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A frequency domain method for scattering problems
with moving boundaries

D. Gasperini∗†‡, H. P. Beise∗, U. Schroeder∗, X. Antoine†, C. Geuzaine‡

Abstract

We propose a multi-harmonic numerical method for solving wave scattering prob-
lems with moving boundaries, where the scatterer is assumed to move smoothly
around an equilibrium position. We first develop an analysis to justify the method
and its validity in the one-dimensional case with small-amplitude sinusoidal motions
of the scatterer, before extending it to large-amplitude, arbitrary motions in one-
and two-dimensional settings. We compare the numerical results of the proposed
approach to standard space-time resolution schemes, which illustrates the efficiency
of the new method.

Keywords: high frequency scattering; scalar waves; moving boundary; Doppler effect;
multifrequency resolution.

1 Introduction
In wave scattering theory, it is well-known that the motion of the target modulates the
frequency of the reflected wave, which is the so-called Doppler effect [15, 30]. For a mo-
tion with uniform velocity, the Doppler frequency shift can be computed easily [13]. The
prediction of Doppler shifts for more general movements is commonly obtained through
simple approximate models combined with signal processing [9, 10, 15, 16, 31, 38, 40].

The radar detection of non uniformly moving scatterers has found a tremendous number
of applications in recent years, thanks to the availability of new high-frequency sensors and
devices. For example, the radar frequency ranges 24-24.5 GHz and 61-61.5 GHz (the so-
called ISM bands) are standard for many applications, and the new 77-81 GHz band is
currently considered for automotive applications. The THz frequency range will appear in
applications in the next few years, e.g. at 140 GHz. A major advantage of high-frequency
radar sensing is its sensitivity to micro movements [15, 16], when the scatterer includes

∗IEE S.A., Bissen, Luxembourg
†Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France
‡University of Liège, Montefiore Institute B28, B-4000 Liège, Belgium

1



several moving parts. This results in the so-called micro-Doppler effect [15, 16], which is
used with great success from drone detection [8] or the analysis of pedestrian movement [10,
16, 29] to the modeling of the effect of the rotation of helicopter rotor blades on the radar
signature of the aircraft [2]. In the automotive industry, micro-Doppler sensing has recently
been proposed [23, 31, 36, 38] for the contactless detection of vital signs like breathing of
infants left alone on the back seat of overheating cars. The engineering of such very high
frequency radar sensing devices entails dealing with multiple challenges, as for instance the
analysis of random body movements and vehicle vibrations [23, 31, 38, 39, 40, 43], leading
to radar signatures that can be classified for example by deep learning techniques [7, 8, 18].
In order to design these new sensors, an adequate full realistic simulation of the underlying
high frequency scenarios is crucial.

Concretely, a suitable physical modeling of the (direct) problem leads to solve a time-
dependent wave propagation problem in a complex environment (e.g. the interior of a car),
which has both a complex geometrical shape and involves various materials that interact
strongly with the high frequency emitted signal. In addition, the moving target is also
usually of complex shape and materials (e.g. the infant on the back seat of the car), and
characterized by small amplitude displacements at extremely low frequencies compared
to the emitter. The natural mathematical framework to model such physical problems is
the derivation of an adapted system of partial differential equations (PDEs), which are
to be solved numerically when the configuration under study involves complex geometries
or materials. Additional effects such as random vibrations can be handled by adding or
modifying the PDE system.

The solution in a PDE setting of moving target problems has already received some
attention in the mathematical and engineering communities. Analytical approaches for
solving wave-like problems with simple motions have been developed e.g. for rotating ob-
stacles [12, 17, 21, 45] or vibrating objects [14, 17, 34, 40]. In addition, numerical schemes
based e.g. on FDTD [34, 49, 50] or fast integral equation solvers [48] were also investigated.
More mathematical works related essentially to one-dimensional moving boundary prob-
lems have also been proposed e.g. by Fokas and his co-authors [28] to recast the problem
as a Volterra integral equation in a fixed domain, or by Christov and Christov [20] for an
asymptotic multiscale analysis of the Doppler effect in a half-space. To the best of the
authors’ knowledge, however, the numerical solution of the micro-Doppler PDE modeling
problem has not been addressed yet.

In the present paper, we propose an original frequency domain method to address this
problem, which leads to the solution of coupled systems of Helmholtz-type equations. First,
we transform the constant coefficients wave equation in the moving domain as a new wave-
like equation in a fixed domain but with variable coefficients related to the metric change
(a similar approach was used for quasi-static electromagnetic models in [33]). Since we
are studying the micro-Doppler problem (small amplitude and low frequency oscillations
of the scatterer) for a high frequency radar, we can then expand the solution in the Fourier
domain in time as a Fourier series expansion centered around the radar frequency, mod-
ulated by the low frequency perturbation induced by the scatterer movement. For small
amplitude movements, the variable coefficients wave equation can be simplified thanks to
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the small amplitude, and the series expansion can be truncated to keep a finite number
of discrete frequency components related to the small amplitude variations. The resulting
approach then yields a coupled system of Hemholtz equations for the wave numbers defined
by the discrete frequency components kept by the approximation. For larger amplitude
movements, a similar analysis can be developed based on adding more Fourier modes since
the frequency coupling is stronger, resulting in a larger system of coupled Helmholtz equa-
tions with variable coefficients. This approach is valid for any dimension and configuration,
and the resulting frequency domain coupled formulation can be solved by efficient numer-
ical methods adapted to solving Helmholtz-type equations in the high frequency regime.
In the present paper, we propose an approach based on the finite element method [25]
which is known to be flexible to handle two- and three-dimensional complex engineering
configurations, including complex materials and shapes. In addition, this choice allows
to consider in the future an algorithmic adaptation of efficient high-order finite element
solvers based on domain decomposition [4, 24, 27, 44], where only a local resolution of the
problem around the moving obstacle could be resolved. Let us remark that, depending on
the problem, other high frequency numerical methods may also be adapted like for exam-
ple fast integral equations solvers [19] or even asymptotic adpproximation techniques [5].
Finally, let us notice that the finite Fourier expansion method which leads to the coupled
system of PDEs has also been used in the past under the name of the harmonic-balance
method or the multi-harmonic approach [6, 11, 32, 33, 35, 41, 46]. It has been proved to
be particularly efficient for engineering problems, including situations related to wave-like
equations [22, 26, 47].

The paper is organized as follows. In Section 2 we define a sine-motion moving boundary
scattering problem and formulate it in a fixed domain. In Section 3 we develop a multi-
harmonic approach to solve the scattering problem for small and large amplitudes of the
boundary motion. We illustrate in Section 4 the validity of the method through numerical
computations and generalize it in Section 5 to general boundary motions which are not
explicitly prescribed. In Section 6, we extend the approach to higher-dimensional domains
and illustrate the numerical method on a two-dimensional example. Finally, we conclude
in Section 7. Appendix A details some computations.

2 Problem statement and reformulation in a fixed do-
main

2.1 The initial boundary-value problem
We assume that the bounded spatial domain is defined by: Ω(t) :=]0, `(t)[, where t ∈ R
is the time variable and x denotes the spatial variable. The modeling of the moving
boundary is described by the time-dependent function `(t). In the context of this work,
`(t) is supposed to be smooth and bounded. For R+

∗ :=]0,∞[, we introduce the unknown
total wave field u := u(x, t), for x ∈ Ω(t) and t ∈ R+

∗ , solution to the constant coefficients
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wave equation
∂ttu− c2∂xxu = 0, (1)

where c is the wave velocity in the medium under consideration. At the fixed left boundary
x = 0 of Ω(t), we impose a single-source term A sin(ωft), with amplitude A ∈ R+

∗ and
angular frequency ωf := 2πνf > 0. In practice, νf is expected to be very large compared to
the frequency content of `(t). For instance, νf might be in frequency range 109 − 1010 for
realistic radar applications. The associated inhomogeneous Dirichlet boundary condition
is then set as:

u(0, t) = A sin(ωft). (2)
On the moving right boundary, we fix a homogeneous Dirichlet boundary condition

u(`(t), t) = 0. (3)

For physical applications, we consider the time origin of the problem as an emission starting
at t = 0, and take into account the transient mode of the excited wave field. Finally, for
the sake of well-posedness, we add the two initial conditions

u(x, 0) = 0 (4)

and
∂tu(x, 0) = 0. (5)

2.2 The case of a motionless boundary
Let us consider the case where the right boundary is fixed, i.e. `(t) := L. Then, we get an
explicit form of the solution (see Appendix A for a proof).

Proposition 1. Let us assume that : Ω(t) = Ω :=]0, L[, ∀t > 0. We define κf := ωf/c,
κm := mπ/L and ωm := cκm, for m ∈ N. We suppose that: ωf 6= ωm, ∀m ∈ N. Then, the
solution u0 of (1) is given by: ∀x ∈ Ω, t > 0,

u0 = u0,νf +
∑
m∈N

u0,νm (6)

where 
u0,νf (x, t) := A

sin(κfL) sin(κf(L− x)) sin(ωft),

u0,νm(x, t) := 2Aκf

L(κ2
f − κ2

m) sin(κmx) sin (ωmt) .

Let us remark that u0 can be extended to t ∈ R, if we consider the source term (2)
emitting for t < 0, and the conditions (3), (4) and (5). Hence, this allows us to introduce
û0 := Fu0, where the time Fourier transform F of a function v defined on R is given by

v̂ := Fv(x, ξ) :=
∫
R
v(x, t)e−2iπξtdt. (7)
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From (6), one gets

û0 = A

2i sin(κfL) sin(κf(L− x))(δνm − δ−νm)

+
∑
m∈N

A
κf

iL(κ2
f − κ2

m) sin(κmx)(δνm − δ−νm)

=: û0,νf +
∑
m∈N

û0,νm ,

(8)

where δa is the Dirac distribution at a point a. Considering (8), we observe that the
amplitude of the m-th mode û0,νm scales like κf/L|κ2

f −κ2
m|, and thus exhibits a fast decay

as the frequency νm moves away from νf (see e.g. Figure 1 for an example of such a
solution). When νf is close to an eigenfrequency νm, then the solution tends to behave like
a single-mode with infinite amplitude, hence concentrating the energy of the system.

In the case of a moving boundary, we expect that the overall behavior of the solution
owns similar properties: a first main contribution centered around the frequency νf and
a finite discrete sum of other significant contributions centered around the resonances νm,
most particularly for a small perturbation of the boundary oscillating at a frequency ν`
such that 0 < ν` � νf . However, in practical applications, the domain is often partially
open and/or has wave absorbing objects at the boundary, which leads to non resonant
finite amplitude solutions. This situation is investigated in Section 6 for the two- and
three-dimensional cases. For practical remote sensing applications based on the Doppler
effect, the useful information is mainly related to perturbations around νf .

2.3 Reformulation of the initial problem as a fixed domain prob-
lem

Let us now analyze the case of a moving boundary. We first map Ω(t) to the fixed domain
Ω̃ =]0, L[. This results in a new wave-like equation from the metric change. The physical
solution u is obtained by applying the reverse change of variable, i.e. from Ω̃ to Ω(t).
More precisely, the change of space variable x̃ : (x, t) 7→ x̃(x, t) is such that x̃(0, t) = 0,
x̃(`(t), t) = L, for all t > 0, and is built as a smooth mapping with respect to x and t. The
spatial and time derivative operators then write

∂xu = ∂x̃

∂x
∂x̃ũ, ∂tu = ∂tũ+ ∂x̃

∂t
∂x̃ũ, ∂xxu =

(
∂x̃

∂x

)2

∂x̃x̃ũ+ ∂2x̃

∂x2∂x̃ũ,

∂ttu = ∂ttũ+
(
∂x̃

∂t

)2

∂x̃x̃ũ+ 2∂x̃
∂t
∂tx̃ũ+ ∂2x̃

∂t2
∂x̃ũ.

Therefore, the initial scattering problem can be rewritten as follows: find ũ(x̃, t) = u(x, t)
that maps from Ω̃× R+

∗ to R and that satisfies

∂ttũ− c2

(∂x̃
∂x

)2

∂x̃x̃ũ+ ∂2x̃

∂x2∂x̃ũ

+
(
∂x̃

∂t

)2

∂x̃x̃ũ+ 2∂x̃
∂t
∂x̃tũ+ ∂2x̃

∂t2
∂x̃ũ = 0, (9)
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with ũ(0, t) = A sin(ωft), ũ(L, t) = 0, ũ(x̃, 0) = 0 and

∂tũ(x̃, 0) = − ∂x̃

∂t

∣∣∣∣∣
t=0

∂x̃ũ(x̃, 0) = 0.

Let us remark that, similarly to [33], the spatial Jacobian ∂x̃
∂x

of x̃ appears in (9). In the
following, we provide a frequency domain method to solve the modified wave equation (9).

3 The specific case of a boundary with sine motion

3.1 Analysis for the case of a small amplitude boundary motion
Let us consider the case where the motion of the right endpoint `(t) of the domain Ω(t) is
given by a small smooth time-dependent perturbation Lεf(ω`t) of L, where f is a smooth
bounded function with bounded derivatives f (p), oscillating with a frequency ν` = ω`/(2π)
small compared to the emitter frequency νf , that is 0 < ν` � νf . Therefore, we have

`(t) = L(1 + εf(ω`t)), (10)

with ε � 1. In the one-dimensional case, we can assume that this is given by a linear
relation x = x̃`(t)/L. To be more explicit, we now focus on the special case where the
boundary has a small time sinusoidal motion around L, defined by

`(t) = L(1 + ε sin(ω`t)), (11)

i.e. setting f(ω`t) := sin(ω`t). This leads to

∂x̃

∂x
= 1

1 + ε sin(ω`t)
= O(1), ∂x̃

∂t
= −x̃ εω` cos(ω`t)

1 + ε sin(ω`t)
= O(ε),

∂2x̃

∂x2 = 0, ∂2x̃

∂t2
= x̃

εω2
` (sin(ω`t)(1 + ε sin(ω`t))− 2ε cos(ω`t))

(1 + ε sin(ω`t))2 = O(ε).

Neglecting the O(ε) terms in (9), we obtain the variable speed wave equation

∂ttṽ − c2
(
∂x̃

∂x

)2

∂x̃x̃ṽ = 0, (12)

which can be written as
`2

(Lc)2∂ttṽ − ∂x̃x̃ṽ = 0 (13)

in Ω̃× R+
∗ , with ṽ(0, t) = A sin(ωft), ṽ(L, t) = 0, ṽ(x̃, 0) = 0 and ∂tṽ(x̃, 0) = 0.

Let us denote by � the d’Alembert operator

� := 1
c2∂tt − ∂x̃x̃,
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and u0(x̃, t) as the solution to (1) in the case of fixed boundaries. We consider the modified
operator

�ε := `(t)2

(Lc)2∂tt − ∂x̃x̃ = � + ε�1,

where
�1 := 2 sin(ω`t) + ε sin(ω`t)2

c2 ∂tt.

For a solution �εṽ = 1, we define the perturbative part ṽ1 by ṽ = u0 + ṽ1, leading to

�εṽ1 = −ε�1u0 = −ε�1

u0,νf +
∑
m∈N

u0,νm

 ,
according to (6).

Let us analyze the solution to the equations associated to each single source term
involved in the series expansion of ṽ0, i.e.

�εṽ1,νf = −ε�1u0,νf ,

and, for m ∈ N,
�εṽ1,νm = −ε�1u0,νm .

The right hand sides are C∞(Ω̃×R+
∗ ) functions and the corresponding boundary condi-

tions are homogeneous Dirichlet conditions. Thus, since these equations are of hyperbolic-
type, we have the existence and uniqueness of the solutions and by superposition

ṽ1 = ṽ1,νf +
∑
m∈N

ṽ1,νm .

Finally, we prove that there exist some functions ṽνf and ṽνm , m ∈ N, in C∞(Ω̃×R+
∗ ) such

that the solution ṽ of (13) admits the following decomposition:

ṽ = ṽνf +
∑
m∈N

ṽνm , (14)

with ṽνf = u0,νf + ṽ1,νf and ṽνm = u0,νm + ṽ1,νm , for m ∈ N.
This form provides a generalization of (6) to the case of a moving boundary based on

the approximation (13) of the full wave equation (9). Let us also remark that the previous
decomposition can be extended to the case of smooth and bounded functions ` defined by
a function f .

We now focus on the term ṽνf appearing in the expansion (14). A similar approach
can be adapted to the other terms ṽνm , for m ∈ N. Based on the method of separation of
variables, we define ṽνf (x̃, t) = Ẽ(x̃)Ṽ (t). The time-dependent component Ṽ (t) of ṽνf (x̃, t)
is given as the solution of the variable coefficients ODE

∂ttṼ + ω2
f L

2

`(t)2 Ṽ = 0, (15)
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for which we are seeking a solution in C∞(R+
∗ ). Since

ω2
f L

2

`(t)2 = ω2
f

(1 + ε sin(ω`t))2 ,

and ε sin(ω`t) ∈]− 1, 1[, we have the power series expansion

ω2
f L

2

`(t)2 = ω2
f
∑
k∈N

(−1)k(k + 1) (ε sin(ω`t))k

= ω2
f

(
1− 2ε sin(ω`t) +O(ε2)

)
.

(16)

For ε� 1, we consider the approximate solution W̃ to the equation (15) based on the
first-order truncation of (16), i.e.

∂ttW̃ + ω2
f (1− 2ε sin(ω`t)) W̃ = 0. (17)

Let us define the change of variable τ := πν`t+ π
4 and the function W (τ) := W̃ (πν`t+ π

4 ).
Then the second-order derivative writes

∂ttW̃ = (πν`)2∂ττW.

From (17), we deduce the Mathieu’s equation

∂ττW + (α− 2q cos(2τ))W = 0, (18)

with α = (2νf
ν`

)2 and q = −αε. The solutions of (18) are given as linear combinations of
Mathieu functions of the first-kind [1]. According to Floquet’s theory [37], they can be
written as φ(τ) = eiµτp(τ), with p a π-periodic function and µ the associated Floquet’s
exponent. Let us remark that the function φ(−τ) is also solution to the equation (18).
Whenever φ(τ) and φ(−τ) are linearly independent, the general solution writes [1] as

W (τ) = eiµτ
∑
j∈Z

a+
j e

2ijτ + e−iµτ
∑
j∈Z

a−j e
−2ijτ

=
∑
j∈Z

a+
j e

2i(µ2 +j)τ + a−j e
−2i(µ2 +j)τ ,

(19)

with a±j being the complex valued Fourier coefficients of p. SinceW (τ) is a periodic C∞(R+
∗ )

function, |a±j | has a fast decay when |j| → +∞.
As q = O(ε), for sufficiently small perturbations ε, we may expand α in terms of µ and

q (cf. [1], ch. 20, p. 730)

α = µ2 + q2

2(µ2 − 1) +O( q
4

µ6 ) = µ2 +O(ε2). (20)
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Hence, at first-order in ε, one gets µ ≈
√
α = 2νf

ν`
, and, for small values of ε, we have the

approximation
W (τ) ≈

∑
j∈Z

a+
j e

2i( νf
ν`

+j)τ + a−j e
−2i( νf

ν`
+j)τ

,

which yields, for τ = πν`t+ π
4 ,

W̃ (t) ≈
∑
j∈Z

ija+
j e

i
πνf
2ν` e2iπ(νf+jν`)t + (−i)ja−j e

−iπνf
2ν` e−2iπ(νf+jν`)t.

Combining (±i)ja±j e
±iπνf

2ν` with the space dependent component Ẽ(x̃) of ṽ, we define the
coefficients {ã±j (x̃)}j∈Z such that, for each integer j, we have

ã±j (x̃) = (±i)ja±j e
±iπνf

2ν` Ẽ(x̃).

We formally obtain the following ansatz for small ε

ṽνf (x̃, t) ≈
∑
j∈Z

ã+
j (x̃)ei(ωf+jω`)t + ã−j (x̃)e−i(ωf+jω`)t. (21)

Let us define, for fixed integers J1 ≤ 0 and J2 ≥ 0 the finite sets of integers I = I−∪I+

and J = J − ∪ J +, where

I− := {j ∈ Z,−J2 ≤ j ≤ −J1}, I+ := {j ∈ Z, J1 ≤ j ≤ J2},
J − := {−νf + ν`j}j∈I− , J + := {νf + ν`j}j∈I+ .

(22)

We denote by ]I the cardinal of the set I. Since |ã±j (x̃)| is fastly decaying for |j| → ∞, (21)
justifies that the method that we develop (most particularly for small ε) in the following
is based on the approximation w̃I of ṽνf by the finite sum

w̃I(x̃, t) :=
∑
j∈I+

ã+
j (x̃)ei(ωf+jω`)t + ã−j (x̃)e−i(ωf+jω`)t, (23)

where ]I = 2]I+ coefficients ã±j (x̃) have to be computed thanks to a coupled system of
multi-harmonic Helmholtz-type equations in the Fourier domain. The two integers J1 and
J2 must be carefully chosen to include the significant contributions to the solution.

By construction of the Fourier series expansion, we have ã+
j = ã−j . Thus, one gets

w̃I(x̃, t) =
∑
j∈I+

ã+
j (x̃)ei(ωf+jω`)t +

∑
j∈I+

ã+
j (x̃)e−i(ωf+jω`)t

=: w̃I
+(x̃, t) + w̃I

−(x̃, t),
(24)

where the Fourier coefficients of w̃I− are the complex conjugates of the Fourier coefficients
of w̃I+ .

Let us remark that the expression (14) of ṽ also involves the functions ṽνm . However,
their contribution to ṽ is less significant than ṽνf . In the case where a part of the domain
is open or includes some absorption materials (see Section 6), they are even negligible.
Finally, if ε = 0, all the above computations are exact and J1 = J2 = 0.
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3.2 Derivation of a multi-harmonic approximate system
Let us assume that the Leibniz integral rule holds for ṽ. Then, assuming that the time
Fourier transform v̂ of ṽ is defined according to (7) (with the extension ṽ = u0 for t < 0),
one gets: F∂x̃x̃ṽ(x̃, t) = ∂x̃x̃v̂(x̃, ξ), setting v̂(x̃, ξ) := F ṽ(x̃, t).

Applying F to (13)-(11) gives

F
(
∂x̃x̃ṽ −

1
c2

[
1 + ε2

2 + 2ε sin(ω`t)−
ε2

2 cos(2ω`t)
]
∂ttṽ

)

= ∂x̃x̃v̂ +
[(

1 + ε2

2

)
δ0 + iε(δ−ν` − δν`)−

ε2

4 (δ2ν` + δ−2ν`)
]
∗

(2πξ
c

)2

v̂

 = 0,

where ∗ is the convolution product. Denoting by τa the translation operator such that
τaf(t) = f(t− a), we obtain the following problem: find v̂ : Ω̃× R→ R satisfying

∂x̃x̃v̂ +
[(

1 + ε2

2

)
+ iε (τ−ν` − τν`)−

ε2

4 (τ2ν` + τ−2ν`)
] (2πξ

c

)2

v̂

 = 0. (25)

In addition, for all ξ ∈ R, we have v̂(L, ξ) = 0, v̂(0, ξ) = 0 if |ξ| 6= νf , v̂(0, νf) = A
2i and

v̂(0,−νf) = −A
2i .

Let us now compute an approximation of the contribution v̂νf of the solution v̂ to (25)
around νf . From the ansatz (23), it is reasonable to look for an approximate solution
ŵI(x̃, ξ) of v̂νf (x̃, ξ) as

ŵI = ŵI
+ + ŵI

− :=
∑
j∈I+

ã+
j δνf+jν` +

∑
j∈I+

ã+
j δ−(νf+jν`), (26)

which is a linear combination of Dirac distributions, centered around ±νf , spaced by the
modulating frequency ν`, and with (unknown) spatial amplitudes {ã±j }I+ . The fast decay of
the coefficients |ã+

j | for |j| → +∞ guarantees that the finite supports J ± of the tempered
distributions ŵI± are disjoint. Hence, we can restrict our analysis to the contribution
ŵI

+ . Plugging the expansion of ŵI+(x̃, ξ) defined in (26) into (25), and identifying the
coefficients in front of the Dirac distributions leads to

∂x̃x̃ã
+
j + κ2

j

(
1 + ε2

2

)
ã+
j + iε(κ2

j+1ã
+
j+1 − κ2

j−1ã
+
j−1)− ε2

4 (κ2
j−2ã

+
j−2 + κ2

j+2ã
+
j+2) = 0, (27)

for j ∈ I+, with κj := (ωf + jω`)/c and for the boundary conditions ã+
0 (0) = A

2i , ã
+
j (0) = 0

for j 6= 0, ã+
j (L) = 0, and ã+

j (x̃) = 0 for x̃ ∈ Ω and j ∈ Z \ I+.
Equation (27) describes the coupling between the frequency components induced by the

boundary oscillations. As expected, taking ε = 0 gives a system of uncoupled Helmholtz
equations, where the coefficients vanish for j 6= 0, and

ã+
0 (x̃) = A

2i
sin(κf(L− x))

sin(κfL) .
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In Section 4, we numerically solve (27) by means of the finite element method. To
this end, we derive the following coupled weak formulation: find a∗j ∈ H1

Dj(Ω̃) := {a∗j ∈
H1(Ω̃) | a∗0(0) = A

2i , a
∗
j(0) = 0 for j 6= 0, a∗j(L) = 0} such that

−
∫

Ω̃
∂x̃a

∗
j∂x̃φdx̃+

∫
Ω̃

[
κ2
j

(
1 + ε2

)
a∗j + iε(κ2

j+1a
∗
j+1 − κ2

j−1a
∗
j−1)

−ε2(κ2
j−2a

∗
j−2 + κ2

j+2a
∗
j+2)

]
φdx̃ = 0

(28)

holds for all test functions φ ∈ H1
0(Ω̃) and for j ∈ I+, with a∗j(x̃) = 0 for j ∈ Z \ I+.

We then consider a regular covering Ω̃h of Ω̃ using nΩ̃ finite elements of size h. All the
notations are extended with an h subscript for the discrete version of the domains as well
as unknowns. We choose a linear element approximation and denote by

ŵI
+

h =
∑
j∈I+

a∗h,jδνf+jν`

the solution of the discretization of the variational coupled system (28), with a∗h,j belonging
to the (nΩ̃ − 1)-dimensional finite element subspace VDj of H1

Dj(Ω̃).

3.3 The case of a larger amplitude boundary motion
The previous method has been specifically designed for the case of small amplitude motions,
according to the approximate equation (27). In this subsection, we focus on a more general
case as we transfer the exact equation (9) directly to the frequency domain. The range of
validity of this approach is explored in a numerical study in Section 4.

For ε ∈]0, L[ and a linear transformation in x, (9) can be written as follows

`2∂ttũ+ (x̃2`′2 − c2L2)∂x̃x̃ũ− 2x̃``′∂x̃tũ+ x̃(2`′2 − ``′′)∂x̃ũ = 0, (29)

with ũ(0, t) = A sin(ωft), ũ(L, t) = 0 for t > 0, and ũ(x̃, 0) = 0, ∂tũ(x̃, 0) = 0, for
x̃ ∈ Ω̃. The methodology presented in the previous subsection is now applied to (29). Let
û(x̃, ξ) := F(ũ)(x̃, ξ) be the time Fourier transform of a solution u of (29). We assume
that ũνf admits a decomposition of the form (14) (see also Figure 1). Let us now focus
on the component ûνf of û and search for an approximation ŵI+

gen of ûνf for ξ ∈ J +, in the
form of the ansatz (26) with coefficients ã+

j,gen.

11



Defining ωj = 1 + jω, this leads to the following coupled system of equations:

ω2
j

(
1 + ε2

2

)
ã+
j,gen −

3x̃ε2ω2

2 ∂x̃ã
+
j,gen −

(
x̃2ε2ω2

2 − 1
κ2

f

)
∂x̃x̃ã

+
j,gen

+iε
[
ω2
j+1ã

+
j+1,gen − ω2

j−1ã
+
j−1,gen + x̃ω

(
ωj+ 1

2
∂x̃ã

+
j+1,gen + ωj− 1

2
∂x̃ã

+
j−1,gen

)]

−ε
2

4
[
ω2
j−2ã

+
j−2,gen + ω2

j+2ã
+
j+2,gen − 2x̃ω

(
ωj− 5

2
∂x̃ã

+
j−2,gen − ωj+ 5

2
∂x̃ã

+
j+2,gen

)
+x̃2ω2(∂x̃x̃ã+

j−2,gen + ∂x̃x̃ã
+
j+2,gen)

]
= 0

(30)

for j ∈ I+, with ω = ω`/ωf , and with the same boundary conditions as for system (27).
Let us remark that, based on (30), different asymptotics could be analyzed, based on ε, ω,
or even εω.

As previously, in order to solve (30) numerically by means of the finite element method,
we consider the associated weak formulation, which writes: find a∗j,gen ∈ H1

Dj
(Ω̃) such that

∫
Ω̃

[(
ε2ω2x̃2

2 − 1
κ2

f

)
∂x̃a

∗
j,gen∂x̃φ+ ε2x̃ω2

4
(
∂x̃a

∗
j+2,gen + ∂x̃a

∗
j−2,gen

)
∂x̃φ

]
dx̃

−
∫

Ω̃

εx̃ω

2
[
εω∂x̃a

∗
j,genφ− 2i

(
ωj+ 1

2
∂x̃a

+
j+1,gen + ωj− 1

2
∂x̃a

+
j−1,gen

)
φ

+ ε
(
ωj+ 3

2
∂x̃a

∗
j+2,gen − ωj− 3

2
∂x̃a

∗
j−2,gen

)
φ
]
dx̃

+
∫

Ω̃

[
ω2
j

(
1 + ε2

2

)
a∗j,genφ+ iε

(
ω2
j+1a

∗
j+1,gen − ω2

j−1a
∗
j−1,gen

)
φ

−ε
2

4
(
ω2
j+2a

∗
j+2,gen + ω2

j−2a
∗
j−2,gen

)
φ

]
dx̃ = 0

(31)

holds for all test functions φ ∈ H1
0(Ω̃) and j ∈ I+. We then use the same covering Ω̃h of

Ω̃ and denote by ŵI+
gen,h the solution of the discretization of the variational coupled system

(31).
Before proceeding to extensive numerical tests that will illustrate our approach, we

report in Figure 1 the amplitude spectrum of the numerical solution ûh of (29) at a fixed
space point x̃ = 0.5 (L = 1), without moving boundary (ε = 0, in red, where (29) is
equivalent to (1) and û ≡ û0) and with moving boundary (ε = 0.1, in blue). Concretely, the
solution ûh is computed by solving (29) numerically (with a second-order finite difference
scheme in time and linear finite elements in space), leading to ũh, and then applying the
FFT. The physical parameters are A = 1, c = 300, νf = 360 and ν` = 2. The frequencies
of the eigenmodes û0,νm are νm = mc/2 and correspond to the peaks of the red curve. For
ε = 0, we observe that i) there is a main contribution for νf = 360 associated to û0,νf and ii)
we have some uniformly distributed contributions û0,νm . This is in line with what is stated

12
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Fig. 1. Frequency spectrum |ûh(0.5, ξ)| without (ε = 0, in red) and with boundary motion
(ε = 0.1, in blue). This illustrates both the assumption on the decomposition (14) of ũ and the
ansatz (26).

in Proposition 1. In the case of the oscillating boundary (ε = 0.1), we see again some
contributions related to νf and νm but with some additional new excited modes, localized
around these frequencies and spaced by ν`.

Let us recall that the contributions uνm , m ∈ N, are not significant in practice since
usually the domain involves some open boundary parts and some dissipation effects. Here,
since we have a Dirichlet boundary condition, we assume that νf is not close to an eigen-
frequency νm. Therefore, the restriction of ûh to J denoted by ûJh is expected to provide
a relatively accurate approximation of ûνf . To illustrate this claim, we report on Figure
2a the comparison between ũh and ũJh (defined as the inverse Fourier transform of ûJh ) at
x̃ = 0.5, computed by means of iFFT. We observe that the phases of the two functions
are in agreement and the envelope of the signal is well reproduced, with same frequency
ν` = 2. The difference between the signals is a consequence of the boundary movement.

The second approximation consists in validating the computation of ûJ by the approxi-
mation w̃Igen. To this end, we report in Fig. 2b the absolute error |ũJh (0.5, t)− w̃Igen,h(0.5, t)]
for the same configuration. We observe a good agreement between the solutions, which
confirms that the expected ansatz (26) is valid for w̃Igen.

The values of J1 and J2 that define the interval I can be justified a posteriori by energy
or numerical criteria but their a priori determination remains an open question. In the
case of a general boundary motion, the choice of J1 and J2 is also related to the frequency of
the input signal and the perturbation amplitude ε. Indeed, we observe that the coefficients
|ã±j,gen| decay slower for increasing |j| as ε gets larger.

Consequently, the values of −J1 and J2 used to truncate (30) have to be increased,
as expected. We illustrate this property in Figure 3 where we report the amplitude of
ûh(0.5, ξ) computed by the brute force method, for νf = 3250 and c = 1280. The values of
ε vary from 0.01 to 0.1.

13
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(a) ũh(0.5, t) vs. t (blue) and ũJh (0.5, t) vs. t (red).
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(b) |ũJh (0.5, t)− w̃Igen,h(0.5, t)] vs. t.

Fig. 2. On the top figure, time signals ũh(0.5, t) in blue and ũJh (0.5, t) in red. On the bottom
figure, their absolute difference vs. t. The physical parameters are νf = 360, ν` = 2, c = 300 and
ε = 0.1.

14



0

2

4

0

5

0

1

2

2900 3000 3100 3200 3300 3400 3500

0

0.5

1

Fig. 3. Increasing the amplitude ε of the sinusoidal perturbation (11) leads to the excitation of
a larger frequency band in the solution ûh(0.5, ξ), with νf = 3250, c = 1280, and ν` = 1.

4 Numerical examples
In the following, the amplitude of emission is set to A = 1, and the values of J1 and J2 (and
thus the definition of I and J , see (22)) are a priori selected relatively to the reference
solution û by the criterion

max
j∈Z\I

‖ûh(·, νf + jν`)‖∞,Ω̃h ≤ 10−3 × ‖ûh(·, νf)‖∞,Ω̃h (32)

in such a way that ]I+ is minimized. This assumption ensures that ûJ+

h is restricted to
the significant components of ûhνf around νf , with a normalized amplitude less than 10−3.
Here, we set ‖f‖∞,Ω̃h = max

x̃∈Ω̃h
|f(x̃)|.

4.1 Convergence of the frequency-domain solution ŵI
+

gen,h

The computational cost of the proposed frequency domain method depend on the size
]I+ of the system that we have to solve and on the number of finite elements nΩ̃ = L/h.
The corresponding algorithm requires the solution of a linear system with a sparse block
pentadiagonal matrix of size n]I+, with tridiagonal blocks. On the other hand the brute
force method used to compute the reference solution ûJ

+

h is based on the resolution of
(29) with a P1 finite element method in space and a second-order Crank-Nicolson time
scheme which requires the solution of nt tridiagonal linear systems of size nΩ̃, followed by
the computation of nΩ̃ FFTs of size nt.

In order to assess the accuracy of the method, we compare the numerical solutions
ŵI

+
gen,h and ûJ

+

h in different physical settings. To this end, we first define the pointwise
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error between the Fourier spectra |ûJ+

h | and |ŵI
+

gen,h|

err(ûJ+

h , ŵI
+

gen,h, x̃) :=
‖|ûJ+

h (x̃, ·)| − |ŵI+
gen,h(x̃, ·)|‖1,J+

‖ûJ+

h (x̃, ·)‖
1,J+

(33)

where ‖f‖1,J+ = ∑
ξ∈J+ |f(ξ)|.

Thanks to the non-homogeneous left boundary condition for the space-time problem
(9), the denominator ‖ûJ+

h (x̃, ·)‖
1,J+ of (33) never vanishes for x̃ ∈ Ω̃h. Next, we define

the overall error on the computational domain as

Err(ûJ+

h , ŵI
+

gen,h) := 1
L

∫
Ω̃h

err(ûJ+

h , ŵI
+

gen,h, x̃)dx̃. (34)

Figure 4a reports Err(ûJ+

h , ŵI
+

gen,h) with respect to increasing the source frequency νf , for
different values of h. The time-domain solution ûJ+

h was computed on the same spatial grid
as ŵI+

gen,h, with time discretization parameters adapted to reach the numerical convergence.
In complement, we show in Figure 4b the size of I+ used to evaluate ŵI+

gen,h vs. νf , with
c = 300, ν` = 1 and ε = 0.1.

We observe that ŵI+
gen,h provides a more accurate approximation of ûJ+

h when the source
frequency νf is not close to an eigenfrequency νm of the system. Otherwise, the nearest
eigenmode ûνm shares components of non negligible amplitude with ûνf , which makes the
error increase. This sketches validity regions for the presented method, which correspond
to the assumptions made in Section 3.3. Moreover, Figure 4b illustrates that ]I+ might
stay relatively small on some regions of ξ between the eigenfrequencies. In fact, the explicit
determination of these precise regions is related to the a priori determination of ]I+ and
remains an open question.

However, it is very interesting to notice that for particular values of the ratio κf =
2πνf/c, the minimal size ]I+ can remain small even for very large values of νf . For example,
Figure 5 reports the spectrum |ŵI+

gen,h| for νf = 3.2× 109 and c = 3× 108, i.e. for a realistic
radar application. In this case, 11 frequency components suffice for an accurate calculation
of the solution.

4.2 Influence of the number of frequency components ]I+

Similarly to (34), we report on Figure 6a the error Err(ûJ+

h , ŵ
I+

1
gen,h) for different sizes ]I+

1
of the test interval I+

1 . The reference interval I+ is fixed with cardinal ]I+ = 111. In
addition, Figure 6b gives the error between ŵI+

gen,h and ŵ
I+

1
gen,h for ]I+

1 > 111. The parameters
are h = 0.01, c = 300, νf = 500, ν` = 1 and ε = 0.1. The fast decay of the error is in
accordance with the notion of minimal truncation interval ]I+, and Err(ûJ+

h , ŵ
I+

1
gen,h) settles

down about 3.5×10−3 for ]I+
1 ≥ 111. In particular, for ]I+

1 ≥ 111, the triangular inequality
entails that

Err(ûJ+

h , ŵ
I+

1
gen,h) ≤ Err(ûJ+

h , ŵI
+

gen,h) + Err(ŵI+

gen,h, ŵ
I+

1
gen,h) ≈ 3.5× 10−3 + Err(ŵI+

gen,h, ŵ
I+

1
gen,h),
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Fig. 4. Top: Error Err(ûJ+

h , ŵI
+

gen,h) depending on νf for increasing refinement h. Bottom:
cardinal ]I+ vs. νf . The vertical dashed lines correspond to the eigenfrequencies νm = mc/2
(since L = 1) of the spatial domain without boundary motion.
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Fig. 5. Evaluation of |ŵI+
gen,h| for a high frequency source, with νf = 3.2× 109 and c = 3× 108.

The number of bumps along the space variable directly depends on the value of the wavenumber
κf = 2πνf/c. We use ]I+ = 11, ε = 0.01, ν` = 1 and h = 0.001.

and, as we observe in Figure 6b, this stabilization is of average amplitude 10−13. This illus-
trates the fast convergence of ŵI+

gen,h with respect to the parameter ]I+. This result opens
up the possibility to obtain a relevant estimation of I+, using iteratively the algorithm
which computes ŵI+

gen,h.

4.3 Validity of the small-amplitude approximation ŵI
+

h

To justify the range of validity of the proposed approximate solution ŵI+ , let us compare
|ŵI+

h | to |ŵI
+

gen,h|. In order to define I+ for each physical configuration {c, νf , ν`, ε}, we again
use the criterion (32). Now, similarly to (34), we consider the error

Err(ŵI+

gen,h, ŵ
I+

h ) = 1
L

∫
Ω̃h

err(ŵI+

gen,h, ŵ
I+

h , x̃)dx̃.

In Figure 7, we report the error for increasing values of ε ranging from 0 to 0.2 and for ν` in
[0, 4]. The other parameters are fixed to νf = 360 and c = 300. The spatial discretization
step is h = 0.01.

As expected, increasing the boundary motion amplitude ε and the frequency ν` increases
the relative difference between the two methods. Indeed, the dropped terms in (13) are
becoming non negligible for relatively high magnitudes of ε, which leads to define a region
of validity of the approximation ŵI+ around small values of ε. In particular, the choice of
ε = 0.1 (1/10 of the size of the domain L = 1) ensures a relative difference of 10−3 between
ŵI

+
h and ŵI+

gen,h.
In the following section, we provide a generalization of the frequency domain method

to more complicated boundary motions, while maintaining ε � 1. This assumption, in
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accordance to the previous discussion and Figure 7, allows us to focus on developing the
approximate numerical method ŵI+ for small ε.

5 Scattering with general boundary motions
We introduce a generalization of the previous approach to a motion `(t) which has no a
priori explicit expression. Let us denote by ũ(x̃, t) the solution of (9). We assume that
the velocity of the motion of the boundary is much smaller than the phase speed of the
emitted waves. In addition, we limit the study to the case where, for fixed t, the change
of variables Ω(t) to Ω̃ is linear in spatial coordinates. The motion ` is expected to be a
C∞(R) periodic time-dependent function taking its values in the interval [L− εL, L+ εL].
Let us denote by ν` the frequency of the motion.

Because ` never vanishes, Wiener 1/f theorem [42] for Fourier series entails that the
application x̃ : (x, t) 7→ x̃(x, t) can be expanded as a time Fourier series around ν`. Then,
by linearity of x in x̃ and due to the form of `, such an expansion also holds for (∂x̃

∂x
)2 and

the corresponding time Fourier transform thus writes

F

(∂x̃
∂x

)2
 =

∑
n∈Z

cnδnν` , (35)

for some complex-valued coefficients cn. Since ` is not necessarily explicitly given, the
computation of the coefficients cn of ` is based on the FFT in the time domain. Thanks to
the linear of change of variable in x, the coefficients are constant in the spatial domain. Let
us also notice that if the boundary motion is not periodic, the formulation of the Fourier
transform is not a Dirac comb, which leads to a non-discrete system of equations. If it
is almost-periodic in the sense of Bohr [3], a Fourier-type transform exists in the form∑
n∈Z cnδλn , with cn ∈ C and λn ∈ R. However, this expansion is based on the parameters

λn which are not necessarily multiples of λ0. We do not treat these cases here.
We now consider (12), which approximates (9) in the case of small amplitude pertur-

bations, but with a general motion `. The application of the Fourier transform on (12)
yields

4π2ξ2

c2 v̂ + (
∑
n∈Z

cnδnν`) ∗ ∂x̃x̃v̂ = 0, (36)

with the boundary conditions v̂(0, ξ) = 0 if |ξ| 6= νf , v̂(0,±νf) = ±A
2i , and v̂(L, ξ) = 0 for

all ξ ∈ R. Since the boundary conditions are homogeneous with a harmonic source term,
we assume that ṽ admits a non-trivial expansion of the form (14). Then the arguments
presented in Section 3 justify that we keep our focus on the component v̂νf .

In the numerical simulations, the Fourier expansion (35) is truncated to (2N+1) terms.
Indeed, since ` is C∞(R) and never vanishes, the Fourier coefficients cn are fastly decaying
and we can therefore assume that the infinite sum (35) can be suitably truncated at order
N as ∑N

n=−N cnδnν` . Moreover, since ` is periodic with fundamental frequency ν`, it is
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reasonable to search for an approximate solution ŵI+
νf

of v̂νf under the form of the formal
ansatz (26). Then, plugging the series expansion of ŵI+

νf
and (35) truncated at order N

into (36), and identifying the coefficients in front of the Dirac distributions leads to the
following system of equations

κ2
j ã

+
j +

N∑
n=−N

cn∂x̃x̃ã
+
j−n = 0, j ∈ I+, (37)

where J1 and J2 have to be adequately chosen and κj = (ωf +jω`)/c. We have the boundary
conditions: ã+

0 (0) = A
2i , ã

+
j (0) = 0 for j 6= 0, ã+

j (L) = 0 and ã+
j (x̃) = 0 for j ∈ Z \ I+.

As previously, to solve (37) by the finite element method, we use the weak formulation:
find a∗j ∈ H1

Dj(Ω̃) such that, for all j ∈ I+,

κ2
j

∫
Ω̃
a∗jφdx̃−

N∑
n=−N

cn

∫
Ω̃
∂x̃a

∗
j−n∂x̃φdx̃ = 0, (38)

holds for all test functions φ ∈ H1
0(Ω̃). The same covering Ω̃h of Ω̃ is used. The notation

ŵI
+
h designates the solution of the discrete weak coupled system (38).
The case of a sine motion is already investigated in the previous sections. Let us

consider the following function `N` that involves N` modes

`N`(t) = L(1 + ε
N∑̀
k=0

sin((2k + 1)ω`t)
2k + 1 ).

For the numerical simulations, the interval I+ is computed by using the previous criterion
(32). For different values of ε ∈ [0.01, 0.1], we report in Figure 8a the minimal cardinal ]I+

as a function of the number N` of modes in `N` . We keep the usual settings A = 1, c = 300,
νf = 360, ν` = 1 and h = 0.01. It is known that `N` converges to the square shaped signal
`∞(t) = L+ 4 sign(sin(t)) when N` → +∞. As expected, the minimal cardinal ]I+ of the
system (38) increases with both N` and ε. The error Err(ûJ+

h , ŵI
+
h ) between the solution

ŵI
+
h and the reference ûJ+

h is reported in Figure 8b for the same values of boundary motion
amplitudes as in Figure 8a. The multi-harmonic formulation exhibits stable convergence
w.r.t. the number of boundary modes, the error level being simply related to the small
amplitude approximation used to compute ŵI+

h .

6 Extension to higher dimensions
We now formally extend the approach developed for (1) to the space-time dimension d+ 1
(i.e. d in space and 1 in time). To this end, we assume that a wave is emitted by a source Ωs,
with boundary Γs = ∂Ωs, and is scattered by an obstacle Ωobst(t) with smooth boundary
Γ(t) = ∂Ωobst(t), moving with frequency ν` around an equilibrium position Γ(0). We then
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Fig. 8. Left: ]I+ vs. N`. Right: error Err(ûJ+

h , ŵI
+
h ) vs. N`. The parameters are: A = 1,

c = 300, νf = 360, and ν` = 1.

Γs Ωext(t)
Γ(t)

Fig. 9. Example of a two-dimensional domain Ωext(t) with source boundary Γs and moving
scatterer boundary Γ(t).
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define the d-dimensional domain of propagation, denoted by Ωext(t), as the exterior domain
with boundaries Γs and Γ(t). We schematically illustrate the configuration in Figure 9.

We define the position vector r := (x1, ..., xd)T ∈ Ωext(t) and the associated Laplace
operator ∆r := ∂x1x1 + ...+ ∂xdxd . Then, we obtain the extension of (1) as

∂ttu− c2∆ru = 0 (39)

with unknown total wave field u(r, t), for r ∈ Ωext(t) and t ∈ R+
∗ . The field is given on

Γs by u(r, t)|Γs = A sin(ωft). Since Ωext(t) is unbounded, the system does not have any
eigenmodes and the energy of the system is concentrated around the source frequency νf .
The initial conditions are u(r, 0) = 0 and ∂tu(r, 0) = 0.

Let us analyze the case of the three-dimensional spatial situation. We first map Ωext(t)
to a fixed domain Ω̃ext with boundaries Γ̃s and Γ̃ = Γ(0), by the change of space variable

r̃ : (r, t) 7→ r̃(r, t) = (x̃1, x̃2, x̃3)T ,

such that r̃(Γ(t), t) = Γ̃ and r̃(Γs, t) = Γ̃s. Then we set: u(r, t) = ũ(r̃, t) for t ∈
R+
∗ . For x̃ := (x̃1, x̃2, x̃3, t)T ∈ Ω̃ext × R+

∗ , let us define the gradient operators ∇x̃ :=
(∂x̃1 , ∂x̃2 , ∂x̃3 , ∂t)T and ∇r̃ := (∂x̃1 , ∂x̃2 , ∂x̃3)T . Then, we have ∂tu = ∂t(ũ) = ∂tx̃ · ∇x̃ũ, and

∂ttu = ∂ttx̃ · ∇x̃ũ+ ∂tx̃ · ∂t(∇x̃ũ)
= ∂ttx̃ · ∇x̃ũ+ ∂tx̃ · ∇x̃∂t(ũ)
= ∂ttx̃ · ∇x̃ũ+ (∂tx̃ · ∇x̃)2 ũ.

(40)

Let us define the time dependent spatial Jacobian matrix of (r, t) 7→ r̃(r, t) as J :=
[∂xj x̃i]i,j∈{1,2,3}. Then, the spatial gradient writes ∇r = JT∇r̃. Since ∇rt = 0, it directly
follows that:

∆ru = ∇r · ∇ru
= ∇r · (JT∇r̃ũ)
= (∇r · JT )∇r̃ũ+∇r̃ · JJT∇r̃ũ,

(41)

Hence, substituting (40) and (41) into (39) leads to the equation

∂ttx̃ · ∇x̃ũ+ (∂tx̃ · ∇x̃)2 ũ− c2
[
(∇r · JT )∇r̃ũ+∇r̃ · JJT∇r̃ũ

]
= 0. (42)

As previously, if we choose x̃i, i = 1, 2, 3 of first order in xi we get (∇r ·JT ) = 0. Moreover
if the amplitude of the movement is small and bounded by a small perturbation ε, we can
neglect the O(ε) terms and the function ∂ttu in (40) reduces to ∂ttũ. This leads to the
following approximate equation for small amplitude boundary movements

∂ttṽ − c2∇r̃ · JJT∇r̃ṽ = 0, (43)

which generalizes (12). In addition, we keep the previous homogeneous boundary condition
on Γ̃, the non-homogeneous boundary condition on Γ̃s, i.e. ṽ(r̃, t)|Γ̃s

= A sin(ωft), and the
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initial conditions ṽ(r̃, 0) = 0 and ∂tṽ(r̃, 0) = 0. In practice, after discretization, we can
choose a piecewise linear change of variable r̃, defined on the same mesh as the finite
element solution, which makes J only time dependent on each finite element.

The Fourier transform in time of (43) gives

4π2ξ2v̂ + c2∇r̃ · (F(JJT ) ∗ ∇r̃v̂) = 0. (44)

Following (37), we consider the truncated Fourier series expansion of JJT (t)

F(JJT )(ξ) =
N∑

n=−N
Cnδnν` , (45)

where Cn are some 3×3 complex-valued symmetric matrices. Proceeding as in Section 3.2,
we obtain from (44) the following system of coupled Helmholtz-type equations in terms of
the complex Fourier coefficients ã+

j , for j ∈ I+,

κ2
j ã

+
j +∇r̃ ·

N∑
n=−N

Cn∇r̃ã
+
j−n = 0, (46)

with κj = (ωf + jω`)/c. The boundary condition on Γ̃s can be written as ã+
0 (r̃T ) = A

2i and
ã+
j (r̃T ) = 0 for j 6= 0. We apply the homogeneous Dirichlet boundary condition ã+

j (r̃T ) = 0
on Γ̃ for j ∈ I+.

We now introduce a fictitious boundary Σ̃ that delimits a finite computational domain Ω̃
with boundaries Σ̃, Γ̃s and Γ̃, and with exterior unit normal vector ñ. On Σ̃, we impose the
following absorbing boundary condition associated with each single Helmholtz equation:

iκj ã
+
j + ñ ·

N∑
n=−N

Cn∇r̃ã
+
j−n = 0, (47)

for j ∈ I+. The derivation of this boundary condition is given in Appendix B.
We derive the following weak formulation of (46): find a∗j ∈ H1

Γ̃s
(Ω̃) := {a∗j ∈ H1(Ω̃) | a∗0(r̃) =

A
2i and a

∗
j(r̃) = 0, j 6= 0, on Γ̃s, and a∗j(r̃) = 0 on Γ̃} such that

κ2
j

∫
Ω̃
a∗jφdΩ̃−

∫
Ω̃

 N∑
n=−N

Cn∇r̃a
∗
j−n

 · ∇r̃φ dΩ̃− iκj
∫

Σ̃
a∗jφ dΣ̃ = 0, (48)

for all φ ∈ H1
0,Γ̃s∪Γ̃

(Ω̃) := {φ ∈ H1(Ω̃) | φ = 0 on Γ̃s ∪ Γ̃}. We consider Ω̃h as a covering
of Ω̃ consisting of nΩ̃ triangular finite elements. For j ∈ I+, we denote by a∗h,j the linear
finite element approximation of a∗j .

We numerically illustrate the approach in the following two-dimensional (d = 2) model
problem, where the initial domain is the rectangle ] − 1/3, `(t)[×] − 1/2, 1/2[ where the
right side of the rectangle Γ(t) moves according to the sine motion `(t) = 1 + ε sin(2πν`t).

24



0

0.1

0.2

0.3

0.4

0.5

(a) |a∗h,0(r̃)|

0

0.1

0.2

0.3

0.4

0.5

(b) |a∗h,1(r̃)|

0

0.1

0.2

0.3

0.4

0.5

(c) |a∗h,2(r̃)|
0

0.1

0.2

0.3

0.4

0.5

(d) |a∗h,3(r̃)|

Fig. 10. Four components |a∗j (r̃)| for j = 0, 1, 2, 3 of ŵI+(r̃), for the physical parameters νf = 360,
ν` = 1, c = 300 and ε = 0. This case corresponds to the standard wave propagation in a fixed
domain, without frequency modulation.

We consider absorbing boundary conditions on the three remaining sides and a point
source Ωs located at (0, 0)T . The change of variable constitutes an extension of the one-
dimensional case (see Section 2.3), i.e. r̃(r, t) = (x1/`(t), x2)T . The discretized domain Ω̃h

is a triangular mesh that consists of nΩ̃ = 640 elements. In the Figures 10, 11 and 12, we
report the amplitude of the four modes |a∗h,0(r̃)|, |a∗h,1(r̃)|, |a∗h,2(r̃)| and |a∗h,3(r̃)| of ŵI+

h (r̃),
for the configurations (νf , ν`, c, ε) = (360, 1, 300, 0), (360, 1, 300, 0.2) and (3600, 1, 300, 0.02),
respectively. As previously, we keep A = 1. As expected, in the case without perturbation,
i.e. ε = 0 (see Figure 10), only the mode |a∗h,0(r̃)| does not vanish, since there is no
frequency modulation of the scattered wave. Contrary to the one-dimensional case, and
since we compute the propagation of circular waves on a plane around the source s̃, the
amplitudes |a∗h,j(r̃)| of the modes of the field decay like 1/|r̃ − Ω̃s| as |r̃ − Ω̃s| → ∞.
Moreover, in Figures 11 and 12, |a∗h,j(r̃)| decreases as |j| increases, which is in line with the
fast decay of the coefficients studied in Section 3.1. We also observe that, in accordance
with the one-dimensional case, the spatial frequency of the solution |a∗h,j(r̃)| increases with
the wave number κj,

7 Conclusion
In this paper, we presented a new numerical method for solving the scattering problem of
scalar waves by a moving d-dimensional obstacle with general movement. The method is
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Fig. 11. Four components |a∗j (r̃)| for j = 0, 1, 2, 3 of ŵI+(r̃), for the physical parameters νf = 360,
ν` = 1, c = 300 and ε = 0.2.
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Fig. 12. Four components |a∗j (r̃)| for j = 0, 1, 2, 3 of ŵI+(r̃), for the physical parameters νf =
3600, ν` = 1, c = 300 and ε = 0.02.
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based on a change of variable which makes the moving domain fixed, and a multi-harmonic
expansion of an approximate wave field. This results in the numerical solution of coupled
systems of Helmholtz-type equations where optimized algorithms can be developed in the
frequency domain. A preliminary numerical study is presented to confirm that the approach
is accurate and efficient in the application domain of interest.

Ongoing works are now related to the design of optimized numerical algorithms for
solving the coupled systems of harmonic equations and the extension to electromagnetic
waves in view of industrial applications related to radar applications.

A Proof of Proposition 1.
The source term of frequency νf that continuously emits into the domain at the left bound-
ary constitutes an initial impulse that excites the eigenmodes of the system at time t = L/c,
which are solutions to the homogeneous wave equation (1) with zero boundary conditions.

To separate the different contributions in the global wave field , we decompose u as the
sum of the forced stationary wave coming from the source term and the free stationary
waves related to the eigenmodes of the system. Hence, let us define

u0 = u0,νf + u0,ν , (49)

where u0,νf (x, t) = E0,νf (x) sin(ωft), and E0,νf is the stationary solution to the Helmholtz
equation with wavenumber κf := ωf/c in the bounded domain ]0, L[

(∂xx + κ2
f )E0,νf = 0,

with boundary conditions Eνf (0) = A and Eνf (L) = 0. A simple calculation gives u0,νf as

u0,νf (x, t) = A

sin(κfL) sin(κf(L− x)) sin(ωft). (50)

Let us now compute u0,ν . As a linear combination of stationary waves, the function u0,ν
is characterized by independent periodicities either in space and time, leading to the direct
computation of the field u0,ν by the separation of variables. More precisely, considering
u0,ν(x, t) = E0(x)U0(t) into (1), we obtain the following Helmholtz equation

−∂xxE0 = λ2

c2 E0,

on ]0, L[, with homogeneous Dirichlet boundary conditions and for a constant λ ∈ R.
Since the spectrum of the Laplace operator in a bounded domain is discrete, the corre-
sponding solutions for each eigenvalue λm such that λm := mπc/L constitute an Hilbert
basis {eνm}m∈N, with eνm(x) = sin(mπ

L
x) =: sin(κmx) and ωm := 2πνm = κmc = mπc

L
, for

m ∈ N. In addition, we have the ODE

−∂ttU0 = ω2
mU0,
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for m ∈ N, with U(0) = 0. For each frequency νm, the solution is then of the form

u0,νm(t) = φm sin(ωm(t+ ψ)),

where φm ∈ R, for m ∈ N, and ψ must be determined. Since u0,νf (x, 0) = 0, (4) and (49)
imply that u0,νm(x, 0) = 0 and then ψ = 0. Hence, by the superposition principle, the
general solution u0,ν for the free modes can then be written as

u0,ν(x, t) =
∑
m∈N

u0,νm(t)eνm(x) =
∑
m∈N

φm sin(ωmt)eνm(x),

which entails that
∂tu0,ν(x, 0) =

∑
m∈N

φmωmeνm(x). (51)

Since each stationary mode is C∞(Ω(t)×R+
∗ ), the convergence of the sum is guaranteed.

Moreover, (5) and (49) lead to

∂tu0,νm(x, 0) = −∂tu0,νf (x, 0). (52)

Hence, using (50) and (52), one gets by a direct computation

∂tu0,ν(x, 0) = − Aωf

sin(κfL) sin(κf(L− x)). (53)

Let us consider the L-periodic odd extension of sin(κf(L− x)) in (53). Expanding it in
the basis {eνm}m∈N for ν0,f 6= νm, we obtain for x ∈]0, L[

sin(κf(L− x)) =
∑
m∈N

ϕmeνm(x) =
∑
m∈N

ϕm sin(κmx), (54)

where it is well-known that the odd Fourier coefficient ϕm satisfies

ϕm = 2
L

∫ L

0
sin(κf(L− x)) sin(κmx)dx

= 1
L

∫ L

0
[cos(x(κm + κf)− κfL)− cos(x(κm − κf) + κfL)] dx

= 2κm sin(κfL)
L(κ2

m − κ2
f ) .

(55)

Finally, by identification with (51), we conclude that

φm = 2Aκf

L(κ2
f − κ2

m) .

Finally, for νf 6= νm, we obtain the result by replacing u0,νf and u0,kν in (49).
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B Derivation of the absorbing boundary condition (47)
Let us consider the lower-order absorbing boundary condition applied to the outer bound-
ary of Ωext(t)

1
c
∂tu+ n · ∇ru = 0, (56)

with outwardly directed unit normal vector n. The deformation field r̃ implies that the
corresponding unit normal vector ñ to Σ̃ satisfies: JT ñ = n. Hence, considering the
assumptions that lead to derive (43), we have the following equivalent absorbing boundary
condition on Σ̃

1
c
∂tṽ + ñ · JJT∇r̃ṽ = 0. (57)

The time Fourier transform of (57) leads to

2iπξ
c
v̂ + ñ · F(JJT ) ∗ ∇r̃v̂ = 0. (58)

Plugging the Fourier series expansion (45) of JJT (t) into (58), we obtain the following
system of absorbing boundary conditions in terms of the complex Fourier coefficients ãj,
for j ∈ I:

iκj ãj + ñ ·
N∑

n=−N
Cn∇r̃ãj−n = 0,

with κj = (ωf + jω`)/c.
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