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After recalling some facts from Hausdorff measure theory, we define, using the notion of s-length, the space L p (∂Ω, d σ s ) on the boundary of a Jordan domain Ω. Then, with the aid of some auxiliary considerations, we establish a trace result for Sobolev's space functions W 1,p (Ω), 1 < p < ∞ in case Ω ⊂ R 2 is an arbitrary bounded Jordan domain and ∂Ω has a finite s-measure with s > 1. This result generalizes the classical case for Lipschitz regular domains.

Introduction

Let Ω ⊂ R2 be a bounded Jordan domain i.e. its boundary, denoted ∂Ω, is homeomorphic to the boundary, ∂B 1 , of the unit ball, B 1 , in R 2 . We denote diam Ω the diameter of Ω. Let us note W k,p (Ω) the usual Sobolev spaces defined by

W k,p (Ω) := {v ∈ L p (Ω) such that ∂ α v ∈ L p (Ω) ∀α, multi-index, |α| ≤ k}.
The trace operator, applied to functions of the space W1,p (Ω) defined on a domain with Lipschitz boundary, is a well-established notion in Sobolev's space theory. We propose to show that a trace operator can also be defined when the domain is characterized by a lesser regularity, more precisely, when it is only Jordan. An important fact about the class of Jordan domains is that they generally do not admit the property of (1, p)-extension, see [START_REF] Maz'ya | Extension of functions from Sobolev spaces, English translation[END_REF]. The property of (1, p)-extension domain Ω means that an extension operator can be defined from Sobolev space W 1,p (Ω) to W 1,p (R 2 ), we can refer to [START_REF] Lewis | Approximation of Sobolev functions in Jordan domains[END_REF] for a detailed discussion of this class of domains. Lewis has showed, see [START_REF] Lewis | Approximation of Sobolev functions in Jordan domains[END_REF], that C ∞ (Ω) is dense in W 1,p (Ω) when Ω ⊂ R 2 is an arbitrary planar Jordan domain. We establish, using, among other things, this fact, a trace theorem for the functions in W 1,p (Ω) on the boundary Γ := ∂Ω of the Jordan domain Ω.

Let us Recall the continuity property of the trace operator on the boundary of a Lipschitz (or weakly Lipschitz) regular domain D ⊂ R 2 defined for the Sobolev space W 1,p (D), see ( [START_REF] Gagliardo | Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili[END_REF]): Proposition 1. Let D ⊂ R 2 be a domain with Lipschitz boundary and 1 < p < ∞. The space W 1,p (D) is continuously embedded into L p (∂Ω) i.e. there exists a constant C D > 0 such that for all u ∈ W 1,p (D) we have

||u|| p,∂Ω ≤ C D ||u|| W 1,p (D) . (1) 
It should be noted that proposition [START_REF] Lewis | Approximation of Sobolev functions in Jordan domains[END_REF] does not apply to our Jordan domain Ω given the assumption of Lipschitz regularity of the domain D. Let us also recall the density result proved in ( [START_REF] Lewis | Approximation of Sobolev functions in Jordan domains[END_REF], p.261):

Theorem 2. If Ω ⊂ R 2 is a domain whose boundary is a Jordan curve then C ∞ (Ω) is dense in W 1,p (Ω) for 1 < p < ∞.
We present hereafter some facts from Hausdorff measure theory, this later constitutes the point of view under which the corpus of the paper is to be considered.

Hausdorff measure

We recall the definition of the Hausdorff measure of a set. We can refer to ( [START_REF] Yeh | Real Analysis, Theory of measure and integration[END_REF], chap.7) for the results and facts stated in this sub-section. Let A ⊂ R 2 . We call a δ-cover of the subset A, the collection

R δ (A) := {E i ⊂ R 2 | diam E i | ≤ δ A ⊂ ∪ i E i },
and we define the exterior, auxiliary, measure

H s δ (A) := inf{ i∈N | diam E i | s such that E i ∈ R δ }. (2) 
The Hausdorff s-measure of A is then defined by

H s (A) := lim s→0 H s δ (A). (3) 
It's helpful to emphasize, see [START_REF] Yeh | Real Analysis, Theory of measure and integration[END_REF], that the measure

H s δ is decreasing in δ i.e. if A is a set then 0 < δ 1 < δ 2 implies H s δ 2 (A) < H s δ 1 (A). (4) 
On the other hand, the Hausdorff measure is an increasing set function in the sense that if A and B are two sets then

A ⊂ B implies H s (A) ≤ H s (B). (5) 
Lastly, the Hausdorff dimension, dim H (A), of a set A is defined by

dim H (A) := inf s>0 {H s (A) = 0} = sup s>0 {H s (A) = +∞}. ( 6 
)
We recall the definition of Hausdorff's distance. Let (G, d) be a metric space and G F be the collection of non-empty bounded closed subsets of G. The Hausdorff distance on

G F is the application dist H , of G F ×G F in R + , defined by (X, Y ) → dist H (X, Y ) := max{sup x∈X inf y∈Y d(x, y), sup y∈Y inf x∈X d(x, y)}. ( 7 
)
Here and in the sequel, the distance (x, y) → d (x, y) is understood in the sense of the euclidean distance between the points x and y.

Remark 3. 1)-Given a Jordan domain Ω ⊂ R 2 , we can construct a nested sequence of Lipschitz domains (Ω n ) n∈N that approximates Ω in the sense of Hausdorff 's distance [START_REF] Taylor | Measure Theory and Integration[END_REF] with Ω n ⊂⊂ Ω n+1 ⊂ Ω. Therefore, the Jordan curve Γ = ∂Ω can be approximated by a sequence of Lipschitz curves Γ n .

In addition, we choose a precise parameterization γ m for each of the curves Γ m ; these functions are defined by

γ m : [a, b] → Γ m t → γ m (t) (8)
such that γ m is defined as follows: if γ(t) = (γ 1 (t), γ 2 (t)) is the point of Γ corresponding to t then the point γ m (t) is the unique point of

Γ m that satisfies |γ m (t) -γ(t)| 2 = inf x∈Γm d (x, γ(t)) .
2)-We should also recall that the n-dimensional Hausdorff measure for n ∈ N * coincides with Lebesgue's n-dimensional measure up to a multiplicative constant C λ n .

We assume, in the sequel, that the domain Ω is Jordan with boundary a Jordan curve Γ = ∂Ω ⊂ R 2 which is Hausdorff s-dimensional with s > 1 such that ∂Ω = Γ has finite s-dimensional measure. The main result of this paper is stated in the following theorem:

Theorem 4.
Let Ω be Jordan domain and p such as 1 < p < ∞. We assume that the boundary ∂Ω has finite s-measure, i.e. H s (∂Ω) < ∞. Then, we can define a trace operator

T : W 1,p (Ω) → L p (∂Ω) u → T u
which extends the usual restriction operator to ∂Ω for continuous functions. Furthermore, T is continuous i.e. there is a constant c t > 0 independent of u such that for every u ∈ W 1,p (Ω)

||T u|| p,∂Ω ≤ C t ||u|| W 1,p (Ω) , (9) 
where we have noted || || p,∂Ω the L p space according to a measure that we will define below and that is related to the Hausdorff measure on the boundary.

Stieltjes integral and s-length

Let γ be a continuous, C 0 ([a, b]), parametric representation of Γ. Since we are dealing with a curve Γ of Hausdorff dimension s > 1 then the usual arc length, i.e. with respect to Lebesgue's measure or, similarly, to Hausdorff 1-measure, as well as the curvilinear abscissa are obsolete in our situation since they may equal +∞. This suggests adapting the definition of the curvilinear abscissa to our situation. The curvilinear s-abscissa is defined by

t → s γ (t) := H s (γ([a, t])); (10) 
i.e. the Hausdorff s-dimensional measure of the "piece" of the curve that is the image of [a, t] by γ. It is also the s-length of the arc γ restricted to the interval [a, t], see Definition 5 below. We define the curvilinear integral of the continuous function u : Γ → R as the Stieltjes integral of u•γ with respect to the curvilinear s-abscissa defined by (10). The notion of curvilinear s-abscissa is the key to understanding this integral. Indeed, the Stieltjes integral in question is given by:

Γ u d s = [a,b] u • γ(t) d s γ (t)
where the integral can be, at first, intuitively understood in the sense of Riemann; i.e. it is the limit, when the maximal step σ := max i [t k , t k+1 ] of the partition of [a, b] tends towards zero, of the Riemann sums:

lim σ→0 u(γ(t k )) (s γ (t k ) -s γ (t k-1 )) (11)
where the partition is denoted :

a = t 0 < t 1 < . . . < t n = b, t k ∈ [t k-1 , t k ].
This definition does not depend on the parameterization chosen for Γ. Note that the limit (11), and thus the integral, exists as soon as u is bounded; this in addition to the fact that the curvilinear s-abscissa is of bounded variation; indeed, since ]0,

t k ] ⊂]0, t k+1 ] implies γ(]0, t k ]) ⊂ γ(]0, t k+1 ]
) and that H s is increasing in the sense of (11), then the curvilinear s-abscissa function is increasing and bounded. This also implies that its derivative, 

s γ (t
interval ]u, v] ⊂ [a, b] w(]u, v]) = s γ (v) -s γ (u) = H s (γ(]0, v])) -H s (γ(]0, u])),
by the Caratheodory extension theorem, there is a unique Borel measure µ s on [a, b] equal to w on any interval. The measure µ s emerges from the exterior measure defined by

µ s (E) = inf i w(I i ) : E ⊂ i I i (12)
the infimum being taken over the coverings of E by countable semi-open intervals. This measure is called the Lebesgue-Stieltjes measure associated with s γ . This measure generalizes the Lebesgue measure in the extent that it coincides with the latter in the particular case when w(]u, v]) = v -u. More rigorously, we say that a bounded or continuous function f is integrable with respect to the Stieltjes measure or Stieltjes integrable if f is integrable in the Lebesgue-Stieltjes sense i.e. if we have b a |f (t)| ds γ (t) < ∞ which, in turn, is defined as Lebesgue's classic integral of |f | with respect to the measure µ s . In particular the Stieltjes integral of f coincides with the integral of the function f s γ in Lebesgue's sense with respect to the Lebesgue measure. In our situation s γ exists almost everywhere. On the other hand, we have not explicitly expressed the dependency of the measure µ s and later that of µ s δ on the parameterization γ but it is to be understood implicitly, in the sequel, that the measures µ s and µ s δ are defined according to the context relatively to Γ or Γ n , the same remark holds for the set function that we denoted w instead of w γ .

Definition 5. Let Γ be a Jordan curve in R 2 and γ : [a, b] → R 2 a continuous, C 0 ([a, b]
), parametric representation of Γ. We assume that Γ is an s-dimensional Hausdorff set. We define the s-length of Γ to be L s (Γ) := sup P,partition

V s I (γ, P ) (13) 
with

V s I (γ, P ) = np-1 k=0 d s (γ(t k+1 ), γ(t k )) ( 14 
)
where the supremum browses all the partitions

P := {p = {t 0 , t 1 , ..., t np }|p is a partition of the interval [a, b]}.
If L s (Γ) < ∞ then we say that Γ is s-rectifiable and that t → γ(t) has s-bounded variation.

Lemma 6. Let Γ be a Jordan curve in R 2 such as in definition ( 5), parametrized by

γ ∈ C 0 ([a, b]) then H s (Γ) = L s (Γ).
That is, the s-length of Γ equals its s-Hausdorff measure.

Proof. The proof is done in two steps 1) We show that H s (Γ) ≤ L s (Γ). We construct inductively a partition of [a, b] as follows:

t 0 := a; t k+1 := inf{x ∈ [t k , b]; d s (γ(t k ) -γ(x)) = } ∪ {b},
so we get a partition of [a, b] defined by P := {t 0 , t 1 , ..., t np } such as

d s (γ(t k ), γ(t k+1 )) = diam s (γ([t k , t k+1 ])) ∀k ∈ {0, ..., n p -2} d s (γ(t np ), γ(t np-1 )) = diam s (γ([t np , t np-1 ])) ≤ .
We have then:

H s (γ) ≤ np-2 k=0 diam s (γ([t k , t k+1] )) + diam s (γ([t np , t np-1] )) ≤ np-2 k=0 d s (γ(t k ), γ(t k+1 )) + ≤ L s (Γ) + , letting → 0 we find H s (Γ) ≤ L s (Γ).
2) We show that L s (Γ) ≤ H s (Γ). It is easy to see that:

d (γ(t k+1 ), γ(t k )) ≤ diam(γ([t k-1 , t k ])) ≤ H 1 (γ([t k-1 , t k ])), thus d s (γ(t k+1 ), γ(t k )) ≤ H 1 (γ([t k-1 , t k ])) s .
Furthermore, for all > 0, there exists 0 < δ < 1 such that

d s (γ(t k+1 ), γ(t k )) ≤ H 1 δ (γ([t k-1 , t k ])) s + .
According to Definition 2 of the exterior measure

H 1 δ , if (A i ) i is such that A i ∈ R δ is a δ -cover of γ([t k-1 , t k ])) then we have d s (γ(t k+1 ), γ(t k )) ≤ [ i diam(A i )] s + .
Since diam(A i ) < 1 for all i then we get

d s (γ(t k+1 ), γ(t k )) ≤ i diam s (A i ) + , for all A i ∈ R δ such that diam(A i ) ≤ δ . We then deduce that d s (γ(t k+1 ), γ(t k )) ≤ inf R δ i diam s (A i ) + .
Letting → 0, we deduce, using ( 3) and (4) that

d s (γ(t k+1 ), γ(t k )) ≤ H s (γ([t k+1 ) -γ(t k )]).
Since H s is a sigma-additive measure, then

L s (Γ) = d s (γ(t k+1 ), γ(t k )) ≤ H s (Γ).
The lemma (6) makes it clear that the integral of the constant function 1, which by definition of the integral is equal to H s (Γ), is nothing else than the s-length of Γ defined by ( 13)-( 14). This fact is present especially in the case of the dimension s = 1 where the 1-length is nothing other than the usual length of the curve. One can also define (or construct) the curvilinear integral with respect to the Hausdorff s-dimensional measure, with which the curvilinear s-abscissa is expressed on Γ. This will be the subject of the next sub-section. We emphasize that an almost similar work has been presented in the context of Lebesgue-Hausdorff line integral, see ( [START_REF] Lazwardi | Lebesgue-Hausdorff Line Integral of Hausdorff Measurable Multivariable Function over Simple Curve on[END_REF]).

Construction of the Lebesgue-Hausdorff-Stieltjes (LHS) line integral on the Jordan curve

Let γ : [a, b] → Γ, γ ∈ C 0 ([a, b]
), be parametrization of the Jordan curve Γ. Let ψ be a simple defined on [a, b] i.e. there exists a sequence of real numbers (α i ) i and a collection of sets

(E i ) i such that [a, b] = ∪ i E i and ψ(t) = i α i χ(E i ).
Then, the integral of ψ is defined by

(LHS) [a,b] ψ d µ s = i α i µ s (E i ),
where the measure µ s is defined by (12). The lower integral of the continuous function u • γ defined on [a, b] is given by

(LHS) Γ u d σ s = [a,b] u•γ d µ s = sup{ [a,b] ζ d µ s , ζ ≤ u•γ , ζ simple function on [a, b]}.
The upper integral of the function u • γ is defined by

(LHS) Γ u d σ s = [a,b] u•γ d µ s = inf{ [a,b] ξ d µ s , u•γ ≤ ξ , ξ simple function on [a, b]}. Now, the function u • γ is said to be s-Hausdorff-Lebesgue-Stieltjes inte- grable if (LHS) [a,b] u • γ d µ s = (LHS) [a,b] u • γ d µ s ,
this number is the line integral of u on Γ and is denoted

(LHS) Γ u d σ s .
If the function |u • γ| is integrable then we note u ∈ L 1 (Γ, d σ s ). We define also the space L p (Γ, d σ s ) as the set of measurable functions u such that |u| p ∈ L 1 (Γ, d σ s ). |u • γ| p dµ s δ can be defined in exactly a similar way as done above for the measure µ s .

2)-On the other hand, using the definition of the integral with respect to the measure µ s δ , one can easily see that

lim δ→0 Γ |u| d σ s δ = lim δ→0 [a,b] |u•γ(t)| d µ s δ (t) = [a,b] |u•γ(t)| d µ s (t) = Γ |u| d σ s .
(15) 3)-Assume that u is Lipschitz regular on Ω then consider the functions u • γ and u • γ m as defined on the measure space ]a, b[,B(]a,b[),µ 1 δ ; they are clearly µ 1 δ -integrable. Thus, the definition of the integral with respect to the measure µ 1 δ and Definition 8 of the functions γ m , see Remark 3, yield, using the dominated convergence theorem applied on the sequence of functions (u • γ m ) m , the following limit:

| [a,b] |u • γ m (t)| p d µ 1 δ (t) - [a,b] |u • γ(t)| p d µ 1 δ (t)| → 0 as m → ∞. (16)
4)-We can choose m such that Γ m and Γ are arbitrarily close in the sense of the Hausdorff distance [START_REF] Taylor | Measure Theory and Integration[END_REF] i.e. such that to make

dist H (Γ, Γ m )
small enough; as a consequence we have: given 0 < δ < 1

|H s δ (Γ m ) -H s δ (Γ)| → 0 as m → ∞. (17) 
This implies in particular, knowing that H 1 δ (Γ) < ∞, that there exists m δ such that for all m > m δ we have

H 1 δ (Γ m ) ≤ 2H 1 δ (Γ). ( 18 
)
2 Proof of the main result

We now turn to the proof of Theorem 4.

Proof. Let p > 1 and fix δ, 0 < δ < 1. According to -1) of Remark 3, there exists a sequence of Lipschitz curves, denoted Γ n := ∂Ω n , that approximate the Jordan curve Γ := ∂Ω. Define F := L p (∪ n Γ n , d σ 1 δ ) to be the vector space whose elements are functions u defined on ∪ n Γ n such that if the parametrization functions, γ n , are as defined by (8) then, |u| is L p -integrable on the countable union, ∪ n Γ n , of the subsets (Γ n ) n with respect to the measure σ 1 δ . It is clearly a normed vector space when equipped with the norm

||v|| F := ∪nΓn |v| p d σ 1 δ 1 p = n [a,b] |v • γ n | p d µ 1 δ 1 p
, where the measure µ s δ is defined by (12). Pose E := W 1,p (Ω) ∩ C ∞ (Ω) and

F := L p (∪ n Γ n , d σ 1 δ ).
Define the sequence of linear maps (L m ) m∈N by

L m : (E, || || W 1,p (Ω) ) → (F, || || L p (∪nΓn,d σ 1 δ ) ) u → L m u with (L m u)(x) = u(x) , x ∈ Γ m 0 , x ∈ ∪ n Γ n -Γ m .
On one hand, (L m ) m is a sequence of continuous linear maps. Indeed; using the properties of the auxiliary measure H 1 δ , namely (3), ( 4) and (12), we have

||L m (u)|| p F = Γm |u| p d σ 1 δ = [a,b] |u • γ m | p d µ 1 δ ≤ [a,b] |u • γ m | p d µ 1 , (19) 
using 2) of remark 3 we write

[a,b] |u • γ m | p d µ 1 = C λ 1 [a,b] |u • γ m | p d λ 1 , (20) 
where λ 1 is the Lebesgue 1-dimensional measure. According to estimate (1) of the trace inequality on the Lipschitz curve Γ m = ∂Ω m we have: for all m > 0 there exists C m > 0 such that for all u ∈ W 1,p (Ω) ∩ C ∞ (Ω)

||L m (u)|| F ≤ C λ 1 [a,b] |u • γ m | p d λ 1 1 p (21) ≤ (C λ 1 ) 1 p C m ||u|| W 1,p (Ωm) ≤ (C λ 1 ) 1 p C m ||u|| W 1,p (Ω) ;
the constants C m , which are respectively the norms of the trace operators relatively to the Lipschitz domains Ω m , are finite for every m. So, using the definition of the norm of the linear maps L m , ∀m, ∃C m ≤ (C λ 1 )

1 p C m such that C m = ||L m || L(E,F ) = sup u∈E ||L m (u)|| F ||u|| W 1,p (Ω) ,
thus, for all m, there exists C m > 0 such that for all u ∈ E we have

||L m (u)|| F = [a,b] |u • γ m (t)| p d µ 1 δ (t) 1 p ≤ C m ||u|| W 1,p (Ω) . (22) 
On the other hand, let u ∈ W 1,p (Ω) ∩ C ∞ (Ω) be an arbitrary fixed element. Then (18) yields us, for the fixed δ, with the following sup

m>m δ ||L m (u)|| F ≤ |u| ∞,Γm sup m>m δ [H 1 δ (Γ m )] 1 p ≤ 2|u| ∞,Ω [H 1 δ (Γ)] 1 p ≤ N (δ) < ∞. (23) 
Actually, the operator L m depends also on the fixed δ, but We have not made this dependence explicit for clarity of writing and one should well notice that N (δ) → ∞ when δ → 0. Estimates ( 22) and (23) ensure, using the Banach Steinhaus theorem, the existence of a constant M (δ) > 0 which is independent of m but depending on δ such that sup m>m δ ||L m || ≤ M (δ). This implies that C m < M (δ) for all m > m δ . Therefore, there exists

C (δ) > 0 such that C m → C (δ) when m → ∞. Let u ∈ W 1,p (Ω) ∩ C ∞ (Ω).
Letting m → ∞ in (22), and using ( 16), yields us

[a,b] |u • γ(t)| p d µ 1 δ (t) 1 p ≤ C (δ)||u|| W 1,p (Ω) . (24) 
The facts s > 1 and δ < 1 in addition to formulas (2) and (3) defining the measures give us

Γ |u| p d σ s δ 1 p = [a,b] |u • γ(t)| p d µ s δ (t) 1 p ≤ [a,b] |u • γ(t)| p d µ 1 δ (t) 1 p 
.

(25) Combining estimates (24) and (25) yields using the Holder inequality

∀u ∈ W 1,p (Ω) ∩ C ∞ (Ω) , Γ |u| p d σ s δ 1 p ≤ C (δ)||u|| W 1,p (Ω) , (26) 
the constants C (δ) are finite for every δ < 1. Define the sequence of linear maps (L δ ) δ<1 by

L δ : W 1,p (Ω) ∩ C ∞ (Ω), || || W 1,p (Ω) → W 1,p (Ω) ∩ C ∞ (Ω), || || L p (Γ,d σ s δ ) u → L δ u = u.
Estimate (26) shows clearly that the linear operator L δ is continuous for every 0 < δ < 1. Additionally L δ is obviously one-to-one. We deduce using the Banach isomorphism theorem that the inverse operator L -1 δ is also continuous i.e. there exists C -1 (δ) > 0 such that for all u ∈ W 1,p (Ω)∩C ∞ (Ω) we have

||u|| W 1,p (Ω) ≤ C -1 (δ) Γ |u| p d σ s δ 1 p , (27) 
using the estimate (3) and (4) defining the auxiliary measure, we deduce immediately that

∀u ∈ W 1,p (Ω) ∩ C ∞ (Ω) , ||u|| W 1,p (Ω) ≤ C -1 (δ 0 ) Γ |u| p d σ s 1 p (28) 
for some 0 < δ 0 < 1. Using again the Banach isomorphism theorem, similarly as done above, yields us, by using (28), the existence of a constant

C t > 0 such that ∀u ∈ W 1,p (Ω) ∩ C ∞ (Ω) , Γ |u| p d σ s 1 p ≤ C t ||u|| W 1,p (Ω) . (29) 
According to Theorem 2, there exists (u l ) l∈N with u l ∈ C ∞ (Ω) and such that 

||u l -u|| W 1,p (Ω) → 0 as l → +∞. ( 30 
consequently (u l ) l is a Cauchy sequence in the complete space L p (Γ, d σ s ). Using (30), we pass into the limit in (31) to conclude that there exists u * ∈ L p (Γ, d σ s ) such that

Γ |u * | p d σ s 1 p ≤ C t ||u|| W 1,p (Ω) . (32) 
We define the operator T : W for all u ∈ W 1,p (Ω); this does make T a continuous trace operator on the Jordan curve ∂Ω.

One can eventually define the space W 1-1 p ,p (∂Ω) as the range of the operator T . Thus, once its range is restricted to W 1-1 p ,p (∂Ω), the operator T is surjective.

One should notice that the continuity constant of the trace operator, C t , is, somewhat, directly related to the norms of the trace operator respectively defined on the boundary of Ω m up to the constant C λ 1 .

Conclusion

In addition to being interesting in itself, this result, like any other trace theorem for Sobolev space functions, is strongly expected to have applications in the field of mathematical analysis of partial differential equations given its wide and extensive use in the analysis literature. In particular, this type of result has proved to be very useful in demonstrating the existence and uniqueness results for PDEs.

On the other hand, it seems somewhat difficult to further generalize this result to the case p < 1, at least in the context of the above presented proof. This is due, in part, to the fact that the essential ingredient of the proof, the density result which is the subject of the theorem (2), may not be valid in this general case. Also, L p is no longer a Banach space for p < 1.

Remark 7 .

 7 1)-The line integral with respect to the measure µ s δ Γ |u| p d σ s δ = [a,b]
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