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We propose a multi-harmonic numerical method for solving wave scattering problems with moving boundaries, where the scatterer is assumed to move smoothly around an equilibrium position. We first develop an analysis to justify the method and its validity in the one-dimensional case with small-amplitude sinusoidal motions of the scatterer, before extending it to large-amplitude, arbitrary motions in oneand two-dimensional settings. We compare the numerical results of the proposed approach to standard space-time resolution schemes, which illustrates the efficiency of the new method.

Introduction

In wave scattering theory, it is well-known that the motion of the target modulates the frequency of the reflected wave, which is the so-called Doppler effect [START_REF] Chen | The Micro-Doppler Effect in Radar, 2nd Ed[END_REF][START_REF] Gill | The Doppler Effect: An Introduction to the Theory of the Effect[END_REF]. For a motion with uniform velocity, the Doppler frequency shift can be computed easily [START_REF] Censor | Scattering of electromagnetic waves in uniformly moving media[END_REF]. The prediction of Doppler shifts for more general movements is commonly obtained through simple approximate models combined with signal processing [START_REF] Cammenga | Micro-Doppler target scattering[END_REF][START_REF] Cammenga | High range resolution micro-Doppler analysis[END_REF][START_REF] Chen | The Micro-Doppler Effect in Radar, 2nd Ed[END_REF][START_REF] Chen | Micro-Doppler effect in radar: phenomenon, model, and simulation study[END_REF][START_REF] Gu | A hybrid radar-camera sensing system with phase compensation for random body movement cancellation in Doppler vital sign detection[END_REF][START_REF] Li | Radar remote monitoring of vital signs[END_REF][START_REF] Liu | Analysis of phase noise influence on micro-Doppler feature extraction on vibrating target[END_REF].

The radar detection of non uniformly moving scatterers has found a tremendous number of applications in recent years, thanks to the availability of new high-frequency sensors and devices. For example, the radar frequency ranges 24-24.5 GHz and 61-61.5 GHz (the socalled ISM bands) are standard for many applications, and the new 77-81 GHz band is currently considered for automotive applications. The THz frequency range will appear in applications in the next few years, e.g. at 140 GHz. A major advantage of high-frequency radar sensing is its sensitivity to micro movements [START_REF] Chen | The Micro-Doppler Effect in Radar, 2nd Ed[END_REF][START_REF] Chen | Micro-Doppler effect in radar: phenomenon, model, and simulation study[END_REF], when the scatterer includes several moving parts. This results in the so-called micro-Doppler effect [START_REF] Chen | The Micro-Doppler Effect in Radar, 2nd Ed[END_REF][START_REF] Chen | Micro-Doppler effect in radar: phenomenon, model, and simulation study[END_REF], which is used with great success from drone detection [START_REF] Brooks | Temporal deep learning for drone micro-Doppler classification[END_REF] or the analysis of pedestrian movement [START_REF] Cammenga | High range resolution micro-Doppler analysis[END_REF][START_REF] Chen | Micro-Doppler effect in radar: phenomenon, model, and simulation study[END_REF][START_REF] Garcia-Rubia | Analysis of moving human micro-Doppler signature in forest environments[END_REF] to the modeling of the effect of the rotation of helicopter rotor blades on the radar signature of the aircraft [START_REF] Agnihotri | Effect of frequency on micro-Doppler signatures of a helicopter[END_REF]. In the automotive industry, micro-Doppler sensing has recently been proposed [START_REF] Dias Da | A theoretical investigation of the detection of vital signs in presence of car vibrations and radar-based passenger classification[END_REF][START_REF] Gu | A hybrid radar-camera sensing system with phase compensation for random body movement cancellation in Doppler vital sign detection[END_REF][START_REF] Karahasanovic | Radar-based detection of thoracoabdominal asynchrony during breathing using autocorrelation function analysis[END_REF][START_REF] Li | Radar remote monitoring of vital signs[END_REF] for the contactless detection of vital signs like breathing of infants left alone on the back seat of overheating cars. The engineering of such very high frequency radar sensing devices entails dealing with multiple challenges, as for instance the analysis of random body movements and vehicle vibrations [START_REF] Dias Da | A theoretical investigation of the detection of vital signs in presence of car vibrations and radar-based passenger classification[END_REF][START_REF] Gu | A hybrid radar-camera sensing system with phase compensation for random body movement cancellation in Doppler vital sign detection[END_REF][START_REF] Li | Radar remote monitoring of vital signs[END_REF][START_REF] Liu | Analysis of phase noise influence on micro-Doppler feature extraction of vibrating target[END_REF][START_REF] Liu | Analysis of phase noise influence on micro-Doppler feature extraction on vibrating target[END_REF][START_REF] Peng | A sinusoidal frequency modulation Fourier transform for radar-based vehicle vibration estimation[END_REF], leading to radar signatures that can be classified for example by deep learning techniques [START_REF] Brooks | Complexvalued neural networks for fully-temporal micro-Doppler classification[END_REF][START_REF] Brooks | Temporal deep learning for drone micro-Doppler classification[END_REF][START_REF] Chen | High-resolution sparse representation of micro-Doppler signal in sparse fractional domain[END_REF]. In order to design these new sensors, an adequate full realistic simulation of the underlying high frequency scenarios is crucial.

Concretely, a suitable physical modeling of the (direct) problem leads to solve a timedependent wave propagation problem in a complex environment (e.g. the interior of a car), which has both a complex geometrical shape and involves various materials that interact strongly with the high frequency emitted signal. In addition, the moving target is also usually of complex shape and materials (e.g. the infant on the back seat of the car), and characterized by small amplitude displacements at extremely low frequencies compared to the emitter. The natural mathematical framework to model such physical problems is the derivation of an adapted system of partial differential equations (PDEs), which are to be solved numerically when the configuration under study involves complex geometries or materials. Additional effects such as random vibrations can be handled by adding or modifying the PDE system.

The solution in a PDE setting of moving target problems has already received some attention in the mathematical and engineering communities. Analytical approaches for solving wave-like problems with simple motions have been developed e.g. for rotating obstacles [START_REF] Censor | Scattering of electromagnetic waves by a cylinder moving along its axis[END_REF][START_REF] Chen | Time-varying Doppler analysis of electromagnetic backscattering from rotating object[END_REF][START_REF] Chuang | Backscatter of a large rotating conducting cylinder of arbitrary crosssection[END_REF][START_REF] Van Bladel | Electromagnetic fields in the presence of rotating bodies[END_REF] or vibrating objects [START_REF] Censor | Non-relativistic scattering: pulsating interfaces[END_REF][START_REF] Chen | Time-varying Doppler analysis of electromagnetic backscattering from rotating object[END_REF][START_REF] Harfoush | A numerical technique for analyzing electromagnetic wave scattering from moving surfaces in one and two dimensions[END_REF][START_REF] Liu | Analysis of phase noise influence on micro-Doppler feature extraction on vibrating target[END_REF]]. In addition, numerical schemes based e.g. on FDTD [START_REF] Harfoush | A numerical technique for analyzing electromagnetic wave scattering from moving surfaces in one and two dimensions[END_REF][START_REF] Zheng | Analysis of micromotion characteristics from moving conical-shaped targets using the Lorentz-FDTD method[END_REF][START_REF] Zheng | Analysis of Doppler effect of moving conducting surfaces with Lorentz-FDTD method[END_REF] or fast integral equation solvers [START_REF] Zhang | Efficient analysis of scattering by multiple moving objects using a tailored MLFMA[END_REF] were also investigated. More mathematical works related essentially to one-dimensional moving boundary problems have also been proposed e.g. by Fokas and his co-authors [START_REF] Fokas | Method for solving moving boundary value problems for linear evolution equations[END_REF] to recast the problem as a Volterra integral equation in a fixed domain, or by Christov and Christov [START_REF] Christov | On mechanical waves and Doppler shifts from moving boundaries[END_REF] for an asymptotic multiscale analysis of the Doppler effect in a half-space. To the best of the authors' knowledge, however, the numerical solution of the micro-Doppler PDE modeling problem has not been addressed yet.

In the present paper, we propose an original frequency domain method to address this problem, which leads to the solution of coupled systems of Helmholtz-type equations. First, we transform the constant coefficients wave equation in the moving domain as a new wavelike equation in a fixed domain but with variable coefficients related to the metric change (a similar approach was used for quasi-static electromagnetic models in [START_REF] Halbach | Steady-state nonlinear analysis of large arrays of electrically actuated micromembranes vibrating in a fluid[END_REF]). Since we are studying the micro-Doppler problem (small amplitude and low frequency oscillations of the scatterer) for a high frequency radar, we can then expand the solution in the Fourier domain in time as a Fourier series expansion centered around the radar frequency, modulated by the low frequency perturbation induced by the scatterer movement. For small amplitude movements, the variable coefficients wave equation can be simplified thanks to the small amplitude, and the series expansion can be truncated to keep a finite number of discrete frequency components related to the small amplitude variations. The resulting approach then yields a coupled system of Hemholtz equations for the wave numbers defined by the discrete frequency components kept by the approximation. For larger amplitude movements, a similar analysis can be developed based on adding more Fourier modes since the frequency coupling is stronger, resulting in a larger system of coupled Helmholtz equations with variable coefficients. This approach is valid for any dimension and configuration, and the resulting frequency domain coupled formulation can be solved by efficient numerical methods adapted to solving Helmholtz-type equations in the high frequency regime. In the present paper, we propose an approach based on the finite element method [START_REF] Dular | A general environment for the treatment of discrete problems and its application to the finite element method[END_REF] which is known to be flexible to handle two-and three-dimensional complex engineering configurations, including complex materials and shapes. In addition, this choice allows to consider in the future an algorithmic adaptation of efficient high-order finite element solvers based on domain decomposition [START_REF] Boubendir | A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation[END_REF][START_REF] Dolean | An Introduction to Domain Decomposition Methods: Theory and Parallel Implementation[END_REF][START_REF] Bouajaji | A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell's equations[END_REF][START_REF] Thierry | GetDDM: An open framework for testing optimized Schwarz methods for time-harmonic wave problems[END_REF], where only a local resolution of the problem around the moving obstacle could be resolved. Let us remark that, depending on the problem, other high frequency numerical methods may also be adapted like for example fast integral equations solvers [START_REF] Chew | Fast and Efficient Algorithms in Computational Electromagnetics[END_REF] or even asymptotic adpproximation techniques [START_REF] Bouche | Asymptotic Methods in Electromagnetism[END_REF]. Finally, let us notice that the finite Fourier expansion method which leads to the coupled system of PDEs has also been used in the past under the name of the harmonic-balance method or the multi-harmonic approach [START_REF] Brachtendorf | Fast simulation of the steady-state of circuits by the harmonic balance technique[END_REF][START_REF] Cardona | A multiharmonic method for nonlinear vibration analysis[END_REF][START_REF] Gyselinck | Multi-harmonic modelling of motional magnetic field problems using a hybrid finite element-boundary element discretisation[END_REF][START_REF] Halbach | Steady-state nonlinear analysis of large arrays of electrically actuated micromembranes vibrating in a fluid[END_REF][START_REF] Ju | Global residue harmonic balance method for Helmholtz-Duffing oscillator[END_REF][START_REF] Mickens | A generalization of the method of harmonic balance[END_REF][START_REF] Wong | Periodic forced vibration of unsymmetrical piecewise-linear systems by incremental harmonic-balance method[END_REF]. It has been proved to be particularly efficient for engineering problems, including situations related to wave-like equations [START_REF] Cochelin | A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions[END_REF][START_REF] Dunne | A split-frequency harmonic balance method for nonlinear oscillators with multi-harmonic forcing[END_REF][START_REF] Yamada | Harmonic field calculation by the combination of finite element analysis and harmonic-balance method[END_REF].

The paper is organized as follows. In Section 2 we define a sine-motion moving boundary scattering problem and formulate it in a fixed domain. In Section 3 we develop a multiharmonic approach to solve the scattering problem for small and large amplitudes of the boundary motion. We illustrate in Section 4 the validity of the method through numerical computations and generalize it in Section 5 to general boundary motions which are not explicitly prescribed. In Section 6, we extend the approach to higher-dimensional domains and illustrate the numerical method on a two-dimensional example. Finally, we conclude in Section 7. Appendix A details some computations.

Problem statement and reformulation in a fixed domain 2.1 The initial boundary-value problem

We assume that the bounded spatial domain is defined by: Ω(t) :=]0, (t)[, where t ∈ R is the time variable and x denotes the spatial variable. The modeling of the moving boundary is described by the time-dependent function (t). In the context of this work, (t) is supposed to be smooth and bounded. For R + * :=]0, ∞[, we introduce the unknown total wave field u := u(x, t), for x ∈ Ω(t) and t ∈ R + * , solution to the constant coefficients wave equation

∂ tt u -c 2 ∂ xx u = 0, ( 1 
)
where c is the wave velocity in the medium under consideration. At the fixed left boundary x = 0 of Ω(t), we impose a single-source term A sin(ω f t), with amplitude A ∈ R + * and angular frequency ω f := 2πν f > 0. In practice, ν f is expected to be very large compared to the frequency content of (t). For instance, ν f might be in frequency range 10 9 -10 10 for realistic radar applications. The associated inhomogeneous Dirichlet boundary condition is then set as:

u(0, t) = A sin(ω f t). ( 2 
)
On the moving right boundary, we fix a homogeneous Dirichlet boundary condition

u( (t), t) = 0. ( 3 
)
For physical applications, we consider the time origin of the problem as an emission starting at t = 0, and take into account the transient mode of the excited wave field. Finally, for the sake of well-posedness, we add the two initial conditions

u(x, 0) = 0 (4) 
and

∂ t u(x, 0) = 0. (5) 

The case of a motionless boundary

Let us consider the case where the right boundary is fixed, i.e. (t) := L. Then, we get an explicit form of the solution (see Appendix A for a proof).

Proposition 1. Let us assume that : Ω(t) = Ω :=]0, L[, ∀t > 0. We define κ f := ω f /c, κ m := mπ/L and ω m := cκ m , for m ∈ N. We suppose that: ω f = ω m , ∀m ∈ N. Then, the solution u 0 of ( 1) is given by: ∀x ∈ Ω, t > 0,

u 0 = u 0,ν f + m∈N u 0,νm (6) 
where

         u 0,ν f (x, t) := A sin(κ f L) sin(κ f (L -x)) sin(ω f t), u 0,νm (x, t) := 2Aκ f L(κ 2 f -κ 2 m ) sin(κ m x) sin (ω m t) .
Let us remark that u 0 can be extended to t ∈ R, if we consider the source term (2) emitting for t < 0, and the conditions (3), (4) and [START_REF] Bouche | Asymptotic Methods in Electromagnetism[END_REF]. Hence, this allows us to introduce u 0 := Fu 0 , where the time Fourier transform F of a function v defined on R is given by v := Fv(x, ξ) := R v(x, t)e -2iπξt dt. [START_REF] Brooks | Complexvalued neural networks for fully-temporal micro-Doppler classification[END_REF] From ( 6), one gets

u 0 = A 2i sin(κ f L) sin(κ f (L -x))(δ νm -δ -νm ) + m∈N A κ f iL(κ 2 f -κ 2 m ) sin(κ m x)(δ νm -δ -νm ) =: u 0,ν f + m∈N u 0,νm , (8) 
where δ a is the Dirac distribution at a point a. Considering (8), we observe that the amplitude of the m-th mode u 0,νm scales like κ f /L|κ 2 f -κ 2 m |, and thus exhibits a fast decay as the frequency ν m moves away from ν f (see e.g. Figure 1 for an example of such a solution). When ν f is close to an eigenfrequency ν m , then the solution tends to behave like a single-mode with infinite amplitude, hence concentrating the energy of the system.

In the case of a moving boundary, we expect that the overall behavior of the solution owns similar properties: a first main contribution centered around the frequency ν f and a finite discrete sum of other significant contributions centered around the resonances ν m , most particularly for a small perturbation of the boundary oscillating at a frequency ν such that 0 < ν ν f . However, in practical applications, the domain is often partially open and/or has wave absorbing objects at the boundary, which leads to non resonant finite amplitude solutions. This situation is investigated in Section 6 for the two-and three-dimensional cases. For practical remote sensing applications based on the Doppler effect, the useful information is mainly related to perturbations around ν f .

Reformulation of the initial problem as a fixed domain problem

Let us now analyze the case of a moving boundary. We first map Ω(t) to the fixed domain Ω =]0, L[. This results in a new wave-like equation from the metric change. The physical solution u is obtained by applying the reverse change of variable, i.e. from Ω to Ω(t). More precisely, the change of space variable x : (x, t) → x(x, t) is such that x(0, t) = 0, x( (t), t) = L, for all t > 0, and is built as a smooth mapping with respect to x and t. The spatial and time derivative operators then write

∂ x u = ∂ x ∂x ∂ x u, ∂ t u = ∂ t u + ∂ x ∂t ∂ x u, ∂ xx u = ∂ x ∂x 2 ∂ xx u + ∂ 2 x ∂x 2 ∂ x u, ∂ tt u = ∂ tt u + ∂ x ∂t 2 ∂ xx u + 2 ∂ x ∂t ∂ tx u + ∂ 2 x ∂t 2 ∂ x u.
Therefore, the initial scattering problem can be rewritten as follows: find u( x, t) = u(x, t) that maps from Ω × R + * to R and that satisfies

∂ tt u -c 2   ∂ x ∂x 2 ∂ xx u + ∂ 2 x ∂x 2 ∂ x u   + ∂ x ∂t 2 ∂ xx u + 2 ∂ x ∂t ∂ xt u + ∂ 2 x ∂t 2 ∂ x u = 0, (9) 
with u(0, t) = A sin(ω f t), u(L, t) = 0, u( x, 0) = 0 and

∂ t u( x, 0) = - ∂ x ∂t t=0 ∂ x u( x, 0) = 0.
Let us remark that, similarly to [START_REF] Halbach | Steady-state nonlinear analysis of large arrays of electrically actuated micromembranes vibrating in a fluid[END_REF], the spatial Jacobian ∂

x ∂x of x appears in [START_REF] Cammenga | Micro-Doppler target scattering[END_REF]. In the following, we provide a frequency domain method to solve the modified wave equation [START_REF] Cammenga | Micro-Doppler target scattering[END_REF].

3 The specific case of a boundary with sine motion

Analysis for the case of a small amplitude boundary motion

Let us consider the case where the motion of the right endpoint (t) of the domain Ω(t) is given by a small smooth time-dependent perturbation L f (ω t) of L, where f is a smooth bounded function with bounded derivatives f (p) , oscillating with a frequency ν = ω /(2π) small compared to the emitter frequency ν f , that is 0 < ν ν f . Therefore, we have

(t) = L(1 + f (ω t)), (10) with 1. 
In the one-dimensional case, we can assume that this is given by a linear relation x = x (t)/L. To be more explicit, we now focus on the special case where the boundary has a small time sinusoidal motion around L, defined by (t) = L(1 + sin(ω t)), [START_REF] Cardona | A multiharmonic method for nonlinear vibration analysis[END_REF] i.e. setting f (ω t) := sin(ω t). This leads to

∂ x ∂x = 1 1 + sin(ω t) = O(1), ∂ x ∂t = -x ω cos(ω t) 1 + sin(ω t) = O( ), ∂ 2 x ∂x 2 = 0, ∂ 2 x ∂t 2 = x ω 2 (sin(ω t)(1 + sin(ω t)) -2 cos(ω t)) (1 + sin(ω t)) 2 = O( ).
Neglecting the O( ) terms in [START_REF] Cammenga | Micro-Doppler target scattering[END_REF], we obtain the variable speed wave equation

∂ tt v -c 2 ∂ x ∂x 2 ∂ xx v = 0, (12) 
which can be written as

2 (Lc) 2 ∂ tt v -∂ xx v = 0 (13) in Ω × R + * , with v(0, t) = A sin(ω f t), v(L, t) = 0, v( x, 0) = 0 and ∂ t v( x, 0) = 0. Let us denote by the d'Alembert operator := 1 c 2 ∂ tt -∂ xx ,
and u 0 ( x, t) as the solution to (1) in the case of fixed boundaries. We consider the modified operator

:= (t) 2 (Lc) 2 ∂ tt -∂ xx = + 1 ,
where

1 := 2 sin(ω t) + sin(ω t) 2 c 2 ∂ tt .
For a solution v = 1, we define the perturbative part

v 1 by v = u 0 + v 1 , leading to v 1 = -1 u 0 = -1   u 0,ν f + m∈N u 0,νm   ,
according to [START_REF] Brachtendorf | Fast simulation of the steady-state of circuits by the harmonic balance technique[END_REF].

Let us analyze the solution to the equations associated to each single source term involved in the series expansion of v 0 , i.e.

v 1,ν f = -1 u 0,ν f , and, for m ∈ N, v 1,νm = -1 u 0,νm .
The right hand sides are C ∞ ( Ω × R + * ) functions and the corresponding boundary conditions are homogeneous Dirichlet conditions. Thus, since these equations are of hyperbolictype, we have the existence and uniqueness of the solutions and by superposition

v 1 = v 1,ν f + m∈N v 1,νm .
Finally, we prove that there exist some functions v ν f and v νm , m ∈ N, in C ∞ ( Ω × R + * ) such that the solution v of (13) admits the following decomposition:

v = v ν f + m∈N v νm , ( 14 
)
with v ν f = u 0,ν f + v 1,ν f and v νm = u 0,νm + v 1,νm , for m ∈ N.
This form provides a generalization of ( 6) to the case of a moving boundary based on the approximation (13) of the full wave equation [START_REF] Cammenga | Micro-Doppler target scattering[END_REF]. Let us also remark that the previous decomposition can be extended to the case of smooth and bounded functions defined by a function f . We now focus on the term v ν f appearing in the expansion [START_REF] Censor | Non-relativistic scattering: pulsating interfaces[END_REF]. A similar approach can be adapted to the other terms v νm , for m ∈ N. Based on the method of separation of variables, we define

v ν f ( x, t) = E( x) V (t). The time-dependent component V (t) of v ν f ( x, t)
is given as the solution of the variable coefficients ODE

∂ tt V + ω 2 f L 2 (t) 2 V = 0, (15) 
for which we are seeking a solution in C ∞ (R + * ). Since

ω 2 f L 2 (t) 2 = ω 2 f (1 + sin(ω t)) 2 ,
and sin(ω t) ∈] -1, 1[, we have the power series expansion

ω 2 f L 2 (t) 2 = ω 2 f k∈N (-1) k (k + 1) ( sin(ω t)) k = ω 2 f 1 -2 sin(ω t) + O( 2 ) . ( 16 
)
For 1, we consider the approximate solution W to the equation ( 15) based on the first-order truncation of (16), i.e.

∂ tt W + ω 2 f (1 -2 sin(ω t)) W = 0. ( 17 
)
Let us define the change of variable τ := πν t + π 4 and the function W (τ ) := W (πν t + π 4 ). Then the second-order derivative writes

∂ tt W = (πν ) 2 ∂ τ τ W .
From ( 17), we deduce the Mathieu's equation

∂ τ τ W + (α -2q cos(2τ ))W = 0, (18) 
with α = ( 2ν f ν ) 2 and q = -α . The solutions of ( 18) are given as linear combinations of Mathieu functions of the first-kind [START_REF] Abramowitz | Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables[END_REF]. According to Floquet's theory [START_REF] Kuchment | Floquet Theory For Partial Differential Equations[END_REF], they can be written as φ(τ ) = e iµτ p(τ ), with p a π-periodic function and µ the associated Floquet's exponent. Let us remark that the function φ(-τ ) is also solution to the equation [START_REF] Chen | High-resolution sparse representation of micro-Doppler signal in sparse fractional domain[END_REF]. Whenever φ(τ ) and φ(-τ ) are linearly independent, the general solution writes [START_REF] Abramowitz | Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables[END_REF] as

W (τ ) = e iµτ j∈Z a + j e 2ijτ + e -iµτ j∈Z a - j e -2ijτ = j∈Z a + j e 2i( µ 2 +j)τ + a - j e -2i( µ 2 +j)τ , ( 19 
)
with a ± j being the complex valued Fourier coefficients of p. Since W (τ ) is a periodic C ∞ (R + * ) function, |a ± j | has a fast decay when |j| → +∞. As q = O( ), for sufficiently small perturbations , we may expand α in terms of µ and q (cf. [START_REF] Abramowitz | Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables[END_REF], ch. 20, p. 730)

α = µ 2 + q 2 2(µ 2 -1) + O( q 4 µ 6 ) = µ 2 + O( 2 ). (20) 
Hence, at first-order in , one gets µ ≈ √ α = 2ν f ν , and, for small values of , we have the approximation

W (τ ) ≈ j∈Z a + j e 2i( ν f ν +j)τ + a - j e -2i( ν f ν +j)τ , which yields, for τ = πν t + π 4 , W (t) ≈ j∈Z i j a + j e i πν f 2ν e 2iπ(ν f +jν )t + (-i) j a - j e -i πν f 2ν e -2iπ(ν f +jν )t . Combining (±i) j a ± j e ±i πν f 2ν
with the space dependent component E( x) of v, we define the coefficients { a ± j ( x)} j∈Z such that, for each integer j, we have

a ± j ( x) = (±i) j a ± j e ±i πν f 2ν E( x).
We formally obtain the following ansatz for small

v ν f ( x, t) ≈ j∈Z a + j ( x)e i(ω f +jω )t + a - j ( x)e -i(ω f +jω )t . ( 21 
)
Let us define, for fixed integers J 1 ≤ 0 and J 2 ≥ 0 the finite sets of integers I = I -∪ I + and J = J -∪ J + , where

I -:= {j ∈ Z, -J 2 ≤ j ≤ -J 1 }, I + := {j ∈ Z, J 1 ≤ j ≤ J 2 }, J -:= {-ν f + ν j} j∈I -, J + := {ν f + ν j} j∈I + . ( 22 
)
We denote by I the cardinal of the set I. Since | a ± j ( x)| is fastly decaying for |j| → ∞, (21) justifies that the method that we develop (most particularly for small ) in the following is based on the approximation w I of v ν f by the finite sum

w I ( x, t) := j∈I + a + j ( x)e i(ω f +jω )t + a - j ( x)e -i(ω f +jω )t , ( 23 
)
where I = 2 I + coefficients a ± j ( x) have to be computed thanks to a coupled system of multi-harmonic Helmholtz-type equations in the Fourier domain. The two integers J 1 and J 2 must be carefully chosen to include the significant contributions to the solution.

By construction of the Fourier series expansion, we have a + j = a - j . Thus, one gets

w I ( x, t) = j∈I + a + j ( x)e i(ω f +jω )t + j∈I + a + j ( x)e -i(ω f +jω )t =: w I + ( x, t) + w I -( x, t), ( 24 
)
where the Fourier coefficients of w I -are the complex conjugates of the Fourier coefficients of w I + . Let us remark that the expression [START_REF] Censor | Non-relativistic scattering: pulsating interfaces[END_REF] of v also involves the functions v νm . However, their contribution to v is less significant than v ν f . In the case where a part of the domain is open or includes some absorption materials (see Section 6), they are even negligible. Finally, if = 0, all the above computations are exact and J 1 = J 2 = 0.

Derivation of a multi-harmonic approximate system

Let us assume that the Leibniz integral rule holds for v. Then, assuming that the time Fourier transform v of v is defined according to [START_REF] Brooks | Complexvalued neural networks for fully-temporal micro-Doppler classification[END_REF] (with the extension v = u 0 for t < 0), one gets:

F∂ xx v( x, t) = ∂ xx v( x, ξ), setting v( x, ξ) := F v( x, t).
Applying F to ( 13)- [START_REF] Cardona | A multiharmonic method for nonlinear vibration analysis[END_REF] gives

F ∂ xx v - 1 c 2 1 + 2 2 + 2 sin(ω t) - 2 2 cos(2ω t) ∂ tt v = ∂ xx v + 1 + 2 2 δ 0 + i (δ -ν -δ ν ) - 2 4 (δ 2ν + δ -2ν ) *   2πξ c 2 v   = 0,
where * is the convolution product. Denoting by τ a the translation operator such that τ a f (t) = f (t -a), we obtain the following problem: find v : Ω × R → R satisfying

∂ xx v + 1 + 2 2 + i (τ -ν -τ ν ) - 2 4 (τ 2ν + τ -2ν )   2πξ c 2 v   = 0. ( 25 
)
In addition, for all ξ ∈ R,

we have v(L, ξ) = 0, v(0, ξ) = 0 if |ξ| = ν f , v(0, ν f ) = A 2i and v(0, -ν f ) = -A 2i .
Let us now compute an approximation of the contribution v ν f of the solution v to (25) around ν f . From the ansatz [START_REF] Dias Da | A theoretical investigation of the detection of vital signs in presence of car vibrations and radar-based passenger classification[END_REF], it is reasonable to look for an approximate solution w I ( x, ξ) of v ν f ( x, ξ) as

w I = w I + + w I -:= j∈I + a + j δ ν f +jν + j∈I + a + j δ -(ν f +jν ) , ( 26 
)
which is a linear combination of Dirac distributions, centered around ±ν f , spaced by the modulating frequency ν , and with (unknown) spatial amplitudes { a ± j } I + . The fast decay of the coefficients | a + j | for |j| → +∞ guarantees that the finite supports J ± of the tempered distributions w I ± are disjoint. Hence, we can restrict our analysis to the contribution w I + . Plugging the expansion of w I + ( x, ξ) defined in ( 26) into [START_REF] Dular | A general environment for the treatment of discrete problems and its application to the finite element method[END_REF], and identifying the coefficients in front of the Dirac distributions leads to

∂ xx a + j + κ 2 j 1 + 2 2 a + j + i (κ 2 j+1 a + j+1 -κ 2 j-1 a + j-1 ) - 2 4 (κ 2 j-2 a + j-2 + κ 2 j+2 a + j+2 ) = 0, ( 27 
)
for j ∈ I + , with κ j := (ω f + jω )/c and for the boundary conditions a + 0 (0) = A 2i , a + j (0) = 0 for j = 0, a + j (L) = 0, and a + j ( x) = 0 for x ∈ Ω and j ∈ Z \ I + . Equation [START_REF] Bouajaji | A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell's equations[END_REF] describes the coupling between the frequency components induced by the boundary oscillations. As expected, taking = 0 gives a system of uncoupled Helmholtz equations, where the coefficients vanish for j = 0, and

a + 0 (x) = A 2i sin(κ f (L -x)) sin(κ f L) .
In Section 4, we numerically solve [START_REF] Bouajaji | A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell's equations[END_REF] by means of the finite element method. To this end, we derive the following coupled weak formulation: find a

* j ∈ H 1 D j ( Ω) := {a * j ∈ H 1 ( Ω) | a * 0 (0) = A 2i , a * j (0) = 0 for j = 0, a * j (L) = 0} such that - Ω ∂ xa * j ∂ x φd x + Ω κ 2 j 1 + 2 a * j + i (κ 2 j+1 a * j+1 -κ 2 j-1 a * j-1 ) -2 (κ 2 j-2 a * j-2 + κ 2 j+2 a * j+2 ) φd x = 0 (28) 
holds for all test functions φ ∈ H 1 0 ( Ω) and for j ∈ I + , with a * j ( x) = 0 for j ∈ Z \ I + . We then consider a regular covering Ω h of Ω using n Ω finite elements of size h. All the notations are extended with an h subscript for the discrete version of the domains as well as unknowns. We choose a linear element approximation and denote by

w I + h = j∈I + a * h,j δ ν f +jν
the solution of the discretization of the variational coupled system [START_REF] Fokas | Method for solving moving boundary value problems for linear evolution equations[END_REF], with a * h,j belonging to the (n Ω -1)-dimensional finite element subspace V D j of H 1 D j ( Ω).

The case of a larger amplitude boundary motion

The previous method has been specifically designed for the case of small amplitude motions, according to the approximate equation [START_REF] Bouajaji | A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell's equations[END_REF]. In this subsection, we focus on a more general case as we transfer the exact equation ( 9) directly to the frequency domain. The range of validity of this approach is explored in a numerical study in Section 4.

For ∈]0, L[ and a linear transformation in x, (9) can be written as follows

Defining ω j = 1 + jω, this leads to the following coupled system of equations:

ω 2 j 1 + 2 2 a + j,gen - 3 x 2 ω 2 2 ∂ x a + j,gen - x 2 2 ω 2 2 - 1 κ 2 f ∂ xx a + j,gen +i ω 2 j+1 a + j+1,gen -ω 2 j-1 a + j-1,gen + xω ω j+ 1 2 ∂ x a + j+1,gen + ω j-1 2 ∂ x a + j-1,gen - 2 4 ω 2 j-2 a + j-2,gen + ω 2 j+2 a + j+2,gen -2 xω ω j-5 2 ∂ x a + j-2,gen -ω j+ 5 2 ∂ x a + j+2,gen + x 2 ω 2 (∂ xx a + j-2,gen + ∂ xx a + j+2,gen ) = 0 (30) 
for j ∈ I + , with ω = ω /ω f , and with the same boundary conditions as for system [START_REF] Bouajaji | A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell's equations[END_REF].

Let us remark that, based on [START_REF] Gill | The Doppler Effect: An Introduction to the Theory of the Effect[END_REF], different asymptotics could be analyzed, based on , ω, or even ω.

As previously, in order to solve [START_REF] Gill | The Doppler Effect: An Introduction to the Theory of the Effect[END_REF] numerically by means of the finite element method, we consider the associated weak formulation, which writes: find a * j,gen ∈ H 1

D j ( Ω) such that Ω 2 ω 2 x 2 2 - 1 κ 2 f ∂ xa * j,gen ∂ xφ + 2 xω 2 4 ∂ xa * j+2,gen + ∂ xa * j-2,gen ∂ xφ d x - Ω xω 2 ω∂ xa * j,gen φ -2i ω j+ 1 2 ∂ xa + j+1,gen + ω j-1 2 ∂ xa + j-1,gen φ + ω j+ 3 2 ∂ xa * j+2,gen -ω j-3 2 ∂ xa * j-2,gen φ d x + Ω ω 2 j 1 + 2 2 a * j,gen φ + i ω 2 j+1 a * j+1,gen -ω 2 j-1 a * j-1,gen φ - 2 4 ω 2 j+2 a * j+2,gen + ω 2 j-2 a * j-2,gen φ d x = 0 (31) 
holds for all test functions φ ∈ H 1 0 ( Ω) and j ∈ I + . We then use the same covering Ω h of Ω and denote by w I + gen,h the solution of the discretization of the variational coupled system [START_REF] Gu | A hybrid radar-camera sensing system with phase compensation for random body movement cancellation in Doppler vital sign detection[END_REF]. Before proceeding to extensive numerical tests that will illustrate our approach, we report in Figure 1 the amplitude spectrum of the numerical solution u h of (29) at a fixed space point x = 0.5 (L = 1), without moving boundary ( = 0, in red, where ( 29) is equivalent to (1) and u ≡ u 0 ) and with moving boundary ( = 0.1, in blue). Concretely, the solution u h is computed by solving (29) numerically (with a second-order finite difference scheme in time and linear finite elements in space), leading to u h , and then applying the FFT. The physical parameters are A = 1, c = 300, ν f = 360 and ν = 2. The frequencies of the eigenmodes u 0,νm are ν m = mc/2 and correspond to the peaks of the red curve. For = 0, we observe that i) there is a main contribution for ν f = 360 associated to u 0,ν f and ii) we have some uniformly distributed contributions u 0,νm . This is in line with what is stated in Proposition 1. In the case of the oscillating boundary ( = 0.1), we see again some contributions related to ν f and ν m but with some additional new excited modes, localized around these frequencies and spaced by ν . Let us recall that the contributions u νm , m ∈ N, are not significant in practice since usually the domain involves some open boundary parts and some dissipation effects. Here, since we have a Dirichlet boundary condition, we assume that ν f is not close to an eigenfrequency ν m . Therefore, the restriction of u h to J denoted by u J h is expected to provide a relatively accurate approximation of u ν f . To illustrate this claim, we report on Figure 2a the comparison between u h and u J h (defined as the inverse Fourier transform of u J h ) at x = 0.5, computed by means of iFFT. We observe that the phases of the two functions are in agreement and the envelope of the signal is well reproduced, with same frequency ν = 2. The difference between the signals is a consequence of the boundary movement.

The second approximation consists in validating the computation of u J by the approximation w I gen . To this end, we report in Fig. 2b the absolute error | u J h (0.5, t) -w I gen,h (0.5, t)] for the same configuration. We observe a good agreement between the solutions, which confirms that the expected ansatz ( 26) is valid for w I gen . The values of J 1 and J 2 that define the interval I can be justified a posteriori by energy or numerical criteria but their a priori determination remains an open question. In the case of a general boundary motion, the choice of J 1 and J 2 is also related to the frequency of the input signal and the perturbation amplitude . Indeed, we observe that the coefficients | a ± j,gen | decay slower for increasing |j| as gets larger.

Consequently, the values of -J 1 and J 2 used to truncate [START_REF] Gill | The Doppler Effect: An Introduction to the Theory of the Effect[END_REF] have to be increased, as expected. We illustrate this property in Figure 3 where we report the amplitude of u h (0.5, ξ) computed by the brute force method, for ν f = 3250 and c = 1280. The values of vary from 0.01 to 0. 

Numerical examples

In the following, the amplitude of emission is set to A = 1, and the values of J 1 and J 2 (and thus the definition of I and J , see ( 22)) are a priori selected relatively to the reference solution u by the criterion

max j∈Z\I u h (•, ν f + jν ) ∞, Ω h ≤ 10 -3 × u h (•, ν f ) ∞, Ω h ( 32 
)
in such a way that I + is minimized. This assumption ensures that u J + h is restricted to the significant components of u hν f around ν f , with a normalized amplitude less than 10 -3 . Here, we set f ∞,

Ω h = max x∈ Ω h |f (x)|.

Convergence of the frequency-domain solution w I + gen,h

The computational cost of the proposed frequency domain method depend on the size I + of the system that we have to solve and on the number of finite elements n Ω = L/h. The corresponding algorithm requires the solution of a linear system with a sparse block pentadiagonal matrix of size n I + , with tridiagonal blocks. On the other hand the brute force method used to compute the reference solution u J + h is based on the resolution of (29) with a P 1 finite element method in space and a second-order Crank-Nicolson time scheme which requires the solution of n t tridiagonal linear systems of size n Ω , followed by the computation of n Ω FFTs of size n t .

In order to assess the accuracy of the method, we compare the numerical solutions w I + gen,h and u J + h in different physical settings. To this end, we first define the pointwise error between the Fourier spectra

| u J + h | and | w I + gen,h | err( u J + h , w I + gen,h , x) := | u J + h ( x, •)| -| w I + gen,h ( x, •)| 1,J + u J + h ( x, •) 1,J + (33) 
where

f 1,J + = ξ∈J + |f (ξ)|.
Thanks to the non-homogeneous left boundary condition for the space-time problem (9), the denominator u J + h ( x, •) 1,J + of (33) never vanishes for x ∈ Ω h . Next, we define the overall error on the computational domain as

Err( u J + h , w I + gen,h ) := 1 L Ω h err( u J + h , w I + gen,h , x)d x. ( 34 
)
Figure 4a reports Err( u J + h , w I + gen,h ) with respect to increasing the source frequency ν f , for different values of h. The time-domain solution u J + h was computed on the same spatial grid as w I + gen,h , with time discretization parameters adapted to reach the numerical convergence. In complement, we show in Figure 4b the size of I + used to evaluate w I + gen,h vs. ν f , with c = 300, ν = 1 and = 0.1.

We observe that w I + gen,h provides a more accurate approximation of u J + h when the source frequency ν f is not close to an eigenfrequency ν m of the system. Otherwise, the nearest eigenmode u νm shares components of non negligible amplitude with u ν f , which makes the error increase. This sketches validity regions for the presented method, which correspond to the assumptions made in Section 3.3. Moreover, Figure 4b illustrates that I + might stay relatively small on some regions of ξ between the eigenfrequencies. In fact, the explicit determination of these precise regions is related to the a priori determination of I + and remains an open question.

However, it is very interesting to notice that for particular values of the ratio κ f = 2πν f /c, the minimal size I + can remain small even for very large values of ν f . For example, Figure 5 reports the spectrum | w I + gen,h | for ν f = 3.2 × 10 9 and c = 3 × 10 8 , i.e. for a realistic radar application. In this case, 11 frequency components suffice for an accurate calculation of the solution.

Influence of the number of frequency components I +

Similarly to [START_REF] Harfoush | A numerical technique for analyzing electromagnetic wave scattering from moving surfaces in one and two dimensions[END_REF], we report on Figure 6a the error Err( u J + h , w

I + 1 gen,h ) for different sizes I + 1
of the test interval I + 1 . The reference interval I + is fixed with cardinal I + = 111. In addition, Figure 6b gives the error between w I + gen,h and w

I + 1
gen,h for I + 1 > 111. The parameters are h = 0.01, c = 300, ν f = 500, ν = 1 and = 0.1. The fast decay of the error is in accordance with the notion of minimal truncation interval I + , and Err( u J + h , w

I + 1
gen,h ) settles down about 3.5×10 -3 for I + 1 ≥ 111. In particular, for I + 1 ≥ 111, the triangular inequality entails that Err( u J + h , w

I + 1
gen,h ) ≤ Err( u J + h , w I + gen,h ) + Err( w I + gen,h , w

I + 1
gen,h ) ≈ 3.5 × 10 -3 + Err( w I + gen,h , w (a) Err( u J + h , w I + gen,h ) vs. ν f for decreasing h. and, as we observe in Figure 6b, this stabilization is of average amplitude 10 -13 . This illustrates the fast convergence of w I + gen,h with respect to the parameter I + . This result opens up the possibility to obtain a relevant estimation of I + , using iteratively the algorithm which computes w I + gen,h .

I + 1 gen,h ),

Validity of the small-amplitude approximation w I + h

To justify the range of validity of the proposed approximate solution w I + , let us compare

| w I + h | to | w I + gen,h |.
In order to define I + for each physical configuration {c, ν f , ν , }, we again use the criterion [START_REF] Gyselinck | Multi-harmonic modelling of motional magnetic field problems using a hybrid finite element-boundary element discretisation[END_REF]. Now, similarly to [START_REF] Harfoush | A numerical technique for analyzing electromagnetic wave scattering from moving surfaces in one and two dimensions[END_REF], we consider the error Err( w I + gen,h , w

I + h ) = 1 L Ω h err( w I + gen,h , w I + h , x)d x.
In Figure 7, we report the error for increasing values of ranging from 0 to 0.2 and for ν in [0,[START_REF] Boubendir | A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation[END_REF]. The other parameters are fixed to ν f = 360 and c = 300. The spatial discretization step is h = 0.01. As expected, increasing the boundary motion amplitude and the frequency ν increases the relative difference between the two methods. Indeed, the dropped terms in ( 13) are becoming non negligible for relatively high magnitudes of , which leads to define a region of validity of the approximation w I + around small values of . In particular, the choice of = 0.1 (1/10 of the size of the domain L = 1) ensures a relative difference of 10 -3 between w I + h and w I + gen,h . In the following section, we provide a generalization of the frequency domain method to more complicated boundary motions, while maintaining 1. This assumption, in accordance to the previous discussion and Figure 7, allows us to focus on developing the approximate numerical method w I + for small .

Scattering with general boundary motions

We introduce a generalization of the previous approach to a motion (t) which has no a priori explicit expression. Let us denote by u( x, t) the solution of ( 9). We assume that the velocity of the motion of the boundary is much smaller than the phase speed of the emitted waves. In addition, we limit the study to the case where, for fixed t, the change of variables Ω(t) to Ω is linear in spatial coordinates. The motion is expected to be a

C ∞ (R) periodic time-dependent function taking its values in the interval [L -L, L + L].
Let us denote by ν the frequency of the motion. Because never vanishes, Wiener 1/f theorem [START_REF] Newman | A simple proof of Wiener 1/f theorem[END_REF] for Fourier series entails that the application x : (x, t) → x(x, t) can be expanded as a time Fourier series around ν . Then, by linearity of x in x and due to the form of , such an expansion also holds for ( ∂ x ∂x ) 2 and the corresponding time Fourier transform thus writes

F   ∂ x ∂x 2   = n∈Z c n δ nν , (35) 
for some complex-valued coefficients c n . Since is not necessarily explicitly given, the computation of the coefficients c n of is based on the FFT in the time domain. Thanks to the linear of change of variable in x, the coefficients are constant in the spatial domain. Let us also notice that if the boundary motion is not periodic, the formulation of the Fourier transform is not a Dirac comb, which leads to a non-discrete system of equations. If it is almost-periodic in the sense of Bohr [START_REF] Bohr | Almost Periodic Functions[END_REF], a Fourier-type transform exists in the form n∈Z c n δ λn , with c n ∈ C and λ n ∈ R. However, this expansion is based on the parameters λ n which are not necessarily multiples of λ 0 . We do not treat these cases here.

We now consider [START_REF] Censor | Scattering of electromagnetic waves by a cylinder moving along its axis[END_REF], which approximates (9) in the case of small amplitude perturbations, but with a general motion . The application of the Fourier transform on (12) yields 4π

2 ξ 2 c 2 v + ( n∈Z c n δ nν ) * ∂ xx v = 0, (36) 
with the boundary conditions v(0, ξ)

= 0 if |ξ| = ν f , v(0, ±ν f ) = ± A 2i
, and v(L, ξ) = 0 for all ξ ∈ R. Since the boundary conditions are homogeneous with a harmonic source term, we assume that v admits a non-trivial expansion of the form [START_REF] Censor | Non-relativistic scattering: pulsating interfaces[END_REF]. Then the arguments presented in Section 3 justify that we keep our focus on the component v ν f .

In the numerical simulations, the Fourier expansion ( 35) is truncated to (2N +1) terms. Indeed, since is C ∞ (R) and never vanishes, the Fourier coefficients c n are fastly decaying and we can therefore assume that the infinite sum (35) can be suitably truncated at order N as N n=-N c n δ nν . Moreover, since is periodic with fundamental frequency ν , it is reasonable to search for an approximate solution w I + ν f of v ν f under the form of the formal ansatz [START_REF] Dunne | A split-frequency harmonic balance method for nonlinear oscillators with multi-harmonic forcing[END_REF]. Then, plugging the series expansion of w I + ν f and (35) truncated at order N into [START_REF] Karahasanovic | Radar-based detection of thoracoabdominal asynchrony during breathing using autocorrelation function analysis[END_REF], and identifying the coefficients in front of the Dirac distributions leads to the following system of equations

κ 2 j a + j + N n=-N c n ∂ xx a + j-n = 0, j ∈ I + , ( 37 
)
where J 1 and J 2 have to be adequately chosen and κ j = (ω f +jω )/c. We have the boundary conditions: a + 0 (0) = A 2i , a + j (0) = 0 for j = 0, a + j (L) = 0 and a + j ( x) = 0 for j ∈ Z \ I + . As previously, to solve (37) by the finite element method, we use the weak formulation: find a * j ∈ H 1 D j ( Ω) such that, for all j ∈ I + ,

κ 2 j Ω a * j φd x - N n=-N c n Ω ∂ xa * j-n ∂ xφd x = 0, (38) 
holds for all test functions φ ∈ H 1 0 ( Ω). The same covering Ω h of Ω is used. The notation w I + h designates the solution of the discrete weak coupled system [START_REF] Li | Radar remote monitoring of vital signs[END_REF].

The case of a sine motion is already investigated in the previous sections. Let us consider the following function N that involves N modes

N (t) = L(1 + N k=0 sin((2k + 1)ω t) 2k + 1 ).
For the numerical simulations, the interval I + is computed by using the previous criterion [START_REF] Gyselinck | Multi-harmonic modelling of motional magnetic field problems using a hybrid finite element-boundary element discretisation[END_REF]. For different values of ∈ [0.01, 0.1], we report in Figure 8a the minimal cardinal I + as a function of the number N of modes in N . We keep the usual settings A = 1, c = 300, ν f = 360, ν = 1 and h = 0.01. It is known that N converges to the square shaped signal ∞ (t) = L + 4 sign(sin(t)) when N → +∞. As expected, the minimal cardinal I + of the system (38) increases with both N and . The error Err( u J + h , w I + h ) between the solution w I + h and the reference u J + h is reported in Figure 8b for the same values of boundary motion amplitudes as in Figure 8a. The multi-harmonic formulation exhibits stable convergence w.r.t. the number of boundary modes, the error level being simply related to the small amplitude approximation used to compute w I + h .

Extension to higher dimensions

We now formally extend the approach developed for (1) to the space-time dimension d + 1 (i.e. d in space and 1 in time). To this end, we assume that a wave is emitted by a source Ω s , with boundary Γ s = ∂Ω s , and is scattered by an obstacle Ω obst (t) with smooth boundary Γ(t) = ∂Ω obst (t), moving with frequency ν around an equilibrium position Γ(0). We then define the d-dimensional domain of propagation, denoted by Ω ext (t), as the exterior domain with boundaries Γ s and Γ(t). We schematically illustrate the configuration in Figure 9. We define the position vector r := (x 1 , ..., x d ) T ∈ Ω ext (t) and the associated Laplace operator ∆ r := ∂ x 1 x 1 + ... + ∂ x d x d . Then, we obtain the extension of (1) as

∂ tt u -c 2 ∆ r u = 0 ( 39 
)
with unknown total wave field u(r, t), for r ∈ Ω ext (t) and t ∈ R + * . The field is given on Γ s by u(r, t)| Γs = A sin(ω f t). Since Ω ext (t) is unbounded, the system does not have any eigenmodes and the energy of the system is concentrated around the source frequency ν f . The initial conditions are u(r, 0) = 0 and ∂ t u(r, 0) = 0.

Let us analyze the case of the three-dimensional spatial situation. We first map Ω ext (t) to a fixed domain Ω ext with boundaries Γ s and Γ = Γ(0), by the change of space variable r : (r, t) → r(r, t) = ( x 1 , x 2 , x 3 ) T , such that r(Γ(t), t) = Γ and r(Γ s , t) = Γ s . Then we set: u(r, t) = u( r, t) for t ∈ R + * . For x := ( x 1 , x 2 , x 3 , t) T ∈ Ω ext × R + * , let us define the gradient operators

∇ x := (∂ x1 , ∂ x2 , ∂ x3 , ∂ t ) T and ∇ r := (∂ x1 , ∂ x2 , ∂ x3 ) T . Then, we have ∂ t u = ∂ t ( u) = ∂ t x • ∇ x u, and
∂ tt u = ∂ tt x • ∇ x u + ∂ t x • ∂ t (∇ x u) = ∂ tt x • ∇ x u + ∂ t x • ∇ x∂ t ( u) = ∂ tt x • ∇ x u + (∂ t x • ∇ x) 2 u. ( 40 
)
Let us define the time dependent spatial Jacobian matrix of (r, t) → r(r, t) as J := [∂ x j x i ] i,j∈{1,2,3} . Then, the spatial gradient writes ∇ r = J T ∇ r. Since ∇ r t = 0, it directly follows that:

∆ r u = ∇ r • ∇ r u = ∇ r • (J T ∇ r u) = (∇ r • J T )∇ r u + ∇ r • JJ T ∇ r u, (41) 
Hence, substituting [START_REF] Liu | Analysis of phase noise influence on micro-Doppler feature extraction on vibrating target[END_REF] and ( 41) into (39) leads to the equation

∂ tt x • ∇ x u + (∂ t x • ∇ x) 2 u -c 2 (∇ r • J T )∇ r u + ∇ r • JJ T ∇ r u = 0. ( 42 
)
As previously, if we choose x i , i = 1, 2, 3 of first order in x i we get (∇ r • J T ) = 0. Moreover if the amplitude of the movement is small and bounded by a small perturbation , we can neglect the O( ) terms and the function ∂ tt u in (40) reduces to ∂ tt u. This leads to the following approximate equation for small amplitude boundary movements

∂ tt v -c 2 ∇ r • JJ T ∇ r v = 0, (43) 
which generalizes [START_REF] Censor | Scattering of electromagnetic waves by a cylinder moving along its axis[END_REF]. In addition, we keep the previous homogeneous boundary condition on Γ, the non-homogeneous boundary condition on Γ s , i.e. v( r, t)| Γs = A sin(ω f t), and the initial conditions v( r, 0) = 0 and ∂ t v( r, 0) = 0. In practice, after discretization, we can choose a piecewise linear change of variable r, defined on the same mesh as the finite element solution, which makes J only time dependent on each finite element. The Fourier transform in time of (43) gives

4π 2 ξ 2 v + c 2 ∇ r • (F(JJ T ) * ∇ r v) = 0. (44) 
Following [START_REF] Kuchment | Floquet Theory For Partial Differential Equations[END_REF], we consider the truncated Fourier series expansion of JJ T (t)

F(JJ T )(ξ) = N n=-N C n δ nν , ( 45 
)
where C n are some 3×3 complex-valued symmetric matrices. Proceeding as in Section 3.2, we obtain from (44) the following system of coupled Helmholtz-type equations in terms of the complex Fourier coefficients a + j , for j ∈ I + ,

κ 2 j a + j + ∇ r • N n=-N C n ∇ r a + j-n = 0, (46) 
with κ j = (ω f + jω )/c. The boundary condition on Γ s can be written as a + 0 ( r T ) = A 2i and a + j ( r T ) = 0 for j = 0. We apply the homogeneous Dirichlet boundary condition a + j ( r T ) = 0 on Γ for j ∈ I + .

We now introduce a fictitious boundary Σ that delimits a finite computational domain Ω with boundaries Σ, Γ s and Γ, and with exterior unit normal vector n. On Σ, we impose the following absorbing boundary condition associated with each single Helmholtz equation:

iκ j a + j + n • N n=-N C n ∇ r a + j-n = 0, (47) 
for j ∈ I + . The derivation of this boundary condition is given in Appendix B. We derive the following weak formulation of ( 46): find a

* j ∈ H 1 Γs ( Ω) := {a * j ∈ H 1 ( Ω) | a * 0 ( r) = A 2i
and a * j ( r) = 0, j = 0, on Γ s , and a * j ( r) = 0 on Γ} such that

κ 2 j Ω a * j φd Ω - Ω   N n=-N C n ∇ ra * j-n   • ∇ rφ d Ω -iκ j Σ a * j φ d Σ = 0, (48) 
for all φ ∈ H 1 0, Γs∪ Γ ( Ω) := {φ ∈ H 1 ( Ω) | φ = 0 on Γ s ∪ Γ}. We consider Ω h as a covering of Ω consisting of n Ω triangular finite elements. For j ∈ I + , we denote by a * h,j the linear finite element approximation of a * j . We numerically illustrate the approach in the following two-dimensional (d = 2) model problem, where the initial domain is the rectangle ] -1/3, (t)[×] -1/2, 1/2[ where the right side of the rectangle Γ(t) moves according to the sine motion (t) = 1 + sin(2πν t). We consider absorbing boundary conditions on the three remaining sides and a point source Ω s located at (0, 0) T . The change of variable constitutes an extension of the onedimensional case (see Section 2.3), i.e. r(r, t) = (x 1 / (t), x 2 ) T . The discretized domain Ω h is a triangular mesh that consists of n Ω = 640 elements. In the Figures 10,[START_REF] Cardona | A multiharmonic method for nonlinear vibration analysis[END_REF] based on a change of variable which makes the moving domain fixed, and a multi-harmonic expansion of an approximate wave field. This results in the numerical solution of coupled systems of Helmholtz-type equations where optimized algorithms can be developed in the frequency domain. A preliminary numerical study is presented to confirm that the approach is accurate and efficient in the application domain of interest.

Ongoing works are now related to the design of optimized numerical algorithms for solving the coupled systems of harmonic equations and the extension to electromagnetic waves in view of industrial applications related to radar applications.

A Proof of Proposition 1.

The source term of frequency ν f that continuously emits into the domain at the left boundary constitutes an initial impulse that excites the eigenmodes of the system at time t = L/c, which are solutions to the homogeneous wave equation ( 1) with zero boundary conditions.

To separate the different contributions in the global wave field , we decompose u as the sum of the forced stationary wave coming from the source term and the free stationary waves related to the eigenmodes of the system. Hence, let us define

u 0 = u 0,ν f + u 0,ν , (49) 
where u 0,ν f (x, t) = E 0,ν f (x) sin(ω f t), and E 0,ν f is the stationary solution to the Helmholtz equation with wavenumber κ f := ω f /c in the bounded domain ]0, L[

(∂ xx + κ 2 f )E 0,ν f = 0,
with boundary conditions E ν f (0) = A and E ν f (L) = 0. A simple calculation gives u 0,ν f as

u 0,ν f (x, t) = A sin(κ f L) sin(κ f (L -x)) sin(ω f t). ( 50 
)
Let us now compute u 0,ν . As a linear combination of stationary waves, the function u 0,ν is characterized by independent periodicities either in space and time, leading to the direct computation of the field u 0,ν by the separation of variables. More precisely, considering u 0,ν (x, t) = E 0 (x)U 0 (t) into (1), we obtain the following Helmholtz equation where φ m ∈ R, for m ∈ N, and ψ must be determined. Since u 0,ν f (x, 0) = 0, (4) and [START_REF] Zheng | Analysis of micromotion characteristics from moving conical-shaped targets using the Lorentz-FDTD method[END_REF] imply that u 0,νm (x, 0) = 0 and then ψ = 0. Hence, by the superposition principle, the general solution u 0,ν for the free modes can then be written as 

-∂ xx E 0 = λ 2 c 2 E
Since each stationary mode is C ∞ (Ω(t)×R + * ), the convergence of the sum is guaranteed. Moreover, ( 5) and ( 49) lead to ∂ t u 0,νm (x, 0) = -∂ t u 0,ν f (x, 0).

(52)

Hence, using ( 50) and ( 52), one gets by a direct computation 

∂ t u 0,ν (x, 0) = - Aω f sin(κ f L) sin(κ f (L -x)). ( 53 
) 54 
where it is well-known that the odd Fourier coefficient ϕ m satisfies

ϕ m = 2 L L 0 sin(κ f (L -x)) sin(κ m x)dx = 1 L L 0 [cos(x(κ m + κ f ) -κ f L) -cos(x(κ m -κ f ) + κ f L)] dx = 2κ m sin(κ f L) L(κ 2 m -κ 2 f ) . ( 55 
)
Finally, by identification with (51), we conclude that

φ m = 2Aκ f L(κ 2 f -κ 2 m )
.

Finally, for ν f = ν m , we obtain the result by replacing u 0,ν f and u 0,kν in [START_REF] Zheng | Analysis of micromotion characteristics from moving conical-shaped targets using the Lorentz-FDTD method[END_REF].

Fig. 1 .

 1 Fig. 1. Frequency spectrum | u h (0.5, ξ)| without ( = 0, in red) and with boundary motion ( = 0.1, in blue). This illustrates both the assumption on the decomposition (14) of u and the ansatz (26).

Fig. 2 .

 2 Fig. 2. On the top figure, time signals u h (0.5, t) in blue and u J h (0.5, t) in red. On the bottom figure, their absolute difference vs. t. The physical parameters are ν f = 360, ν = 2, c = 300 and = 0.1.

Fig. 3 .

 3 Fig. 3. Increasing the amplitude of the sinusoidal perturbation (11) leads to the excitation of a larger frequency band in the solution u h (0.5, ξ), with ν f = 3250, c = 1280, and ν = 1.

Fig. 4 .

 4 Fig. 4. Top: Error Err( u J +h , w I + gen,h ) depending on ν f for increasing refinement h. Bottom: cardinal I + vs. ν f . The vertical dashed lines correspond to the eigenfrequencies ν m = mc/2 (since L = 1) of the spatial domain without boundary motion.

Fig. 5 .

 5 Fig. 5. Evaluation of | w I + gen,h | for a high frequency source, with ν f = 3.2 × 10 9 and c = 3 × 10 8 . The number of bumps along the space variable directly depends on the value of the wavenumber κ f = 2πν f /c. We use I + = 11, = 0.01, ν = 1 and h = 0.001.

1 Fig. 6 .

 16 Fig. 6. Left: error Err( u J + h , w I + 1 gen,h ) depending on I + 1 . Right: Err( w I + gen,h , w I + 1 gen,h ) depending on I + 1 . The dashed line corresponds to the fixed value I + = 111. The parameters are h = 0.01, c = 300, ν f = 500, ν = 1 and = 0.1.

Fig. 7 .

 7 Fig. 7. Err( w I + gen,h , w I + h ) for increasing values of and ν .

  Err( u J + h , w I + h ) vs. N .

Fig. 8 .

 8 Fig. 8. Left: I + vs. N . Right: error Err( u J + h , w I + h ) vs. N . The parameters are: A = 1, c = 300, ν f = 360, and ν = 1.

Fig. 9 .

 9 Fig. 9. Example of a two-dimensional domain Ω ext (t) with source boundary Γ s and moving scatterer boundary Γ(t).

Fig. 10 .

 10 Fig. 10. Four components |a * j ( r)| for j = 0, 1, 2, 3 of w I + ( r), for the physical parameters ν f = 360, ν = 1, c = 300 and = 0. This case corresponds to the standard wave propagation in a fixed domain, without frequency modulation.

7 ConclusionFig. 11 .Fig. 12 .

 71112 Fig. 11. Four components |a * j ( r)| for j = 0, 1, 2, 3 of w I + ( r), for the physical parameters ν f = 360, ν = 1, c = 300 and = 0.2.

  0 , on ]0, L[, with homogeneous Dirichlet boundary conditions and for a constant λ ∈ R. Since the spectrum of the Laplace operator in a bounded domain is discrete, the corresponding solutions for each eigenvalue λ m such that λ m := mπc/L constitute an Hilbert basis {e νm } m∈N , with e νm (x) = sin( mπ L x) =: sin(κ m x) and ω m := 2πν m = κ m c = mπc L , for m ∈ N. In addition, we have the ODE-∂ tt U 0 = ω 2 m U 0 ,for m ∈ N, with U (0) = 0. For each frequency ν m , the solution is then of the form u 0,νm (t) = φ m sin(ω m (t + ψ)),

u

  0,ν (x, t) = m∈N u 0,νm (t)e νm (x) = m∈N φ m sin(ω m t)e νm (x), which entails that ∂ t u 0,ν (x, 0) = m∈N φ m ω m e νm (x).

)

  Let us consider the L-periodic odd extension of sin(κ f (L -x)) in (53). Expanding it in the basis {e νm } m∈N for ν 0,f = ν m , we obtain for x ∈]0, L[sin(κ f (L -x)) =m∈N ϕ m e νm (x) = m∈N ϕ m sin(κ m x), (
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h (0.5, t) vs. t (blue) and u J h (0.5, t) vs. t (red).

(b) | u J

h (0.5, t) -w I gen,h (0.5, t)] vs. t.

∂ tt u + ( x 2 2 -c 2 L 2 )∂ xx u -2 x ∂ xt u + x(2 2 -)∂ x u = 0,(29)with u(0, t) = A sin(ω f t), u(L, t) = 0 for t > 0, and u( x, 0) = 0, ∂ t u( x, 0) = 0, for x ∈ Ω. The methodology presented in the previous subsection is now applied to[START_REF] Garcia-Rubia | Analysis of moving human micro-Doppler signature in forest environments[END_REF]. Let u( x, ξ) := F( u)( x, ξ) be the time Fourier transform of a solution u of (29). We assume that u ν f admits a decomposition of the form[START_REF] Censor | Non-relativistic scattering: pulsating interfaces[END_REF] (see also Figure1). Let us now focus on the component u ν f of u and search for an approximation w I + gen of u ν f for ξ ∈ J + , in the form of the ansatz[START_REF] Dunne | A split-frequency harmonic balance method for nonlinear oscillators with multi-harmonic forcing[END_REF] with coefficients a + j,gen .
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B Derivation of the absorbing boundary condition

 [START_REF] Yamada | Harmonic field calculation by the combination of finite element analysis and harmonic-balance method[END_REF]Let us consider the lower-order absorbing boundary condition applied to the outer boundary of Ω ext (t)

with outwardly directed unit normal vector n. The deformation field r implies that the corresponding unit normal vector n to Σ satisfies: J T n = n. Hence, considering the assumptions that lead to derive [START_REF] Peng | A sinusoidal frequency modulation Fourier transform for radar-based vehicle vibration estimation[END_REF], we have the following equivalent absorbing boundary condition on Σ

The time Fourier transform of (57) leads to

Plugging the Fourier series expansion (45) of JJ T (t) into (58), we obtain the following system of absorbing boundary conditions in terms of the complex Fourier coefficients a j , for j ∈ I:

C n ∇ r a j-n = 0, with κ j = (ω f + jω )/c.