Etienne Fieux 
  
Bertrand Jouve 
  
A hierarchy of dismantlings in graphs

Keywords: dismantlability, flag complexes, collapses, evasiveness, graph derivability

Given a finite undirected graph X, a vertex is 0-dismantlable if its open neighbourhood is a cone and X is 0-dismantlable if it is reducible to a single vertex by successive deletions of 0-dismantlable vertices. By an iterative process, a vertex is pk `1q-dismantlable if its open neighbourhood is kdismantlable and a graph is k-dismantlable if it is reducible to a single vertex by successive deletions of k-dismantlable vertices. We introduce a graph family, the cubion graphs, in order to prove that k-dismantlabilities give a strict hierarchy in the class of graphs whose clique complex is non-evasive. We point out how these higher dismantlabilities are related to the derivability of graphs defined by Mazurkievicz and we get a new characterization of the class of closed graphs he defined. By generalising the notion of vertex transitivity, we consider the issue of higher dismantlabilities in link with the evasiveness conjecture.

Introduction

The transition from a graph to its clique complex is one of the many ways for associating a simplicial complex to a graph. Through the notion of dismantlability, it is possible to develop homotopic notions adapted to the framework of finite graphs. In this paper we will only discuss the dismantlability of vertices. The principle of dismantlability in graphs is to set a rule that indicates the possibility of adding or removing vertices and two graphs are in the same homotopy class if one can switch from one to the other by a succession of moves (a move being either a vertex addition, or a vertex deletion).

The 0-dismantlability is well known: a vertex x is 0-dismantlable if its open neighbourhood is a cone. This means there is a vertex y adjacent to x such that any neighbour of x is also a neighbour of y (we say that x is dominated by y) and we know that a graph is 0-dismantlable if, and only if, it is cop-win [START_REF] Quilliot | Problèmes de jeux, de point fixe, de connectivit et de reprsentation sur des graphes, des ensembles ordonns et des hypergraphes[END_REF][START_REF] Nowakowski | Vertex-to-vertex pursuit in a graph[END_REF]. From a simplicial point of view, the 0-dismantlability of a graph is equivalent to the strong-collapsibility of its clique complex [START_REF] Fieux | Foldings in graphs and relations with simplicial complexes and posets[END_REF]. Strong collapsibility is introduced by Barmak and Minian [START_REF] Barmak | Strong homotopy types, nerves and collapses[END_REF] who proved that the strong homotopy type of a simplicial complex can be described in terms of contiguity classes. Assuming that a vertex of a graph is 1-dismantlable if its neighbourhood is 0-dismantlable, we obtain 1-dismantlability for graphs and it is established in [START_REF] Boulet | Simplicial simple-homotopy of flag complexes in terms of graphs[END_REF] that two graphs X and Y have the same 1-homotopy type if, and only if, their clique complexes clpXq and clpY q have the same simple homotopy type.

The k-dismantlabilities for k ě 2 reproduce this recursive scheme to define increasingly large classes of graphs to which this paper is dedicated. In section 2, the main definitions concerning graphs and simplicial complexes are recalled with the fact (Proposition 4) that the k-dismantlability of a graph X is equivalent to the k-collapsibility of its clique complex clpXq. While the notions of 0-homotopy and 1-homotopy are very different, it should be noted that the contribution of the higher dismantlabilities is not so much at the homotopy level (Proposition 5) as at the level of dismantlability classes D k , where D k is the class of all k-dismantlable graphs. Section 3 is devoted to the presentation of a family of graphs pQ n q nPN (called cubion graphs) which shows that pD k q kPN is an increasing sequence of strict inclusions (Proposition 8):

@ n ě 2, Q n P D n´1 zD n´2 .

We also prove that the existence of a pk `1q-dismantlable and non k-dismantlable vertex implies the presence of a clique of cardinal at least k `3 (Proposition 11). In Section 4, the introduction of the parasol graph shows the very importance of the order in which vertex dismantlings are operated as soon as one leaves the class of 0-dismantlable graphs (Proposition 14). Setting D 8 " Ť kě0 D k and considering the 1-skeletons of triangulations of the Dunce Hat and the Bing's House, we explore the question of graphs not in D 8 but for which it is sufficient to add some 0-dismantlable vertices to get into D 8 . We note that D 8 is the smallest fixed point of the derivability operator of Mazurkiewicz [START_REF] Mazurkiewicz | Locally derivable graphs[END_REF]. The set of k-collapsible simplicial complexes with varying values of k in N is the set of non-evasive complexes [START_REF] Barmak | Strong homotopy types, nerves and collapses[END_REF]. Therefore, the elements of D 8 will be called non-evasive. So, the question of whether a k-dismantlable and vertex-transitive graph is necessarily a complete graph is a particular case of the evasiveness conjecture for simplicial complexes, according to which every vertex homogeneous and non-evasive simplicial complex is a simplex. In the final section, we introduce the notion of i-completetransitive graph to establish a particular case for which the conjecture is valid.

The study of simplicial complexes appears today in a very wide spectrum of research and applications [START_REF] Carlsson | Topology and data[END_REF][START_REF] Ghrist | Elementary Applied Topology[END_REF][START_REF] Salnikov | Simplicial complexes and complex systems[END_REF]. Very often, these complexes are constructed from finite data to obtain information on their structure, for instance by the calculus of Betti numbers or homotopy groups. It should be mentioned that the notion of clique complexes (also called flag complexes [START_REF] Kozlov | Combinatorial algebraic topology[END_REF]) seems rather general from the homotopic point of view since the barycentric subdivision of any complex is a flag complex (and the 1-homotopy type of a complex and of its barycentric subdivision are the same [START_REF] Boulet | Simplicial simple-homotopy of flag complexes in terms of graphs[END_REF]). From this point of view, the notion of higher dismantlabilities is a contribution to the study of homotopic invariants for simplicial complexes associated to finite data. From another point of view, the notion of higher dismantlabilities extends the list of graph families built by adding or removing nodes with the condition that the neighbourhoods of these nodes check certain properties. The first example is probably the family of finite chordal graphs which is exactly the family of graphs constructed by adding simplicial vertices (i.e. whose neighbourhoods are complete graphs) from the point. They can also be characterized as graphs that can be reduced to a point by a succession of simplicial vertex deletions [START_REF] Dirac | On rigid circuit graphs[END_REF]. Bridged graphs [START_REF] Anstee | On bridged graphs and cop-win graphs[END_REF] and cop-win graphs [START_REF] Quilliot | Problèmes de jeux, de point fixe, de connectivit et de reprsentation sur des graphes, des ensembles ordonns et des hypergraphes[END_REF][START_REF] Nowakowski | Vertex-to-vertex pursuit in a graph[END_REF] are two other examples of graph families that can be iteratively constructed respecting a condition on the neighbourhood of the node added at each step. From the perspective of Topological Data Analysis (TDA), it is worthwhile to identify to what extent a topological structure depends on local constraints. In a complex network for instance, the global topological structure can sometimes be highly explained by local interaction configurations. When they verify certain properties, these local constraints generate a global structure that deviates from classical null models and can thus explain particular global phenomena. Understanding these multi-scale links between local and global structures is now becoming a key element in the modelling of complex networks. Perhaps the best known model is Barabasi's preferential attachment [START_REF] Barabási | Emergence of scaling in random networks[END_REF] where the attachment of a new node to the network is done preferentially by the nodes of higher degrees. Other examples are hierarchical models obtained for example by a local attachment of each node to a subset of nodes of a maximal clique [START_REF] Ravasz | Hierarchical organization in complex networks[END_REF]. These local-global concerns are in line with older issues, but still up-to-date, raised in the context of local computation [START_REF] Rosenstiehl | Intelligent graphs[END_REF][START_REF] Godard | Characterizations of Classes of Graphs Recognizable by Local Computations[END_REF][START_REF] Litovsky | Graph relabelling systems and distributed algorithms[END_REF]. So, from an application point of view, the notion of higher dismantlablities could enrich the range of tools available in all these fields.

Notations and first definitions 2.1 Graphs

In the following, X " pV pXq, EpXqq is a finite undirected graph, without multiple edges or loops. The cardinal |V pXq| is equal to the number of vertices of X, at least equal to 1. We denote by N (resp. N ‹ ) the set of integers t0, 1, 2, ¨¨¨u (resp. t1, 2, ¨¨¨u).

We write x " y, or sometimes just xy, for tx, yu P EpXq and x P X to indicate that x P V pXq. The closed neighbourhood of x is N X rxs " ty P X , x " yu Y txu and N X pxq " N X rxsztxu is its open neighbourhood. When no confusion is possible, N X rxs will also denote the subgraph induced by N X rxs in X. Let S " tx 1 , ¨¨¨, x n u be a subset of V pXq, we denote by XrSs or Xrx 1 , ¨¨¨, x n s the subgraph induced by S in X. The particular case where S " V pXqztxu will be denoted by X ´x. In the same way, the notation X `y means that we have added a new vertex y to the graph X and the context must make clear the neighbourhood of y in X `y. A clique of a graph X is a complete subgraph of X. A maximal clique K of X is a clique so that there is no vertex in V pXqzV pKq adjacent to each vertex of K. For n ě 1, the complete graph (resp. cycle) with n vertices is denoted by K n (resp. C n ). The graph K 1 with one vertex will be called point and sometimes noted pt. The complement X of a graph X has the same vertices as X and two distinct vertices of X are adjacent if and only if they are not adjacent in X.

The existence of an isomorphism between two graphs is denoted by X -Y . We say that a graph X is a cone with apex x if N X rxs " X. A vertex a dominates a vertex x ‰ a in X if N X rxs Ă N X ras and we note x $ a. Note that a vertex is dominated if, and only if, its open neighbourhood is a cone. Two distinct vertices x and y are twins if N X rxs " N X rys. We will denote by TwinspXq the set of twin vertices of X.

In a finite undirected graph X, a vertex is 0-dismantlable if it is dominated and X is 0-dismantlable if it exists an order x 1 , ¨¨¨, x n of the vertices of X such that x k is 0-dismantlable in Xrx k , x k`1 , ¨¨¨, x n s for 1 ď k ď n ´1. In [START_REF] Boulet | Simplicial simple-homotopy of flag complexes in terms of graphs[END_REF], we have defined a weaker version of dismantlability. A vertex x of X is 1-dismantlable 3 if its open neighbourhood N X pxq is a 0-dismantlable graph.

Generalising the passage from 0-dismantlability to 1´dismantlability, the higher dismantlabilities in graphs are defined iteratively by: Definition 1

' The family C of cones (or conical graphs) is also denoted by D ´1 and we will say that the cones are the graphs which are p´1q-dismantlable.

' For any integer k ě 0, a vertex of a graph X is called k-dismantlable if its open neighbourhood is pk ´1q-dismantlable. The graph X is k-dismantlable if it is reducible to a vertex by successive deletions of k-dismantlable vertices. We denote by D k pXq the set of k-dismantlable vertices of a graph X and by D k the set of k´dismantlable graphs.

A cone is a 0-dismantlable graph, that is D ´1 Ă D 0 , and by induction on k, we immediately get:

Proposition 2 @k P N, D k´1 Ă D k .
If x P D k pXq, we will say that the graph X ´x is obtained from the graph X by the k-deletion of the vertex x and that the graph X is obtained from the graph X ´x by the k-addition of the vertex x. We write X OE k Y or Y k Õ X when X is k-dismantlable to a subgraph Y , i.e.:

X OE k X ´x1 OE k X ´x1 ´x2 OE k ¨¨¨OE k X ´x1 ´x2 ´¨¨¨´x r " Y
with x i P D k pX ´x1 ´x2 ´¨¨¨´x i´1 q. The sequence x 1 , ¨¨¨, x r is called a k-dismantling sequence. The notation X OE k pt signifies that X P D k . A graph X is k-stiff when D k pXq " H. We denote by D 8 " Ť kě0 D k the family of graphs which are k-dismantlable for some integer k ě 0. Cycles of length greater or equal to 4 and non-connected graphs are two examples of graphs which are not in D 8 . Finally, we write rXs k " rY s k when it is possible to go from X to Y by a succession of additions or deletions of k-dismantlable vertices. Note that rXs k is an equivalence class. Two graphs X and Y such that rXs k " rY s k will be said k-homotopic 3 . We note that for any integers k ě 0 and k 1 ě 0, any graph X, any vertex x of X and any vertex y not in X, we have the following switching property:

p:q if X OE k X ´x k 1 Õ pX ´xq `y then X k 1 Õ X `y OE k pX `yq ´x.
Actually, since x  y, this property results from N X pxq " N X`y pxq and N X`y´x pyq " N X`y pyq. In particular, this implies that two graphs X and Y are k-homotopic if, and only if, there exists a graph W such that X k Õ W OE k Y . Nevertheless, the notion of k-homotopy classes is not so relevant (see Proposition 5).

Remark 3 Let us also note that the reverse implication of p:q is false (see. Fig. 1 for a counterexample).

Simplicial complexes

For general facts and references on simplicial complexes, see [START_REF] Kozlov | Combinatorial algebraic topology[END_REF]. We recall that a finite abstract simplicial complex K is given by a finite set of vertices V pKq and a collection of subsets ΣpKq of V pKq stable by deletion of elements: if σ P ΣpKq and σ 1 Ă σ, then σ 1 P ΣpKq. The elements of ΣpKq are the simplices of K. If σ is a simplex of cardinal k ě 1, then its dimension is k ´1 and the dimension of K is the maximum dimension of a simplex of K. The j-skeleton of K consists of all simplices of dimension j or less.

Let us recall that for a simplex σ of a finite simplicial complex K, link K pσq " tτ P K , σ X τ " H and σ Y τ P Ku is a sub-complex of K and star 0 K pσq " tτ P K , σ Ă τ u is generally not a sub-complex of K. If τ and σ are two simplices of K, we say that τ is a face (resp. a proper face) of σ if τ Ă σ (resp. τ Ĺ σ). An elementary simplicial collapse is the suppression of a pair of simplices pσ, τ q such that τ is a proper maximal face of σ and τ is not the face of another simplex (one says that τ is a free face of K). We denote by K ´x the sub-complex of K induced by the vertices distinct from x. As defined in [START_REF] Barmak | Strong homotopy types, nerves and collapses[END_REF], an elementary strong collapse (or 0-collapse) in K is a suppression of a vertex x such that link K pxq is a simplicial cone. There is a strong collapse from K to L if there exists a sequence of elementary strong collapses that changes K into L; in that case we also say that K 0-collapses to L. A simplicial complex is 0-collapsible or strong collapsible if it 0-collapses to a point. By induction, for any integer k ě 1, a vertex of K is k-collapsible if link K pxq is pk ´1q-collapsible. There is a k-collapse from K to L if there exists a sequence of elementary k-collapses that changes K into L and, in that case, both complexes have the same simple homotopy type. A simplicial complex is k-collapsible if it k-collapses to a point.

Let also recall that a simplicial complex is non-evasive if it is k-collapsible for some k ě 0 [4, Definiton 5.3]. A not non-evasive complex is called evasive.

When considering graphs, simplicial complexes arise naturally by the way of flag complexes. For any graph X, we denote by clpXq the abstract simplicial complex such that V pclpXqq " V pXq and whose simplices are the subsets of V pXq which induce a clique of X. The simplicial complex clpXq is called the clique complex of X and clique complexes are also called flag complexes [START_REF] Kozlov | Combinatorial algebraic topology[END_REF]. A flag complex K is completely determined by its 1-skeleton (in other words, every flag complex is the clique complex of its 1-skeleton) and a simplicial complex K is a flag complex if, and only if, its minimal non-simplices are of cardinal 2. Remind that a non-simplex of K is a subset of V pKq which is not a simplex of K and so a non-simplex σ Ă V pKq is minimal if all proper subsets of σ are simplices of K.

Given a vertex x of a graph X, by definition we have link clpXq pxq " clpN X pxqq. So, it is easy to observe that a graph X is in D 0 if and only if clpXq is 0-collapsible [11, Theorem 4.1] and more generally:

Proposition 4 For all integer k ě 0, X P D k if, and only if, clpXq is k-collapsible.

So, by Proposition 4, the set of non-evasive flag complexes is in one to one correspondence with D 8 . Before closing this section, it is important to note that since k-collapses don't change the simple homotopy type:

Proposition 5 For all integer k ě 1, rXs 1 " rXs k .

Proof : Of course, a graph 1-homotopic to X is also k-homotopic to X. Now, let Y be a graph khomotopic to X. The clique complexes clpXq and clpY q have the same simple simplicial homotopy type and, by [START_REF] Boulet | Simplicial simple-homotopy of flag complexes in terms of graphs[END_REF]Theorem 2.10] where rXs 1 is denoted by rXs s and clpXq is denoted by ∆pXq, this implies rXs 1 " rY s 1 . In particular, Y is 1-homotopic to X and, finally, rXs 1 " rXs k .

3

A hierarchy of families From Proposition 4, we know that if a graph X is k-dismantlable for some k, then clpXq is a non-evasive simplicial complex. It is also known [START_REF] Björner | Topological methods, Handbook of combinatorics[END_REF][START_REF] Kozlov | Combinatorial algebraic topology[END_REF] that non-evasive simplicial complexes are collapsible and, a fortiori, contractible in the usual topological sense when the simplicial complex is considered as a topological space by the way of some geometrical realisation. In particular, this means that a graph whose clique complex is not contractible cannot be k-dismantlable whatever is the integer k:

Lemma 6 Given X 0 Ă X and X OE k X 0 for k ě 0, if clpX 0 q is non-contractible, so is clpXq and X R D 8 .

Let us now show that the inclusions in Proposition 2 are strict.

Definition 7 [n-Cubion] @n P N, the n-Cubion is the graph Q n with vertex set V pQ n q " tα i, , i " 1, ¨¨¨, n and " 0, 1u Y tx " px 1 , ¨¨¨, x n q, x i " 0, 1u and edge set EpQ n q defined by: ' @i ‰ j, @ , 1 P t0, 1u,

α i, " α j, 1 ' @x ‰ x 1 , x " x 1 ' @i, α i,1 " px 1 , ¨¨¨, x i´1 , 1, x i`1 , ¨¨¨, x n q and α i,0 " px 1 , ¨¨¨, x i´1 , 0, x i`1 , ¨¨¨, x n q
The n-Cubion has 2 n `2n vertices partitioned into two sets such that:

Q n rα 1,0 , α 1,1 , ¨¨¨, α n,0 , α n,1 s -nK 2 and Q n rx, x P t0, 1u n s -K 2 n .
The n-cubion is built from the n-hypercube with vertices the n-tuples x " px 1 , ¨¨¨, x n q P t0, 1u n , each one connected to all the others, by adding 2n vertices α i, which induce an n-octahedron nK 2 and each α i, is the apex of a cone whose base is the pn ´1q-face of the hypercube given by x i " . This definition gives an iterative process to construct Q n`1 from Q n . One sees that Q 1 -P 4 the path of length 3 and, clearly,

Q 1 P D 0 zD ´1. The cubion Q 2 represented in Fig. 2 is in D 1 zD 0 . Indeed, D 0 pQ 2 q " H but Q 2 OE 1 Q 2 ´α1,0 and Q 2 ´α1,0 P D 0 .
More generally, we get:

Proposition 8 @n ě 2, Q n P D n´1 zD n´2 . Proof :
1. Let us first prove that for any i, and x, N Qn pα i, q -Q n´1 and N Qn pxq OE 0 nK 2 .

' N Qn pα i, q -Q n´1 : on one hand, given i and , the vertex α i, is linked to all the α j, 1 except when i " j. Thus, N Qnrα1,0,α1,1,¨¨¨,αn,0,αn,1s pα i, q -pn ´1qK 2 . On the other hand, within the set of the n-tuples x " px 1 , ¨¨¨, x n q, α i, " px 1 , ¨¨¨, x i´1 , , x i`1 , ¨¨¨, x n q. These 2 n´1 vertices x whose i th entry is fixed and equal to are all linked together and thereby induce a subgraph isomorphic to K 2 n´1 in Q n . The edges between pn ´1qK 2 and K 2 n´1 are inherited from Q n and thus N Qn pα i, q -Q n´1 . ' N Qn pxq OE 0 nK 2 : among all the α i, the vertex x " px 1 , ¨¨¨, x n q is linked exactly to the n vertices α 1,x1 , ¨¨¨, α n,xn . Let X " N Qn pxqztα 1,x1 , α 2,x2 , ¨¨¨, α n,xn u, a partition of X is given by X 0 Y X 1 Y ¨¨¨Y X n´1 with X k " ty P X, y is linked to exactly k vertices α i,xi u. Clearly X i has `n i ˘elements. For example, we have X 0 " tp1 ´x1 , 1 ´x2 , ¨¨¨, 1 ´xn´1 , 1 ´xn qu and X n´1 " t xi , i " 1, ¨¨¨, nu with xi " px 1 , x 2 , ¨¨¨, x i´1 , 1 ´xi , x i`1 , ¨¨¨, x n´1 , x n q. For any y P XzX n´1 , there exist i ‰ j, such that y i " 1 ´xi and y j " 1 ´xj . Hence, y is dominated by xi and xj both in N Qn pxq. By successive 0-dismantlings of the vertices y, we obtain N Qn pxq OE 0 X n´1 Y tα 1,x1 , α 2,x2 , ¨¨¨, α n,xn u. Finally, just notice that, between the vertices of X n´1 Y tα 1,x1 , α 2,x2 , ¨¨¨, α n,xn u, all the possible edges exist except the xi α i,xi and thus

X n´1 Y tα 1,x1 , α 2,x2 , ¨¨¨, α n,xn u -nK 2 .
2. By induction on n, Q n´1 P D n´2 zD n´3 and as we have proven that N Qn pα i, q -Q n´1 , α i, P D n´1 pQ n qzD n´2 pQ n q. Moreover, since the simplicial complex clpnK 2 q is non-contractible because it is a triangulation of the sphere S n´1 , Lemma 6 implies N Qn pxq R D 8 and thus x R D n´2 pQ n q. Therefore D n´2 pQ n q " H and

Q n R D n´2 . Now, Q n OE n´1 Q n ´tα n,0 , α n,1 u
since α n,0 and α n,1 are pn´1q-dismantlable and not linked. In Q n ´tα n,0 , α n,1 u, note that px 1 , ¨¨¨, x n´1 , 0q and px 1 , ¨¨¨, x n´1 , 1q are twins and therefore

Q n ´tα n,0 , α n,1 u OE 0 Q n ´ α n,0 , α n,1 , px 1 , ¨¨¨, x n´1 , 0q; px 1 , ¨¨¨, x n´1 q P t0, 1u n´1 ( -Q n´1 .
By induction hypothesis,

Q n´1 P D n´2 Ă D n´1 . Finally, Q n P D n´1
. Propositions 2 and 8 now give the following theorem:

Theorem 9 The sequence pD k q kě0 is strictly increasing:

D ´1 Ĺ D 0 Ĺ D 1 Ĺ D 2 Ĺ ¨¨¨Ĺ D k Ĺ D k`1 Ĺ ¨¨T
here are no graphs with fewer vertices than Q 1 in D 0 zD ´1. One can verify the same result for Q 2 in D 1 zD 0 , but there are graphs in D 1 zD 0 with fewer edges.

Critical k-dismantlability

Let's complete this section with results on graphs in D k zD k´1 with k ě 1. Such a graph X does not always have a vertex in D k pXqzD k´1 pXq. Indeed, by duplicating each vertex of a graph in D k zD k´1 with a twin, we get a new graph also in D k zD k´1 in which each vertex is 0-dismantlable and, so, is not in D k pXqzD k´1 pXq. However we have the following result:

Lemma 10 Given k P N ‹ and X P D k zD k´1 , there exists x P V pXq and Y an induced subgraph of X such that x P D k pY qzD k´1 pY q.

Proof : Set V pXq " tx 1 , ¨¨¨, x n u and suppose that x 1 , ¨¨¨, x n´1 is a k-dismantling sequence from X to the point x n . By definition, @i P t1, ¨¨¨, n ´1u, x i P D k pXrx i , x i`1 , ¨¨¨, x n sq. Since X R D k´1 , the sequence x 1 , ¨¨¨, x n´1 is not a pk ´1q-dismantling sequence of X. Therefore, there exists i 0 P t1, ¨¨¨, n ´1u such that x i0 R D k´1 pXrx i0 , x i0`1 , ¨¨¨, x n sq, i.e. x i0 P D k pY qzD k´1 pY q where Y " Xrx i0 , x i0`1 , ¨¨¨, x n s. We remark that any connected graph with at most three vertices contains at least one apex and therefore any X P D 0 zD ´1 has at least four vertices. We recall that the clique number ωpXq of a graph X is the maximum number of vertices of a clique of X.

Proposition 11 Given k P N ‹ , if D k pXqzD k´1 pXq ‰ H, then ωpXq ě k `2. Moreover, if x P D k pXqzD k´1 pXq, there is a clique with k `2 vertices and containing x.

Proof : The proof is by induction on k.

For k " 1, if there exists x 2 P D 1 pXqzD 0 pXq, then N X px 2 q P D 0 zC. Since N X px 2 q is not a cone but is 0-dismantlable, it contains an edge, so X contains a triangle. Now, let X be a graph such that D k`1 pXqzD k pXq ‰ H and denote by x k`2 a vertex such that N X px k`2 q P D k zD k´1 . From Lemma 10, there exists x k`1 P V pN X px k`2 qq and Y an induced subgraph of N X px k`2 q such that x k`1 P D k pY qzD k´1 pY q. The induction hypothesis applied to Y gives that Y contains an induced subgraph K -K k`2 . As Y Ă N X px k`2 q, K `xk`2 is a complete subgraph of X with k `3 vertices.

And it follows from this proof that any vertex in D k pXqzD k´1 pXq is in a clique of X of cardinal k `2.

A direct consequence of Lemma 10 and Proposition 11 is:

Corollary 12 (i) Given k P N, if X P D k zD k´1 , then ωpXq ě k `2.
(ii) If X P D 8 and |V pxq| " n, then X P D n´2 .

Thus, if a graph of D 8 contains no triangle, it is in D 0 and it is not hard to prove by induction that a 0-dismantlable graph without a triangle is a tree. So, the only graphs of D 8 without a triangle are the trees. A more directed proof of this fact is obtained by considering the clique complexes. Indeed, if a graph X is triangle-free, then cl(X) is a 1-dimensional complex, and if X is in D 8 , Proposition 4 implies that cl(X) is k-collapsible. Thus, cl(X) has to be a tree and so is X.

4 Some results on D 8

Order in dismantlabilities

For 0-dismantlability, the order of dismantlings does not matter and therefore the 0-stiff graphs to which a graph X is 0-dismantlable are isomorphic ([11, Proposition 2.3], [15, Proposition 2.60]). This property is no longer true for k-dismantlability with k ě 1. The graph X of Fig. 3 gives a simple example of a graph that is 1-dismantlable either to C 4 , or to C 5 (depending on the choice and order of the vertices to 1-dismantlable) which are non-isomorphic 1-stiff graphs. 

3: X OE 1 X ´a ´b -C 4 and X OE 1 X ´x -C 5
Actually, there is an important gap between 0-dismantlability and k-dismantlability with k ě 1. We have already noted in Proposition 5 that, for any graph X and any k ě 1, rXs k " rXs 1 while the inclusion rXs 0 Ă rXs 1 of homotopy classes is strict:

• rC 4 s 0 ‰ rC 5 s 0 because the cycles C 4 and C 5 are non isomorphic 0-stiff graphs.

• rC 4 s 1 " rC 5 s 1 as it is shown by graph X in Fig. 3.

A major fact concerning the difference between 0-dismantlability and k-dismantlability for k ě 1 is that ([11, Corollary 2.1]) pX OE 0 X 2 , X OE 0 X 1 and X 2 Ă X 1 q ùñ X 1 OE 0 X 2 while, for k ě 1, in general (cf. Fig. 4, pbq and pcq): Actually, one can find graphs X, X 1 and X 2 such that X 2 Ă X 1 Ă X, X OE 1 X 2 , X OE 0 X 1 and X 1 is not k-dismantlable to X 2 for any integer k ě 0. To prove this, we introduce the Parasol graph:

pX OE k X 2 , X OE 0 X 1 and X 2 Ă X 1 q ä ùñ X 1 OE k X 2 .
Definition 13 (Parasol graph) The Parasol is the graph P with 15 vertices drawn in Fig. 5. From P, we build a graph P `B1 by adding to P a vertex B 1 linked to B 1 and to the neighbours of B 1 except B 3 and B 6 .

The neighbours of the vertices of P are as follows, for all i P t1, ¨¨¨, nu:

• N P pB i q is isomorphic to C 4 with two disjoint pendant edges attached to two consecutive vertices of the cycle

• N P pA i q -C 5 • N P pIq -C 7
Consequently, D k pPq " H for all positive integer k and: (ii) P `B1 OE 0 P.

(iii) P `B1 OE 1 pP `B1 q ´B1 OE 1 pt.

Proof : (i) P is not in D 8 by application of Lemma 6 because each vertex has a neighbour which is a cycle of length at least 5 or which is 0-dismantlable to a cycle of length 4.

(ii) As B 1 $ B 1 in P `B1 , the vertex B 1 is 0-dismantlable in P `B1 and P `B1 OE 0 P R D 8 .

(iii) It is easy to verify that the neighbourhood of B 1 in P `B1 is a 0-dismantlable graph; so, B 1 P D 1 pP `B1 q and P `B1 OE 1 pP `B1 q ´B1 . Then, following the increasing order of the indexes i, all the B i are successively 1-dismantlable with a path as neighbourhood. The remaining graph induced by I and the vertices A i is a cone and thus 0-dismantlable. This example shows that, for graphs in D k with k ě 1, the dismantling order is crucial: it is possible to reach (resp. quit) D 8 just by adding (resp. removing) a 0-dismantlable vertex (Fig. 4, pcq).

The parasol graph is not in D 8 but it is worth noting that the parasol graph is ws-dismantlable:

P OE ws pt
Let us recall (cf. [START_REF] Boulet | Simplicial simple-homotopy of flag complexes in terms of graphs[END_REF]) that ws-dismantbility allows not only 1-dismantlability of vertices but also of edges (an edge ta, bu of a graph X is 1-dismantlable whenever N X paq X N X pbq P D 0 ) 4 . For example, in the parasol graph, one can 1-delete the edge tB 2 , B 7 u and the remaining graph is 1-dismantlable (beginning by B 1 ). It is well known ([9, Lemma 3.4],[6, Lemma 1.6]) that the 1-dismantlability of an edge can be obtained by the 0-addition of a vertex followed by the 1-deletion of another vertex. As an illustration, the sequence P 0 Õ P `B1 OE 1 pP `B1 q ´B1 can be seen as 1-deletions of the edges tB 1 , B 6 u and tB 1 , B 3 u. Thanks to the switching property p:q which allows to switch 0-expansions and 1-dismantlabilities, we get:

X ws-dismantlable ñ DW such that X 0 Õ W OE 1 pt.
The question of which other graphs this property extends to is open. More precisely, while any graph X for which there exists W such that X 0 Õ W OE 1 pt has a contractible clique complex clpXq, the reverse implication remains open: if X is a graph such that clpXq is contractible, does it exist W such that X 0 Õ W OE 1 pt ? The graphs DH (Fig. 6) and BH (Fig. 7 and [9, Fig. 3, Fig. 4]), 1-skeletons of triangulations of the Dunce Hat and the Bing's House respectively, are interesting cases. Indeed, clpDHq and clpBHq are known to be contractible but non collapsible and this implies that both graphs are neither in D 8 nor in the set of ws-dismantlable graphs. However:

Proposition 15 There exist two graphs W DH and W BH such that:

DH 0 Õ W DH OE 1 pt and BH 0 Õ W BH OE 1 pt
Proof : For both graphs, the process is the same and consists in successive 0-additions of vertices so as to transform non-0-dismantlable neighbourhoods of some vertices into 0-dismantlable ones. For these two graphs DH and BH, we will transform some cycles into wheels by 0-additions of vertices. Here we give the sequence of 0-additions and 1-deletions only for the Dunce Hat and the details for the Bing's House are given in Appendix. With notations of Fig. 6, we do the following 0-additions and 1-deletions with G 0 " DH:

1. Within N G0 p1q: 0-additions of vertices 1 1 and 12 linked to 1, 2, j, i, h and 1, 3, d, e, f respectively. Note that 1 1 $ 1 and 1 2 $ 1. Now, since N DH`1 1 `12 p1q is made of two 4-wheels linked by a path, so is a 0-dismantlable graph, we 1-delete vertex 1. Let us note G 1 " DH `11 `1" ´1. 

) neighbourhood of vertex 2 in G 1 `21 with G 1 " G 0 `11 `12 ´1 (c') neighbourhood of vertex 3 in G 2 `31 with G 2 " G 1 `21 ´2 (d') neighbourhood of vertex 4 in G 3 with G 3 " G 2 `31 ´3.
4. Vertex 4 is in D 1 pG 3 q since its neighbourhood is the path bcd3 1 f gh2 1 jkl. Let us note G 4 " G 3 ´4, vertices 2 1 and 3 1 are in D 1 pG 4 q since N G4 p2 1 q " h1 1 j and N G4 p3 1 q " d1 2 f are disjoint 2-paths. Let us note G 5 " G 4 ´21 ´31 , vertices 1 1 and 1 2 are in D 1 pG 5 q since N G5 p1 1 q and N G5 p1 1 q are also disjoint 2-paths.

Now the resulting graph G 5

´11 ´12 is a 12-wheel centered in z. Like any cone, it is 0-dismantlable.

The switching property p:q finishes the proof and W DH " DH `11 `12 `21 `31 . Remark

16 The strategy used in the previous proof is based on the removal of the vertices 1, 2, 3 and 4 corresponding to the gluing data of the Dunce Hat in order to get the 0-dismantlable 12-wheel centered in z. However, to get a 1-dismantlable graph, the 0-additions of vertices 1 1 and 1 2 are enough, as shown by the 1-dismantling sequence 1, a, b, c, d, e, f, g, h, i, j, k, z, l, 1 1 , 2, 4, 3, 1 2 of DH `11 `12 which alternates 0-and 1-dismantlings.

A link with graph derivability

In [START_REF] Mazurkiewicz | Locally derivable graphs[END_REF], Mazurkiewicz introduces the following notion of locally derivable graphs. For any family R of non-empty graphs, pRq is the smallest family of graphs containing the point graph pt and such that pX ´x P pRq and N X pxq P Rq ñ X P pRq.

Graphs in pRq are called locally derivable by R. By definition, the graphs of pRq are non-empty and connected graphs and is monotone: R Ă R 1 implies pRq Ă pR 1 q. By an inductive proof on the cardinals of the vertex sets, it is easy to see that D 0 " pCq and more generally (recall that C is also denoted D ´1):

Proposition 17 For all k P N, D k is locally derivable by D k´1 , i.e. pD k´1 q " D k .

It is worth noting the following fact:

Proposition 18 D 8 is the smallest fixed point of . is a complete graph. Let X be a 0-dismantlable and vertex-transitive graph with k `1 vertices. By Lemma 21(ii), the graph X ‹ is a vertex-transitive graph and, by Lemma 20, X ‹ P D 0 . As X P D 0 and |V pXq| ě 2, D 0 pXq ‰ H and, by Lemma 21(i), TwinspXq " D 0 pXq ‰ H. So, |V pX ‹ q| ă |V pXq| and, by induction hypothesis, X ‹ is a complete graph. As TwinspX ‹ q " H, by Proposition 19(ii), we conclude that X ‹ -pt and this proves that X is a complete graph.

Given the equivalence between 0-dismantlability for graphs and strong collapsibility for clique complexes (case k " 0 of Proposition 4), Proposition 22 is nothing but [START_REF] Barmak | Strong homotopy types, nerves and collapses[END_REF]Corollary 6.6] in the restricted case of flag complexes. But the proof given here doesn't refer to the fixed points scheme and can be generalised by introducing the notion of i-complete-transitive graphs. In what follows, if pv 1 , ¨¨¨, v k q P V pXq k , then the subgraph of X induced by pv 1 , ¨¨¨, v k q refers to Xrv 1 , ¨¨¨, v k s, the subgraph induced by tv 1 , ¨¨¨, v k u.

Definition 23 Given i ě 1, a graph X will be called i-complete-transitive if for all 1 ď k ď i and all pairs px 1 , ¨¨¨, x k q, px 1 1 , ¨¨¨, x 1 k q ( of k-tuples of pairwise distinct vertices inducing a complete subgraph of X, there exists f P AutpXq such that f px j q " x 1 j for all j P t1, ¨¨¨, ku.

The set of i-complete-transitive graphs contains the set of i-transitive graphs previously introduced in [START_REF] Cameron | 6-transitive graphs[END_REF][START_REF] Meredith | Triple transitive graphs[END_REF]. We note that 1-complete-transitive graphs are just vertex-transitive graphs and a 2-completetransitive graph is a vertex-transitive and arc-transitive graph. Complete-transitive graphs are a generalisation of arc-transitive graphs but to complete subgraphs and not to paths, as are the i-arc-transitive graphs [START_REF] Godsil | Algebraic graph theory[END_REF]. Kneser graphs are examples of i-complete-transitive graphs for all integers i. We now have the following generalisation of Proposition 22.

Proposition 24 Let X be a graph and k P N. If X P D k and if X is pk `1q-complete-transitive, then X is a complete graph.

Proof : We prove it by induction on k ě 0. For k " 0, the claimed assertion is given by Proposition 22.

Let k ě 0 and suppose that any k-dismantlable and pk `1q-complete-transitive graph is a complete graph. Let X be a pk `1q-dismantlable and pk `2q-complete-transitive graph and x P D k`1 pXq. We will verify that the k-dismantlable graph N X pxq is a pk `1q-complete-transitive graph. Let tpx 1 , ¨¨¨, x k`1 q, px 1 1 , ¨¨¨, x 1 k`1 qu be a pair of sets of vertices of cardinal k `1, each of them inducing a clique of N X pxq, the pair of sets tpx, x 1 , ¨¨¨, x k`1 q, px, x 1 1 , ¨¨¨, x 1 k`1 qu is of cardinal pk `2q, each of them inducing a clique of X. By pk `2q-complete-transitivity of X, there exists f P AutpXq such that f pxq " x and f px i q " x 1 i for all i P t1, ¨¨¨, k `1u. In particular, ϕ " f |N X pxq verifies ϕ P AutpN X pxqq and f px i q " x 1 i for all i P t1, ¨¨¨, k `1u. So, N X pxq is a k-dismantlable and pk `1q-complete-transitive graph. By induction hypothesis, N X pxq is a complete graph. As X is vertex-transitive, by Lemma 21(iii), it means that, for any vertex x of X, the connected component of X containing x is a complete subgraph. Now, X is connected since it is in D 8 and so, X is a complete graph.

Let us recall the notion of evasivity for simplicial complexes [START_REF] Björner | Topological methods, Handbook of combinatorics[END_REF][START_REF] Kozlov | Combinatorial algebraic topology[END_REF]. One can present it as a game: given a (known) simplicial complex K with vertex set V of cardinal n, through a series of questions, a player has to determine if a given (unknown) subset A of V is a simplex of K. The only possible questions for the player are, for every vertex x of V , xx is x in A ? yy . The complex K is called non-evasive if, whatever is the chosen subset A of V , the player can determine if A is a simplex of K in at most pn ´1q questions. By restriction to flag complexes, we get the notion of non-evasiveness for graphs: Definition 25 A graph X is called non-evasive if clpXq is a non-evasive simplicial complex.

In other terms, a graph X is called non-evasive if for any A Ă V pXq " tx 1 , ¨¨¨, x n u one can guess if A is a complete subgraph of X in at most n ´1 questions of the form xx is x in A ? yy . In [START_REF] Barmak | Strong homotopy types, nerves and collapses[END_REF], the authors note that a complex K is non-evasive if, and only if, there is an integer n such that K is ncollapsible. The equivalence between k-dimantlability of graphs and k-collapsibility of flag complexes (cf. Proposition 4) gives:

Proposition 26 A graph X is non-evasive if, and only if, X is in D 8 .
The Evasiveness Conjecture for simplicial complexes states that every non-evasive vertex homogeneous simplicial complex is a simplex [START_REF] Kahn | A topological approach to evasiveness[END_REF]. Again, its restriction to clique complexes can be formulated in terms of graphs: Conjecture 1 (Evasiveness conjecture for graphs) Let X be a graph, if X is in D 8 and vertextransitive, then X is a complete graph. This formulation should not be confused with the evasiveness conjecture for monotone graph properties [START_REF] Björner | Topological methods, Handbook of combinatorics[END_REF][START_REF] Kahn | A topological approach to evasiveness[END_REF][START_REF] Kozlov | Combinatorial algebraic topology[END_REF]]. Let's note that Proposition 24 is a direct consequence of the conjecture, if that one is true. Following a remark due to Lovász, Rivest and Vuillemin [START_REF] Rivest | On recognizing graph properties from adjacency matrices[END_REF] pointed out that a positive answer to the evasiveness conjecture implies that a finite vertex-transitive graph with a clique which intersects all its maximal cliques is a complete graph. Actually, they prove that a graph with a clique which intersects all its maximal cliques is non-evasive, i.e. is in D 8 by Proposition 26. Remark 3.3 of [START_REF] Barmak | Star clusters in independence complexes of graphs[END_REF] is another formulation of this result. Indeed, the 1-skeletons of star clusters are exactly the graphs which contain a clique intersecting all maximal cliques. Theorem 28 will give a stronger result.

We recall that if Y and Z are two subgraphs of a graph X, Y X Z will denote the subgraph pV pY q X V pZq, EpY q X EpZqq and one says that Y intersects Z if V pY X Zq ‰ H.

Lemma 27 If X is a graph with a clique A which intersects all maximal cliques of X and x is in V pXqzV pAq, then: (i) A intersects all maximal cliques of X ´x. (ii) A X N X pxq is a complete graph which intersects all maximal cliques of N X pxq.

Proof :

(i) Let K be a maximal clique of X ´x. If K is a maximal clique of X, then, by property of A, K X A ‰ H. Otherwise, K `x is a maximal clique of X and, by property of A, pK `xq X A ‰ H. Since

x R A, it implies K X A ‰ H. (ii) If K is a maximal clique in N X pxq, then K `x is a maximal clique of X and, by property of A, pK `xq X A ‰ H. As x R A, K X A ‰ H and also K X `A X N X pxq ˘‰ H since K Ă N X pxq.
Theorem 28 Let X be a graph. If A is a clique which intersects all maximal cliques of X, then X P D a´2 with a " |V pAq| ě 1. Moreover, X OE a´2 A if |V pAq| ě 2.

Proof : Let X be a graph with n vertices and A a clique of X which intersects all maximal cliques of X with a " |V pAq| ě 1.

If a " 1, then X is a cone whose apex is the vertex of A, that is X P D ´1.

If a " 2, let us denote by u and v the vertices of A. If x P V pXqzV pAq with x " u and x  v, then x is dominated by u. Indeed, let y " x and K a maximal clique of X containing x and y, by property of A " tu, vu, either u P K or v P K. As v P K contradicts x  v, we conclude that u P K and u " y. In conclusion, a vertex not in V pAq is dominated by u or v or both together. So, X OE 0 A and X P D 0 .

Let us suppose that a ě 3, we will prove that X OE a´2 A by induction on n " |V pXq| ě 3. For n " 3, we have X " A and X is a complete graph. Now, suppose that the assertion of the theorem is true for some n ě 3 and let us consider a graph X with n `1 vertices and a clique A which intersects all its maximal cliques. If V pAq Ă N X pxq for every x P V pXqzV pAq, then every vertex of A is an apex of X and X OE 0 A. If V pAq Ć N X pxq for some x P V pXqzV pAq, then |V pAq X N X pxq| ď a ´1. By Lemma 27(ii), A X N X pxq is a complete subgraph of N X pxq which intersects all its maximal cliques and, by induction hypothesis applied to N X pxq, we get N X pxq OE a´3 AXN X pxq OE 0 pt as |AXN X pxq|´2 ď pa´1q´2 " a´3. This proves that x P D a´2 pXq, that is X OE a´2 X ´x. Moreover, by Lemma 27(i), the induction hypothesis implies that X ´x OE a´2 A. The composition X OE a´2 X ´x OE a´2 A proves that X OE a´2 A.

Of course, we conclude that X P D a´2 because A OE 0 pt. 6

Appendix: the Bing's house

The graph BH (Fig. 7), given in [START_REF] Chen | Graph homotopy and Graham homotopy, Selected papers in honor of Helge Tverberg[END_REF] where it is denoted by G b , is the 1-skeleton of the topological Bing's House, a space which is known to be contractible but non collapsible. In [START_REF] Chen | Graph homotopy and Graham homotopy, Selected papers in honor of Helge Tverberg[END_REF], the authors give an explicit sequence of deformations of BH, by using additions and deletions of edges, in order to prove that the Bing's House is deformable to the simplicial complex reduced to a point by a sequence of expansions or reductions (proving that the Bing's House has the simple homotopy type of a point). We give here a more precise result with the proof (Proposition 15 for the Bing's House) of the existence of a graph W BH such that:

BH 0 Õ W BH OE 1 pt
Let be G 0 " BH, we do the following transformations (illustrated in Fig. 8):

1. Within N G0 pu 1 q: 0-additions of vertices u 1 1 and u 2 1 linked to u 1 , v 1 , u 2 , u 7 , v 7 and u 1 , v 1 , u 4 , u 5 , v 5 respectively. Note that u 1 1 $ u 1 and u 2 1 $ u 1 . After that, since N G0`u 1 1 `u2

1 pu 1 q is made of two 4-wheels glued in vertex v 1 , and thus is a 0-dismantlable graph, it is possible to 1-delete u 1 . Let us note G 1 " G 0 `u1 1 `u2 1 ´u1 .

2. Within N G1 pv 1 q: 0-additions of vertices v 1 1 and v 2 1 , linked to v 1 , u 

Figure 1 :

 1 Figure 1: Let Y be the 2-path uxv: Y 0 Õ Y `y OE 0 pY `yq ´x but Y OE k Y ´x is impossible for any k.

Figure 2 :

 2 Figure 2: (top left) Q 1 P D 0 zD ´1, (bottom left) Q 2 P D 1 zD 0 , (right) Q 3 P D 2 zD 1 . The drawing of the 3-cubion is a perspective view where the central clique K 8 is symbolized by a cube: edges of the K 8 (ie. between x-type vertices) are not drawn, edges between x-type and α-type vertices are in black, and edges between α-type vertices are in grey.

Figure

  Figure 3: X OE 1 X ´a ´b -C 4 and X OE 1 X ´x -C 5

Figure 4 :

 4 Figure 4: With X 2 an induced subgraph of X 1 and X 1 an induced subgraph of X: paq the dashed arrow always exists, pbq the dashed arrow may exist or not, pcq an illustration of pbq where the dashed arrow does not exist.

Figure 5 :

 5 Figure 5: (left) the parasol graph P and (right) the graph P `B1 .

Figure 6 :

 6 Figure 6: (left) The graph DH, the 1-skeleton of a triangulation of the Dunce Hat. (middle) (a), (b), (c) and (d) are the neighbourhoods of vertices 1, 2, 3 and 4 in G 0 " DH, respectively. (right) (a') neighbourhood of vertex 1 in G 0 `11 `12 (b') neighbourhood of vertex 2 in G 1 `21 with G 1 " G 0 `11 `12 ´1 (c') neighbourhood of vertex 3 in G 2 `31 with G 2 " G 1 `21 ´2 (d') neighbourhood of vertex 4 in G 3 with G 3 " G 2 `31 ´3.

Figure 7 :

 7 Figure 7: The graph BH, the 1-skeleton of a triangulation of the Bing's House, given in [9].

Figure 9 :

 9 Figure 9: The graph G 4 obtained from BH by 0-addition of vertices u 1 1, u 2 1 , v 1 1 , v 2 1 , w 1 6 , w 2 6 , v 1 6 , v 26 and 1-deletion of vertices u 1 , v 1 , w 6 , v 6 is 1-dismantlable. (left) Neighbourhoods in BH of vertices v 5 paq and v 7 pbq, (center) Neighbourhoods in G 4 of vertices v 5 pa 1 q and v 7 pb 1 q (right) The graph G 4 ´v5 ´v7 is 0-dismantlable.

  

  1 1 , u 2 , v 2 , v 7 and v 1 , u2 1 , u 4 , v 4 , v 5 respectively, and 1-deletion of vertex v 1 . Let us note G 2 " G 1 `v1 G2 pw 6 q: 0-additions of vertices w 1 6 and w 2 6 , linked to w 6 , v 6 , v 5 , w 5 , w 4 and w 6 , v 6 , w 2 , w 7 , v 7 respectively, and 1-deletion of vertex w 6 . Let us note G 3 " G 2 `w1

	1	`v2 1 ´v1 .
	3. Within N 6	`w2 6 ´w6 .

4. Within N G3 pv 6 q: 0-additions of vertices v 1 6 and v 2 6 , linked to v 6 , w 1 6 , v 5 , v 4 , w 4 and v 6 , w 2 6 , w 2 , v 2 , v 7 respectively, and 1-deletion of vertex v 6 . Let us note G 4 " G 3 `v1 6 `v2 6 ´v6 .
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In[START_REF] Boulet | Simplicial simple-homotopy of flag complexes in terms of graphs[END_REF], a 1-dismantlable vertex was called s-dismantlable and 1-homotopy was called s-homotopy.

Within N G1 p2q: 0-addition of vertex 2 1 linked to 2, 1 1 , h, 4, j and 1-deletion of vertex 2. Let us note G 2 " G 1 `21 ´2.

Within N G2 p3q: 0-addition of vertex 3 1 linked to 3, 1 2 , d, 4, f and 1-deletion of vertex 3. Let us note G 3 " G 2 `31 ´3.Now, observe that G 3 P D 1 . Indeed,[START_REF] Barmak | Strong homotopy types, nerves and collapses[END_REF] In[START_REF] Boulet | Simplicial simple-homotopy of flag complexes in terms of graphs[END_REF], 1-dismantlable edge was called s-dismantlable.

Proof : Following the notations of [START_REF] Mazurkiewicz | Locally derivable graphs[END_REF] and given a family R of graphs, we denote by ‹ pRq the set Ť ně0 n pRq with the convention 0 pRq " tptu and 1 pRq " pRq. Let us note that, if F is a fixed family by , then F " ‹ pFq. Now, for any family R, the inclusion tptu Ă pRq and the monotony of imply ‹ ptptuq Ă ‹ pRq. Consequently, ‹ ptptuq is the smallest fixed point of and we have to prove that D 8 " ‹ ptptuq.

From Proposition 17, D 8 " ‹ pCq and ‹ ptptuq Ă D 8 . For the reverse inclusion, by induction on n, observe that any cone with n vertices is in n´1 ptptuq. Consequently, C Ă ‹ ptptuq and so D 8 " ‹ pCq Ă ‹ ptptuq.

In [START_REF] Mazurkiewicz | Locally derivable graphs[END_REF], the set D 8 is denoted by F (and the elements of D 8 " F are called closed graphs) and the author states that for any X P F , if x P V pXq with N X pxq P F , then X ´x P F . The graph P `B1 is a counter-example. Indeed, P R D 8 while, by Proposition 14, P `B1 P D 1 Ă D 8 and N P`B 1 pB 1 q P D 8 because it is a cone with apex B 1 .

Vertex-transitive graphs, k-dismantlability and evasivity

The relation E defined on the set V pXq of vertices of a graph X by x E y ðñ N X rxs " N X rys is an equivalence relation whose equivalence classes are maximal sets of twin vertices. With notations of [START_REF] Sabidussi | Graph derivatives[END_REF], we denote by X ‹ the graph obtained from this equivalence relation: V pX ‹ q is the set of equivalence classes of E with adjacencies x ‹ " y ‹ if, and only if, x " y.

Proposition 19 [START_REF] Sabidussi | Graph derivatives[END_REF]Lemma 6.4] Let X be a graph.

(i) There is a subgraph of X isomorphic to X ‹ .

(ii) pX ‹ q ‹ " X ‹ (i.e., TwinspX ‹ q " H).

(iii) X -X ‹ if, and only if, x ‹ " txu for every vertex x of X.

The following lemma is easy to prove:

Lemma 20 X P D 0 if, and only if, X ‹ P D 0 .

We recall that a graph X is vertex-transitive if its automorphism group AutpXq acts transitively on V pXq (i.e., for any vertices x, y, there is an automorphism ϕ of X such that ϕpxq " y). In a vertextransitive graph, all vertices have isomorphic neighbourhoods and:

Lemma 21 Let X be a vertex-transitive graph.

(i) TwinspXq " D 0 pXq.

(ii) X ‹ is vertex-transitive.

(iii) Let x P X such that N X rxs is a clique, x ‹ is equal to N X rxs and is a connected component of X.

Proof : (i) The inclusion TwinspXq Ă D 0 pXq is obvious. Now, let a and b be two vertices with a $ b. The inclusion N X ras Ă N X rbs becomes N X ras " N X rbs in a vertex-transitive graph. This proves that a and b are twin vertices and that D 0 pXq Ă TwinspXq.

(ii) This follows directly from the fact that every automorphism ϕ : X Ñ X induces an automorphism ϕ ‹ : X ‹ Ñ X ‹ defined by ϕ ‹ px ‹ q " pϕpxqq ‹ for every vertex x of X.

(iii) Since N X rxs is a clique of X, N X rxs Ă N X rys for any vertex y adjacent to x. So, by vertex transitivity, N X rxs " N X rys and x ‹ " N X rxs. Now, as N X rxs " N X rys whenever y " x, we get that z " y and y " x implies z " x for all vertices y and z and this proves that the connected component containing x is equal to N X rxs. Proposition

22 If X is a 0-dismantlable and vertex-transitive graph, then X is a complete graph.

Proof : Let X be a 0-dismantlable and vertex-transitive graph. We prove that X is a complete graph by induction on k " |V pXq|. If |V pXq| " 1, Xpt " K 1 and there is nothing to prove. Let k ě 1 and let us suppose that any 0-dismantlable and vertex-transitive graph with at most k vertices Now, observe that G 4 P D 1 . Indeed (see Fig. 9):

5. Vertices v 5 and v 7 are in D 1 pG 4 q since their neighbourhoods are paths w 1 w 5 w 1 6 v 1 6 v 4 v 2 1 u 2 1 u 5 u 6 and u 6 u 7 u 1 1 v 1 1 v 2 v 2 6 w 2 6 w 7 w 1 respectively. Let us note G 5 " G 4 ´v5 ´v7 .

6. The graph G 5 is a planar triangulated graph which is 0-dismantlable with 22 successive 0-deletions.

The switching property p:q finishes the proof and W BH " BH `u1 

, pd 1 q neighbourhood of vertex v 6 in G 3 `v1 
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