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Abstract

This paper proposes a novel method for modeling retinal cone distribution in humans. Itis based on
Blue-noise sampling algorithms being strongly related with the mosaic sampling performed by cone
photoreceptors in the human retina. Here we present the method together with a series of examples of
various real retinal patches. The same samples have also been created with alternative algorithms and
compared with plots of the center of the inner segments of cone photoreceptors from imaged retinas.
Results are evaluated with different distance measure used in the field, like nearest-neighbor analysis and
pair correlation function. The proposed method can effectively describe features of a human retinal cone
distribution by allowing to create samples similar to the available data. For this reason, we believe that
the proposed algorithm may be a promising solution when modeling local patches of retina.

1. Introduction

Sampling is the reduction of a continuous signal into a discrete one, or the selection of a subset from a discrete set
of signals. For sampling to be effective, samples should be uniformly distributed in a way that there are no
discontinuities; but at the same time, regular repeating patterns should be avoided, to prevent aliasing. In the
human retina, the mosaic of the cone photoreceptor cells samples the retinal optical projection of the scene,
achieving the first neural coding of the spectral information from the light that enters the eye. To solve the
sampling problem, the human retina has adopted an arrangement of photoreceptors that is neither perfectly
regular nor perfectly random. Local analysis of foveal mosaics shows that cones are arranged in hexagonal or
triangular clusters, however, when this analysis is extended to larger areas, cones are organized into particular
patterns, such as parallel curving and circular rows, which are generally associated with rotated local clusters.

There are different theories regarding the regularity and development of the cone cells mosaic. Wassle and
Riemann [1] proposed two models based on mechanisms that assume the self-regulation of an original random
pattern, one with a repulsive force acting between nerve cells and the other based on competition for territory for
each neighboring cell. Later, Yellott [2] discovered that the photoreceptors in the human retina, especially the
cones, are distributed conforming to a Poisson disk distribution. He performed spectral analysis to an array of
cones treated as sampling points and observed that the spectral properties of cones mosaic are representative of a
Poisson disk array, with the additional restriction of a minimum distance between the center of the cells and
their nearest neighbors, because of the size of the cells. This was confirmed by Galli-Resta et al, which
investigated the spatial features of the ground squirrel retinal mosaics, suggesting that a minimal-spacing rule
dmin 1N conjunction with an adequate density of receptors can adequately describe the array of rods and S cones
[3]. Poisson disk distribution is now regarded as one of the best sampling patterns, by virtue of its blue-noise
power spectrum [4]. In Figure 1 (a-f) are presented some examples of different 2-D samplers.

It is still unclear how the spatial distribution and mean density of cones can affect the sampling of a retinal
image [5]. An interesting evidence of this open issue is the experiment reported by Hofer et al [6], who tested the
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perception of stimuli of small spatial scale. Showing brief, monochromatic flashes of light of half the diameter of
a cone size on previously characterized retinal areas of the subjects, authors described the same stimuli with a
large number of hue categories, including white, blue and purple, indicating that the stimulation of two different
cones with the same photopigment results in different color sensations, even with no stimuli in different regions
of the retina or on other wavelength-sensitive cones.

In this study, we examined the Nearest Neigbour (NN) regularity index of the population of cones in images
of real human retina. We then compared the results to another measure of spatial patterning, the Pair
Correlation Function. The goal of this paper is to show that the sampling properties of the cone photoreceptor
mosaic can be modeled by a blue-noise algorithm, and that they can be used to generate sampling arrays
characterized by the same features of the retinal cone mosaics. More specifically, we want to identify an
algorithm capable of generating sampling arrays with the same range of densities in the retina, and use specific
metrics to compare the spatial and spectral properties of the cones distribution.

2. Related works

2.1.Retinal and Cone sampling modeling

In the past two decades, interesting research works on retinal modeling focus on neural behavior [7-9]; as an
example, Virtual Retina by Wohrer and Kornprobst is a large scale simulation software that transforms a video
input into spike trains, designed with a focus on nonlinearities and implementing a contrast gain control
mechanism.

However, there have not been many attempts to model the cone sampling array. As far as we are aware, the
first state-of-the-art sampling model for positioning cones in the retina mimicking qualities of the human
sampling was described by Ahumada [10]. It uses cones, surrounded by circular disks representing their region
of influence, and places them starting from the center of the retina, applying a random jitter to each point. There
is also an attempt at generating a space-varying parameter model, to extend the modeling capabilities past the
foveola, by varying with eccentricity the mean radius of the cone disk, the standard deviation of the cone disk
radius, and the standard deviation of postpacking jitter; but ultimately those parameters seem to be only fit for
the foveola.

After their studies on human photoreceptor topography, Curcio and Sloan continued in Ahumada’s
direction proposing a model of cones distribution based on regular arrays subjected to a spatial compression and
ajitter, to fit the actual cones mosaic [11]. Their analysis was based on the distribution of distance and angles of
neighboring cones, comparing real mosaics with artificially generated ones, and evidencing anisotropies in
retinal cell spacing.

Another attempt at modeling the sampling properties of the cone mosaic was proposed by Wang [12], which
created a polar arranged array of cones and jittered the points according to the standard deviation of a Gaussian
distribution, constrained by a minimal spacing rule. The comparison of power spectrum of the human foveal
cones and the generated sampling arrays show similarities, and the generated arrays exhibit some basic features
of the mosaic of foveal cones.

In Deering’s [13] human eye model, cones are modeled individually as a center points surrounded by points
that define a polygon constituting the boundaries of the cell, each photoreceptor is then subjected to attractive
and repulsing forces to adjust its position. This retinal synthesizer is then validated by calculating the neighbor
fraction ratio and by empirically measuring the cone density in cells/mm?* and comparing it from data from
Curcio etal[14].

2.2.Blue noise distributions

Coined by Ulichney [15], the term blue noise refers to an even, isotropic, yet unstructured distribution of points.
Blue noise was first recognized as crucial in dithering of images since it captures the intensity of an image
through its local point density, without introducing artificial structures of its own. It rapidly became prevalent in
various scientific fields, especially in computer graphics, where its isotropic properties lead to high-quality
sampling of multidimensional signals, and its absence of structure prevents aliasing. It has even been argued that
its visual efficacy (used to some extent in stippling and pointillism) is linked to the presence of a blue-noise
arrangement of photoreceptors in the retina discovered by Yellott [2]. Over the years, a variety of research efforts
targeting both the characteristics and the generation of blue noise distributions have been conducted in
computer graphics.

Arguably the oldest approach to algorithmically generate point distributions with a good balance between
density control and spatial irregularity is through error diffusion [15, 16], which is particularly well adapted to
low-level hardware implementation in printers. Concurrently, a keen interest in uniform, regularity-free
distributions appeared in computer rendering in the context of anti-aliasing [ 17]. Cook [18] proposed the first

2



I0OP Publishing J. Phys. Commun. 4(2020) 035013 M P Lanaro et al

(d) (e) (§3)]

25

®) Uniform (a)
i Green-noise (&)
Pink-noise (=

2r Jittered ()
Poisson-Disk (e

Blue-noise o

fa) \_—

0 05 1 15 2 25

(m)

Figure 1. Example of 2-D samplers and their PCF. Fist row from left to right: Realizations of 1024 samples from a uniform (a), a Green-
Noise sampler (b), a Pink-Noise sampler (c), ajittered (d), a Poisson-disk () and a Blue-Noise sampler (f). The second row shows the
Fourier specrtum (power spectrum) of each sampler ((g)—(1), spectrum computed on 4096 samples). The PCFs capture the spectral
content of each sampler as shown in (m).

dart-throwing algorithm to create Poisson disk distributions, for which no two points are closer together than a
certain threshold. Considerable efforts followed to modify and improve this original algorithm [19-23]. Today’s
best Poisson disk algorithms are very efficient and versatile [24, 25], even running on GPUs [26-28].

Thanks to the pioneering work by Dippé and Wold [29], Mitchell [30], Cook [18], Shirley [31], the computer
graphics community became sensitive to the fact that noise and aliasing are tightly coupled to sampling. A large
variety of optimization-based approaches has been proposed since then. Two main optimization-based
approaches have been developed and presented in numerous papers: (1) on-line optimization [20, 27, 24,
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Table 1.y, o and regularity indexes of retinal mosaics. GN = Green
Noise, PN = Pink Noise, BNOT = Blue Noise through Optimal

Transport.
Data n o RI

7-A 4.03456374 0.50612555 7.971 468 099
7-B 9.04250728 1.06718420 8.473 239 435
5 12.73315988 1.44799613 8.793 642 161
4-6 7.22426840 0.79458918 9.091 828 225
4-4 3.83590555 0.41681003 9.203 006 761
8-G 1.50767654 0.15854224 9.509 620 334
1-G 8.58240715 0.88831701 9.661 423 858
4-5 6.00671254 0.61540511 9.760 582 792
3-B 1.97490585 0.20006784 9.871 180 871
3-F 5.05986062 0.51204539 9.881 664 061
3-A 2.14670807 0.20446813 10.498 985 71
6 4.59784100 0.42302628 10.868 925 11
1-F 6.82704837 0.62173280 10.980 679 1
1-A 3.93220536 0.35599814 11.045 578 35
3-C 1.46598239 0.12902791 11.361 746 22
2-A 5.05899348 0.43416187 11.652 321
8-] 1.63116540 0.13651109 11.948 958 88
8-1 1.63433522 0.13589955 12.026 053 02
8-K 1.85141910 0.15104864 12.257 105 34
GN_512 0.01656738 0.01266479 1.308 143 909
GN_1024 0.01213441 0.00876178 1.384 925 079
PN_512 0.01873769 0.01319843 1.419 690 795
PN_1024 0.01340864 0.00933317 1.436 664 256
BNOT_1050 0.02969981 0.00138443 21.452 712 05
BNOT_2050 0.02132946 0.00093060 22.919 909 97
BNOT_4050 0.01514123 0.00064959 23.308 644 05

Table 2. /., distances between pairs of PCFs. If this
difference is under 0.1, the two distribution can be
considered to be the same. It is clearly visible that the
Dart Throwing and BNOT samplers are the closest from
the measured distribution.

Data BNOT 1024 DT 1024 Jitter 1024

1-A 0.507644 0.525371 0.945 527
1-F 0.52156 0.566554 0.912 223
1-G 0.778872 0.309411 0.663 769
2-A 0.298435 0.764314 1.134 42
3-A 0.408852 0.851508 1.1428

3-B 0.549172 0.518775 0.886 055
3-C 0.484184 0.597551 0.948 338
3-D 0.401644 1.1555 1.417 47
3-F 0.856925 0.484083 0.633 278
4-4 0.472629 0.598528 0.959 664
4-5 0.917283 0.262972 0.597 261
4-6 0.642895 0.525127 0.806 347
5 0.920215 0.383484 0.578 448
6 0.264755 0.809063 1.1713

7-A 0.778203 0.248315 0.761 941
7-B 0.803054 0.245291 0.686 117
8-G 0.826069 0.331142 0.638 697
8-1 0.301428 0.768822 1.133 56
8-] 0.297661 0.797065 1.146 51
8-K 0.327341 0.737896 1.106 08

M P Lanaro et al

32-43], and (2) off-line optimization [44—49], where the near-optimal solution is prepared in form of lookup
tables, used in runtime. The present work uses the approach developed by de Goes et al [39], called Blue Noise
Through Optimal Transport (BNOT), as reference. The reason behind our choice is that BNOT is the present best
performing method among those trying to reproduce Blue Noise distributions.
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In an effort to allow fast blue noise generation, the idea of using patterns computed offline was raised in [29].
To remove potential aliasing artifacts due to repeated patterns, Cohen et al [50] recommended the use of non-
periodic Wang tiles, which subsequently led to improved hierarchical sampling [45] and a series of other tile-
based alternatives [44, 46, 51, 52]. Wachtel et al [47] propose a tile-based method that incorporates spectral
control over sample distributions. More recently, Ahmed et al [49] proposed a 2-D square tile-based sampling
method with one sample per tile and controllable Fourier spectra. However, all precalculated structures used in
this family of approaches rely on the offline generation of high-quality blue noise.

3. Methods

The cone mosaics used for this work are from previously published images of patches of real human retinas, as
shown in the leftmost boxes of figures 2 through 6; they were acquired from the pdf versions of the papers or
html, if available, and saved as png images. The pictures are from different subjects of various ages and were
obtained with different techniques, ranging from histological techniques, where sample tissues are depicted with
electronic microscopic imaging [14, 53—55], to more recent in vivo imaging techniques, which exploit adaptive
optics like deformable mirrors coupled with a wavefront sensor to compensate for the ocular aberrations of the
eye [56-59]. The x and y coordinates of the cells inner segments were manually plotted using WebPlotDigitizer
[60]. This preliminary work has been based on a relatively small dataset sue to the difficulty of finding wide
collections of retinal images. We understand these difficulties related also with problem of the use of different
imaging techniques and tissue preparation and we hope to have larger datasets in the future. When analyzing the
points distribution, the distance between the cone centers was converted in real ;sm on the retina by multiplying
them with the appropriate scale factor of the image, determined by the size of the sample window’s side.
Conversion from degrees was performed according to the model from [61], with one degree of visual angle equal
to 288 pm on the retina. Cone spacing values are compatible with Wyszecki and Styles [62], with the exception of
the data from [55] exhibiting lower values, probably due to post mortem shrinkage. It is worth noting that the
last retina from figure 4 and retinas from figure 5 have been cropped during analysis because they didn’t fully fill
the sampling window, and would have included uncharacterized areas.

3.1. Analysis of point process

In this section, we briefly introduce basic notions from Stochastic Point Processes [63]. A point process & isa
stochastic generating point in a given domain €2 (here, [0,1)°). We denote by B, := {x), x?,... x"} C Qa
realization of a point process with n samples. A point process & is stationary if it is invariant by translation, and
isotropic if it is invariant by rotation. More formally, if we assume P a probability measure, ¥ is stationary if
Vx e R

P(7 () = P(S (2 — X)), @

and isotropic if any rotation or translation of % have the same statistical properties. We also define the density of
apoint set as the average number of samples inside a region B of volume Vyaround a sample x.
B(x)

B

Ax) = (©))

This density is constant for isotropic and stationary point processes. A sampler generating sets with a non
constant density is sometimes called a non-uniform sampler. To characterize isotropic stationary point processes,
the Pair Correlation Function (PCF) is a widely used tool. Such function is a characterization of the distribution of
pair distances of a point process. Oztireli [41] devised a simplified estimator for this measure in the particular
case of isotropic and stationary point processes. The PCF of a pointset P, in the unit domain [0, 1) is given by

PP = 3" ko (r — dx9, x0)), 3)
n’rs L

i=j

where d (x®, x(9) is a distance measure between x” and x(). The factor k, is used to smooth out the function.
Ogztireli relies on this smoothing to assume ergodicity for all sets. He uses the Gaussian function as a smoothing
kernel, but one could use a box kernel or a triangle kernel instead. To compute a PCF, we use this estimator with
3 parameters, the minimal 7, 7,3, the maximal r, 7, and the smoothing value o. Those values are usually
chosen empirically. Note that as the number of samples increase, the distances between samples becomes very
different for similar distributions. To reduce this effect, we normalize the distances in our estimations using the
maximum radius for n samples ([64], equation (5)).

In figure 1, we illustrate how the PCF of several point processes captures the spectral content of the point
distribution: a pure uniform sampling, Green-Noise and Pink-Noise samplers obtained using [52], a jittered
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Figure 2. From left to right: The point samples of the cones’ location obtained from picture of the patch of retina, Nearest neighbor
analysis with mean and standard deviation, Pair Correlation Function. (a)—(c). Retinal locations from figure 3 of Scoles et al [58] (d).
Retinal locations from figure 1 of Roorda & Williams [56].

sampler (for N samples, subdivision of the domain into regular N x /N square tile and a uniform random
sample is drawn in each tile), a Poisson-Disk sampler [22] and a Blue-noise sampler (BNOT) [39].

4. Results and discussion

The regularity index, or conformity ratio is a quantitative method used for assessing spatial regularity of
photoreceptor distributions [1, 65, 66]. Spatial regularity in local patches is computed by numerically expressing
the concentration of the nearest neighbor distances, that is by computing the inverse of the coefficient of
variation (CV, also called coefficient of dispersion) of the distribution of nearest neighbor distances. Obviously,
the highest/lower the CV (dispersion) of local neighborhoods sizes, the lowest/highest is the regularity index. In
detail, to compute the regularity index, a k-d tree structure has been used to find the nearest-neighbor for each
point, the distances between nearest neighbors are computed through the euclidean norm, and the distribution

6
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Figure 3. From left to right: The point samples of the cones’ location obtained from picture of the patch of retina, Nearest neighbor
analysis with mean and standard deviation, Pair Correlation Function. Retinal locations from figure 2 of Curcio et al [14].

of all the computed nearest-neighbor distances is visualized through the normalized histogram. Each
distribution of nearest-neighbours can be described by a normal Gaussian distribution described by the
equation

1 2 2
P(x) = ——e &—m7/207, 4)
o\ 2T

where p1is the mean of the distribution and o the standard deviation of the measurements. The regularity index
is therefore expressed by the ratio of the mean 1 by the standard deviation o. This index is reported to be 1.9 for a
full random sampling, where the standard deviation is higher. Anyhow, as mentioned above, the more regular
the arrangement, the higher the value of the conformity index, usually 3-8 for retinal mosaics.

Regularity indexes for retinal data are shown in table 1. In contrast with previous claims, our calculated
indexes range from 8 to 12. In the lower bound we show data obtained from [54], which instead of a retinal
image shows the marked locations of the inner segments of photoreceptors; meanwhile in the upper bound,

7
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Figure 4. From left to right: The point samples of the cones’ location obtained from picture of the patch of retina, Nearest neighbor
analysis with mean and standard deviation, Pair Correlation Function. (a)-(d). Retinal locations from figures 4, 5, 6 of Jonas et al [53]
(e). Retinal locations from figure 10 of Curcio et al [54].
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Figure 5. From left to right: The point samples of the cones’ location obtained from picture of the patch of retina, Nearest neighbor
analysis with mean and standard deviation, Pair Correlation Function. Retinal locations from figure 10 of Curcio et al [54].

close to 12, most of the data is from foveal centers in [55], with the exception of retina 8-G, where the different
sizes of the photoreceptor profiles reflect different levels of sectioning through the inner segments.

The indexes for data generated with Green noise, Pink noise and BNOT samplers are presented in the same
table. As expected, the indexes for Green and Pink noise, which, on average, equal 1.3 and 1.4 respectively, are
lower than those that would have been obtained by a full random sampling; on the other side, for the BNOT
data, the indexes values are much higher, more than two times of the highest values for retinal RIs. It is not very
surprising that, thanks to the the uniformity optimization of BNOT, the indexes are so high; however, they are
anyway distant from the infinite RI of regular lattices. Given the fact that fully regular hexagonal or square
patterns are proven to have poor sampling properties and are therefore not suitable for simulating cone
distributions, we believe that, for what regards the scope of this paper, a higher RI indicates that BNOT is better
at generating point processes than the other analyzed point samplers.

A more recent and reliable method for assessing the goodness of these processes is the previously mentioned
Pair Correlation Function (PCF). In table 2, we present the I, distance, between our generated point sets and the
measured PCF. From two PCFs p and p,, we denote their [, distance as the maximal distance between the two
functions:

loo(ps pp) = max,|p(r) — py(r)l, (©)

where ris a given radius. We rely on this measure as it was already used in [41] to compare PCFs, and we consider
two PCFs similar if /. is less than 0.1. Using such evaluation measure, the closest results are obtained when
comparing BNOT to Dart Throwing samplers. Moreover, the higher the measured RI for the retinal distribution
of photoreceptors, the lower the distance from BNOT PCF. The opposite happens when comparing retinal data
with Dart throwing algorithm, the closer to the reported RI of 8, the lower the [, distance. This evidences that
not only the indexes are actually higher than the ones previously measured, but also that the most effective
method to simulate these distributions comes from Blue-noise samplers.

5. Conclusions

Blue noise sampling can describe features of a human retinal cone distribution with a certain degree of similarity
to the available data and can be efficiently used for modeling local patches of retina. We hope this work can be
useful to understand how spatial distribution affects the sampling of a retinal image, or the mechanisms
underlying the development of this singular distribution of neuron cells and the implications it has on human
vision. Given the nature of blue-noise algorithms, it should be possible to develop an adaptive sampling model
that spans the whole retina. However, there would be issues in validating the cone sampling, since imaging of the
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Figure 6. From left to right: The point samples of the cones’ location obtained from picture of the patch of retina, Nearest neighbor
analysis with mean and standard deviation, Pair Correlation Function. Retinal locations from figure 1 of Gao & Hollyfield [55].

whole retina is difficult to obtain and analyze. All validations should in fact be local. Future works will explore
the possibility of applying a smooth sampling across the retina to obtain an adaptive sampling, given the PCF and
spectra oflocal patches, the patches can be reproduced [67] and correlated with a heat map that represents

interpolation in space [68].
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