensing results. Indeed, in this situation, it holds true that

κId,z`1 = 1 = ‖Id‖2 = λmin (Id;D∧(‖·‖1 , z`1)) ,

implying that m & s log(n/s) measurements are sufficient for robust recovery of s-sparse
signals.

(b) During completion of this work, we discovered that similar bounds as (4.1) were recently
derived in [ALW20]. Amelunxen et al. do not address the synthesis formulation of com-
pressed sensing, but they study the statistical dimension of linearly transformed cones in a
general setting. Their results are based on a notion of Renegar’s condition number, which can
be defined as

RC(D) = min
{

‖D‖2
λmin (D; C)

,
‖D‖2

σRn→C(−DT)

}
, (4.2)

where C ⊆ Rd is a closed, convex cone, σRn→C(−DT) := minx∈Sn−1
∥∥ΠC(−DTx)

∥∥
2 and ΠC

denotes the orthogonal projection on C. [ALW20, Theorem A] then establishes the bound
δ(D ·C) ≤ R2

C(D) · δ(C), where δ denotes the statistical dimension, which is essentially equiv-
alent to the conic mean width; see proof of Proposition 4.3 in Appendix B for details.

Additionally, the authors of [ALW20] provide a “preconditioned”, probabilistic version of
the latter bound: For m ≤ n let Pm denote the projection onto the first m coordinates and
define the quantity R2

C,m(D) := EQ[RC(PmQD)2], where the expectation is with respect to
a random orthogonal matrix Q, distributed according to the normalized Haar measure on
the orthogonal group. [ALW20, Theorem B] then states that for any parameter ν ∈ (0, 1)
and m ≥ δ(C) + 2

√
log(2/ν)m, we have that δ(D · C) ≤ R2

C,m(D) · δ(C) + (n − m) · ν.
Due to the second term in (4.2), both versions of Renegar’s condition number will be not
greater than κD,C, in general. Hence, ignoring the dependence on ν and the condition on m
for simplicity, the bound on the required samples of Corollary 4.4 could also be formulated
withR2

D∧(‖·‖1,z`1 )
(D) orR2

D∧(‖·‖1,z`1 ),m(D) instead of κD,z`1 .
♦

4.2 A Geometric Bound

In this section, we derive an upper bound for w2
∧(D · D(‖·‖1 ; z`1)) that is based on generic argu-

ments from high-dimensional convex geometry. We exploit the fact that the cone D · D∧(‖·‖1 ; z`1)
is finitely generated by at most 2d vectors (see the proof of Proposition 4.16 in Appendix C.3) – a
number that is typically significantly smaller than exponential in the ambient dimension n. The
resulting upper bound depends on the maximal sparsity of elements in Z`1 and on a single ge-
ometric parameter that we refer to as circumangle, whereas the number of generators only has
a logarithmic influence. This is comparable to the mean width of a convex polytope, which is
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mainly determined by its diameter (cf. Lemma C.1) and by the logarithm of its number of ver-
tices.

In Section 4.2.1, we first introduce the required notation and show an upper bound on the conic
mean width of pointed polyhedral cones. We then focus on the geometry of the descent cone
D∧(pD·Bd

1
, x0) (see Section 4.2.2) in order to derive the desired upper bound on the expression

w2
∧(D · D(‖·‖1 ; z`1)) in Section 4.2.3. Finally, we show how this bound can be used in practical

examples; see Section 4.2.4.

4.2.1 The Circumangle

The goal of this section is to relate the conic mean width of a pointed polyhedral cone to its
circumangle, which describes the angle of an enclosing circular cone. To that end, recall that a
circular cone (also referred to as revolution cone) with axis θ ∈ Sn−1 and (half-aperture) angle α ∈
[0, π/2] is defined as

C(α, θ) := {x ∈ Rn, 〈x, θ〉 ≥ ‖x‖2 · cos(α)}.

The conic mean width of a circular cone depends linearly on the ambient dimension n, i.e.,
w2
∧(C(α, θ)) = n · sin2(α) + O(1), see for instance [ALMT14, Proposition 3.4]. Although not di-

rectly related, it will be insightful to compare this result with the subsequent upper bound of
Proposition 4.9.

The following definition introduces the so-called circumangle of a nontrivial (different from {0}
and Rn) closed convex cone C. It describes the angle of the smallest circular cone that contains C.

Definition 4.6 (Circumangle) Let C ⊂ Rn denote a nontrivial closed convex cone. Its circumangle
α is defined by

α := inf {α̂ ∈ [0, π/2] : ∃θ ∈ Sn−1, C ⊆ C(α̂, θ)} .

The previous notion can be found under various names in the literature, see for instance [FV99;
HS10b; IS08; Ren95]. In particular, the previous quantity arises in the definition of an outer center
of a cone [HS10a]. It turns out that the circumangle satisfies

cos(α) = sup
θ∈Sn−1

inf
x∈C∩Sn−1

〈θ, x〉,

where a vector θ that maximizes the right hand side is referred to as circumcenter (or outer center1)
of C [HS10a; IS08]. Furthermore, if C is pointed (i.e., if it does not contain a line), the circumcenter
is unique and α ∈ [0, π/2) [HS10a].

Note that the function θ 7→ infx∈C∩Sn−1〈θ, x〉 is concave as a minimum of concave functions.
Hence, if C is pointed, it is easy to see that determining the circumcenter and the circumangle
amounts to solving the following convex optimization problem:

cos(α) = sup
θ∈Bn

2

inf
x∈C∩Sn−1

〈θ, x〉.

We now show that this characterization can be further simplified for pointed polyhedral cones.
The simple characterization of the following proposition makes it possible to numerically com-
pute the circumangle of such cones. We emphasize that this stands in contrast to previously
discussed notions such as the minimum conic singular value, which is intractable in general. A
short proof is included in Appendix C.1.

Proposition 4.7 (Circumangle and circumcenter of polyhedral cones) Let xi ∈ Sn−1 for i ∈ [k]
and let C = cone(x1, . . . , xk) be a nontrivial pointed polyhedral cone. Finding the circumcenter and

1Note that the notions of circumcenter and outer centers generally differ, however, in the Euclidean setting of this work
they are equivalent [HS10a, Section 5].
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Figure 2: Geometry of Proposition 4.9. The figure shows a polyhedral cone (transparent gray) trun-
cated at z = 1 and included in a circular cone with angle α (wire-frame). The standard basis vector
ez corresponds to the circumcenter of the polyhedral cone and α is chosen as its circumangle. The
thick line is the intersection of the unit sphere with the faces of the polyhedral cone. Right view is
from above, or equivalently, the projection on the plane z = 1. The conic mean width of the polyhe-
dral cone can be bounded by evaluating the mean width of any set containing the thick line plus 1 (as
a subset of the plane). The proposed bound is based on using the intersection of the polyhedral cone
and the plane z = 1. Notice that this convex body is included in the disk with radius tan α. In high
dimensions, it will be thin if the polyhedral cone does not have overwhelmingly many extremal rays.

circumangle of C amounts to solving the convex problem:

cos(α) = sup
θ∈Bn

2

inf
i∈[k]
〈θ, xi〉.

The goal of this section is to upper bound the conic mean width of all polyhedral cones C ⊂ Rn

with k generators that are contained in a circular cone of angle α. To that end, we first introduce
the following notation:

Definition 4.8 A k-polyhedral α-cone C ⊂ Rn is a nontrivial pointed polyhedral cone generated
by k vectors that is included in a circular cone with angle α ∈ [0, π/2). Furthermore, we let Cα

k
denote the set of all k-polyhedral α-cones.

Note that C being a nontrivial pointed polyhedral cone implies that such an encompassing
circular cone with angle α ∈ [0, π/2) exists. The next result provides a simple upper bound on
the quantity

W(α, k, n) := sup
C∈Cα

k ,C⊂Rn
w∧(C).

The underlying geometric idea is explained in Figure 2 and its proof is detailed in Appendix C.2.
Note that the bound does not depend on the ambient dimension n, which is in contrast to the
conic width of a circular cone.

Proposition 4.9 For k ≥ 5, the conic mean width of a k-polyhedral α-cone C in Rn is bounded by

W(α, k, n) ≤ tan α ·


√

2 log
(

k/
√

2π
)
+

1√
2 log

(
k/
√

2π
)
+

1√
2π

.

We conclude this section with the following remark:

Remark 4.10 The previous upper bound is based on Lemma C.1, which provides a basic bound
on the Gaussian mean width of a convex polytope; see also [Ver18, Ex. 7.5.10 & Prop. 7.5.2]. Using
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Figure 3: Illustration of Lemma 4.11. Left: `1-ball in R3 and a 2-sparse vector z. Center: The rays of
the descent cone are supported by the vectors r±i = ±ei − z, which corresponds to the generators of
Lemma 4.11 with v = s · z/ ‖z‖1, multiplied by 1/2. Right: The resulting descent cone (shifted by z).
Note that it contains a linear subspace spanned by r+2 and r+3 .

a tighter estimate there (possibly an implicit description as in [ALMT14, Proposition 4.5]) would
in turn also improve Proposition 4.9. ♦

4.2.2 Geometry of the Descent Cone

In order to derive an upper bound for the quantity w2
∧(D · D(‖·‖1 ; z`1)) based on the previous

result, we first need a more geometrical description of the descent cones of the `1-norm and of the
gauge pD·Bd

1
.

Lemma 4.11 Let z ∈ Rd with support supp z = S and #S = s. Then,

D∧(‖·‖1 , z) = cone(±s · ei − v : i ∈ [d]).

where v is any vector such that ‖v‖1 = s and sign v = sign z, e.g., v = sign z or v = s · z/‖z‖1.

A proof of the previous lemma can be found in Appendix C.3. The statement is illustrated in
Figure 3 for dimension d = 3. Observe that sliding z along the edge linking e2 with e3 leaves the
descent cone unchanged.

Whenever a convex cone contains a subspace, its circumangle is π/2 and the bound of Proposi-
tion 4.9 is not applicable. As can be seen in Figure 3, the descent cone of the `1-norm at z contains
the subspace spanned by the face of minimal dimension containing z. To avoid this pitfall, let us
recall the notion of lineality.

Definition 4.12 (Lineality [Roc70]) For a non-empty convex set C ⊆ Rn, the lineality space CL of C
is defined as

CL := {x ∈ Rn : ∀x̃ ∈ C : {x̃ + α · x : α ∈ R} ⊆ C} .

It defines a subspace of Rn and its dimension is referred to as the lineality of C.

Any non-empty convex set C can be expressed as the direct sum

C = CL ⊕ CR with CR := PC⊥L
(C), (4.3)

where PC⊥L is the orthogonal projection onto C⊥L . The notation CR is used in analogy to the range
in linear algebra. The set CR is “line-free” (i.e., its lineality is {0}) and its dimension is called
the rank of C. If C is a convex cone, the lineality space is the largest subspace contained in C
and the circumangle of the range CR is less than π/2. In the following, we will therefore apply
Proposition 4.9 to the latter set only. Figure 4 illustrates the orthogonal decomposition of (4.3) for
the descent cone of Figure 3.

The following lemma characterizes the lineality space and the range for descent cones of the
`1-norm. A proof is given in Appendix C.3.
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Figure 4: Decomposition into the direct sum of the lineality space and range. Left: Decomposition
of R3 into the lineality space CL and its orthogonal complement C⊥L , where C is the descent cone of
Figure 3. Middle: Different view of C, where r±⊥i := PC⊥L (r

±
i ). Right: Visualization of the orthogonal

decomposition of C into its lineality space and range CR = PC⊥L (C). The angle α corresponds to the
circumangle of CR and θ denotes its circumcenter.

Lemma 4.13 Let z = (z1, . . . , zd) be a vector with support supp z = S and #S = s ≥ 1. The lineality
space of C = D∧(‖·‖1 , z) is then given by

CL = span (s · sign(zi) · ei − sign(z) : i ∈ S) ,

with lineality dim(CL) = s− 1.

Notice that the lineality space is nothing but the face of the `1-ball of smallest dimension con-
taining z.

We now turn to the decomposition of the descent cone of the gauge pD·Bd
1

into lineality space
and range. To that end, let us first make the following simple observation.

Lemma 4.14 (Sign pattern of `1-representers) All minimal `1-representers of x0 with respect to D
share the same sign pattern, in the sense that for all z1

`1 , z2
`1 ∈ Z`1 , the coordinate-wise product z1

`1 · z2
`1 is

nonnegative.

This lemma allows us to define the maximal `1-support.

Definition 4.15 (Maximal `1-support) Let x0 ∈ Rn and D ∈ Rn×d be a dictionary. The maximal
`1-support S̄ of x0 in D (or simply maximal support) is defined as S̄ := ∪z`1∈Z`1 supp(z`1). In
what follows, we let s̄ = #S̄ denote its cardinality.

Since all solutions z`1 ∈ Z`1 have the same sign pattern, any point z`1 in the relative interior
of Z`1 has maximal support. The next decomposition forms the main result of this section; see
Appendix C.3 for a proof.

Proposition 4.16 Let D ∈ Rn×d be a dictionary and let x0 ∈ ran(D) \ {0}. Let C = D∧(pD·Bd
1
, x0)

denote the descent cone of the gauge at x0. Let z`1 ∈ ri(Z`1) be any minimal `1-representer of x0 in D with
maximal support and set S̄ = supp(z`1) as well as s̄ = #S̄ . Assume s̄ < d. Then we have:

(a) The lineality space of C has a dimension less than s̄− 1 and is given by

CL = span(s̄ · sign(z`1,i) · di − D · sign(z`1) : i ∈ S̄).

(b) The range of C is a 2(d− s̄)-polyhedral α-cone given by:

CR = cone(r±⊥j : j ∈ S̄ c) with r±⊥j := PC⊥L

(
±s̄ · dj − D · sign(z`1)

)
.

4.2.3 Consequence for the Sampling Rates

We now combine the main results of the previous two sections to derive an upper bound on the
conic mean width of D∧(pD·Bd

1
, x0).
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Theorem 4.17 If s̄ ≤ d− 3, we obtain that

w2
∧(D∧(pD·Bd

1
, x0)) ≤ s̄ +

(
tan α ·

(√
2 log

(
2(d− s̄)√

2π

)
+ 1

)
+

1√
2π

)2

,

where we have used the same notation and assumptions as in Proposition 4.16.

A proof of the previous result is given in Appendix C.4. As a direct consequence, we get the
following upper bound on the sampling rates for coefficient and signal recovery.

Corollary 4.18 The critical number of measurements m0 in (3.2) and (3.4) satisfies

m0 . s̄ + tan2 α · log(2(d− s̄)/
√

2π).

This result shows that robust coefficient and signal recovery is possible, when the number of
measurements obeys m & s̄+ · tan2 α · log(d). Hence, the sampling rate is mainly governed by the
sparsity of maximal support `1-representations of x0 in D and the “narrowness” of the remaining
cone CR, which is captured by its circumangle α ∈ [0, π/2). The number of dictionary atoms only
has a logarithmic influence. The next section is devoted to applying the previous result to various
examples.

Remark 4.19 For the sake of clarity, the previous results are given in terms of the maximal spar-
sity. However, (potentially) more precise bounds can be achieved when replacing s̄ by dim(CL).
Furthermore note, that the proof of Theorem 4.17 reveals that dim(CL) is a necessary component
in the required number of measurements. Indeed, since w2

∧(D∧(pD·Bd
1
, x0)) is a sharp description

for the required number of measurements, equation (C.5) shows that the number of measure-
ments for successful recovery is lower bounded by dim(CL). ♦

4.2.4 Examples

In this section, we discuss four applications of the previous upper bound on the conic mean width.
First, we show that prediction for the required number of measurements agrees with the standard
theory of compressed sensing. We then analytically compute the sampling rate of Corollary 4.18
for a specific scenario, in which the dictionary is formed by a concatenation of convolutions. The
third example focuses on a numerical simulation in the case of 1D total variation. Lastly, we
demonstrate how the circumangle can be controlled by the classical notion of coherence.

The Standard Basis Our first example is dedicated to showing that the result of Corollary 4.18
is consistent with the standard theory of compressed sensing when D = Id. Hence, assume that
we are given a sparse vector x0 ∈ Rn with S = supp(x0) and s = #S ≤ n − 3. Trivially, x0 is
then its own, unique `1-representation with respect to Id. According to Lemma 4.13, the (s− 1)-
dimensional lineality space of C = D∧(‖·‖1 , x0) is given by

CL = span
(
r+i : i ∈ S

)
,

where r+i = s · sign(x0,i) · ei − sign(x0). For i ∈ S c a simple calculation shows that θ, r±i ∈ C⊥L ,
where θ = − sign(x0)/

√
s ∈ Sn−1 and r±i = ±s · ei − sign(x0). Furthermore, for i ∈ S c it holds

true that 〈
θ, r±i

〉
=
√

s = (1/
√

s + 1) ·
∥∥r±i

∥∥ ,

so that the vectors r±i generate a 2(n− s)-polyhedral α-cone CR with tan2 α = s. Hence, Corol-
lary 4.18 states that robust recovery of x0 is possible for m & 2s log(2(n− s)/

√
2π) measurements.

This bound is to be compared with the classical compressed sensing result, which prescribes to
take m & 2s log(n/s) measurements. Note that the slight difference in the logarithmic factor is
due to our simple bound on W(α, k, n), cf. Remark 4.10.
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A Convolutional Dictionary Consider a dictionary D defined by the concatenation of two con-
volution matrices H1 and H2 with convolution kernels h1 = [1, 1] and h2 = [1,−1], respectively.
For instance, in dimension n = 4, this would yield the following matrix:

D =


1 1 0 0 1 −1 0 0
0 1 1 0 0 1 −1 0
0 0 1 1 0 0 1 −1
1 0 0 1 −1 0 0 1

 .

In particular for imaging applications, popular signal models are based on sparsity in such con-
catenations of convolutional matrices, e.g., translation invariant wavelets [Mal09] or learned fil-
ters in the convolutional sparse coding model [BEL13; Woh14]. Note that the resulting dictionary
is highly redundant and correlated, so that existing coherence- and RIP-based arguments cannot
provide satisfactory recovery guarantees. For the same reason, a recovery of a unique minimal
`1-representer by (BPcoef

η ) is unlikely, cf. the numerical simulation in Section 5.2. However, in the
following, we will show how the previous upper bound based on the circumangle can be used in
order to analyze signal recovery by (BPsig

η ).
To that end, we consider the recovery of a simple vector x0 ∈ Rn supported on the first and the

last component only, i.e., x0,i = 0 for all 2 ≤ i ≤ n− 1. A generalization to vectors supported on
supports made of pairs of contiguous indices separated by pairs of contiguous zeros is doable, but
we prefer this simple setting for didactic reasons. In this case, the set of minimal `1-representers
can be completely characterized. Assuming additionally that x0,1 > x0,n > 0, one can show that

Z`1 =
{

z`1 = [z(1); z(2)] ∈ R2n, with supp(z(1)) = supp(z(2)) = {1, 2},

z(1)1 =
x0,1 + x0,n

2
− δ, z(1)1 = δ, z(1)2 =

x0,1 − x0,n

2
− δ, z(1)2 = −δ,

0 ≤ δ ≤ x0,1 − x0,n

2
}

.

Let z`1 ∈ Z`1 denote any representer with maximal support S = supp(z`1) = {1, 2, n + 1, n + 2}
and set v = D · sign(z`1). According to Proposition 4.16, we then decompose the descent cone
C = D∧(pD·Bd

1
, x0) into C = CL ⊕ CR, where CL is the lineality space given by

CL = span(4 · sign(z`1,i) · di − v : i ∈ S),

and the range is given by CR = cone(PC⊥L (±4 · dj − v : j ∈ Sc)). It is easy to see that dim(CL) = 2,
and that the projection on C⊥L can be expressed as

(PC⊥L
(x))i =

{
0, if i ∈ {2, n},
xi, otherwise.

The goal is now to show that CR is contained in a circular cone with angle α = arccos(1/
√

3)
and axis θ = −PC⊥L (v)/ ‖PC⊥L (v)‖2 = −e1. Indeed, a straightforward computation shows that for
j ∈ Sc we have (

PC⊥L
(±4 · dj − v)/

∥∥∥PC⊥L
(±4 · dj − v)

∥∥∥
2

)
1
∈
{
−1/
√

2,−1/
√

3
}

.

Hence, Corollary 4.18 implies that robust recovery of x0 is possible for m & 2 + 2 log(4n) mea-
surements.

1D Total Variation As a third example we consider the problem of total variation minimiza-
tion in 1D. Assume that x0, A, y, e and η follow Model 1.1 with η = 0 and that A obeys Model
1.2. Total variation minimization is based on the assumption that x0 is gradient-sparse, i.e., that
# supp(∇x0) ≤ s � n, where ∇ ∈ Rn−1×n denotes a discrete gradient operator, which is for in-
stance based on forward differences with von Neumann boundary conditions. In order to recover
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Figure 5: Logarithmic scaling of tan2 α. The figure displays the behavior of tan2 α for increasing am-
bient dimension n, where α denotes the circumangle of the range CR in Proposition 4.9. Here, the dic-
tionary is chosen as D = ∇† and the considered signals x0 have equidistant jump discontinuities and
zero average. The plot indicates that the upper bound based on the circumangle is sharp enough to
break the square-root bottleneck of [CX15].

x0 from its noiseless, compressed measurements y, one solves the program

min
x∈Rn

‖∇x‖1 s.t. y = Ax.

For signals with 1T · x0 = 0 it is easy to see that the previous formulation is equivalent to solving
the synthesis basis pursuit (BPsig

η=0) with D = ∇†, where∇† ∈ Rn×n−1 denotes the Moore-Penrose
inverse of ∇.

The research of the past three decades demonstrates that encouraging a small total variation
norm often efficaciously reflects the inherent structure of real-world signals. Although not as
popular as its counterpart in 2D, total variation methods in one spatial dimension find applica-
tion in many practical applications, see for instance [LJ11]. Somewhat surprisingly, Cai and Xu
have shown that a uniform recovery of all s-gradient-sparse signals is possible if and only if the
number of (Gaussian) measurements obeys m &

√
sn · log(n); see [CX15]. Recently, [GMS20]

has proven that this square-root bottleneck can be broken for signals with well separated jump
discontinuities. This result is also based on establishing a non-trivial upper bound on the conic
mean width. For such “natural” signals, m & s · log2(n) measurements are already sufficient for
exact recovery. See also [DHL17; GLCS20] for closely related results in a denoising context.

We want to demonstrate that the upper bound on the conic mean width based on the circuman-
gle is capable of breaking the square-root bottleneck of the synthesis-based reformulation above.
A theoretical analysis appears to be doable, however, it is beyond the scope of this work. Instead,
we restrict ourselves to a simple numerical simulation. We consider signals that are defined by
the pointwise discretization of a function on an interval with a few equidistant discontinuities and
zero average. Note that for such a signal x0 the unique minimal `1-representer with respect to∇†

is simply given by∇x0. Hence, we are only left with numerically computing the circumangle α of
the range CR in Proposition 4.16, which is done by means of Proposition 4.7. In order to confirm
that required number of measurements scales logarithmically in the ambient dimension n, we
analyze the behavior of tan2 α when the resolution is increased, i.e., for n = 500, 1000, . . . 10000.
The result is shown in Figure 5. The logarithmic scaling of tan2 α (note that the n-axis is logarith-
mic) indeed suggests that the bound of Corollary 4.18 predicts that m & s · log2(n) measurements
suffice for exact recovery. Hence, the presented upper bound based on the circumangle appears
to be sharp enough to break the square-root bottleneck of total variation minimization in 1D.

Coherence and Circumangle In our last example, we show that the circumangle of CR of Propo-
sition 4.16 can be controlled in terms of the mutual coherence of the dictionary (see Equation (1.2)).
This notion is a classical concept in the literature on sparse representations, which is frequently
used to derive uniform recovery statements; see for instance [FR13, Chapter 5] for an overview.
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Note that the assumption s < 1
2 (1 + µ−1) of the following result guarantees that every s-sparse

z`1 is the unique minimal `1-representer of its associated signal Dz`1 [DE03; GN03]. Hence, in
this situation, coefficient and signal recovery are equivalent, and both formulations are governed
by the conic mean width of the cone C = D∧(pD·Bd

1
, Dz`1) = D · D∧(‖·‖1 , z`1).

Proposition 4.20 Let D ∈ Rn×d be a dictionary that spans Rn with ‖di‖2 ≤ 1 for i ∈ [d] and mutual
coherence µ = µ(D). Let z`1 ∈ Rd \ {0} denote an arbitrary s-sparse vector with s < 1

2 (1 + µ−1). Then
the circumangle α of the range CR of the descent cone C = D∧(pD·Bd

1
, Dz`1) obeys:

tan2 α ≤ s(1− sµ)

(1− 2sµ)2 .

A proof of the previous result can be found in Appendix C.5. The statement allows us to re-
trieve a bound of the order m & s log(d) for the needed number of measurements. For example,
with sµ = 1/10, the bound of Corollary 4.18 results in a sampling rate of m0 ≤ 4s log(d). Ob-
serve that this is essentially the same result as [RSV08, Corollary II.4], however, the constants of
Proposition 4.20 are better controlled.

Note that the mutual coherence of a dictionary (sometimes also referred to as worst-case coher-
ence [CK13, Chapter 9]) is a global quantity that is usually used to derive recovery guarantees
that are uniform across all s-sparse signals. Approaches based on this notion suffer from the so-
called square-root bottleneck: The Welch bound [FR13, Theorem 5.7] reveals that the condition
s < 1

2 (1 + µ−1) can only be satisfied for mild sparsity values s .
√

n. We emphasize that this is
in contrast to the strategy of this work, which is tailored for a non-uniform recovery of individual
signals. Indeed, the circumangle is a signal-dependent notion that allows to describe the local
geometry.

5 Numerical Experiments

In this section, we illustrate our main findings regarding the `1-synthesis formulation by perform-
ing numerical simulations. First, we study the recovery of coefficient representations by (BPcoef

η=0);
see Section 5.1. In Section 5.2, we then focus on signal recovery by (BPsig

η=0) in situations, where the
identification of a coefficient representation is impossible. Section 5.3 is dedicated to the experi-
ment of Figure 1, in which both formulations are compared. Lastly, we investigate the differences
concerning robustness to measurement noise in Section 5.4. For general design principles and
more details on our simulations we refer the interested reader to Appendix D.

To the best of our knowledge, all other compressed sensing results on the `1-synthesis for-
mulation with redundant dictionaries describe the sampling rate as an asymptotic order bound.
Hence, these results are not compatible with the experiments in this section and will not be further
considered.

5.1 Sampling Rates for Coefficient Recovery

In order to study coefficient recovery by (BPcoef
η=0), we create phase transition plots by running Ex-

periment 5.1 for different dictionary and signal combinations reported below.
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Experiment 5.1 (Phase transition for a fixed coefficient vector)

Input: Dictionary D ∈ Rn×d, coefficient vector z`1 ∈ Rd.

Compute: Repeat the following procedure 100 times for every m = 1, 2, . . . , n:

I Draw a standard i.i.d. Gaussian random matrix A ∈ Rm×n and determine the measure-
ment vector y = ADz`1 .

I Solve the program (BPcoef
η=0) to obtain an estimator ẑ ∈ Rd.

I Compute and store the recovery error ‖z`1 − ẑ‖2. Declare success if ‖z`1 − ẑ‖2 < 10−5.

Simulation Settings Our first two examples are based on a redundant Haar wavelet frame,
which can be seen as a typical representation system in the field of applied harmonic analysis,
see [Mal09] for more details on wavelets and Section 3.1 in [GKM20] for a short discussion in
the context of compressed sensing. As a back-end for defining the wavelet transform, we are
using the Matlab software package spot [BF13], which is in turn based on the Rice Wavelet

Toolbox [BCN+17]. We set the ambient dimension to n = 256 and consider a Haar system with 3
decomposition levels and normalized atoms. The resulting dictionary is denoted by D = DHaar ∈
R256×1024. The first coefficient vector z1

`1 ∈ R1024 is obtained by selecting a random support set
of cardinality s = 16, together with random coefficients; see Subfigure 6(c) for a visualization of
z1
`1 and Subfigure 6(b) for the resulting signal x1 = DHaar · z1

`1 . The second coefficient vector z2
`1

is created by defining two contiguous blocks of non-zero coefficients in the low frequency part,
again with s = 16; see Subfigure 6(f) for a plot of z2

`1 and Subfigure 6(e) for the resulting signal
x2 = DHaar · z2

`1 . For each signal we run Experiment 5.1 and report the empirical success rate in
the Subfigures 6(a), 6(d), respectively.

In the third example, the dictionary is chosen as a Gaussian random matrix, which is a typical
benchmark system for compressed sensing with redundant frames, see for instance [CWW14;
GKM20; KR15]. Also in this case, we set n = 256, but we choose d = 512. The resulting dictionary
is denoted by Drand ∈ R256×512. The coefficient vector z3

`1 is defined in the same manner as z1
`1

above (see Subfigure 6(i)), where we again have ‖z3
`1‖0 = 16. The resulting signal x3 is shown in

Subfigure 6(h) and the empirical success rate in Subfigure 6(g).
Our fourth and last dictionary is inspired by super-resolution; see for instance [CF14]. We again

set n = 256 and choose the dictionary Dsuper ∈ R256×256 as a convolution with a discrete Gaussian
function of large variance. This example can therefore be considered as a finely discretized super-
resolution problem. The coefficient vector z4

`1 is then chosen as a sparse vector with z4
`1,128 = 1 and

z4
`1,129 = −1, see Subfigure 6(l). Hence, in the signal x4, the two neighboring peaks almost cancel

out and result in the low amplitude signal shown in Subfigure 6(k). Finally, the empirical success
rate is depicted in Subfigure 6(j). Note that for each example we have verified the condition
λmin

(
D;D∧(‖·‖1 , zi

`1)
)
> 0 heuristically by verifying that Z`1 =

{
zi
`1

}
, respectively.

Results Let us now analyze the empirical success rates of Figure 6 and compare them with
the estimates of w2

∧(D · D(‖·‖1 ; zi
`1)) and w2

∧(D(‖·‖1 ; zi
`1)). Our findings are summarized in the

following:

(i) The convex program (BPcoef
η=0) obeys a sharp phase transition in the number of measurements

m: Recovery of a coefficient vector fails if m is below a certain threshold and succeeds with
overwhelming probability once a small transition region is surpassed. This observation
could have been anticipated, given for instance the works [ALMT14; Tro15]. However, note
that the product structure of the matrix AD in (BPcoef

η=0) does not allow for a direct application
of these results.

(ii) The quantity w2
∧(D · D(‖·‖1 ; z`1)) accurately describes the sampling rate of (BPcoef

η=0). Indeed,
in all four simulation settings of Figure 6, the phase transition occurs near the estimated
conic mean width of D · D∧(‖·‖1 ; zi

`1), as predicted by Theorem 3.6.
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(iii) In contrast, w2
∧(D(‖·‖1 ; z`1)) does not describe the sampling rate of (BPcoef

η=0), in general. In-
deed, w2

∧(D ·D(‖·‖1 ; z2
`1))� w2

∧(D(‖·‖1 ; z2
`1)) and w2

∧(D ·D(‖·‖1 ; z4
`1))� w2

∧(D(‖·‖1 ; z4
`1));

see Subfigure 6(d) and 6(j), respectively.

(iv) For two minimal `1-representations z1
`1 , z2

`1 with the same sparsity, but with different sup-
ports, the quantities w2

∧(D · D(‖·‖1 ; z1
`1)) and w2

∧(D · D(‖·‖1 ; z2
`1)) might differ signifi-

cantly, while w2
∧(D(‖·‖1 ; z1

`1)) = w2
∧(D(‖·‖1 ; z2

`1)); see Subfigures 6(a) and 6(d). Hence,
sparsity alone does not appear to be a good proxy for the sampling complexity of (BPcoef

η=0).
A refined understanding of coefficient recovery requires a theory that is non-uniform across
the class of all s-sparse signals.

(v) The local condition number κD,z`1 might explode, which often renders a condition bound
as in Proposition 4.3 unusable. Indeed, we report upper bounds for λmin

(
D;D∧(‖·‖1 , zi

`1)
)

in the first column of Figure 6. Since the norms of each dictionary are well controlled, this
quantity is responsible for the large values of the local condition number.

5.2 Sampling Rates for Signal Recovery

For the investigation of signal recovery via (BPsig
η=0), we also create phase transition plots by run-

ning Experiment 5.1 for different dictionary and signal combinations. Note that we also compute
and store the signal error ‖xi − x̂‖2 = ‖Dzi

`1 − Dẑ‖2 in the third step of the experiment (in addi-
tion to ‖zi

`1 − ẑ‖2). Recovery is declared successful if ‖xi − x̂‖2 < 10−5.

Simulation Settings Our first two examples are based on the same Haar wavelet system with
3 decomposition levels that is used in Section 5.1. The first signal is constructed by defining
a coefficient vector z1 ∈ R1024 with a random support set of cardinality s = 35 and random
coefficients; see Subfigure 7(j) for a visualization of z1 and Subfigure 7(d) for the resulting signal
x1 = DHaar · z1. In order to apply the result of Theorem 3.8, we compute a minimal `1-representer
z1
`1 ∈ Z`1 of x1; see Subfigure 7(g). The second coefficient vector z2 is created by defining two

contiguous blocks of non-zero coefficients in a lower frequency decomposition scale, again with
s = 35; see Subfigure 7(k) for a plot of z2 and Subfigure 7(e) for the resulting signal x2 = DHaar · z2.
A corresponding minimal `1-representer z2

`1 ∈ Z`1 of x2 is shown in Subfigure 7(h).
Finally, for the third setup we are choosing a simple example in 2D. In order to keep the compu-

tational burden manageable, we restrict ourselves to a 28× 28-dimensional digit from the MNIST
data set [LBBH98], i.e., the vectorized image is of size n = 282 = 784. As a sparsifying system
we utilize a dictionary that is based on the 2D discrete cosine transform (dct-2). It makes use of
Matlab’s standard dct-2 transform as convolution filters on 3× 3 patches. The resulting operator
is denoted by D = Ddct-2 ∈ Rn×9n, i.e., d = 9n. Note that such a convolution sparsity model is
frequently used in the literature, in particular also with learned filters, e.g., see convolutional sparse
coding in [BEL13]. Although the dct-2 filters might not be a perfect match for MNIST digits, we
consider them as a classical representative that is well suited to demonstrate the predictive power
of our results. In order to construct a suitable sparse representation z3 ∈ Rd of an arbitrarily
picked digit in the database, we make use of the orthogonal matching pursuit algorithm [PRK93];
see Subfigure 7(l) for a visualization of z3. The resulting digit x3 = Ddct-2 · z3 is displayed in
Figure 7(f). A minimal `1-representer z3

`1 , which is needed to apply Theorem 3.8, is shown in
Subfigure 7(i).

Results Our conclusions on the numerical experiments shown in Figure 7 are reported in the
following:

(vi) The convex program (BPsig
η=0) obeys a sharp phase transition in the number of measure-

ments. Due to the equivalent, gauge-based reformulation (3.1) of (BPsig
η=0), this observation

is predicted by the works [ALMT14; Tro15]. However, a recovery of a coefficient represen-
tation via solving (BPcoef

η=0) is impossible in all three examples, even for m = n.



MÄRZ, BOYER, KAHN & WEISS: `1-SYNTHESIS 27

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6: Phase transitions of coefficient recovery by solving (BPcoef
η=0). Empirical success rates and

other key figures are reported in the first column, where we use the notation D = D(‖·‖1 , zi
`1 ). The

coefficient vectors zi
`1 that are used in each experiment are shown in the third column. The associated

signal vectors xi = Dzi
`1 are displayed in the second column. The first two rows are relying on a re-

dundant Haar wavelet frame, the third row is based on a Gaussian random matrix and the last row is
using a dictionary inspired by super-resolution.

(vii) For any z`1 ∈ Z`1 , the conic mean width w2
∧(D · D(‖·‖1 ; z`1)) accurately describes the sam-

pling rate of (BPsig
η=0), as predicted by Theorem 3.8. Indeed, in all three cases of Figure 7, the

estimated w2
∧(D · D(‖·‖1 ; zi

`1)) matches precisely the 50% recovery rate.

(viii) In contrast, for any other sparse representation z 6∈ Z`1 , the conic width w2
∧(D · D(‖·‖1 ; z))

does not describe the sampling rate of (BPsig
η=0), in general. Indeed, observe that we have

w2
∧(D · D(‖·‖1 ; zi)) ≈ n in all three examples. Also note that ‖z1‖0 = 35 = ‖z2‖0, however,
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the locations of the phase transitions deviate considerably. Similarly, although ‖z1
`1‖0 <

‖z2
`1‖0, we have that w2

∧(D · D(‖·‖1 ; z1
`1)) > w2

∧(D · D(‖·‖1 ; z2
`1)). This observation is

yet another indication that sparsity alone is not a good proxy for the sampling rate of `1-
synthesis, in general.

5.3 Creating a “Full” Phase Transition

Let us now focus on the phase transition plots shown in Figure 1. Up to now, we have only
considered one specific signal at a time. However, it is also of interest to assess the quality of
our results if the “complexity” of the underlying signals is varied. In the classical situation of D
being an ONB, the location of the phase transition is entirely determined by the sparsity of the
underlying signal. Hence, it is a natural choice to create phase transitions over the sparsity, as it
is for instance done in [ALMT14]. Recalling Claims (iv) and (viii), it might appear odd to do the
same in the case of a redundant dictionary. However, as the result of Figure 1 shows, if the support
is chosen uniformly at random, sparsity is still a somewhat reasonable proxy for the sampling
rate. Indeed, these plots are created by running Experiment 5.2 with D = DHaar ∈ R256×1024,
maximal sparsity s0 = 125 and displaying the empirical success rates of coefficient and signal
recovery, respectively. Additionally the dotted line shows the averaged conic mean width values
w2
∧(D · D(‖·‖1 ; z`1)).

Experiment 5.2 (Phase transition of Figure 1)

Input: Dictionary D ∈ Rn×d, maximal sparsity s0 ∈ [n].

Compute: Repeat the following procedure 500 times for each s ∈ {1, . . . , s0}:

I Select a set S ⊂ [n] uniformly at random with #S = s. Then draw a standard Gaussian
random vector c ∈ Rs and define z0 by setting (z0)S = c and (z0)Sc = 0.

I Define the signal x0 = Dz0 and compute a minimal `1-representation z`1 ∈ Z`1 of x0.
Compute the conic mean width w2

∧(D · D(‖·‖1 ; z`1)).

I Run Experiment 5.1 with D and z`1 as input, where the number of repetitions is lowered
to 5. In the third step, coefficient/signal recovery is declared successful if ‖z`1 − ẑ‖2 <
10−5 or if ‖Dz`1 − x̂‖2 = ‖x0 − Dẑ‖2 < 10−5, respectively.

First note, that the averaged values of the conic mean width perfectly match the center of the
phase transition of(BPsig

η=0) in Subfigure 1(b), as it is predicted by Theorem 3.8. However, observe
that for sparsity values between s ≈ 20 and s ≈ 80 the transition region is spread out in the
vertical direction, cf. [ALMT14]. This phenomenon can be related to Claim (viii): Given that
sparsity alone is not a good proxy for the sample complexity of (BPsig

η=0), averaging over different
instances with the same sparsity necessarily results in a smeared out transition area.

Regarding the phase transition in Subfigure 1(a), we observe that the location of the phase tran-
sition is also determined by w2

∧(D · D(‖·‖1 ; z`1)); provided that coefficient recovery is possible,
i.e., if λmin (D;D∧(‖·‖1 ; z`1)) > 0. For sparsity values s ≥ 50, recovery of coefficients appears
to be impossible, whereas signal and coefficient recovery seems to be equivalent for very small
sparsity values (i.e., s ≤ 5). The interval in between forms a transition region, in which coefficient
recovery becomes gradually less likely. We suspect that with more repetitions in Experiment 5.2,
the empirical success rates on this interval would eventually smooth out.

We conclude that:

(ix) Whether λmin (D;D∧(‖·‖1 ; z`1)) 6= 0, i.e., whether coefficient recovery is possible, is again
a property that is non-uniform in the sparsity of z`1 .

5.4 Robustness to Noise

The purpose of this last numerical simulation is to analyze coefficient and signal recovery with
respect to robustness to measurement noise. To that end, we run Experiment 5.3 for different
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7: Phase transitions of signal recovery by solving (BPsig
η=0). Empirical success rates and

other key figures are reported in the first row, where we use the notation D1 = D(‖·‖1 , zi
`1 ) and

D0 = D(‖·‖1 , zi). The signals xi that are used in each experiment are shown in the second row. The
associated minimal `1-representers zi

`1 are displayed in the third row and the original coefficient rep-
resentations zi are shown in the fourth row. The first two columns are relying on a redundant Haar
wavelet frame and the third column is based on the dct-2. Note that in all three examples, coefficient
recovery is not possible since λmin

(
D;D∧(‖·‖1 , zi

`1 )
)
= 0.

setups, which are reported below.
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Experiment 5.3 (Robustness to Measurement Noise)

Input: Dictionary D ∈ Rn×d, number of measurements m, minimal `1-representation z`1 of
the signal x0 ∈ Rn, range of noise levels H.

Compute: Repeat the following procedure 100 times for every η ∈ H:

I Draw a standard i.i.d. Gaussian random matrix A ∈ Rm×n and determine the noisy mea-
surement vector y = Ax0 + η · e, where ‖e‖2 = 1.

I Solve the program (BPcoef
η ) to obtain an estimator ẑ ∈ Rd.

I Compute and store the recovery errors ‖z`1 − ẑ‖2 and ‖x0 − x̂‖2 = ‖Dz`1 − Dẑ‖2.

Simulation settings First, we choose the same dictionary and signal combination as in Sec-
tion 5.1 and restrict the noise level to H = {0, 0.05, 0.1, 0.15, . . . , 1}. Furthermore, we consider the
1D examples of Section 5.2, together with the noise range H = {0, 0.005, 0.01, . . . , 0.1}. Recall that
the difference of these two setups is that λmin

(
D;D∧(‖·‖1 , zi

`1)
)
> 0 in the first case, whereas

λmin
(

D;D∧(‖·‖1 , zi
`1)
)
= 0 in the second case. In all experiments, we roughly pick the number

of measurements as m ≈ w2
∧(D · D(‖·‖1 ; zi

`1)) + 40 to ensure that Theorem 3.6 (or Theorem 3.8,
respectively) is applicable. The averaged coefficient and signal recovery errors are displayed in
Figure 8, together with the theoretical upper bound on the signal error of Equation (3.5). Note
that it is not possible to show the corresponding error bound for coefficient recovery. In the
first set of examples, we do not have access to λmin

(
D;D∧(‖·‖1 , zi

`1)
)

and in the last two cases,
λmin

(
D;D∧(‖·‖1 , zi

`1)
)
= 0 and therefore Theorem 3.6 is not applicable. Nevertheless, it is possi-

ble to obtain an upper bound for the latter quantity, as outlined in the Appendix D. If D = Drand,
it is additionally possible to use the result on minimum conic singular values of Gaussian matrices
to get a lower bound with high probability [Tro15, Proposition 3.3].

Results We summarize the findings of the results shown in Figure 8 below:

(x) If the number of measurements exceeds the sampling rate in Theorem 3.8, signal recovery
via solving the Program (BPsig

η ) is robust to measurement noise. This phenomenon holds
true without any further assumptions. Indeed, observe that in all simulations of Figure 8,
the signal error ‖x0 − x̂‖ lies below its theoretical upper bound of Equation (3.5).

(xi) If z`1 is the unique minimal `1-representation of x0 (i.e., if λmin (D;D∧(‖·‖1 , z`1)) > 0) and
if the number of measurements exceeds the sampling rate in Theorem 3.6, it is possible
to robustly recovery z`1 . However, in contrast to signal recovery, the robustness is influ-
enced by the “stability” of the minimal `1-representation of z`1 in D, i.e., by the value of
λmin (D;D∧(‖·‖1 , z`1)) in the error bound (3.3). Indeed, it is possible that the signal x0 is
more robustly recovered than its coefficients z`1 , or vice versa. This can be seen by compar-
ing coefficient and signal recovery in the Subfigures 8(a)-8(d).1 If λmin (D;D∧(‖·‖1 , z`1))�
1, coefficient recovery is less robust than signal recovery, see Subfigures 8(a), 8(b) and 8(d).
However, if λmin (D;D∧(‖·‖1 , z`1))� 1, the contrary holds true, see Subfigure 8(c).
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(

Dsuper;D∧(‖·‖1 , z4
`1 )
)

is very small. Hence, even for a small amount of noise the error of
Equation (3.3) explodes. For η > 0.1 the error stays roughly constant since the solution ẑ of (BPcoef

η ) is always close to 0.
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(a) (b) (c)

(d) (e) (f)

Figure 8: Robustness to measurement noise. We display the reconstruction errors for a recovery
from noisy measurements with an increasing noise level. The first four Subfigures are based on the
examples for coefficient recovery of Section 5.1, and the the last two on the examples based on Haar
wavelet of Section 5.2. We use the notation D = D(‖·‖1 , zi

`1 ), where zi
`1 ∈ Z`1 .
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A Proofs of Section 3

A.1 Proof of Lemma 3.2 (Minimal `1-Representers)

(b) “⇒”: Assume that X̂ = {x0}. First, we show that Z`1 ⊆ Ẑ: Let z`1 ∈ Z`1 . Since Dz`1 = x0,
z`1 is in the feasible set of (BPcoef

η=0). Furthermore, due to X̂ = {x0} it holds true that Dẑ = x0
for each ẑ ∈ Ẑ. Thus also ‖z`1‖1 ≤ ‖ẑ‖1 and therefore z`1 ∈ Ẑ. Secondly, we show Ẑ ⊆ Z`1 .
For a ẑ ∈ Ẑ it holds true that Dẑ = x0 since we have assumed that X̂ = {x0}. Thus, ẑ is also
feasible for Z`1 . Since each z`1 ∈ Z`1 is in turn feasible for Ẑ, we obtain that ‖ẑ‖1 ≤ ‖z`1‖1
and therefore ẑ ∈ Z`1 .
“⇐”: If Ẑ = Z`1 , then X̂ = D · Ẑ = D · Z`1 = {x0}.

(a) If Ẑ = {z0}, then also X̂ = D · Ẑ = {x0} and (b) would imply Z`1 = Ẑ = {z0}.

A.2 Proof of Lemma 3.4 (The Gauge Formulation)

By definition,

X̂ = D ·
(

argmin
z∈Rd

‖z‖1 s.t ‖y− ADz‖2 ≤ η

)

= D ·
(

argmin
z∈Rd

inf {λ > 0 : z ∈ λ · Bd
1} s.t. ‖y− ADz‖2 ≤ η

)
= argmin

x∈Rn
inf {λ > 0 : x ∈ λ · D · Bd

1} s.t. ‖y− Ax‖2 ≤ η.

A.3 Proof of Lemma 3.5 (Descent Cone of the Gauge)

We will only prove the first equality and note that the other one follows essentially the same
argumentation. Pick any z`1 ∈ Z`1 and note that pD·Bd

1
(x0) = ‖z`1‖1.

“⊇”: Let h ∈ D∧(‖·‖1 , z`1), i.e., there exists a τ > 0 such that ‖z`1 + τh‖1 ≤ ‖z`1‖1. Hence,

pD·Bd
1
(Dz`1 + τDh) = pD·Bd

1
(D · (z`1 + τh)) ≤ ‖z`1 + τ · h‖1 ≤ ‖z`1‖1 = pD·Bd

1
(x0),

and therefore Dh ∈ D∧(pD·Bd
1
, x0).

“⊆”: Let x ∈ D∧(pD·Bd
1
, x0), i.e., there exists τ > 0 such that

R := pD·Bd
1
(x0 + τx) ≤ pD·Bd

1
(x0) = ‖z`1‖1 .

Now, choose h ∈ Bd
1 such that R · Dh = x0 + τx and write x = D · (R/τ · h− 1/τ · z`1) =: D(z̄).

Observe that
‖z`1 + τz̄‖1 = R · ‖h‖1 ≤ R ≤ ‖z`1‖1 ,
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and therefore z̄ ∈ D∧(‖·‖1 , z`1).

Remark A.1 The proof of “⊆” shows that z`1 could be replaced by any other z0 with x0 = Dz0,
which is not necessarily a minimal `1-representer of x0. Hence, D∧(pD·Bd

1
, x0) ⊆ D · D∧(‖·‖1 , z0)

and D(pD·Bd
1
, x0) ⊆ D · D(‖·‖1 , z0) for any z0 with x0 = Dz0, with inequality if z0 ∈ Z`1 . ♦

A.4 Proof of Theorem 3.6 (Coefficient Recovery)

Recalling Proposition 2.3, the goal of the proof is to find a lower bound for the minimum conic
singular value λmin (Φ; C) = inf {‖Φz‖2 : z ∈ C ∩ Sd−1}, where we use the abbreviated notation
C := D∧(‖·‖1 ; z`1) and Φ := AD. Note that by assumption ‖Dz‖2 ≥ λmin (D; C) > 0 for all
z ∈ C ∩ Sd−1. Thus, we obtain

λmin (Φ; C) = inf
{
‖ADz‖2
‖Dz‖2

‖Dz‖2 : z ∈ C ∩ Sd−1
}

≥ λmin (D; C) · inf{‖Ax‖2 : x ∈ DC ∩ Sn−1}. (A.1)

Theorem 2.5 now implies that there is a numerical constant c > 0 such that with probability at
least 1− e−u2/2, we have

inf{‖Ax‖2 : x ∈ DC ∩ Sn−1} >
√

m− 1− c · γ2 · (w∧(DC) + u).

Thus, with probability at least 1− e−u2/2, we conclude from the previous steps that

λmin (Φ; C) > λmin (D; C) ·
(√

m− 1−
√

m0 − 1
)

.

The claim of the theorem is then a direct consequence of Proposition 2.3.

Remark A.2 The above argumentation may be compared with [CCL19, Theorem 3.1]. We also
show that if D is bounded away from 0 on the intersection S of a closed convex cone C and
the sphere, then AD also stays away from 0 on S with high probability. However, an important
difference is that our result does not involve λmin (D; C)−1 as a multiplicative factor in the rate
m0 ≈ w2

∧(D · C). It therefore allows for a tight description of the sampling rate in the case of
noiseless Gaussian measurements; cf. the discussion subsequent to Theorem 2.5. Indeed, the
numerical experiments of Section 5.1 reveal that λmin (D;D∧(‖·‖1 ; z`1)) may be very small, while
(BPcoef

η=0) still allows for exact recovery from m ≈ w2
∧(D · D(‖·‖1 ; z`1)) measurements. ♦

A.5 Proof of Proposition 3.10 (Stable Recovery)

Let z∗ ∈ Rd be chosen according to (3.6), i.e., it satisfies ‖x0 − Dz∗‖2 ≤ ε and ‖z∗‖1 = ‖z0‖1,
where z0 is any vector with x0 = Dz0. The goal is to invoke [GKM20, Theorem 6.4] with

t = max

r · ‖x0 − Dz∗‖2 ,
2η

√
m− 1− c · γ2 ·

(
r+1

r · (w∧(D · D(‖·‖1 ; z∗)) + 1) + u
)
 .

Thus, we need to verify that t satisfies

t ≥ 2η
√

m− 1− c · γ2 ·
(

wt(D(pD·Bd
1
; x0)) + u

) ,

where wt denotes the local mean width at scale t > 0; see [GKM20, Definition 6.1] for details on this
notion. To that end, we first observe that

wt(D(pD·Bd
1
; x0)) ≤ wt(D · D(‖·‖1 ; z0) + x0 − x0)
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t≥r·‖x0−Dz∗‖2
≤ wr·‖x0−Dz∗‖2

((D · D(‖·‖1 ; z0) + x0)− x0),

where we have used that D(pD·Bd
1
; x0) ⊆ D · D(‖·‖1 ; z0) for any z0 with x0 = Dz0 in the first step

(see Remark A.1), and the monotonicity of the local mean width in the second step. Observe that
we have Dz∗ ∈ D · D(‖·‖1 ; z0) + x0, due to the assumption ‖z∗‖1 = ‖z0‖1. Hence, we can make
use of [GKM20, Lemma A.2] for K = D · D(‖·‖1 ; z0) + x0 in order to obtain

wr·‖x0−Dz∗‖2
((D · D(‖·‖1 ; z0) + x0)− x0) ≤

r + 1
r
· (w∧((D · D(‖·‖1 ; z0) + x0)− Dz∗) + 1)

=
r + 1

r
· (w∧(D · D(‖·‖1 ; z∗)) + 1),

where the equality follows from:

D · D(‖·‖1 ; z0) + x0 − Dz∗ = D · {h ∈ Rd : ‖z0 + h‖1 ≤ ‖z0‖1︸ ︷︷ ︸
=‖z∗‖1

}+ x0 − Dz∗

h′=h+z0−z∗
= D · {h′ ∈ Rd :

∥∥z∗ + h′
∥∥

1 ≤ ‖z
∗‖1} = D · D(‖·‖1 ; z∗).

We conclude that

t ≥ 2η
√

m− 1− c · γ2 ·
(

r+1
r · (w∧(D · D(‖·‖1 ; z∗)) + 1) + u

)
≥ 2η
√

m− 1− c · γ2 ·
(

wt(D(pD·Bd
1
; x0)) + u

) .

Hence, [GKM20, Theorem 6.4] then implies that any minimizer of (BPsig
η ) satisfies ‖x0 − x̂‖2 ≤ t.1

B Proof of Proposition 4.3 (Width and Condition Number)

Let us start with a preliminary lemma, which generalizes Proposition 10.2 in [ALMT14].

Lemma B.1 For a closed convex cone C ⊆ Rd, a dictionary D ∈ Rn×d and a standard Gaussian vector
g ∼ N (0, Idn), we have that

E

( sup
z∈C∩Bd

2

〈g, Dz〉
)2
 ≤ (E

[
sup

z∈C∩Sd−1
〈g, Dz〉

])2

+ λ2
max (D; C) .

Proof. Define the random variable Z = Z(g) := supz∈C∩Sd−1〈g, Dz〉. In a first step, we prove that

E

( sup
z∈C∩Bd

2

〈g, Dz〉
)2
 ≤ E

[
Z2
]

. (B.1)

Indeed, since Z2 is a nonnegative random variable, we obtain

E[Z2] ≥ E
[

Z2 · 1Rd\C◦(D∗g)
]
= E

( sup
z∈C∩Sd−1

〈g, Dz〉
)2

· 1Rd\C◦(D∗g)

 ,

1This argument does actually not cover the case of η = 0, but here we can simply use that t = r · ‖x0 − Dz∗‖1 > 0 if
x0 6= Dz∗.
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where C◦ denotes the polar cone of C. Furthermore, it holds true that

E

( sup
z∈C∩Sd−1

〈g, Dz〉
)2

· 1Rd\C◦(D∗g)

 = E

( sup
z∈C∩Bd

2

〈g, Dz〉
)2
 .

Indeed, for an x ∈ Rn such that D∗x /∈ C◦ the equality supz∈C∩Sd−1〈x, Dz〉 = supz∈C∩Bd
2
〈x, Dz〉

holds true, because the supremum over the ball occurs at a vector of length 1. On the other hand,
when D∗x ∈ C◦, one has supz∈C∩Bd

2
〈x, Dz〉 = 0. Therefore, (B.1) is established.

Moreover, observe that the function g 7→ Z(g) is λmax(D, C)-Lipschitz. Indeed, for f , g ∈ Rn

and z ∈ C ∩ Sd−1 we obtain that

〈g, Dz〉 = 〈 f , Dz〉+ 〈g, Dz〉 − 〈 f , Dz〉 ≤ 〈 f , Dz〉+ ‖ f − g‖2 ‖Dz‖2

≤ 〈 f , Dz〉+ λmax(D, C) ‖ f − g‖2 ,

and therefore by taking the supremum

sup
z∈C∩Sd−1

〈g, Dz〉 ≤ sup
z∈C∩Sd−1

〈 f , Dz〉+ λmax(D, C) ‖ f − g‖2 .

By swapping the roles of f and g, an analogue estimate can be obtained, which verifies the
claimed Lipschitz continuity. Thus, the fluctuation of Z can be bounded as follows:

E
[

Z2
]
−E [Z]2 = E

[
(Z−EZ)2

]
= Var(Z) ≤ λ2

max(D, C),

where the last estimate follows from Fact C.3 in [ALMT14]. �

Back to the proof of Proposition 4.3. In order to prove Proposition 4.3, we continue as follows:
First observe that

w2
∧(D · C) = w2(D · C ∩ Sn−1) ≤ δ(D · C) = E

( sup
x∈D·C∩Bn

2

〈g, x〉
)2
 ,

where δ denotes the statistical dimension1. Next, it is straightforward to see that

D · C ∩ Bn
2 ⊆

D
λmin (D; C)

· (C ∩ Bd
2) ,

which immediately implies that

δ(D · C) ≤ 1
λ2

min (D; C)
·E

( sup
x∈D(C∩Bd

2)

〈g, x〉
)2
 .

Exercise 7.5.4 in [Ver18] and Lemma B.1 now allow us to derive the desired bound:

w2
∧(D · C) ≤ δ(D · C) ≤ 1

λ2
min (D; C)

E

( sup
x∈D(C∩Bd

2)

〈g, x〉
)2


(B.1)
≤ 1

λ2
min (D; C)

(E

[
sup

x∈D(C∩Sd−1)

〈g, x〉
])2

+ λ2
max (D; C)



1The statistical dimension of a convex cone C ⊆ Rn can be defined as δ(C) = E[(supx∈C∩Bn
2
〈g, x〉)2]; see [ALMT14,

Prop. 3.1] for details. It holds true that w2
∧(C) ≤ δ(C) ≤ w2

∧(C) + 1, which is why both notions are often
interchangeable [ALMT14, Prop. 10.2].
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(7.5.4)
≤ ‖D‖2

2
λ2

min (D; C)

(E

[
sup

z∈C∩Sd−1
〈g, z〉

])2

+ 1


= κ2

D,C ·
(

w2
∧(C) + 1

)
.

C Proofs of Section 4.2

C.1 Proof of Proposition 4.7 (Circumangle of Polyhedral Cones)

Consider a nontrivial pointed polyhedral cone C = cone(x1, . . . , xk) with ‖xi‖2 = 1 for i ∈ [k]
and let α denote its circumangle. Let X := [x1, . . . , xk] ∈ Rn×k. Since C does not contain a line, its
circumcenter θ is unique, belongs to the cone and 0 ≤ α < π/2, see [HS10a]. This implies that
X∗θ > 0 (element-wise). We have:

cos(α) = sup
v∈Sn−1

inf
x∈C∩Sn−1

〈x, v〉 = sup
v∈Sn−1

inf
c≥0,‖Xc‖2

2=1
〈Xc, v〉

≤ sup
v∈Sn−1

inf
i∈[k]
〈ei, X∗v〉 = sup

v∈Sn−1
min X∗v,

where ei denotes i-th standard basis vector in Rk and we have used an inclusion of sets argument
in the inequality. We now argue that the inequality is in fact an equality. To that end, observe that
for any v ∈ Sn−1 such that X∗v ≥ 0, we also have that

inf
c≥0,‖Xc‖2

2=1
〈c, X∗v〉 ≥ inf

c≥0,‖Xc‖2
2≥1
〈c, X∗v〉 ≥ inf

c≥0,〈1,c〉≥1
〈c, X∗v〉 = min X∗v.

In this sequence of inequalities, we first used the inclusion of sets, the triangular inequality to-
gether with the inclusion of sets and finally the fact that a linear program attains its minimum
(if it exists) on an extremal point Ext ({c ≥ 0, 〈1, c〉 ≥ 1}) = {e1, . . . , ek}. Note that the condition
X∗v ≥ 0 ensures the existence of a solution.

Finally the infimum over Sn−1 can be relaxed to Bn
2 , since the supremum is attained on the

boundary of the domain. This concludes the proof.

C.2 Proof of Proposition 4.9 (Maximal Width of Polyhedral Cones)

The proof of Proposition 4.9 necessitates a basic preliminary result on the Gaussian width of
general convex polytopes, which we will proof first.

Bounding the Gaussian Width of Convex Polytopes

Lemma C.1 Let K be a convex polytope with k ≥ 5 vertices that is contained in the unit ball of Rn. Then:

w(K) ≤

√
2 log

(
k√
2π

)
+

1√
2 log

(
k√
2π

) .

Proof. Denote by V(K) the set of vertices of K. Since the maximum of the scalar products with
points of a convex set is attained on a vertex, we get the following union bound for x > 0 and
g ∼ N (0, Id):

P

[
sup
u∈K
〈u, g〉 ≥ x

]
≤ ∑

v∈V(K)
P [〈v, g〉 ≥ x]

≤ ∑
v∈V(K)

1√
2π‖v‖2

∫ ∞

x
exp

(
− y2

2 ‖v‖2
2

)
dy



MÄRZ, BOYER, KAHN & WEISS: `1-SYNTHESIS 39

≤ k√
2π
·
∫ ∞

x
exp

(
− y2

2

)
dy. (C.1)

Recall the following standard bound on the tail probability of a Gaussian, which will be used in
the remainder of the proof:

∫ ∞

x
exp(−y2/2)dy ≤ exp(−x2/2)

x
.

Let x0 :=
√

2 log
(

k√
2π

)
> 1 and note that k√

2π
exp

(
− x2

0
2

)
= 1. We may now use the bound

(C.1) in order to obtain:

w(K) ≤
∫

R+

P

[
sup
u∈K
〈u, g〉 ≥ x

]
dx

≤
∫

R+

min
{

1,
k√
2π

∫ ∞

x
exp

(
−y2

2

)
dy
}

dx

≤ x0 +
k√
2π

∫ ∞

x0

exp
(
− x2

2

)
dx

≤ x0 +
1
x0

.

�

Back to the proof of Proposition 4.9 Equipped with this lemma, we can now prove Proposition
4.9.

Let C = cone(x1, . . . , xk) ⊂ Rn be a k-polyhedral α-cone and let θ ∈ Sn−1 be an axis vector
such that C ⊆ C(α, θ). Without loss of generality assume that ‖xi‖2 = 1 for i ∈ [k]. Define the
affine hyperplane H := {h ∈ Rn : 〈h, θ〉 = 1} and let K := C ∩ H. Observe that K is a convex
polyhedron with vertices belonging to the set {xi/ 〈xi, θ〉 : i ∈ [k]} ⊆ Bn

2 (cos(α)−1). Since ‖k‖2 ≥
1 for all k ∈ K, any h ∈ C ∩ Sn−1 can be written as h = λ(k) · k, where k ∈ K and 0 < λ(k) ≤ 1.
Hence, for all g ∈ Rn it holds true that

sup
h∈Sn−1∩C

〈h, g〉 = sup
k∈K

(λ(k) · 〈k, g〉) ≤ max

{
0, sup

k∈K
〈k, g〉

}
.

Let Pθ, Pθ
⊥ denote the orthogonal projections onto span (θ) and span (θ)⊥, respectively. Observe

that for k ∈ K and g ∈ Rn it holds true that

〈k, g〉 =
〈

θ, Pθ(g)
〉
+
〈

Pθ
⊥(k), Pθ

⊥(g)
〉
≤ max

{
0,
〈

θ, Pθ(g)
〉}

+
〈

Pθ
⊥(k), Pθ

⊥(g)
〉

,

where the first equality follows from Pθ(k) = θ. Furthermore, since θ ∈ C, we have that 0 ∈
Pθ
⊥(K) and hence for all g ∈ Rn,

sup
k∈K

〈
Pθ
⊥(k), Pθ

⊥(g)
〉
≥ 0.

This allows us to conclude that

sup
h∈Sn−1∩C

〈h, g〉 ≤ max

{
0, sup

k∈K
〈k, g〉

}
≤ max

{
0,
〈

θ, Pθ(g)
〉}

+ sup
k∈K

〈
Pθ
⊥(k), Pθ

⊥(g)
〉

.
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Hence, we obtain

w∧(C) = En

[
sup

h∈Sn−1∩C
〈h, g〉

]

= En

[
max

{
0,
〈

θ, Pθ(g)
〉}

+ sup
k∈K

〈
Pθ
⊥(k), Pθ

⊥(g)
〉]

= E1

[
max

{
0,
〈

θ, Pθ(g)
〉}]

+ En−1

 sup
k∈Pθ

⊥(K)

〈
k, Pθ

⊥(g)
〉

=
1√
2π

+ w(Pθ
⊥(K)), (C.2)

where the last equality follows from
〈
θ, Pθ(g)

〉
∼ N (0, 1) and the fact that Pθ

⊥(g) is an (n− 1)-
dimensional standard Gaussian vector on span (θ)⊥.

Since K ⊂ H∩Bn
2 (cos(α)−1), its (n− 1)-dimensional projection satisfies Pθ

⊥(K) ⊂ Bn−1
2 (tan(α)).

Now, Lemma C.1 yields the following bound on the Gaussian width of a polyhedron included in
a ball of radius tan α with at most k ≥ 5 vertices:

w(Pθ
⊥(K)) ≤ tan α ·

(√
2 log(k/

√
2π) + 1/

√
2 log(k/

√
2π)

)
.

The claimed inequality of Proposition 4.9 is then just a consequence of (C.2).

C.3 Proofs of Section 4.2.2

Descent Cone of `1-Norm (Lemma 4.11) We begin by showing a polyhedral description of the
descent cone of the `1-norm:

Let v be any vector such that ‖v‖1 = s and sign v = sign z. Note that v and z enjoy the same
descent cone associated to the `1-norm, which is easy to see by observing that

D∧(‖·‖1 , z) =

{
h ∈ Rd : ∑

i∈S c
|hi| ≤ −∑

i∈S
sign(zi) · hi

}
.

Therefore, the descent set of ‖ · ‖1 at v can be obtained by scaling up the cross-polytope by the
factor ‖v‖1 = s and shifting it by −v, i.e.,

D(‖·‖1 , v) = conv(±s · ei − v : i ∈ [d]).

We conclude by taking the conic hull of the previous set to obtain

D∧(‖·‖1 , z) = D∧(‖·‖1 , v) = cone(±s · ei − v : i ∈ [d]).

Lineality of Descent Cone of `1-Norm (Lemma 4.13) Next, we describe the lineality space and
lineality of D∧(‖·‖1 , z):

The lineality space of the descent cone at point z corresponds to the span of the face of the
`1-ball of minimal dimension containing z. It can therefore be defined as the span of the vectors
joining z to the vertices of this face, which are exactly the vectors sign(zi) · ei.

For a more formal proof for this fact, one could argue as follows: First note that (see for instance
Appendix B in [ALMT14])

D∧(‖·‖1 , z)◦ =
⋃

τ≥0
τ · ∂ ‖z‖1 .

Since ∂ ‖z‖1 =
{

h ∈ Rd : hS = sign(z)S , hS c ∈ [−1, 1]d−s
}

, it follows that the polar cone is closed,
pointed (i.e.,D∧(‖·‖1 , z)◦ ∩−D∧(‖·‖1 , z)◦ = {0}) and therefore finitely generated by its extreme
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rays
D∧(‖·‖1 , z)◦ = cone(zj ∈ Rd : j ∈ [2d−s]),

where zj
S = sign(z)S and on S c all 2d−s combinations zj

S c = {−1, 1}d−s. Hence, we obtain the
following polyhedral description for the descent cone

D∧(‖·‖1 , z) =
{

h ∈ Rd :
〈

h, zj
〉
≤ 0 for all j ∈ [2d−s]

}
.

Using the matrix B :=
[
z1, . . . , z2d−s

]T
∈ R2d−s×d, the lineality space can then be conveniently

expressed as LD∧(‖·‖1,z) = ker(B).
On the other hand, observe that for any h ∈ LD∧(‖·‖1,z), we can find τ > 0 such that ‖z + τ · h‖1 ≤
‖z‖1 and therefore (by choosing τ > 0 small enough)

∑
j∈S

sign(zj) · (zj + τ · hj) + ∑
i∈S c
|hi| ≤ ∑

j∈S
|zj|.

Similarly, since also −h ∈ D∧(‖·‖1 , z), we obtain (again by choosing a small enough τ > 0)

∑
j∈S

sign(zj) · (zj − τ · hj) + ∑
i∈S c
|hi| ≤ ∑

j∈S
|zj|.

Adding up these two inequalities, we obtain that ∑i∈S c |hi| ≤ 0 and hence hi = 0 for all i ∈ S c.
Combining this fact with the previous observation, we obtain that

LD∧(‖·‖1,z) =
{

h ∈ Rd : hS c = 0, 〈sign(z), h〉 = 0
}

,

which is of dimension s− 1. From this description, we can conclude that for each i ∈ S the vector
s · sign(zi) · ei − sign(z) is contained in the later space. Hence, if we can show that

dim (span (s · sign(zi) · ei − sign(z) : i ∈ S)) = s− 1,

we have succeeded in proving the lemma. Indeed, consider the matrix C ∈ Rs×s−1, where the
columns are formed by (s · sign(zi) · ei − sign(z))S , for each i ∈ S , except for one. Then, the
matrix CT · C ∈ Rs−1×s−1 has the value s2 − s on its diagonal and −s everywhere else. Thus it is
strictly diagonal dominant and invertible, implying that C is of full rank, as desired.

Lineality and Range for Gauge (Proposition 4.16) Lastly, we characterize the range and lineal-
ity of D∧(pD·Bd

1
, x0):

First, observe that a combination of Lemma 3.5 and Lemma 4.11 yields that

D∧(pD·Bd
1
, x0) = D · D∧(‖·‖1 , z`1)

= D · cone(±s̄ · ei − sign(z`1) : i ∈ [d])
= cone(±s̄ · di − D sign(z`1) : i ∈ [d]).

By Lemma 4.13, we know how to characterize the lineality ofD∧(‖·‖1 , z`1). Note that for any con-
vex set C ⊆ Rd, it holds true that (D · C)L ⊇ D ·CL, however, the reverse inclusion is not satisfied,

in general. Hence, Lemma 3.5 immediately implies
(
D∧(pD·Bd

1
, x0)

)
L
⊇ D · (D∧(‖·‖1 , z`1))L.

For proving the reverse inclusion
(
D∧(pD·Bd

1
, x0)

)
L
⊆ D · (D∧(‖·‖1 , z`1))L, we will now show

that if
(
D∧(pD·Bd

1
, x0)

)
L
6⊆ D · (D∧(‖·‖1 , z`1))L, then z`1 did not have maximal support. To that

end, pick any vector x ∈
(
D∧(pD·Bd

1
, x0)

)
L
\ D · (D∧(‖·‖1 , z`1))L and write x = D · z1, where

z1 ∈ D∧(‖·‖1 , z`1) \ (D∧(‖·‖1 , z`1))L. Since x ∈
(
D∧(pD·Bd

1
, x0)

)
L
, we can also chose a z2 ∈

D∧(‖·‖1 , z`1) \ (D∧(‖·‖1 , z`1))L with −x = D · z2. Due to zi 6∈ (D∧(‖·‖1 , z`1))L for i = 1, 2, we
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have that for all ε > 0 ∥∥∥z`1 − ε · zi
∥∥∥

1
> ‖z`1‖1 , (C.3)

however, there exists a small enough ε > 0 such that∥∥∥z`1 + ε · zi
∥∥∥

1
≤ ‖z`1‖1 . (C.4)

For small enough ε > 0, inequality (C.3) implies that

∑
j∈S̄

sign(z`1,j) · zi
j − ∑

j∈S̄ c

|zi
j| < 0,

whereas (C.4) means that
∑
j∈S̄

sign(z`1,j) · zi
j + ∑

j∈S̄ c

|zi
j| ≤ 0.

Summing up the previous two inequalities, we obtain that ∑j∈S̄ sign(z`1,j) · (z1
j + z2

j ) < 0. Now,

define zδ := z`1 + δ · (z1 + z2) and observe that for all δ > 0 it holds true that x = D · zδ.
Furthermore, for a small enough δ > 0, we have that

∥∥zδ
∥∥

1 ≤ ‖z`1‖1. Hence, we can conclude
that zδ ∈ Z`1 and therefore even

∥∥zδ
∥∥

1 = ‖z`1‖1. If δ > 0 is chosen small enough, this allows us
to write ∥∥∥zδ

∥∥∥
1
= ‖z`1‖1 + δ · ∑

j∈S̄
sign(z`1,j) · (z1

j + z2
j ) + δ · ∑

j∈S̄ c

|z1
j + z2

j |,

and we can conclude that ∑j∈S̄ c |z1
j + z2

j | > 0. However, this means that there is at least one j ∈ S̄ c

such that zδ
j 6= 0, which shows that z was indeed not maximal. Finally, Lemma 4.13 implies that

dim
((
D∧(pD·Bd

1
, x0)

)
L

)
= dim

(
(D∧(‖·‖1 , z`1))L

)
− dim

(
ker D|(D∧(‖·‖1,z`1 ))L

)
≤ s̄− 1,

which concludes the proof of first part of the proposition concerning the lineality ofD∧(pD·Bd
1
, x0).

The characterization of the range follows easily. Indeed, let i ∈ S and consider the vector
r−i = −s̄ · sign(z`1,i) · di − D · sign(z`1). Observe that we can write r−i = −2 · D · sign(z`1)− r+i .
Hence, for any j ∈ S̄ c 6= ∅ we obtain that

PC⊥L
(r−i ) = −2 · PC⊥L

(D · sign(z`1)) = r+⊥j + r−⊥j .

Thus, PC⊥L
(r−i ) ∈ cone(r±⊥j , j ∈ S̄ c), which concludes the proof.

C.4 Proof of Theorem 4.17

Let C = D∧(pD·Bd
1
, x0) and use the orthogonal decomposition provided in Proposition 4.16:

D∧(pD·Bd
1
, x0) = CL ⊕ CR.

This allows us to estimate

w2
∧(C)

(1)
≤ δ(C)

(2)
≤ δ(CL) + δ(CR)

(3)
≤ dim(CL) + w2

∧(CR) + 1, (C.5)

where δ denotes the statistical dimension; see proof of Proposition 4.3 in Appendix B for further
details on this notion and a justification of (1). Using the statistical dimension as a summary
parameter for convex cones brings several advantages. For a direct sum C1 ⊕ C2 of two closed
convex cones C1, C2 ⊆ Rn it holds true that δ(C1 ⊕ C2) = δ(C1) + δ(C2), explaining (2) in the
previous inequalities. Furthermore, for a subspace CL ⊆ Rn we have that δ(CL) = dim(CL),
which, together with δ(CR) ≤ w2

∧(CR) + 1, justifies (3). Observe that the estimate of (C.5) is
essentially tight.
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Proposition 4.16 allows to upper bound dim(CL) + 1 by s̄. The statement then follows by ap-
plying Proposition 4.9 to the 2(d− s̄)-polyhedral α-cone CR.

C.5 Proof of Proposition 4.20 (Coherence Bound)

First, observe that we have

tan2 (∠(a, a + b)) =
‖a× (a + b)‖2

2
〈a, a + b〉2 =

‖a‖2
2 ‖b‖

2
2 − 〈a, b〉2(

‖a‖2
2 + 〈a, b〉

)2 ≤
‖a‖2

2 ‖b‖
2
2(

‖a‖2
2 + 〈a, b〉

)2 , (C.6)

where a, b ∈ Rn with a 6= 0 and a + b 6= 0.

Obsere that the assumptions of Proposition 4.16 are satisfied. Indeed, s < 1
2 (1 + µ−1(D))

guarantees that z`1 is the unique minimal `1-representer of the associated signal Dz`1 and that
Dz`1 6= 0 [DE03; GN03]. Hence, we want to evaluate the circumangle of the cone generated by
the vectors r±⊥j = PC⊥L

(±s · dj − D sign(z`1)) for j ∈ Sc, where S = supp(z`1). As a proxy for the
circumcenter, we can consider the vector v = −PC⊥L

(D sign(z`1)) and therefore obtain:

tan2 α ≤ sup
j∈Sc

tan2(∠(v, r±⊥j )) = sup
j∈Sc

tan2
(
∠(v, v + PC⊥L

(s · dj))
)

.

We can now use the inequality (C.6) with a = v and b = s · PC⊥L
(dj); note that v 6= 0, since oth-

erwise we would have Dz`1 = 0. The expression (C.6) is decreasing w.r.t. ‖a‖2
2. Hence, we shall

find a lower bound for ‖v‖2
2. The projection PC⊥L

(D sign(z`1)) can be written as D sign(z`1) + w
for some vector w ∈ CL. According to the characterization of the lineality space CL in Proposi-
tion 4.16, this amounts to saying that

PC⊥L
(D sign(z`1)) = ∑

i∈S
ci · sign(z`1,i) · di, with ∑

i∈S
ci = s. (C.7)

This yields

‖v‖2
2 ≥ inf

c∈Rs ,∑i∈S ci=s

∥∥∥∥∥∑
i∈S

ci sign(z`1,i)di

∥∥∥∥∥
2

2

= inf
c∈Rs ,∑i∈S ci=s

‖c‖2
2 + ∑

i∈S
∑

j∈S ,j 6=i
cicj〈sign(z`1,i)di, sign(z`1,j)dj〉

≥ inf
c∈Rs ,∑i∈S ci=s

‖c‖2
2 − µ ∑

i∈S
∑

j∈S ,j 6=i
cicj. (C.8)

The optimality conditions for this program yield the existence of a Lagrange multiplier λ ∈ R

such that ci − µ ∑j 6=i cj + λ = 0 and ∑i∈S ci = s, i.e., ci = 1 for all i ∈ S . Plugging this expression
in (C.8), we obtain that

‖v‖2
2 ≥ s− µ(s · (s− 1)) ≥ s(1− µs).

Together with the following inequalities:

|〈a, b〉| = s
∣∣∣〈v, PC⊥L

dj

〉∣∣∣ ≤ s
∣∣〈v, dj

〉∣∣ (C.7)
≤ s2 sup

i 6=j
|
〈
di, dj

〉
| = s2µ,

‖b‖2
2 = s2

∥∥∥PC⊥L
dj

∥∥∥2

2
≤ s2 ∥∥dj

∥∥2
2 = s2,
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we obtain the desired bound

tan2 α ≤ ‖a‖2
2 ‖b‖

2
2(

‖a‖2
2 + 〈a, b〉

)2 ≤
s(1− µs) · s2

(s(1− µs)− s2µ)2 =
s(1− µs)
(1− 2µs)2 .

D Details on Numerical Experiments

In this subsection, we report on the setup that we have used in all our numerical experiments.

Phase Transition Plots While our results encompass the more general class of subgaussian mea-
surements, we only consider the benchmark of Gaussian matrices, as it is typically done in the
compressed sensing literature. When illustrating the performance of results such as Theorem 3.6,
we only report the quantity w∧(D · D(‖·‖1 ; z0)), ignoring for instance the probability parameter
u, cf. [ALMT14].

Some Details on Computations Unless stated otherwise, we solve the convex recovery pro-
grams such as (BPcoef

η ) or (BP`1 ) using the Matlab toolbox cvx [GB08; GB14]. We employ the
default settings and set the precision to best. For creating phase transitions, a solution x̂ is con-
sidered to be “perfectly recovered” if the error to the ground truth vector x0 satisfies ‖x0 − x̂‖2 ≤
10−5. This threshold produces stable transitions and seems to reflect the numerical accuracy of
cvx.

Computing the Statistical Dimension When analyzing the sampling rate predictions of our
results, we often report the conic mean width w2

∧(C) = w(C∩Sn−1) of a convex cone C ⊆ Rn. We
will now briefly sketch how this quantity is numerically approximated: First recall that the conic
mean width is essentially equivalent to the statistical dimension δ(C) = E[supx∈C∩Bn

2
‖ΠC(g)‖2

2];
cf. the proof of Proposition 4.3 in Appendix B. Due to the convexity of C ∩ Bn

2 , the statistical
dimension is preferred over the conic mean width for numerical simulations. In order to obtain
an approximation of δ(C), we draw k independent samples g1, . . . , gk ∼ N (0, Id) and for each of
them we evaluate the projection ΠC(gi) using quadratic programming. Due to a concentration
phenomenon of empirical Gaussian processes, the arithmetic mean over k = 300 samples yields
tight estimates of δ(C).

Minimal Conic Singular Values As already mentioned computing λmin (D;D∧(‖·‖1 , z`1)) is
out of reach in general. In our numerical experiments on coefficient recovery, we nevertheless
provide empirical upper bounds on λmin (D;D∧(‖·‖1 , z`1)). Those are obtained as follows: Let
x0 = D · z`1 and consider the perturbed x̃0 = x0 + ê, where ê ∈ Rn such that ‖ê‖2 ≤ η̂. We then
define ẑ ∈ Rd as a solution of the program

min
z∈Rd

‖z‖1 s.t. ‖x̃0 − Dz‖2 ≤ η̂.

Proposition 2.3 then implies that ‖z`1 − ẑ‖2 ≤ 2η̂/λmin (D;D∧(‖·‖1 , z`1)). Rearranging the terms
in the previous inequality then yields an upper bound for λmin (D;D∧(‖·‖1 , z`1)). Note thereby
that a clever choice of the perturbation ê may result in a tighter bound.

Computing the Circumcenter and the Circumangle Computing the circumcenter amounts to
solving:

θ ∈ argmin
v∈Bn

2

max
i∈[k]
〈−v, xi〉, (D.1)

where the vectors xi are the normalized generators of a nontrivial pointed polyhedral cone; see
Proposition 4.7. This problem is closely related to the so-called smallest bounding sphere problem
[Syl57], which has a long and rich history.
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Let g(v) = maxi∈[k]〈−v, xi〉 and I(v) denote the set of active indices i, i.e., the indices satisfying
g(v) = −〈v, xi〉. Then standard convex analysis results state that ∂g(v) = conv(−xi, i ∈ I(v))
and the optimality conditions read

θ ∈ conv(xi, i ∈ I(θ)) with ‖θ‖2 = 1,

i.e., the normal cone {−θ} to the constraint set should intersect the subdifferential ∂g(θ).
Problem (D.1) can be solved globally with projected subgradient descents or second order cone

programming techniques available in CVX.
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