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On essential-selfadjointness of differential
operators on closed manifolds

Yves Colin de Verdière∗ & Corentin Le Bihan†

April 11, 2020

1 Introduction

The goal of this note is to present some arguments leading to the following

Conjecture 1.1 Let P be a formally self-adjoint differential operator on
C∞(X) where X is a closed smooth manifold equipped with a smooth den-
sity |dx|. The completeness of the Hamiltonian flow of the symbol p of P
is equivalent to the essentially self-adjointness (ESA) (also called quantum
completeness) of P .

As we will see, this conjecture holds true in the following cases:

1. Differential operators of degree 2 on the circle of the form

P = a(x)d2x + · · ·

where all zeroes of a are of finite order.

2. Differential operators of degree 1.

3. Generic Lorentzian Laplacians on surfaces.
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2 The context

It is a classical fact that classical completeness and quantum completeness are
not equivalent in general; examples of Schrödinger operators on R are given
in [R-S-75], section X-1, pp 155-157. However the potentials involved are
quite complicated near infinity: they do not admit a polynomial asymptotic
behaviour. A classical results in this domain is Gaffney’s Theorem [Ga-54]:
if a Riemannian manifold (X, g) is complete, the Laplace operator on it is
ESA. For a clear proof, see [Dav-89], pp 151–152. A natural question is then
to study the case of operators with nice symbols. We will study this question
on closed manifolds (i.e. compact manifolds without boundaries) for differ-
ential operators with smooth coefficients formally symmetric with respect to
a smooth density. Both classical completeness and quantum completeness
are independent of the coefficient of degree 0 in the operators. We will see
for operators of degree 2 that they can depend of the principal and also of
the subprincipal symbols.

3 General facts on ESA

Let P be a differential operator with smooth coefficients on a closed manifold
X equipped with a smooth density |dx|. In what follows, we denote by L2

the Hilbert space L2(X, |dx|). We say that P is formally symmetric if, for
all smooth functions u, v : X → C, we have

∫
X
Pu v̄|dx| =

∫
X
u Pv|dx|. The

adjoint P ? of P has a domain D(P ?) = {u ∈ L2|P ′u ∈ L2} where P ′ is the
operator P acting on Schwartz distributions.

The operator P with domain C∞(X,C) is then essentially self-adjoint
if the graph of P ? in L2 × L2 is the closure of the graph of P defined on
smooth functions. More explicitely, P is ESA if, for each v = P ′u with
u, v ∈ L2, there exists a sequence (un, vn) with un smooth, vn = Pun and
(un, vn)→ (u, v) in L2 × L2.

An equivalent usefull property is the following one

Theorem 3.1 P is ESA if and only if there no L2 solution of (P ′± i)u = 0.

The deficiency indices of P are then defined as n± = dim kerL2(P ′ ± i).
In particular, we see that any elliptic operator P is ESA: if (P ′± i)u = 0,

u is smooth and the result follows from the symmetry of P . This is why we
are only interested here to non elliptic operators.
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We will need also to use compact manifolds with boundary: in this case,
we will always consider the Dirichlet boundary conditions and take for do-
main of P the space C∞(X̄,C) ∩ {u|u|∂X = 0}.

4 Essential self-adjointness of differential op-

erators of degree 1

In the note [L-19], Nicolas Lerner remarks that, inside the global calculus
on Rn, any formally self-adjoint pseudo-differential operator of degree 1 is
essentially self-adjoint. This property can also be proved for formally self-
adjoint pseudo-differential operators of degree 1 on closed manifolds. This
follows from Lemma E.45 in the book [D-Z-19]. On a closed manifold, for
k = 1 and s = 0, this lemma says the following

Lemma 4.1 Let P be a differential operator of degree 1 on a closed manifold
X and u ∈ L2(X) so that Pu ∈ L2(X). There exists a sequence uj ∈ C∞(X)
so that uj → u and Puj → Pu both in L2(X).

If P is formally self-adjoint, this implies that the closure in L2 ⊕ L2 of the
graph of P restricted to smooth functions is the graph of the adjoint of P .
Hence P with domain C∞(X) is essentially self-adjoint.

Theorem 4.1 Any formally self-adjoint differential operator of degree 1 on
a closed manifold is essentially self-adjoint.

This holds in particular for differential operators of the form P := i(V +
1
2
div|dx|(V )) where V is a vector field.

Part I

Sturm-Liouville operators on
the circle
We will consider operators P on the circle S1 = R/Z of the following form

P = dxa(x)dx − ib(x)dx − i
1

2
b′(x) +

1

4
a′′(x)
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where a, b are smooth real valued periodic functions of period 1 and the
zeroes of a are of finite multiplicities. The operator P is formally symmetric
on L2(R/Z, |dx|). The operator P is the Weyl quantization (see [Hor-94],
section 18.5) of the symbol p of P is defined as

p = −a(x)ξ2 + b(x)ξ

The term a′′/4 plays no role in the essential self-adjointeness, so we will forget
it in what follows. Note also that −a(x)ξ2 is the principal symbol and b(x)ξ
the sub-principal symbol.

Our main result is

Theorem 4.2 For operators P of the previous form, classical completeness
of the Hamiltonian flow of p is equivalent to quantum completeness of P .

Our proof consists in describing the properties of a and b leading to classical
completeness and to study the quantum completeness in the corresponding
cases.

5 Classical completeness

We have the

Theorem 5.1 Let p := −a(x)ξ2 + b(x)ξ. Then the Hamiltonian flow of h
is complete on T ?S1 if and only if the zeroes of a are not simple and b does
vanish at these zeroes. Moreover, this flow is complete if and only if it is null
complete, i.e. complete when restricted to p−1(0).

Proof.–

Recall that the Hamiltonian differential equation writes

dx/dt = −2a(x)ξ + b(x), dξ/dt = a′(x)ξ2 − b′(x)ξ.

The momentum ξ cannot escape to infinity at the points x where
a(x) 6= 0 because p(x, ξ) is constant on each trajectory. Hence
the problem is local near the zeroes of a.

• Assume that a(0) = 0 and b(0) > 0. Let us start with
x(0) > 0 small enough and −a(x(0)ξ(0)+b(x(0)) = 0. Then
−a(x)ξ + b(x) = 0 along the integral curve and dx/dt =
−b(x). Hence, there exists t0 > 0 so that x(t0) = 0 and
ξ(t0) = ±∞.
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• Assume that 0 is a non degenerate zero of a and b(0) = 0.
Let us start with x(0) = 0 and ξ(0) 6= 0. We have x(t) = 0
for all t and dξ/dt = a′(0)ξ2 − b′(0)ξ. The solution of this
differential equation is not defined for all t’s.

• Assume that 0 is a degenerate zero of a and b(0) = 0. We
have, by conservation of h, −a(x)ξ2 + b(x)ξ = E and hence
dx/dt = ±

√
−4a(x)E − b(x)2 = O(|x|) If x(0) 6= 0 is close

to 0, x(t) will not reach 0 and ξ(t) will remain finite. The
case x(0) = 0 is even easier.

�

6 Localisation

Let us prove the following

Lemma 6.1 Let Z := a−1(0) = {x1, · · · , xj, · · · , xN} and let Uj, 1 ≤ j ≤ N
be disjoint open intervalls with xj ∈ Uj. Then P is ESA iff the operators
PUj

which are the restrictions of P to each Uj with the Dirichlet boundary
conditions are ESA.

We will in fact prove a more general result valid in any dimension:

Lemma 6.2 Let P be a formally self-adjoint operator of degree 2 on a closed
manifold (X, |dx|). Let Z ⊂ X be the closed set of points where P is not
elliptic and U a neighbourhood of Z with a smooth boundary. Then P is
ESA if and only if the Dirichlet restriction PU of P to U is ESA.

By Dirichlet restriction, we mean that the domain is the space of smooth
function on Ū vanishing at the boundary. This operator is known to be ESA
if P is elliptic in U .
Proof.–

Let us first prove that, if PU is ESA, P is ESA: let us take
a ρ ∈ C∞o (X \ Z) with ρ ≡ 1 near X \ U . Then, if Pu =
v with u, v ∈ L2(X), ρu ∈ H2(X) by ellipticity of P on the
support of ρ. There exists (u′n, v

′
n = Pu′n) a sequence of smooth

functions converging to (ρu, Pρu) in L2 by density of C∞(X) in
H2(X). We have now P ((1 − ρ)u) = w with (1 − ρ)u,w ∈ L2
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and support((1 − ρ)u) ⊂ U . ESA of PU allows to approximate
(1 − ρ)u,w) by smooth functions (u′′n, v

′′
n = PUu

′′
n) and we can

assume that u′′n vanishes near the boundary because (1 − ρ)u
does.

Let us now prove that if P is ESA, PU is ESA: let us start
with PUu = v with (u, v) ∈ L2 and u(∂U) = 0. Similarly to
the previous argument, we can approximate (χUρu, P (χUρu)) by
elements of the graph of PU . We are left with (1 − ρ)u which is
now in the domain of P ?

U .

�

7 Simple zeroes of a

Let 0 be a simple zero of a and I = [−α, α] with no other zeroes of a inside I.
The point 0 is a regular singular point (see Appendix A). of the differential
equation (P − i)u = 0.

The indicial equation writes Ar2 − iBr = 0 with A := a′(0), B = b(0).
Hence the solutions of this equation near 0 writes, for x > 0, u(x) = f(x) +

x
iB/A
+ g(x) if B 6= 0 and u(x) = f(x) + g(x) log x if B = 0 with f, g smooth

up to x = 0 (see Appendix A) and similarly for x < 0 with x− and log(−x).
Let u+ be the solution of (P − i)u+ = 0, u′+(α) = 0 and u′+(α) = 1 on

]0, α]. And define u− similarly. If we extend u+ by zero for x < 0, we get
a Schwartz distribution U+ and (P ′ − i)U+ is supported by the origine. We
have P ′U+ = dxdxaU+ + [a, dx]U+ − ibdxU+. We see that dxaU+ is in L2

loc

and so P ′U+ is locally in the Sobolev space H−1, because dxaU+ ∈ L2. The
derivatives δ′(0), · · · of the Dirac distribution are not in H−1. It follows that
(P ′ − i)U± = µ±δ(0).

Hence there is a non zero linear combination U of U+ and U− which
satisfies (P ′ − i)U = 0. This proves that PI is not ESA and hence P is not
ESA.

8 Degenerate zeroes where b(0) vanishes

In what follows k ≥ 2 (resp. l ≥ 1) is the order of the zero x = 0 of a (resp.
b). We denote a(x) = xkA(x), B(x) = xlB(x). We will show that there
exists a solution of Pu = 0 on ]0, c[ which is not in L2.
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If k ≤ l + 1, 0 is regular singular point. with indicial equation

A(0)r2 + ((k − 1)A(0) + iC1)r + iC2 = 0

with C1 and C2 real. The real part of the sum of roots is 1− k ≤ −1. Hence
there exists at least a solution which is not in L2 near 0.

If k ≥ l+ 2, then we have an irregular singular point of the form studied
in Appendix A. There exists a solution of the form u(x) = x−l/2u1(x) with
u1 smooth up to 0 and u1(0) 6= 0. This function is not in L2 near 0.

This proves that we are in the limit point case (see [R-S-75], Theorem
X.7): hence, if all zeroes of a are degenerate and b vanishes on a−1(0), P is
already ESA on C∞0 (S1 \ a−1(0)). Hence P is ESA on C∞(S1).

9 Degenerate zeroes where b(0) does not van-

ish

We will prove the following

Lemma 9.1 Let us choose a smooth function E on I :=]0, c] so that E ′ =
b/a. Two independent solutions u1 and u2 of (P − i)u = 0 on I satisfies u1
is smooth up to 0, u2 = u3e

iE with u3 smooth up to 0.

It follows that the functions a(x)dxuj are in L2 and that P is not ESA by
the same argument than in Section 7.
Proof.–

(of Lemma) We check first the existence of u1 in an elementary
way by showing the existence of a full Taylor expansion directly.
Then we make the Ansatz u2 = u1v and we get the following
differential equation for v:(

dx +
a′

a
+ 2

u′0
u0
− i b

a

)
dxv = 0

It follows that, we can choose

dxv =
1

au20
eiE

The result follows then by direct identification of the asymptotic
expansion of dx(we

iE).
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Part II

Lorentzian Laplacians on
surfaces

10 General facts on Lorentzian tori

We will consider 2-tori with smooth Lorentzian metrics. There is, as in the
Riemannian case, an associated geodesic flow (the Hamiltonian flow of the
dual metric), a canonical volume form and a Laplace operator, which is an
hyperbolic operator.

It is known that Lorentzian metrics on the 2-torus are not always geodesi-
cally complete. It is the case for example for the Clifton-Pohl torus:

Let T be the quotient of R2 \ 0 by the group generated by the homothety
of ratio 2. On T , the Clifton-Pohl Lorentzian metric is g := dxdy/(x2 + y2).
The associated Laplacian �g = (x2 + y2)∂2/∂x∂y is formally self-adjoint on
L2(T, |dxdy|/(x2 + y2)).

There is also a much simpler example, namely the quotient on (R+
x ×

Ry, dxdy) by the group generated by (x, y)→ (2x, y/2). The manifold is not
closed, but non completeness sits already in a compact region.

It is known these metric are not geodesically complete. What about ESA
of �g?

11 Some results

We will prove a rather general result:

Theorem 11.1 1) If the metric g admits a closed null leave of which the
Poincaré section is not tangent to infinite order to the identity, then g is not
geodesically complete and �g is not ESA.

2) If g is conformal to a flat metric with a smooth conformal factor on a
2-torus, then �g is ESA.
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Remark 11.1 In the first case, the incompleteness of the geodesic flow is due
to Yves Carrière and Luc Rozoy [C-R-94]. We have already null-incompleteness.
We will reprove it.

If X is compact, the first assumption is weaker than being Morse-Smale
which is already a generic property (see [PdM-82]).

Note that the conformal class of a Lorentzian metric is determined by the
null foliations; hence ESA is a property of these foliations.

We will first need some Lemmas:

Lemma 11.1 The null-geodesic completeness is invariant by conformal change.

Proof.–

If g = eφg0, the dual metric satisfy g? = e−φg? and hence the
Hamiltonian dynamics restricted to g? = 0 are conformal with a
bounded ratio.

�

Lemma 11.2 The ESA property is invariant by conformal change.

Proof.–

If �gu = v, we have also �g0u = eφv and eφv is in L2 as soon
as v is. Hence, if �g0 is ESA, there exists a sequence (un, wn =
�g0un)n∈N converging in L2 to (u, eφv) and e−φvn converges to v.

�
This proves part 2 of Theorem 11.1.

12 Normal forms

It is well known and due to Sternberg [St-57] that a smooth germ of map
(R, 0)→ (R, 0) whose differential at the origine is in ]0, 1[∪]1,+∞[ is smoothly
conjugated to y → λy and hence is the time 1 flow of the vector field µy∂y
with λ = eµ.

A similar result hold for more degenerated diffeomorphisms: we assume
that g admits a closed null-leave so that the Poincaré map is of the form
P = Id +R where R is exactly of order k with k ≥ 2. It is proved in [Ta-73]
(see Theorem 4)
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Theorem 12.1 Any such map is the time 1 flow of a vector field V = A(y)∂y
with A ∼ A0y

k.

Let γ be closed null-leave of g and U a neighbourhood of γ so that the
null foliations of g are F , the foliation containing γ as a leave, and G the
transverse null-foliation. We have the:

Theorem 12.2 Let γ be a closed leave whose Poincaré map is P = Id + R
with R of order k. There exists coordinates near γ so that the metric g is
conformal to g0 = dx(dy − a(y)dx) with a(y) ∼ a0y

k, a0 6= 0.

Proof.–

Let us parametrize the closed leave γ by x ∈ R/Z and extend
the coordinate x in some neighbourhood U of γ so that the null
foliation G is given by dx = 0. Choose then for y any coordinate
in U so that y = 0 on γ. We introduce the differential equation
dy/dx = b(x, y) associated to the foliation F close to γ. Note that
b(x, 0) = 0. Let φx(y) be the flow of this differential equation.
The map y → φ1(y) is the Poincaré map of γ. By Theorem 12.1,
we can choose a vector field a(y)∂y so that the time one flow is
the same Poincaré map; and denote by (φ0)x(y) this flow. Let us
consider the germ of diffeomorphism near γ defined by

F : (x, y)→
(
x, y′ = (φ0)x ◦ φ−1x (y)

)
.

The map F sends the integral curves of dy − bdx onto the inte-
gral curves of dy − adx and is periodic of period 1 because the
time 1 flows are the same. Hence the two null foliation are given
respectively by dx = 0 and dy′ − a(y′)dx = 0. The Theorem
follows.

�

13 Proof of Theorem 11.1, part 1

The idea is to use the normal form which, being invariant by translation in
x, allows a separation of variables and hence application of the results of part
I.
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Let us first prove the null incompleteness. Using the normal form and the
conformal invariance of null completeness, we have to study near y = 0 the
Hamiltonian h = −η(a(y)η+ ξ). The function ξ is a constant of the motion.
Let us take initial conditions with y0 > 0, ξ0 > 0, and a(y0)η0 + ξ0 = 0. We
have, using that a(y)η + ξ0 stays at 0, dy/dt = 2a(y)η = −2ξ0. Hence y(t)
vanishes for a finite time t0 and, we have then η(t0) =∞. Null incompleteness
follows.

The Lorentzian Laplacian associated to g = dx(dy − a(y)dy) is given by

� = ∂ya(y)∂y + ∂2xy

Let us look at solutions of �u = v of the form u(x, y) = e2πixv(y) with v
compactly supported near 0. We have

�u(x, y) = e2πix (∂ya(y)∂y + 2iπ∂y) v(y)

The operator P := ∂ya(y)∂y + 2iπ∂y is a Sturm-Liouville operator already
studied in part I. P is not ESA. It follows then that there exists v compactly
supported near 0 and L2 so that P ′v = w ∈ L2 and there is no sequences
(vn, wn = Pvn) converging in L2 × L2 to (v, w). The result follows.

14 Further questions

There are stil several open problems in this setting; we see at least three of
them:

1. Prove our conjecture 1.1.

2. Describe the self-adjoint extensions in the case of Lorentzian tori in a
geometrical way.

3. If we choose a self-adjoint extension, are they interesting spectral asymp-
totics?

4. Extend to higher dimensional Lorentzian manifolds, even to pseudo-
differential operators of principal type.

A Appendix: Basic facts on linear differen-

tial equations of order two

For this section, one can look at [Co-Le-55] and [Wa-65].
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A.1 Regular singular points

We consider a linear differential equqation

Pu := (a(x)d2x + b(x)dx + c(x))u = 0

We assume that a(0) = 0 and 0 is a zero of finite order k of a. The singular
point x = 0 of P is said to be regular if b (resp. c) vanishes at order at least
k − 1 (resp. k − 2) at x = 0. Otherwise 0 is an irregular singular point.

If x = 0 is a regular singular point, we introduce the indicial equation:

a(k)(0)r(r − 1) + kb(k−1)(0)r + k(k − 1)c(k−2), r ∈ C

We call r1, r2 the two roots of the indicial equation. Then

• If Im(r1 − r2) /∈ Z, there exists two independent solutions of Pu = 0
on a small intervall ]0, c[ of the form uj = x

rj
+vj(x)

• Similarly, if Im(r2−r1) ∈ N, we have u1 = xr1+ v1(x) and u2 = xr2+ (v2(x) log x+
v3(x))

where the functions vj are smooth on [0, c[ and v1(0) = v2(0) = 1.

A.2 Some irregular singular points

We consider a singular point at x = 0 of the form(
x3α(x)d2x + (x2β(x) + x)dx +

(
xγ(x) +

l

2

))
u = 0

with α, β, γ smooth. There exists then a solution of the form

u(x) = x−l/2v(x)

with v(0) = 1 and v smooth up to 0. The proof is routine: first find a formal
solution, then apply Malgrange’s Theorem.
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