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Abstract

Given a finite undirected graph X, a vertex is 0-dismantlable if its open neighbourhood is a cone
and X is 0-dismantlable if it is reducible to a single vertex by successive deletions of 0-dismantlable
vertices. By an iterative process, a vertex is pk ` 1q-dismantlable if its open neighbourhood is k-
dismantlable and a graph is k-dismantlable if it is reducible to a single vertex by successive deletions
of k-dismantlable vertices. We introduce a graph family, the cubion graphs, in order to prove that
k-dismantlabilities give a strict hierarchy in the class of graphs whose clique complex is non-evasive.
We point out how these higher dismantlabilities are related to the derivability of graphs defined
by Mazurkievicz and we get a new characterization of the class of closed graphs he defined. By
generalising the notion of vertex transitivity, we consider the issue of higher dismantlabilities in link
with the evasiveness conjecture.

Keywords: dismantlability, flag complexes, collapses, evasiveness, graph derivability.

1 Introduction

The transition from a graph to its clique complex is one of the many ways for associating a simplicial
complex to a graph. Through the notion of dismantlability, it is possible to develop homotopic notions
adapted to the framework of finite graphs. In this paper we will only discuss the dismantlability of
vertices. The principle of dismantlability in graphs is to set a rule that indicates the possibility of
adding or removing vertices and two graphs are in the same homotopy class if one can switch from one
to the other by a succession of moves (a move being either a vertex addition, or a vertex deletion).

The 0-dismantlability is well known: a vertex x is 0-dismantlable if its open neighbourhood is a
cone. This means there is a vertex y adjacent to x such that any neighbour of x is also a neighbour
of y (we say that x is dominated by y) and we know that a graph is 0-dismantlable if, and only if,
it is cop-win [22, 21]. From a simplicial point of view, the 0-dismantlability of a graph is equivalent
to the strong-collapsibility of its clique complex [11]. Strong collapsibility is introduced by Barmak
and Minian [4] who proved that the strong homotopy type of a simplicial complex can be described in
terms of contiguity classes. Assuming that a vertex of a graph is 1-dismantlable if its neighbourhood
is 0-dismantlable, we obtain 1-dismantlability for graphs and it is established in [6] that two graphs X
and Y have the same 1-homotopy type if, and only if, their clique complexes clpXq and clpY q have the
same simple homotopy type.

The k-dismantlabilities for k ě 2 reproduce this recursive scheme to define increasingly large classes
of graphs to which this paper is dedicated. In section 2, the main definitions concerning graphs and
simplicial complexes are recalled with the fact (Proposition 4) that the k-dismantlability of a graph X
is equivalent to the k-collapsibility of its clique complex clpXq. While the notions of 0-homotopy and
1-homotopy are very different, it should be noted that the contribution of the higher dismantlabilities is
not so much at the homotopy level (Proposition 5) as at the level of dismantlability classes Dk, where
Dk is the class of all k-dismantlable graphs. Section 3 is devoted to the presentation of a family of
graphs pQnqnPN (called cubion graphs) which shows that pDkqkPN is an increasing sequence of strict
inclusions (Proposition 8):

@ n ě 2, Qn P Dn´1zDn´2 .

We also prove that the existence of a pk ` 1q-dismantlable and non k-dismantlable vertex implies the
presence of a clique of cardinal at least k ` 3 (Proposition 11). In Section 4, the introduction of the
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parasol graph shows the very importance of the order in which vertex dismantlings are operated as
soon as one leaves the class of 0-dismantlable graphs (Proposition 14). Setting D8 “

Ť

kě0Dk and
considering the 1-skeletons of triangulations of the Dunce Hat and the Bing’s House, we explore the
question of graphs not in D8 but for which it is sufficient to add some 0-dismantlable vertices to get
into D8. We note that D8 is the smallest fixed point of the derivability operator 4 of Mazurkiewicz
[19]. The set of k-collapsible simplicial complexes with varying values of k in N is the set of non-evasive
complexes [4]. Therefore, the elements of D8 will be called non-evasive. So, the question of whether
a k-dismantlable and vertex-transitive graph is necessarily a complete graph is a particular case of
the evasiveness conjecture for simplicial complexes, according to which every vertex homogeneous and
non-evasive simplicial complex is a simplex. In the final section, we introduce the notion of i-complete-
transitive graph to establish a particular case for which the conjecture is valid.

The study of simplicial complexes appears today in a very wide spectrum of research and applications
[8, 14, 27]. Very often, these complexes are constructed from finite data to obtain information on their
structure, for instance by the calculus of Betti numbers or homotopy groups. It should be mentioned that
the notion of clique complexes (also called flag complexes [17]) seems rather general from the homotopic
point of view since the barycentric subdivision of any complex is a flag complex (and the 1-homotopy
type of a complex and of its barycentric subdivision are the same [6]). From this point of view, the notion
of higher dismantlabilities is a contribution to the study of homotopic invariants for simplicial complexes
associated to finite data. From another point of view, the notion of higher dismantlabilities extends the
list of graph families built by adding or removing nodes with the condition that the neighbourhoods
of these nodes check certain properties. The first example is probably the family of finite chordal
graphs which is exactly the family of graphs constructed by adding simplicial vertices (i.e. whose
neighbourhoods are complete graphs) from the point. They can also be characterized as graphs that
can be reduced to a point by a succession of simplicial vertex deletions [10]. Bridged graphs [1] and
cop-win graphs [22, 21] are two other examples of graph families that can be iteratively constructed
respecting a condition on the neighbourhood of the node added at each step. From the perspective of
Topological Data Analysis (TDA), it is worthwhile to identify to what extent a topological structure
depends on local constraints. In a complex network for instance, the global topological structure can
sometimes be highly explained by local interaction configurations. When they verify certain properties,
these local constraints generate a global structure that deviates from classical null models and can thus
explain particular global phenomena. Understanding these multi-scale links between local and global
structures is now becoming a key element in the modelling of complex networks. Perhaps the best known
model is Barabasi’s preferential attachment [2] where the attachment of a new node to the network is
done preferentially by the nodes of higher degrees. Other examples are hierarchical models obtained
for example by a local attachment of each node to a subset of nodes of a maximal clique [23]. These
local-global concerns are in line with older issues, but still up-to-date, raised in the context of local
computation [25, 12, 18]. So, from an application point of view, the notion of higher dismantlablities
could enrich the range of tools available in all these fields.

2 Notations and first definitions

2.1 Graphs

In the following, X “ pV pXq, EpXqq is a finite undirected graph, without multiple edges or loops. The
cardinal |V pXq| is equal to the number of vertices of X, at least equal to 1. We denote by N (resp. N‹)
the set of integers t0, 1, 2, ¨ ¨ ¨ u (resp. t1, 2, ¨ ¨ ¨ u).

We write x „ y, or sometimes just xy, for tx, yu P EpXq and x P X to indicate that x P V pXq.
The closed neighbourhood of x is NX rxs “ ty P X , x „ yu Y txu and NXpxq “ NX rxsztxu is its open
neighbourhood. When no confusion is possible, NX rxs will also denote the subgraph induced by NX rxs
in X. Let S “ tx1, ¨ ¨ ¨ , xnu be a subset of V pXq, we denote by XrSs or Xrx1, ¨ ¨ ¨ , xns the subgraph
induced by S in X. The particular case where S “ V pXqztxu will be denoted by X ´ x. In the same
way, the notation X ` y means that we have added a new vertex y to the graph X and the context
must make clear the neighbourhood of y in X ` y. A clique of a graph X is a complete subgraph of X.
A maximal clique K of X is a clique so that there is no vertex in V pXqzV pKq adjacent to each vertex
of K. For n ě 1, the complete graph (resp. cycle) with n vertices is denoted by Kn (resp. Cn). The
graph K1 with one vertex will be called point and sometimes noted pt. The complement X of a graph
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X has the same vertices as X and two distinct vertices of X are adjacent if and only if they are not
adjacent in X.

The existence of an isomorphism between two graphs is denoted by X – Y . We say that a graph
X is a cone with apex x if NX rxs “ X. A vertex a dominates a vertex x ‰ a in X if NX rxs Ă NX ras
and we note x $ a. Note that a vertex is dominated if, and only if, its open neighbourhood is a cone.
Two distinct vertices x and y are twins if NX rxs “ NX rys. We will denote by TwinspXq the set of twin
vertices of X.

In a finite undirected graph X, a vertex is 0-dismantlable if it is dominated and X is 0-dismantlable
if it exists an order x1, ¨ ¨ ¨ , xn of the vertices of X such that xk is 0-dismantlable in Xrxk, xk`1, ¨ ¨ ¨ , xns
for 1 ď k ď n ´ 1. In [6], we have defined a weaker version of dismantlability. A vertex x of X is
1-dismantlable3 if its open neighbourhood NXpxq is a 0-dismantlable graph.

Generalising the passage from 0-dismantlability to 1´dismantlability, the higher dismantlabilities in
graphs are defined iteratively by:

Definition 1
‚ The family C of cones (or conical graphs) is also denoted by D´1 and we will say that the cones

are the graphs which are p´1q-dismantlable.
‚ For any integer k ě 0, a vertex of a graph X is called k-dismantlable if its open neighbourhood is

pk´ 1q-dismantlable. The graph X is k-dismantlable if it is reducible to a vertex by successive deletions
of k-dismantlable vertices. We denote by DkpXq the set of k-dismantlable vertices of a graph X and by
Dk the set of k´dismantlable graphs.

A cone is a 0-dismantlable graph, that is D´1 Ă D0, and by induction on k, we immediately get:

Proposition 2 @k P N, Dk´1 Ă Dk.

If x P DkpXq, we will say that the graph X ´ x is obtained from the graph X by the k-deletion of
the vertex x and that the graph X is obtained from the graph X ´ x by the k-addition of the vertex x.
We write X Œk Y or Y kÕ X when X is k-dismantlable to a subgraph Y , i.e.:

X Œk X ´ x1 Œk X ´ x1 ´ x2 Œk ¨ ¨ ¨ Œk X ´ x1 ´ x2 ´ ¨ ¨ ¨ ´ xr “ Y

with xi P DkpX ´ x1 ´ x2 ´ ¨ ¨ ¨ ´ xi´1q. The sequence x1, ¨ ¨ ¨ , xr is called a k-dismantling sequence.
The notation X Œk pt signifies that X P Dk. A graph X is k-stiff when DkpXq “ H. We denote
by D8 “

Ť

kě0Dk the family of graphs which are k-dismantlable for some integer k ě 0. Cycles of
length greater or equal to 4 and non-connected graphs are two examples of graphs which are not in D8.
Finally, we write rXsk “ rY sk when it is possible to go from X to Y by a succession of additions or
deletions of k-dismantlable vertices. Note that rXsk is an equivalence class. Two graphs X and Y such
that rXsk “ rY sk will be said k-homotopic3. We note that for any integers k ě 0 and k1 ě 0, any graph
X, any vertex x of X and any vertex y not in X, we have the following switching property :

p:q if X Œk X ´ x k1Õ pX ´ xq ` y then X k1Õ X ` y Œk pX ` yq ´ x.

Actually, since x  y, this property results from NXpxq “ NX`ypxq and NX`y´xpyq “ NX`ypyq. In
particular, this implies that two graphs X and Y are k-homotopic if, and only if, there exists a graph
W such that X kÕ W Œk Y . Nevertheless, the notion of k-homotopy classes is not so relevant (see
Proposition 5).

Remark 3 Let us also note that the reverse implication of p:q is false (see. Fig.1 for a counterexample).

2.2 Simplicial complexes

For general facts and references on simplicial complexes, see [17]. We recall that a finite abstract
simplicial complex K is given by a finite set of vertices V pKq and a collection of subsets ΣpKq of V pKq
stable by deletion of elements: if σ P ΣpKq and σ1 Ă σ, then σ1 P ΣpKq. The elements of ΣpKq are the
simplices of K. If σ is a simplex of cardinal k ě 1, then its dimension is k ´ 1 and the dimension of K

3 In [6], a 1-dismantlable vertex was called s-dismantlable and 1-homotopy was called s-homotopy.

3



Figure 1: Let Y be the 2-path uxv: Y 0Õ Y `y Œ0 pY `yq´x but Y Œk Y ´x is impossible for any k.

is the maximum dimension of a simplex of K. The j-skeleton of K consists of all simplices of dimension
j or less.

Let us recall that for a simplex σ of a finite simplicial complex K, linkKpσq “ tτ P K , σ X τ “
H and σ Y τ P Ku is a sub-complex of K and star0Kpσq “ tτ P K , σ Ă τu is generally not a sub-complex
of K. If τ and σ are two simplices of K, we say that τ is a face (resp. a proper face) of σ if τ Ă σ (resp.
τ Ĺ σ). An elementary simplicial collapse is the suppression of a pair of simplices pσ, τq such that τ is a
proper maximal face of σ and τ is not the face of another simplex (one says that τ is a free face of K).
We denote by K ´ x the sub-complex of K induced by the vertices distinct from x. As defined in [4],
an elementary strong collapse (or 0-collapse) in K is a suppression of a vertex x such that linkKpxq is a
simplicial cone. There is a strong collapse from K to L if there exists a sequence of elementary strong
collapses that changes K into L; in that case we also say that K 0-collapses to L. A simplicial complex
is 0-collapsible or strong collapsible if it 0-collapses to a point. By induction, for any integer k ě 1, a
vertex of K is k-collapsible if linkKpxq is pk ´ 1q-collapsible. There is a k-collapse from K to L if there
exists a sequence of elementary k-collapses that changes K into L and, in that case, both complexes
have the same simple homotopy type. A simplicial complex is k-collapsible if it k-collapses to a point.

Let also recall that a simplicial complex is non-evasive if it is k-collapsible for some k ě 0 [4, Definiton
5.3]. A not non-evasive complex is called evasive.

When considering graphs, simplicial complexes arise naturally by the way of flag complexes. For any
graph X, we denote by clpXq the abstract simplicial complex such that V pclpXqq “ V pXq and whose
simplices are the subsets of V pXq which induce a clique of X. The simplicial complex clpXq is called
the clique complex of X and clique complexes are also called flag complexes [17]. A flag complex K is
completely determined by its 1-skeleton (in other words, every flag complex is the clique complex of its
1-skeleton) and a simplicial complex K is a flag complex if, and only if, its minimal non-simplices are of
cardinal 2. Remind that a non-simplex of K is a subset of V pKq which is not a simplex of K and so a
non-simplex σ Ă V pKq is minimal if all proper subsets of σ are simplices of K.

Given a vertex x of a graph X, by definition we have linkclpXqpxq “ clpNXpxqq. So, it is easy
to observe that a graph X is in D0 if and only if clpXq is 0-collapsible [11, Theorem 4.1] and more
generally:

Proposition 4 For all integer k ě 0, X P Dk if, and only if, clpXq is k-collapsible.

So, by Proposition 4, the set of non-evasive flag complexes is in one to one correspondence with D8. Be-
fore closing this section, it is important to note that since k-collapses don’t change the simple homotopy
type:

Proposition 5 For all integer k ě 1, rXs1 “ rXsk.

Proof : Of course, a graph 1-homotopic to X is also k-homotopic to X. Now, let Y be a graph k-
homotopic to X. The clique complexes clpXq and clpY q have the same simple simplicial homotopy
type and, by [6, Theorem 2.10] where rXs1 is denoted by rXss and clpXq is denoted by ∆pXq, this
implies rXs1 “ rY s1. In particular, Y is 1-homotopic to X and, finally, rXs1 “ rXsk. ˝

3 A hierarchy of families

3.1 The family of cubion graphs pQnqnPN

From Proposition 4, we know that if a graph X is k-dismantlable for some k, then clpXq is a non-evasive
simplicial complex. It is also known [5, 17] that non-evasive simplicial complexes are collapsible and,
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Figure 2: (top left) Q1 P D0zD´1, (bottom left) Q2 P D1zD0, (right) Q3 P D2zD1. The drawing of the
3-cubion is a perspective view where the central clique K8 is symbolized by a cube: edges of the K8

(ie. between x-type vertices) are not drawn, edges between x-type and α-type vertices are in black, and
edges between α-type vertices are in grey.

a fortiori, contractible in the usual topological sense when the simplicial complex is considered as a
topological space by the way of some geometrical realisation. In particular, this means that a graph
whose clique complex is not contractible cannot be k-dismantlable whatever is the integer k:

Lemma 6 Given X0 Ă X and X Œk X0 for k ě 0, if clpX0q is non-contractible, so is clpXq and
X R D8.

Let us now show that the inclusions in Proposition 2 are strict.

Definition 7 [n-Cubion] @n P N, the n-Cubion is the graph Qn with vertex set V pQnq “ tαi,ε, i “
1, ¨ ¨ ¨ , n and ε “ 0, 1u Y tx “ px1, ¨ ¨ ¨ , xnq, xi “ 0, 1u and edge set EpQnq defined by:
‚ @i ‰ j,@ε, ε1 P t0, 1u, αi,ε „ αj,ε1

‚ @x ‰ x1, x „ x1

‚ @i, αi,1 „ px1, ¨ ¨ ¨ , xi´1, 1, xi`1, ¨ ¨ ¨ , xnq and αi,0 „ px1, ¨ ¨ ¨ , xi´1, 0, xi`1, ¨ ¨ ¨ , xnq

The n-Cubion has 2n ` 2n vertices partitioned into two sets such that:

Qnrα1,0, α1,1, ¨ ¨ ¨ , αn,0, αn,1s – nK2 and Qnrx, x P t0, 1u
ns – K2n .

The n-cubion is built from the n-hypercube with vertices the n-tuples x “ px1, ¨ ¨ ¨ , xnq P t0, 1u
n, each

one connected to all the others, by adding 2n vertices αi,ε which induce an n-octahedron nK2 and each
αi,ε is the apex of a cone whose base is the pn´1q-face of the hypercube given by xi “ ε. This definition
gives an iterative process to construct Qn`1 from Qn.

One sees that Q1 – P4 the path of length 3 and, clearly, Q1 P D0zD´1. The cubion Q2 represented
in Fig. 2 is in D1zD0. Indeed, D0pQ2q “ H but Q2 Œ1 Q2 ´ α1,0 and Q2 ´ α1,0 P D0.
More generally, we get:

Proposition 8 @n ě 2,Qn P Dn´1zDn´2.

Proof :

1. Let us first prove that for any i, ε and x, NQn
pαi,εq – Qn´1 and NQn

pxq Œ0 nK2.
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‚ NQnpαi,εq – Qn´1: on one hand, given i and ε, the vertex αi,ε is linked to all the αj,ε1 except when

i “ j. Thus, NQnrα1,0,α1,1,¨¨¨ ,αn,0,αn,1spαi,εq – pn´ 1qK2. On the other hand, within the set of the

n-tuples x “ px1, ¨ ¨ ¨ , xnq, αi,ε „ px1, ¨ ¨ ¨ , xi´1, ε, xi`1, ¨ ¨ ¨ , xnq. These 2n´1 vertices x whose ith entry
is fixed and equal to ε are all linked together and thereby induce a subgraph isomorphic to K2n´1 in
Qn. The edges between pn´ 1qK2 and K2n´1 are inherited from Qn and thus NQn

pαi,εq – Qn´1.
‚ NQnpxq Œ0 nK2: among all the αi,ε the vertex x “ px1, ¨ ¨ ¨ , xnq is linked exactly to the n vertices
α1,x1

, ¨ ¨ ¨ , αn,xn
. Let X “ NQn

pxqztα1,x1
, α2,x2

, ¨ ¨ ¨ , αn,xn
u, a partition of X is given by X0 Y X1 Y

¨ ¨ ¨ YXn´1 with Xk “ ty P X, y is linked to exactly k vertices αi,xi
u. Clearly Xi has

`

n
i

˘

elements. For
example, we have X0 “ tp1 ´ x1, 1 ´ x2, ¨ ¨ ¨ , 1 ´ xn´1, 1 ´ xnqu and Xn´1 “ tx̂i, i “ 1, ¨ ¨ ¨ , nu with
x̂i “ px1, x2, ¨ ¨ ¨ , xi´1, 1 ´ xi, xi`1, ¨ ¨ ¨ , xn´1, xnq. For any y P XzXn´1, there exist i ‰ j, such that
yi “ 1 ´ xi and yj “ 1 ´ xj . Hence, y is dominated by x̂i and x̂j both in NQnpxq. By successive
0-dismantlings of the vertices y, we obtain NQn

pxq Œ0 Xn´1 Y tα1,x1
, α2,x2

, ¨ ¨ ¨ , αn,xn
u. Finally, just

notice that, between the vertices of Xn´1 Y tα1,x1
, α2,x2

, ¨ ¨ ¨ , αn,xn
u, all the possible edges exist except

the x̂iαi,xi
and thus Xn´1 Y tα1,x1

, α2,x2
, ¨ ¨ ¨ , αn,xn

u – nK2.

2. By induction on n, Qn´1 P Dn´2zDn´3 and as we have proven that NQn
pαi,εq – Qn´1, αi,ε P

Dn´1pQnqzDn´2pQnq. Moreover, since the simplicial complex clpnK2q is non-contractible because it is
a triangulation of the sphere Sn´1, Lemma 6 implies NQn

pxq R D8 and thus x R Dn´2pQnq. Therefore
Dn´2pQnq “ H and Qn R Dn´2. Now,

Qn Œn´1 Qn ´ tαn,0, αn,1u

since αn,0 and αn,1 are pn´1q-dismantlable and not linked. In Qn´tαn,0, αn,1u, note that px1, ¨ ¨ ¨ , xn´1, 0q
and px1, ¨ ¨ ¨ , xn´1, 1q are twins and therefore

Qn ´ tαn,0, αn,1u Œ0 Qn ´
 

αn,0, αn,1, px1, ¨ ¨ ¨ , xn´1, 0q; px1, ¨ ¨ ¨ , xn´1q P t0, 1u
n´1

(

– Qn´1.

By induction hypothesis, Qn´1 P Dn´2 Ă Dn´1. Finally, Qn P Dn´1. ˝

Propositions 2 and 8 now give the following theorem:

Theorem 9 The sequence pDkqkě0 is strictly increasing:

D´1 Ĺ D0 Ĺ D1 Ĺ D2 Ĺ ¨ ¨ ¨ Ĺ Dk Ĺ Dk`1 Ĺ ¨ ¨ ¨

There are no graphs with fewer vertices than Q1 in D0zD´1. One can verify the same result for Q2

in D1zD0, but there are graphs in D1zD0 with fewer edges.

3.2 Critical k-dismantlability

Let’s complete this section with results on graphs in DkzDk´1 with k ě 1. Such a graph X does not
always have a vertex in DkpXqzDk´1pXq. Indeed, by duplicating each vertex of a graph in DkzDk´1

with a twin, we get a new graph also in DkzDk´1 in which each vertex is 0-dismantlable and, so, is not
in DkpXqzDk´1pXq. However we have the following result:

Lemma 10 Given k P N‹ and X P DkzDk´1, there exists x P V pXq and Y an induced subgraph of X
such that x P DkpY qzDk´1pY q.

Proof : Set V pXq “ tx1, ¨ ¨ ¨ , xnu and suppose that x1, ¨ ¨ ¨ , xn´1 is a k-dismantling sequence from
X to the point xn. By definition, @i P t1, ¨ ¨ ¨ , n ´ 1u, xi P DkpXrxi, xi`1, ¨ ¨ ¨ , xnsq. Since X R

Dk´1, the sequence x1, ¨ ¨ ¨ , xn´1 is not a pk ´ 1q-dismantling sequence of X. Therefore, there exists
i0 P t1, ¨ ¨ ¨ , n ´ 1u such that xi0 R Dk´1pXrxi0 , xi0`1, ¨ ¨ ¨ , xnsq, i.e. xi0 P DkpY qzDk´1pY q where
Y “ Xrxi0 , xi0`1, ¨ ¨ ¨ , xns. ˝

We remark that any connected graph with at most three vertices contains at least one apex and
therefore any X P D0zD´1 has at least four vertices. We recall that the clique number ωpXq of a graph
X is the maximum number of vertices of a clique of X.

Proposition 11 Given k P N‹, if DkpXqzDk´1pXq ‰ H, then ωpXq ě k ` 2. Moreover, if x P
DkpXqzDk´1pXq, there is a clique with k ` 2 vertices and containing x.
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Proof : The proof is by induction on k.
For k “ 1, if there exists x2 P D1pXqzD0pXq, then NXpx2q P D0zC. Since NXpx2q is not a cone but

is 0-dismantlable, it contains an edge, so X contains a triangle.
Now, let X be a graph such that Dk`1pXqzDkpXq ‰ H and denote by xk`2 a vertex such that

NXpxk`2q P DkzDk´1. From Lemma 10, there exists xk`1 P V pNXpxk`2qq and Y an induced subgraph
of NXpxk`2q such that xk`1 P DkpY qzDk´1pY q. The induction hypothesis applied to Y gives that Y
contains an induced subgraph K – Kk`2. As Y Ă NXpxk`2q, K ` xk`2 is a complete subgraph of X
with k ` 3 vertices.

And it follows from this proof that any vertex in DkpXqzDk´1pXq is in a clique of X of cardinal
k ` 2. ˝

A direct consequence of Lemma 10 and Proposition 11 is:

Corollary 12
(i) Given k P N, if X P DkzDk´1, then ωpXq ě k ` 2.
(ii) If X P D8 and |V pxq| “ n, then X P Dn´2.

Thus, if a graph of D8 contains no triangle, it is in D0 and it is not hard to prove by induction that
a 0-dismantlable graph without a triangle is a tree. So, the only graphs of D8 without a triangle are
the trees. A more directed proof of this fact is obtained by considering the clique complexes. Indeed,
if a graph X is triangle-free, then cl(X) is a 1-dimensional complex, and if X is in D8, Proposition 4
implies that cl(X) is k-collapsible. Thus, cl(X) has to be a tree and so is X.

4 Some results on D8

4.1 Order in dismantlabilities

For 0-dismantlability, the order of dismantlings does not matter and therefore the 0-stiff graphs to which
a graph X is 0-dismantlable are isomorphic ([11, Proposition 2.3], [15, Proposition 2.60]). This property
is no longer true for k-dismantlability with k ě 1. The graph X of Fig. 3 gives a simple example of a
graph that is 1-dismantlable either to C4, or to C5 (depending on the choice and order of the vertices
to 1-dismantlable) which are non-isomorphic 1-stiff graphs.

Figure 3: X Œ1 X ´ a´ b – C4 and X Œ1 X ´ x – C5

Actually, there is an important gap between 0-dismantlability and k-dismantlability with k ě 1. We
have already noted in Proposition 5 that, for any graph X and any k ě 1, rXsk “ rXs1 while the
inclusion rXs0 Ă rXs1 of homotopy classes is strict:

• rC4s0 ‰ rC5s0 because the cycles C4 and C5 are non isomorphic 0-stiff graphs.

• rC4s1 “ rC5s1 as it is shown by graph X in Fig. 3.

A major fact concerning the difference between 0-dismantlability and k-dismantlability for k ě 1 is
that ([11, Corollary 2.1])

pX Œ0 X2 , X Œ0 X 1 and X2 Ă X 1q ùñ X 1 Œ0 X2

while, for k ě 1, in general (cf. Fig. 4, pbq and pcq):

pX Œk X2 , X Œ0 X 1 and X2 Ă X 1q äùñ X 1 Œk X2.
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Figure 4: With X2 an induced subgraph of X 1 and X 1 an induced subgraph of X: paq the dashed arrow
always exists, pbq the dashed arrow may exist or not, pcq an illustration of pbq where the dashed arrow
does not exist.

Actually, one can find graphs X, X 1 and X2 such that X2 Ă X 1 Ă X, X Œ1 X2, X Œ0 X 1 and X 1 is
not k-dismantlable to X2 for any integer k ě 0. To prove this, we introduce the Parasol graph:

Definition 13 (Parasol graph) The Parasol is the graph P with 15 vertices drawn in Fig. 5. From
P, we build a graph P`B1 by adding to P a vertex B1 linked to B1 and to the neighbours of B1 except
B3 and B6.

The neighbours of the vertices of P are as follows, for all i P t1, ¨ ¨ ¨ , nu:

• NPpBiq is isomorphic to C4 with two disjoint pendant edges attached to two consecutive vertices
of the cycle

• NPpAiq – C5

• NPpIq – C7

Consequently, DkpPq “ H for all positive integer k and:

Figure 5: (left) the parasol graph P and (right) the graph P`B1.

Proposition 14

(i) P R D8.

(ii) P`B1 Œ0 P.

(iii) P`B1 Œ1 pP`B1q ´B1 Œ1 pt.
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Proof : (i) P is not in D8 by application of Lemma 6 because each vertex has a neighbour which is
a cycle of length at least 5 or which is 0-dismantlable to a cycle of length 4.

(ii) As B1 $ B1 in P`B1, the vertex B1 is 0-dismantlable in P`B1 and P`B1 Œ0 P R D8.
(iii) It is easy to verify that the neighbourhood of B1 in P ` B1 is a 0-dismantlable graph; so,

B1 P D1pP`B
1q and P`B1 Œ1 pP`B1q ´B1. Then, following the increasing order of the indexes i,

all the Bi are successively 1-dismantlable with a path as neighbourhood. The remaining graph induced
by I and the vertices Ai is a cone and thus 0-dismantlable. ˝

This example shows that, for graphs in Dk with k ě 1, the dismantling order is crucial: it is possible to
reach (resp. quit) D8 just by adding (resp. removing) a 0-dismantlable vertex (Fig. 4, pcq).

The parasol graph is not in D8 but it is worth noting that the parasol graph is ws-dismantlable:

P Œws pt

Let us recall (cf. [6]) that ws-dismantbility allows not only 1-dismantlability of vertices but also of edges
(an edge ta, bu of a graph X is 1-dismantlable whenever NXpaq X NXpbq P D0)4. For example, in the
parasol graph, one can 1-delete the edge tB2, B7u and the remaining graph is 1-dismantlable (beginning
by B1). It is well known ([9, Lemma 3.4],[6, Lemma 1.6]) that the 1-dismantlability of an edge can be
obtained by the 0-addition of a vertex followed by the 1-deletion of another vertex. As an illustration,
the sequence

P 0Õ P`B1 Œ1 pP`B1q ´B1

can be seen as 1-deletions of the edges tB1, B6u and tB1, B3u.
Thanks to the switching property p:q which allows to switch 0-expansions and 1-dismantlabilities,

we get:
X ws-dismantlable ñ DW such that X 0Õ W Œ1 pt.

The question of which other graphs this property extends to is open. More precisely, while any graph
X for which there exists W such that X 0Õ W Œ1 pt has a contractible clique complex clpXq, the
reverse implication remains open: if X is a graph such that clpXq is contractible, does it exist W
such that X 0Õ W Œ1 pt ? The graphs DH (Fig. 6) and BH (Fig. 7 and [9, Fig. 3, Fig. 4]),
1-skeletons of triangulations of the Dunce Hat and the Bing’s House respectively, are interesting cases.
Indeed, clpDHq and clpBHq are known to be contractible but non collapsible and this implies that
both graphs are neither in D8 nor in the set of ws-dismantlable graphs. However:

Proposition 15 There exist two graphs WDH and WBH such that:

DH 0Õ WDH Œ1 pt and BH 0Õ WBH Œ1 pt

Proof : For both graphs, the process is the same and consists in successive 0-additions of vertices so
as to transform non-0-dismantlable neighbourhoods of some vertices into 0-dismantlable ones. For these
two graphs DH and BH, we will transform some cycles into wheels by 0-additions of vertices. Here we
give the sequence of 0-additions and 1-deletions only for the Dunce Hat and the details for the Bing’s
House are given in Appendix. With notations of Fig. 6, we do the following 0-additions and 1-deletions
with G0 “ DH:

1. Within NG0
p1q: 0-additions of vertices 11 and 12 linked to 1, 2, j, i, h and 1, 3, d, e, f respectively.

Note that 11 $ 1 and 12 $ 1. Now, since NDH`11`12p1q is made of two 4-wheels linked by a path,
so is a 0-dismantlable graph, we 1-delete vertex 1. Let us note G1 “ DH ` 11 ` 1”´ 1.

2. Within NG1
p2q: 0-addition of vertex 21 linked to 2, 11, h, 4, j and 1-deletion of vertex 2. Let us

note G2 “ G1 ` 21 ´ 2.

3. Within NG2
p3q: 0-addition of vertex 31 linked to 3, 12, d, 4, f and 1-deletion of vertex 3. Let us

note G3 “ G2 ` 31 ´ 3.

Now, observe that G3 P D1. Indeed,

4In [6], 1-dismantlable edge was called s-dismantlable.
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Figure 6: (left) The graph DH, the 1-skeleton of a triangulation of the Dunce Hat. (middle) (a),
(b), (c) and (d) are the neighbourhoods of vertices 1, 2, 3 and 4 in G0 “ DH, respectively. (right)
(a’) neighbourhood of vertex 1 in G0 ` 11 ` 12 (b’) neighbourhood of vertex 2 in G1 ` 21 with G1 “

G0 ` 11 ` 12 ´ 1 (c’) neighbourhood of vertex 3 in G2 ` 31 with G2 “ G1 ` 21 ´ 2 (d’) neighbourhood of
vertex 4 in G3 with G3 “ G2 ` 31 ´ 3.

4. Vertex 4 is in D1pG3q since its neighbourhood is the path bcd31fgh21jkl. Let us note G4 “ G3´4,
vertices 21 and 31 are in D1pG4q since NG4

p21q “ h11j and NG4
p31q “ d12f are disjoint 2-paths.

Let us note G5 “ G4 ´ 21 ´ 31, vertices 11 and 12 are in D1pG5q since NG5
p11q and NG5

p11q are
also disjoint 2-paths.

5. Now the resulting graph G5´11´12 is a 12-wheel centered in z. Like any cone, it is 0-dismantlable.

The switching property p:q finishes the proof and WDH “ DH ` 11 ` 12 ` 21 ` 31. ˝

Remark 16 The strategy used in the previous proof is based on the removal of the vertices 1, 2, 3 and 4
corresponding to the gluing data of the Dunce Hat in order to get the 0-dismantlable 12-wheel centered in
z. However, to get a 1-dismantlable graph, the 0-additions of vertices 11 and 12 are enough, as shown by
the 1-dismantling sequence 1, a, b, c, d, e, f, g, h, i, j, k, z, l, 11, 2, 4, 3, 12 of DH ` 11 ` 12 which alternates
0- and 1-dismantlings.

4.2 A link with graph derivability

In [19], Mazurkiewicz introduces the following notion of locally derivable graphs. For any family R of
non-empty graphs, 4pRq is the smallest family of graphs containing the point graph pt and such that

pX ´ x P 4pRq and NXpxq P Rq ñ X P 4pRq.

Graphs in 4pRq are called locally derivable by R. By definition, the graphs of 4pRq are non-empty
and connected graphs and 4 is monotone: R Ă R1 implies 4pRq Ă 4pR1q. By an inductive proof on
the cardinals of the vertex sets, it is easy to see that D0 “ 4pCq and more generally (recall that C is
also denoted D´1):

Proposition 17 For all k P N, Dk is locally derivable by Dk´1, i.e. 4pDk´1q “ Dk.

It is worth noting the following fact:

Proposition 18 D8 is the smallest fixed point of 4.
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Proof : Following the notations of [19] and given a family R of graphs, we denote by 4‹pRq the set
Ť

ně04npRq with the convention 40pRq “ tptu and 41pRq “ 4pRq. Let us note that, if F is a fixed
family by 4, then F “ 4‹pFq. Now, for any family R, the inclusion tptu Ă 4pRq and the monotony
of 4 imply 4‹ptptuq Ă 4‹pRq. Consequently, 4‹ptptuq is the smallest fixed point of 4 and we have to
prove that D8 “ 4‹ptptuq.

From Proposition 17, D8 “ 4‹pCq and 4‹ptptuq Ă D8. For the reverse inclusion, by induction
on n, observe that any cone with n vertices is in 4n´1ptptuq. Consequently, C Ă 4‹ptptuq and so
D8 “ 4‹pCq Ă 4‹ptptuq. ˝

In [19], the set D8 is denoted by F (and the elements of D8 “ F are called closed graphs) and the
author states that for any X P F , if x P V pXq with NXpxq P F , then X ´ x P F . The graph P`B1 is a
counter-example. Indeed, P R D8 while, by Proposition 14, P` B1 P D1 Ă D8 and NP`B1pB

1q P D8
because it is a cone with apex B1.

5 Vertex-transitive graphs, k-dismantlability and evasivity

The relation E defined on the set V pXq of vertices of a graph X by x E y ðñ NX rxs “ NX rys is an
equivalence relation whose equivalence classes are maximal sets of twin vertices. With notations of [26],
we denote by X‹ the graph obtained from this equivalence relation: V pX‹q is the set of equivalence
classes of E with adjacencies x‹ „ y‹ if, and only if, x „ y.

Proposition 19 [26, Lemma 6.4] Let X be a graph.

(i) There is a subgraph of X isomorphic to X‹.

(ii) pX‹q‹ “ X‹ (i.e., TwinspX‹q “ H).

(iii) X – X‹ if, and only if, x‹ “ txu for every vertex x of X.

(iv) If X – Y , then X‹ – Y‹.

The following lemma is easy to prove:

Lemma 20 X P D0 if, and only if, X‹ P D0.

We recall that a graph X is vertex-transitive if its automorphism group AutpXq acts transitively on
V pXq (i.e., for any vertices x, y, there is an automorphism ϕ of X such that ϕpxq “ y). In a vertex-
transitive graph, all vertices have isomorphic neighbourhoods and:

Lemma 21 Let X be a vertex-transitive graph.

(i) TwinspXq “ D0pXq.

(ii) X‹ is vertex-transitive.

(iii) Let x P X such that NX rxs is a clique, x‹ is equal to NX rxs and is a connected component of
X.

Proof : (i) The inclusion TwinspXq Ă D0pXq is obvious. Now, let a and b be two vertices with a $ b.
The inclusion NX ras Ă NX rbs becomes NX ras “ NX rbs in a vertex-transitive graph. This proves that a
and b are twin vertices and that D0pXq Ă TwinspXq.

(ii) This follows directly from the fact that every automorphism ϕ : X Ñ X induces an automorphism
ϕ‹ : X‹ Ñ X‹ defined by ϕ‹px‹q “ pϕpxqq‹ for every vertex x of X.

(iii) Since NX rxs is a clique of X, NX rxs Ă NX rys for any vertex y adjacent to x. So, by vertex
transitivity, NX rxs “ NX rys and x‹ “ NX rxs. Now, as NX rxs “ NX rys whenever y „ x, we get that
z „ y and y „ x implies z „ x for all vertices y and z and this proves that the connected component
containing x is equal to NX rxs. ˝

Proposition 22 If X is a 0-dismantlable and vertex-transitive graph, then X is a complete graph.

Proof : Let X be a 0-dismantlable and vertex-transitive graph. We prove that X is a complete
graph by induction on k “ |V pXq|. If |V pXq| “ 1, X – pt “ K1 and there is nothing to prove. Let
k ě 1 and let us suppose that any 0-dismantlable and vertex-transitive graph with at most k vertices
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is a complete graph. Let X be a 0-dismantlable and vertex-transitive graph with k ` 1 vertices. By
Lemma 21(ii), the graph X‹ is a vertex-transitive graph and, by Lemma 20, X‹ P D0. As X P D0

and |V pXq| ě 2, D0pXq ‰ H and, by Lemma 21(i), TwinspXq “ D0pXq ‰ H. So, |V pX‹q| ă |V pXq|
and, by induction hypothesis, X‹ is a complete graph. As TwinspX‹q “ H, by Proposition 19(ii), we
conclude that X‹ – pt and this proves that X is a complete graph. ˝

Given the equivalence between 0-dismantlability for graphs and strong collapsibility for clique complexes
(case k “ 0 of Proposition 4), Proposition 22 is nothing but [4, Corollary 6.6] in the restricted case of
flag complexes. But the proof given here doesn’t refer to the fixed points scheme and can be generalised
by introducing the notion of i-complete-transitive graphs. In what follows, if pv1, ¨ ¨ ¨ , vkq P V pXq

k, then
the subgraph of X induced by pv1, ¨ ¨ ¨ , vkq refers to Xrv1, ¨ ¨ ¨ , vks, the subgraph induced by tv1, ¨ ¨ ¨ , vku.

Definition 23 Given i ě 1, a graph X will be called i-complete-transitive if for all 1 ď k ď i and all
pairs

 

px1, ¨ ¨ ¨ , xkq, px
1
1, ¨ ¨ ¨ , x

1
kq
(

of k-tuples of pairwise distinct vertices inducing a complete subgraph of X, there exists f P AutpXq such
that fpxjq “ x1j for all j P t1, ¨ ¨ ¨ , ku.

The set of i-complete-transitive graphs contains the set of i-transitive graphs previously introduced in
[7, 20]. We note that 1-complete-transitive graphs are just vertex-transitive graphs and a 2-complete-
transitive graph is a vertex-transitive and arc-transitive graph. Complete-transitive graphs are a gener-
alisation of arc-transitive graphs but to complete subgraphs and not to paths, as are the i-arc-transitive
graphs [13]. Kneser graphs are examples of i-complete-transitive graphs for all integers i. We now have
the following generalisation of Proposition 22.

Proposition 24 Let X be a graph and k P N. If X P Dk and if X is pk ` 1q-complete-transitive, then
X is a complete graph.

Proof : We prove it by induction on k ě 0.
For k “ 0, the claimed assertion is given by Proposition 22.
Let k ě 0 and suppose that any k-dismantlable and pk ` 1q-complete-transitive graph is a complete

graph. Let X be a pk`1q-dismantlable and pk`2q-complete-transitive graph and x P Dk`1pXq. We will
verify that the k-dismantlable graph NXpxq is a pk` 1q-complete-transitive graph. Let tpx1, ¨ ¨ ¨ , xk`1q,
px11, ¨ ¨ ¨ , x

1
k`1qu be a pair of sets of vertices of cardinal k ` 1, each of them inducing a clique of NXpxq,

the pair of sets tpx, x1, ¨ ¨ ¨ , xk`1q, px, x
1
1, ¨ ¨ ¨ , x

1
k`1qu is of cardinal pk`2q, each of them inducing a clique

of X. By pk`2q-complete-transitivity of X, there exists f P AutpXq such that fpxq “ x and fpxiq “ x1i
for all i P t1, ¨ ¨ ¨ , k ` 1u. In particular, ϕ “ f|NXpxq verifies ϕ P AutpNXpxqq and fpxiq “ x1i for all
i P t1, ¨ ¨ ¨ , k ` 1u. So, NXpxq is a k-dismantlable and pk ` 1q-complete-transitive graph. By induction
hypothesis, NXpxq is a complete graph. As X is vertex-transitive, by Lemma 21(iii), it means that, for
any vertex x of X, the connected component of X containing x is a complete subgraph. Now, X is
connected since it is in D8 and so, X is a complete graph. ˝

Let us recall the notion of evasivity for simplicial complexes [5, 17]. One can present it as a game:
given a (known) simplicial complex K with vertex set V of cardinal n, through a series of questions,
a player has to determine if a given (unknown) subset A of V is a simplex of K. The only possible
questions for the player are, for every vertex x of V , xx is x in A ? yy. The complex K is called non-evasive
if, whatever is the chosen subset A of V , the player can determine if A is a simplex of K in at most
pn´ 1q questions. By restriction to flag complexes, we get the notion of non-evasiveness for graphs:

Definition 25 A graph X is called non-evasive if clpXq is a non-evasive simplicial complex.

In other terms, a graph X is called non-evasive if for any A Ă V pXq “ tx1, ¨ ¨ ¨ , xnu one can guess
if A is a complete subgraph of X in at most n ´ 1 questions of the form xx is x in A ? yy. In [4], the
authors note that a complex K is non-evasive if, and only if, there is an integer n such that K is n-
collapsible. The equivalence between k-dimantlability of graphs and k-collapsibility of flag complexes
(cf. Proposition 4) gives:

Proposition 26 A graph X is non-evasive if, and only if, X is in D8.
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The Evasiveness Conjecture for simplicial complexes states that every non-evasive vertex homogeneous
simplicial complex is a simplex [16]. Again, its restriction to clique complexes can be formulated in
terms of graphs:

Conjecture 1 (Evasiveness conjecture for graphs) Let X be a graph, if X is in D8 and vertex-
transitive, then X is a complete graph.

This formulation should not be confused with the evasiveness conjecture for monotone graph properties
[5, 16, 17]. Let’s note that Proposition 24 is a direct consequence of the conjecture, if that one is true.
Following a remark due to Lovász, Rivest and Vuillemin [24] pointed out that a positive answer to the
evasiveness conjecture implies that a finite vertex-transitive graph with a clique which intersects all its
maximal cliques is a complete graph. Actually, they prove that a graph with a clique which intersects
all its maximal cliques is non-evasive, i.e. is in D8 by Proposition 26. Remark 3.3 of [3] is another
formulation of this result. Indeed, the 1-skeletons of star clusters are exactly the graphs which contain
a clique intersecting all maximal cliques. Theorem 28 will give a stronger result.

We recall that if Y and Z are two subgraphs of a graph X, Y X Z will denote the subgraph
pV pY q X V pZq, EpY q X EpZqq and one says that Y intersects Z if V pY X Zq ‰ H.

Lemma 27 If X is a graph with a clique A which intersects all maximal cliques of X and x is in
V pXqzV pAq, then:

(i) A intersects all maximal cliques of X ´ x.
(ii) AXNXpxq is a complete graph which intersects all maximal cliques of NXpxq.

Proof :
(i) Let K be a maximal clique of X ´ x. If K is a maximal clique of X, then, by property of A,

KXA ‰ H. Otherwise, K`x is a maximal clique of X and, by property of A, pK`xqXA ‰ H. Since
x R A, it implies K XA ‰ H.
(ii) If K is a maximal clique in NXpxq, then K ` x is a maximal clique of X and, by property of A,
pK ` xq XA ‰ H. As x R A, K XA ‰ H and also K X

`

AXNXpxq
˘

‰ H since K Ă NXpxq. ˝

Theorem 28 Let X be a graph. If A is a clique which intersects all maximal cliques of X, then
X P Da´2 with a “ |V pAq| ě 1. Moreover, X Œa´2 A if |V pAq| ě 2.

Proof : Let X be a graph with n vertices and A a clique of X which intersects all maximal cliques of
X with a “ |V pAq| ě 1.

If a “ 1, then X is a cone whose apex is the vertex of A, that is X P D´1.
If a “ 2, let us denote by u and v the vertices of A. If x P V pXqzV pAq with x „ u and x  v, then

x is dominated by u. Indeed, let y „ x and K a maximal clique of X containing x and y, by property
of A “ tu, vu, either u P K or v P K. As v P K contradicts x  v, we conclude that u P K and u „ y.
In conclusion, a vertex not in V pAq is dominated by u or v or both together. So, X Œ0 A and X P D0.

Let us suppose that a ě 3, we will prove that X Œa´2 A by induction on n “ |V pXq| ě 3. For n “ 3,
we have X “ A and X is a complete graph. Now, suppose that the assertion of the theorem is true for
some n ě 3 and let us consider a graph X with n ` 1 vertices and a clique A which intersects all its
maximal cliques. If V pAq Ă NXpxq for every x P V pXqzV pAq, then every vertex of A is an apex of X and
X Œ0 A. If V pAq Ć NXpxq for some x P V pXqzV pAq, then |V pAq XNXpxq| ď a´ 1. By Lemma 27(ii),
AXNXpxq is a complete subgraph of NXpxq which intersects all its maximal cliques and, by induction
hypothesis applied to NXpxq, we get NXpxq Œa´3 AXNXpxq Œ0 pt as |AXNXpxq|´2 ď pa´1q´2 “ a´3.
This proves that x P Da´2pXq, that is X Œa´2 X ´ x. Moreover, by Lemma 27(i), the induction
hypothesis implies that X´x Œa´2 A. The composition X Œa´2 X´x Œa´2 A proves that X Œa´2 A.

Of course, we conclude that X P Da´2 because A Œ0 pt. ˝

6 Appendix: the Bing’s house

The graph BH (Fig. 7), given in [9] where it is denoted by Gb, is the 1-skeleton of the topological Bing’s
House, a space which is known to be contractible but non collapsible. In [9], the authors give an explicit
sequence of deformations of BH, by using additions and deletions of edges, in order to prove that the
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Figure 7: The graph BH, the 1-skeleton of a triangulation of the Bing’s House, given in [9].

Bing’s House is deformable to the simplicial complex reduced to a point by a sequence of expansions
or reductions (proving that the Bing’s House has the simple homotopy type of a point). We give here
a more precise result with the proof (Proposition 15 for the Bing’s House) of the existence of a graph
WBH such that:

BH 0Õ WBH Œ1 pt

Let be G0 “ BH, we do the following transformations (illustrated in Fig. 8):

1. Within NG0
pu1q: 0-additions of vertices u11 and u21 linked to u1, v1, u2, u7, v7 and u1, v1, u4, u5, v5

respectively. Note that u11 $ u1 and u21 $ u1. After that, since NG0`u11`u
2
1
pu1q is made of two

4-wheels glued in vertex v1, and thus is a 0-dismantlable graph, it is possible to 1-delete u1. Let
us note G1 “ G0 ` u

1
1 ` u

2
1 ´ u1.

2. Within NG1pv1q: 0-additions of vertices v11 and v21 , linked to v1, u
1
1, u2, v2, v7 and v1, u

2
1, u4, v4, v5

respectively, and 1-deletion of vertex v1. Let us note G2 “ G1 ` v
1
1 ` v

2
1 ´ v1.

3. WithinNG2
pw6q: 0-additions of vertices w16 and w26 , linked to w6, v6, v5, w5, w4 and w6, v6, w2, w7, v7

respectively, and 1-deletion of vertex w6. Let us note G3 “ G2 ` w
1
6 ` w

2
6 ´ w6.

4. Within NG3
pv6q: 0-additions of vertices v16 and v26 , linked to v6, w

1
6, v5, v4, w4 and v6, w

2
6 , w2, v2, v7

respectively, and 1-deletion of vertex v6. Let us note G4 “ G3 ` v
1
6 ` v

2
6 ´ v6.
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Now, observe that G4 P D1. Indeed (see Fig. 9):

5. Vertices v5 and v7 are in D1pG4q since their neighbourhoods are paths w1w5w
1
6v
1
6v4v

2
1u
2
1u5u6 and

u6u7u
1
1v
1
1v2v

2
6w

2
6w7w1 respectively. Let us note G5 “ G4 ´ v5 ´ v7.

6. The graph G5 is a planar triangulated graph which is 0-dismantlable with 22 successive 0-deletions.

The switching property p:q finishes the proof and WBH “ BH ` u11 ` u
2
1 ` v

1
1 ` v

2
1 `w

1
6 `w

2
6 ` v

1
6 ` v

2
6 .

Figure 8: Eight 0-additions and four 1-deletions of vertices. (left) Neighbourhoods in BH “ G0 of
vertices u1 paq, v1 pbq, w6 pcq and v6 pdq. (right) pa1q neighbourhood of vertex u1 in G0 ` u

1
1 ` u

2
1, pb1q

neighbourhood of vertex v1 in G1 ` v
1
1 ` v

2
1 with G1 “ G0 ` u

1
1 ` u

2
1 ´ u1, pc1q neighbourhood of vertex

w6 in G2 `w
1
6 `w

2
6 with G2 “ G1 ` v

1
1 ` v

2
1 ´ v1, pd1q neighbourhood of vertex v6 in G3 ` v

1
6 ` v

2
6 with

G3 “ G2 ` w
1
6 ` w

2
6 ´ w6
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Figure 9: The graph G4 obtained from BH by 0-addition of vertices u11, u21, v11, v21 , w16, w26 , v16, v26 and
1-deletion of vertices u1, v1, w6, v6 is 1-dismantlable. (left) Neighbourhoods in BH of vertices v5 paq
and v7 pbq, (center) Neighbourhoods in G4 of vertices v5 pa

1q and v7 pb
1q (right) The graph G4´ v5´ v7

is 0-dismantlable.
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