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1. Introduction. Anaerobic digestion is a natural process in which organic material is converted into biogas in an environment without oxygen by the action of a microbial ecosystem. It is used for the treatment of wastewater and organic solid wastes and has the advantage of producing methane and hydrogen under appropriate conditions [START_REF] Mata-Alvarez | Anaerobic digestion of organic solid wastes. an overview of research achievements and perspectives[END_REF]. The removed carbon dioxide can be used too as a carbon source for microalgae [START_REF] Martinez | Modeling and analysis of an absorption column connected to a microalgae culture[END_REF]. It is used also for several industrial or domestic purposes in biorefineries and other anaerobic technologies. For a recent review on the current state-of-the-art with respect to the theory, applications, and technologies, the reader is referred to Wade [START_REF] Wade | Not just numbers: Mathematical modelling and its contribution to anaerobic digestion processes[END_REF].

The full Anaerobic Digestion Model No.1.(ADM1) [START_REF] Batstone | The IWA Anaerobic Digestion Model No 1 (ADM1)[END_REF] is highly parameterized with a large number of state variables. Whilst suitable for dynamic simulation, analytical results on the model are impossible and only numerical investigations are available [START_REF] Bornhöft | Steady-state analysis of the Anaerobic Digestion Model No. 1 (ADM1)[END_REF]. Due to the analytical intractability of the full ADM1, simpler mechanistic models of microbial interaction have been proposed in view of a better understanding of the anaerobic digestion process.

The two-tiered models, which take the form of four-dimensional mathematical models with a cascade of two biological reactions, where one substrate is consumed by one microorganism in a chemostat to produce a product that serves as the main limiting substrate for a second microorganism, are the simplest models which encapsulate the essence of the anaerobic digestion process. Two-tiered models with commensalistic relationship including or not substrate inhibition of the second population are widely considered [START_REF] Benyahia | Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes[END_REF][START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF][START_REF] Reilly | Stability of commensalistic systems[END_REF][START_REF] Sbarciog | Determination of appropriate operating strategies for anaerobic digestion systems[END_REF] where the second population (the commensal population) benefits for its growth from the first population (the host population) while the host population is not affected by the growth of the commensal population. On the contrary, when the growth of the first population is affected by the growth of the second population, the system describes a syntrophic relationship [START_REF] Burchard | Substrate degradation by a mutualistic association of two species in the chemostat[END_REF][START_REF] Daoud | Steady state analysis of a syntrophic model: The effect of a new input substrate concentration[END_REF][START_REF] Hajji | A mathematical study of a syntrophic relationship of a model of anaerobic digestion process[END_REF][START_REF] Sari | The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat[END_REF][START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF][START_REF] Volcke | Steady state multiplicity of two-step biological conversion systems with general kinetics[END_REF][START_REF] Xu | Maintenance affects the stability of a two-tiered microbial 'food chain' ?[END_REF].

For more details and informations on commensalism and syntrophy, the reader is referred to [START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF] and the references therein. Important and interesting extensions of the two-tiered models are the eight-dimensional mathematical models, which include syntrophy and inhibition [START_REF] Weedermann | Mathematical model of anaerobic digestion in a chemostat: Effects of syntrophy and inhibition[END_REF][START_REF] Weedermann | Optimal biogas production in a model for anaerobic digestion[END_REF] and the model with five state variables studied in [START_REF] Bornhöft | Steady-state analysis of the Anaerobic Digestion Model No. 1 (ADM1)[END_REF][START_REF] Meadows | Global analysis of a simplified model of anaerobic digestion and a new result for the chemostat[END_REF].

In this paper, we consider a six-dimensional mathematical model, which is an extension, with generalized growth functions, of the three-tiered food-web studied by Wade et al. [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF]. For a description of this food-web, where the microorganisms involved are chlorophenol and phenol degraders and hydrogenotrophic methanogen, see section 4. Note that the three-tiered food-web is not a classical anaerobic digestion process since the chlorophenol mineralization may occur under aerobic or anaerobic conditions with different microbial consortia involved. For more details on the biological significance of this food-web and its relation to the complete ADM1, the reader is invited to refer to [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF]. It has been shown in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF] that this model can have up to eight steady states. Arguing that the Routh-Hurwitz theorem allowing for an explicit analysis of the stability of steady states, is intractable beyond five dimensions, as it was noticed in [START_REF] May | Stability and Complexity in Model Ecosystems[END_REF], the stability of the steady states were determined only numerically [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF] using specific growth rates (see formulas (4.1)). Several operating diagrams, which are the bifurcation diagrams with respect to the four operating parameters (i.e. the dilution rate, the chlorophenol, the phenol and the hydrogen input concentrations) have been numerically constructed in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF], showing the role, and the importance of each operating parameter, in particular for the coexistence of all three species. The model of [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF] is extended in [START_REF] Nouaoura | Mathematical analysis of a three-tiered food-web in the chemostat[END_REF][START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF] with general growth rates (see section 2 for the assumptions on the growth rates) and takes the form:

               ẋ0 = (µ 0 (s 0 , s 2 ) -D -a 0 )x 0 ẋ1 = (µ 1 (s 1 , s 2 ) -D -a 1 )x 1 ẋ2 = (µ 2 (s 2 ) -D -a 2 )x 2 ṡ0 = D s in 0 -s 0 -µ 0 (s 0 , s 2 )x 0 ṡ1 = D s in 1 -s 1 + µ 0 (s 0 , s 2 )x 0 -µ 1 (s 1 , s 2 )x 1 ṡ2 = D s in 2 -s 2 -ωµ 0 (s 0 , s 2 )x 0 + µ 1 (s 1 , s 2 )x 1 -µ 2 (s 2 )x 2 (1.1)
where s 0 , s 1 and s 2 are the substrate concentrations (chlorophenol, phenol and hydrogen, in the application); x 0 , x 1 and x 2 are the biomass concentrations; D is the dilution rate; µ i is the specific growth rate; s in i is the input substrate concentration in the chemostat; ω is a yield coefficient; a i is the maintenance (or decay) rate for i = 0, 1, 2 and corresponding to chlorophenol, phenol and hydrogen, respectively. As explained in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF], the chlorophenol degrader grows on both chlorophenol and hydrogen and produces phenol. The phenol degrader consumes the phenol to form hydrogen, which inhibits its growth. The hydrogenotrophic methanogen grows on the produced hydrogen.
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The mathematical analysis of (1.1), under various assumptions, is given in [START_REF] Hajji | Mathematical modelling and analysis for a three-tiered microbial food web in a chemostat[END_REF][START_REF] Nouaoura | Mathematical analysis of a three-tiered food-web in the chemostat[END_REF][START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF][START_REF] Sobieszek | Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow[END_REF]. The system (1.1) was studied in [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF] in the case s in 0 > 0 and s in 1 = s in 2 = 0 where at most three types of steady states can exist. The necessary and sufficient conditions of existence of the steady states are analytically determined, showing their uniqueness, except for one of them, that can exist in two forms. When maintenance is neglected (a 0 , a 1 and a 2 are assumed to be zero), the six-dimensional mathematical model can be reduced to a three-dimensional one and the stability of steady states was analytically characterized. It has been also shown in [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF] that the positive steady state can be unstable, a fact that has not been described in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF]. Numerical analysis has suggested the presence of a Hopf bifurcation emerging through the positive steady state, with the chlorophenol input concentration as the bifurcating parameter. System

(1.1) was studied in [START_REF] Sobieszek | Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow[END_REF] in the case without maintenance and persistence results were analytically proved. Using numerical estimation, it is shown in [START_REF] Sobieszek | Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow[END_REF] that the system has a rich dynamics including Hopf, Bogdanov-Takens and Bautin bifurcations. The three-tiered model of [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF] was simplified in [START_REF] Hajji | Mathematical modelling and analysis for a three-tiered microbial food web in a chemostat[END_REF] by neglecting the part of hydrogen produced by the phenol degrader (µ 1 (s 1 , s 2 )x 1 is not considered in the model) as well as maintenance, which gives rise to a less realistic model. However, the existence and stability of steady states were analytically studied and a global analysis is performed, proving the asymptotic persistence of the three bacteria. The results of [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF] were extended in [START_REF] Nouaoura | Mathematical analysis of a three-tiered food-web in the chemostat[END_REF] in the case s in 1 ≥ 0 and s in 2 ≥ 0. When the inflow of the three substrates is included, the system can have at most eight types of steady states. The necessary and sufficient conditions of existence of the steady states are analytically determined when maintenance is included. The necessary and sufficient conditions of stability are analytically determined only when maintenance is neglected.

Here, we focus on the analysis of the stability of all steady states of (1.1), and we analytically characterize the stability, by using the Liénard-Chipart stability criterion, in the case including maintenance, where the system cannot be reduced to a threedimensional one. We then generalize [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF] by allowing a larger class of growth functions and by giving rigorous proofs for the results on the existence and stability of steady states. For this class of growth functions, we generalize [START_REF] Hajji | Mathematical modelling and analysis for a three-tiered microbial food web in a chemostat[END_REF][START_REF] Nouaoura | Mathematical analysis of a three-tiered food-web in the chemostat[END_REF][START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF][START_REF] Sobieszek | Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow[END_REF] by giving the necessary and sufficient conditions of stability of steady states when maintenance is included in the model.

This paper is organized as follows: in section 2, we recall the general assumptions on the growth functions and the steady states of model (1.1). We give in section 3 the necessary and sufficient conditions of existence and stability of the steady states.

Next, in section 4, we give an application of our theoretical results to the threetiered model considered in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF]. We dedicate section 5 to discuss our results. In Appendix A, we define some auxiliary functions used for the description of the steady states with their conditions of existence and stability. The Liénard-Chipart stability criterion and all the proofs are reported in Appendices B and C, respectively. In Appendix D, the description of the bifurcation diagram according to the dilution rate is supported by numerical experimentation. The bifurcation diagram according to the chlorophenol input concentration is determined in Appendix E and it is supported by numerical experimentation in Appendix F. Details and complements on the threetiered model considered in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF] are given in Appendix G. In Appendix H, we illustrate some numerical simulations and some tables are given in Appendix I.

2. Assumptions and steady states. We consider model (1.1). Following [START_REF] Nouaoura | Mathematical analysis of a three-tiered food-web in the chemostat[END_REF][START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF], we assume that the growth functions are continuously differentiable (C 1 ) and satisfy the following conditions:
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(H1) For all s 0 > 0 and s 2 > 0, 0 < µ 0 (s 0 , s 2 ) < +∞, µ 0 (0, s 2 ) = 0, µ 0 (s 0 , 0) = 0.

(H2) For all s 1 > 0 and s 2 ≥ 0, 0 < µ 1 (s 1 , s 2 ) < +∞, µ 1 (0, s 2 ) = 0.

(H3) For all s 2 > 0, 0 < µ 2 (s 2 ) < +∞, µ 2 (0) = 0.

(H4) For all s 0 > 0 and s 2 > 0, ∂µ0 ∂s0 (s 0 , s 2 ) > 0, ∂µ0 ∂s2 (s 0 , s 2 ) > 0.

(H5) For all s 1 > 0 and s 2 > 0, ∂µ1 ∂s1 (s 1 , s 2 ) > 0, ∂µ1 ∂s2 (s 1 , s 2 ) < 0.

(H6) For all s 2 > 0, µ 2 (s 2 ) > 0.

(H7) The function s 2 → µ 0 (+∞, s 2 ) is monotonically increasing and the function

s 2 → µ 1 (+∞, s 2 ) is monotonically decreasing.
Let Ψ the function defined in 

s 0 , s 1 , s 2 and x 0 , x 1 , x 2 components SS1 s0 = s in 0 , s1 = s in 1 , s2 = s in 2 and x0 = 0, x1 = 0, x2 = 0 SS2 s0 = s in 0 , s1 = s in 1 , s2 = M2(D + a2) and x0 = 0, x1 = 0, x2 = D D+a 2 s in 2 -s2 SS3 s1 = s in 1 + s in 0 -s0 and s2 = s in 2 -ω s in 0 -s0 , where s0 is a solution of ψ 0 (s 0 ) = D + a 0 and x0 = D D+a 0 s in 0 -s0 , x1 = 0, x2 = 0 SS4 s0 = M0(D + a0, s2) and s1 = M1(D + a1, s2), where s2 is a solution of Ψ(s2, D) = (1 -ω)s in 0 + s in 1 + s in 2 and x0 = D D+a 0 s in 0 -s0 , x1 = D D+a 1 s in 0 -s0 + s in 1 -s1 , x2 = 0 SS5 s0 = ϕ0(D), s1 = s in 1 + s in 0 -s0, s2 = M2(D + a2) and x0 = D D+a 0 s in 0 -s0 , x1 = 0, x2 = D D+a 2 s in 2 -s2 -ω s in 0 -s0 SS6 s0 = ϕ0(D), s1 = ϕ1(D), s2 = M2(D + a2) and x0 = D D+a 0 s in 0 -s0 , x1 = D D+a 1 s in 0 -s0 + s in 1 -s1 , x2 = D D+a 2 (1 -ω)(s in 0 -s0) + s in 1 -s1 + s in 2 -s2 SS7 s0 = s in 0 and s2 = s in 2 + s in 1 -s1, where s1 is a solution of ψ1(s1) = D + a1 and x0 = 0, x1 = D D+a 1 s in 1 -s1 , x2 = 0 SS8 s0 = s in 0 , s1 = ϕ1(D), s2 = M2(D + a2) and x0 = 0, x1 = D D+a 1 s in 1 -s1 , x2 = D D+a 2 s in 1 -s1 + s in 2 -s2
3. Mathematical analysis. In this section, the necessary and sufficient conditions of existence and stability of all steady states are given in Table 3. Any reference to steady state stability should be considered as local exponential stability, that is to say, the real parts of the eigenvalues of the Jacobian matrix are negative. We need the following notations:

E = ∂µ0 ∂s0 (s 0 , s 2 ), F = ∂µ0 ∂s2 (s 0 , s 2 ), G = ∂µ1 ∂s1 (s 1 , s 2 ), H = -∂µ1 ∂s2 (s 1 , s 2 ), I = µ 2 (s 2 ), J = µ 0 (s 0 , s 2 ), K = µ 1 (s 1 , s 2 ), L = µ 2 (s 2 ). (3.1)
We have used the opposite sign of the partial derivative H = -∂µ 1 /∂s 2 , such that all constants involved in the computation become positive. Using the Liénard-Chipart stability criterion, the asymptotic stability of SS6 requires definitions and notations that are given in Table 2. Now, we can state our main result.
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c1 = 3D + (E + F w)x 0 + (G + H)x 1 + Ix 2 c2 = 3D 2 + (2D + J)(E + ωF )x0 + (2D + K)(G + H)x1 + EIx0x2 + GIx1x2 +(2D + L)Ix2 + (E(G + H) -(1 -ω)F G)x0x1 c3 = D 3 + D(D + 2J)(E + ωF )x0 + D(D + 2K)(G + H)x1 + D(D + 2L)Ix2 +EI(D + J + L)x0x2 + GI(D + K + L)x1x2 + EGIx0x1x2 + (E(G + H) -(1 -ω)F G)(D + J + K)x0x1 c4 = D 2 (E + ωF )Jx0 + D 2 (G + H)Kx1 + D 2 ILx2 + EI(DJ + DL + JL)x0x2 +GI (DK + DL + KL) x1x2 + EGI(J + K + L)x0x1x2 + (E(G + H) -(1 -ω)F G)(DJ + DK + JK)x0x1 c5 = DEIJLx0x2 + DGIKLx1x2 + D(E(G + H) -(1 -ω)F G)JKx0x1 +EGI (JK + JL + KL) x0x1x2 c6 = EGIJKLx0x1x2 r0 = c1c2 -c3, r1 = c1c4 -c5, r2 = c3r0 -c1r1, r3 = c5r0 -c 2 1 c6 r4 = r1r2 -r0r3, r5 = r3r4 -c1c6r 2 2
Theorem 3.1. Assume that Hypotheses (H1) to (H8) hold. The necessary and sufficient conditions of existence and local stability of the steady states are given in Table 3.

Remark 3.2. Let's recall that in [START_REF] Nouaoura | Mathematical analysis of a three-tiered food-web in the chemostat[END_REF] all steady states, except SS4, are unique.

• If ω ≥ 1, when it exists, SS4 is unique. Its stability condition ∂Ψ ∂s2 (s 2 , D) > 0 is always satisfied. • The comparison with Table 4 of [START_REF] Nouaoura | Mathematical analysis of a three-tiered food-web in the chemostat[END_REF] shows that, with the exception of SS6, the stability conditions of the steady states are the same as in the maintenance-free case. Indeed, by replacing in the stability conditions of SSj, j = 1, . . . , 8, j = 6, in Table 3 the maintenance terms a i by zero, for i = 0, 1, 2, we find the conditions given in Table 4 of [START_REF] Nouaoura | Mathematical analysis of a three-tiered food-web in the chemostat[END_REF]. Therefore, the maintenance does not destabilize these steady states. Only their regions of existence and stability, with respect to the operating parameters, can be slightly modified when maintenance is included in the model.

From Table 3, we can deduce the following result.

Proposition 3.3.

• If SS2 or SS3 or SS7 exists then, SS1 is unstable.

• If SS6 exists then, SS2, SS4, SS5 and SS8 are unstable, when they exist.

• If SS5 exists then, SS2, SS3 and SS8 are unstable, when they exist.

• If SS8 exists then, SS7 is unstable, when it exists.

4. Applications to a three-tiered microbial 'food web'. In this section, we consider the model of a chlorophenol-mineralising three-tiered microbial 'food web' in a chemostat as application of our mathematical analysis, in order to compare our findings to the numerical results in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF]. Let S ch , S ph and S H2 be the chlorophenol,
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Table 3

Existence and stability conditions of steady states of (1.1). The functions c 3 , c 5 , r 4 and r 5 are defined in Table 2. All other functions are given in Table 8.

Existence conditions

Stability conditions

SS1 Always exists µ0 s in 0 , s in 2 < D + a0, µ1 s in 1 , s in 2 < D + a1, µ2 s in 2 < D + a2 SS2 µ2 s in 2 > D + a2 s in 0 < ϕ0(D), s in 1 < ϕ1(D) SS3 µ0 s in 0 , s in 2 > D + a0 µ1 s in 0 + s in 1 -s0, s in 2 -ω s in 0 -s0 <D + a1, s in 2 -ωs in 0 < M2(D + a2) -ωϕ0(D) with s0 solution of ψ0(s0) = D + a0 SS4 (1 -ω)s in 0 + s in 1 + s in 2 ≥ φ1(D), s in 0 > M0(D + a0, s2), s in 0 + s in 1 > M0(D + a0, s2) +M1(D + a1, s2) with s2 solution of equation Ψ(s2, D) = (1 -ω)s in 0 + s in 1 + s in 2 (1 -ω)s in 0 + s in 1 + s in 2 < φ2(D), φ3(D) > 0, ∂Ψ ∂s 2 (s2, D) > 0 SS5 s in 0 > ϕ0(D), s in 2 -ωs in 0 > M2(D + a2) -ωϕ0(D) s in 0 + s in 1 < ϕ0(D) + ϕ1(D) SS6 (1 -ω)s in 0 + s in 1 + s in 2 > φ2(D), s in 0 > ϕ0(D), s in 0 + s in 1 > ϕ0(D) + ϕ1(D) c3 > 0, c5 > 0, r4 > 0, r5 > 0 SS7 µ1 s in 1 , s in 2 > D + a1 s in 1 + s in 2 < M3 s in 0 , D + a0 +M1 D+a1, M3 s in 0 , D+a0 , s in 1 + s in 2 < M2(D + a2) + ϕ1(D) SS8 s in 1 > ϕ1(D), s in 1 + s in 2 > ϕ1(D) + M2(D + a2) s in 0 < ϕ0(D)
phenol and hydrogen substrates concentrations. The specific growth rates take the form:

f 0 (S ch , S H2 ) = k m,ch S ch K S,ch +S ch S H 2 K S,H 2 ,c +SH 2 , f 1 (S ph , S H2 ) = k m,ph S ph K S,ph +S ph 1 1+SH 2 /K I,H 2 , f 2 (S H2 ) = km,H 2 SH 2 K S,H 2 +SH 2 . (4.1)
Let X ch , X ph and X H2 be the chlorophenol, phenol and hydrogen degrader concentrations; S in ch , S in ph and S in H2 be the input concentrations; k dec,ch , k dec,ph and k dec,H2 be the decay rates. This model in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF] is described by the following system of differential equations values, used in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF], are provided in Table 15. Following [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF], the rescaling of the variables (G.1) and (G.2) can reduce (4.2) to the form (1.1), that is, the yields coefficients in (4.2) are normalized to one, except one of them which is equal to ω 0.53. Under this rescaling (G.1) and (G.2), the growth functions (4.1) take the form (G.3) keeping their form of a double Monod, a Monod with product inhibition, and a Monod kinetics, respectively, so that Hypotheses (H1) to (H8) are satisfied. Therefore, with ω < 1, Theorem 3.1 apply and give rigorous proofs for the results of [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF], on existence and stability of steady states, which, for the most part, have only been obtained numerically. See Appendix G for the details.

                     Ẋch = (Y ch f 0 (S ch , S H2 ) -D -k dec,ch )X ch Ẋph = (Y ph f 1 (S ph , S H2 ) -D -k dec,ph )X ph ẊH2 = (Y H2 f 2 (S H2 ) -D -k dec,H2 )X H2 Ṡch = D S in ch -S ch -f 0 (S ch , S H2 ) X ch Ṡph = D S in ph -S ph + 224 208 (1 -Y ch ) f 0 (S ch , S H2 ) X ch -f 1 (S ph , S H2 ) X ph ṠH2 = D S in H2 -S H2 -16 208 f 0 (S ch , S H2 ) X ch + 32 224 (1-Y ph )f 1 (S ph , S H2 ) X ph -f 2 (S H2 )X H2 ,
In the following, we consider S in ph = 0 and S in H2 = 2.67 × 10 -5 , corresponding to Fig. 3(a) in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF] and we fix S in ch = 0.1. Then, we determine the bifurcation diagram, where the operating parameter D is the bifurcation parameter. Our aim is to compare our results to those of [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF] and to see if there are interesting phenomena that were not detected in the operating diagram depicted in Fig. 3(a) of [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF] 

Definition

Value δ 1 is the largest root of equation r 5 = 0 0.010412 

δ 2 is the root of φ 2 (D) -S in H2 -(1 -ω)Y S in ch = 0 0.068641 δ 3 is the root of φ 1 (D) -S in H2 -(1 -ω)Y S in ch = 0 0.068814 δ 4 is the root of S in H2 + ω ϕ 0 (D) -Y S in ch -M 2 (D + a 2 ) = 0 0.267251 δ 5 is the root of ϕ 0 (D) -Y S in ch = 0 0.267636 δ 6 = µ 0 Y S in ch , S in H2 -a 0 0.327130 δ 7 = µ 2 S in H2 -a 2 1.064526
Interval SS1 SS2 SS3 SS4 1 SS4 2 SS5 SS6 0 < D < δ 1 U U S U U U δ 1 < D < δ 2 U U S U U S δ 2 < D < δ 3 U U S U S δ 3 < D < δ 4 U U S δ 4 < D < δ 5 U U U S δ 5 < D < δ 6 U S U δ 6 < D < δ 7 U S δ 7 < D S
This manuscript is for review purposes only. c-d) showing the disappearance of the limit cycle at δ * , the Hopf bifurcation at δ 1 , the transcritical bifurcations at δ 2 , δ 4 and δ 5 and the saddle-node bifurcation at δ 3 .

In Figure 4.1, SS1 and SS2 cannot be distinguished since they have both a zero X chcomponent. As SS2 is stable and SS1 is unstable for D < δ 7 , the X ch = 0 axis is plotted in blue as the color of SS2 in Table 7. Remark 4.2. Not all of the behaviors described in Table 5 were reported in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF].

0
X ch SS1 SS2 SS3 SS4 1 SS4 2 SS6 δ * δ1 e e u D (c) X ch SS1 SS2 SS3 SS4 1 SS4 2 SS6 T δ2 δ3 D (d) X ch SS1 SS2 SS3 SS5 δ4 
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SS1 SS2 SS3 SS4 1 SS4 2 SS5 SS6 Red Blue Purple Dark Green Magenta Green Cyan
For S in ch = 0.1, the operating diagram of Fig. 3(a) in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF] predicts only three possible behaviors: the stability of SS2, the stability of SS3 and the bistability between SS3 and SS6. Note that the destabilization of SS6 via a Hopf bifurcation with emergence of a stable limit cycle has not been observed in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF]. Moreover, the region of existence and stability of SS5, which was depicted in Fig. 3(b) of [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF] in the case where S in H2 = 2.67×10 -2 , was not reported in Fig. 3(a) of [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF]. Our results show that this region also exists when S in H2 = 2.67 × 10 -5 , and explain why it was not detected by the numerical analysis given in Fig. 3(a) of [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF]: SS5 occurs in a very small region since, for S in ch = 0.1 it corresponds to δ 4 < D < δ 5 , where δ 4 0.267251 and δ 5 0.267636, with δ 5 -δ 4 of order 10 -4 . However, while from a mathematical point of view the diagram shown in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF] is incorrectly labeled, in biological terms, such a small region of SS5 would likely not be attained.

To compare our results to those achieved in [START_REF] Nouaoura | Mathematical analysis of a three-tiered food-web in the chemostat[END_REF], we determine the bifurcation 10 and12, respectively. We illustrate, in particular, the interesting three cases where the steady states SS1, SS2, SS4 1 and SS4 2 are unstable:

diagram
• For S in ch ∈ (σ 5 , σ * ), the numerical simulations done for various positive initial conditions permit to conjecture the global asymptotic stability of SS3 (see • For S in ch ∈ (σ * , σ 6 ), the system exhibits a bistability with two basins of attraction: one toward the stable limit cycle and the second toward SS3. • For S in ch > σ 6 , the system exhibits a bistability between SS6 and SS3. Numerical simulations have shown that the stable limit cycle disappears at the critical value σ * ∈ (σ 5 , σ 6 ) as S in ch decreases. Similarly to the numerical study of the bifurcation diagram with respect to the parameter D in [START_REF] Sobieszek | Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow[END_REF] in the case without maintenance and s in 1 = s in 2 = 0, we conjecture that in our case also the stable limit cycle disappears through a saddle-node bifurcation with another unstable limit cycle when S in ch decreases.

Conclusion.

In this study, we discussed the dynamics of three interacting microbial species describing a chlorophenol-mineralising three-tiered 'food web' in the chemostat (4.2), introduced by Wade et al. [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF] following previous work on a

This manuscript is for review purposes only. two-tiered model [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial 'food chain' ?[END_REF]. The existence and stability of the steady states of model (4.2) have been analyzed as a function of the operating parameters (input substrate concentrations and dilution rate), using numerical tools and specific values of the biological parameters.

In this paper, we gave a complete analysis of the dynamics of the model (1.1) which generalizes (4.2) by allowing a larger class of growth functions. The existence of the steady states was analytically characterized in [START_REF] Nouaoura | Mathematical analysis of a three-tiered food-web in the chemostat[END_REF] where it was shown that model (1.1) can have up to eight types of steady states: the washout steady state
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denoted by SS1, six types of boundary steady states where one or two degrader populations are extinct denoted by SS2, SS3, SS4, SS5, SS7 and SS8, and a positive steady state, denoted by SS6, where all microbial populations coexist. When they exist, all steady states are unique, except the steady state SS4 where chlorophenol and phenol degraders are maintained and the hydrogen degrader is eliminated.

Here, we focus on the stability of steady states. We have managed to characterize the stability in this six-dimensional system, although it is generally accepted that the Routh-Hurwitz theorem is intractable beyond five dimensions. For this, we have used the Liénard-Chipart stability criterion to simplify the mathematical analysis by reducing considerably the number of the Routh-Hurwitz conditions to check. For SS1, SS2, SS3 and SS7, the stability conditions are determined explicitly. For SS4, SS5

and SS8, we explicitly characterize the stability conditions using the Liénard-Chipart stability criterion. For SS6, the stability is given with respect to the signs of the Liénard-Chipart coefficients by using numerical experimentation (see Appendix D) to plot these coefficients, whose signs cannot be determined analytically. As shown in Appendix G, our presentation of the existence and stability issue fully clarifies the numerical study made in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF] on the three-tiered 'food web' model (4.2).

Our work extends all results on the stability of the existing literature [START_REF] Hajji | Mathematical modelling and analysis for a three-tiered microbial food web in a chemostat[END_REF][START_REF] Nouaoura | Mathematical analysis of a three-tiered food-web in the chemostat[END_REF][START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF][START_REF] Sobieszek | Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow[END_REF],

which were obtained only in the case without maintenance, where the six-dimensional system (1.1) can be reduced to a three-dimensional one. We show that for SS4, which can exist in two forms, at most one steady state can be stable, a fact that was already noticed (when maintenance is not included in the model) in the particular case without phenol and hydrogen input concentrations, studied in [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF] and in the general case, where these input concentrations are added, studied in [START_REF] Nouaoura | Mathematical analysis of a three-tiered food-web in the chemostat[END_REF].

We highlighted several possible asymptotic behaviors in this six-dimensional system, including the bistability between the positive steady state and a boundary steady state, or the bistability between a positive limit cycle and a boundary steady state, so that the long term behavior depends on the initial condition. We proved that the positive steady state of coexistence of all species can be unstable and we give numerical evidence for the supercritical Hopf bifurcation, in the case including chlorophenol and hydrogen input concentrations. The possibility of the Hopf bifurcation of the positive steady state was previously observed in [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF] in the case without phenol and hydrogen input concentrations.

In order to gain more insight into the behavior of the system, we give a bifurcation diagram with the dilution rate as the bifurcating parameter (see Figure 4.1) showing that one of the operating diagrams obtained numerically in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF] has omitted important transition phenomena between steady states. If the dilution rate is too low, only the chlorophenol degrader is maintained (SS3 is the only stable steady state). Increasing slightly the dilution rate D, the system exhibits a bistability behavior where either only the chlorophenol degrader is maintained (SS3 is stable) or the coexistence of three microbial species may occur around periodic oscillations (SS6 is unstable and a stable limit cycle exists). Increasing a little more D, the system exhibits a bistability behavior where either only the chlorophenol degrader is maintained or the coexistence of three microbial species occurs at the positive steady state (SS3 and SS6 are both stable). Increasing further D, the system exhibits a bistability between only the chlorophenol degrader and both the chlorophenol and phenol degraders (SS3 and SS4 2 are both stable). Rising a little more the value of D, only the chlorophenol degrader is maintained. Then, only the chlorophenol and hydrogen degraders are maintained (SS5 is the only stable steady state). Adding a little more, both the chlorophenol and phenol degraders are eliminated from the reactor and only the hydrogen degrader is
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maintained, since S in H2 > 0 (SS2 is the only stable steady state). For higher dilution rate, there is washout of all three microbial populations (SS1 is the only stable steady state).

Our results show that with the exception of SS6, the maintenance does not destabilize the steady states. To make our theoretical results useful in practice, it would be necessary to have the description of the operating diagrams that give the regions of existence and stability of the steady states, in the space of the operating parameters. In a future work, we will use our results to determine analytically the operating diagrams in the cases with and without maintenance. These operating diagrams will also allow us to answer the delicate question of whether or not SS6 can be destabilized by including maintenance terms. Even without maintenance, this steady state can be stable or unstable depending on the values of the operating parameters. Does the introduction of maintenance modify the boundary between the region of stability and the region of instability, or does it make more complex phenomena appear?

Appendix A. Auxiliary functions. For the description of the steady states given in Table 1, together with the statement of their conditions of existence and stability, we need to define some auxiliary functions that are listed in Table 8. Using Hypotheses (H1) to (H7), the existence and definition domains of these functions are all relatively straightforward and can be found as in [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF]. 

Definition s i = M i (y, s 2 ) i = 0, 1 Let s 2 ≥ 0. s i = M i (y, s 2 ) is the unique solution of µ i (s i , s 2 ) = y, for all 0 ≤ y < µ i (+∞, s 2 ) s 2 = M 2 (y) s 2 = M 2 (y)
is the unique solution of µ 2 (s 2 ) = y, for all 0 ≤ y < µ 2 (+∞)

s 2 = M 3 (s 0 , z) Let s 0 ≥ 0. s 2 = M 3 (s 0 , z)
is the unique solution of µ 0 (s 0 , s 2 ) = z, for all 0 ≤ z < µ 0 (s 0 , +∞)

s i 2 = s i 2 (D) i = 0, 1 s i 2 = s i 2 (D) is the unique solution of µ i (+∞, s 2 ) = D + a i , for all D + a 0 < µ 0 (+∞, +∞), µ 1 (+∞, +∞) < D + a 1 < µ 1 (+∞, 0), resp. I 1 , I 2 I 1 = D ≥ 0 : s 0 2 < s 1 2 , I 2 = D ∈ I 1 : s 0 2 < M 2 (D + a 2 ) < s 1 2 Ψ(s 2 , D) Ψ (s 2 , D) = (1 -ω)M 0 (D + a 0 , s 2 ) + M 1 (D + a 1 , s 2 ) + s 2 , for all D ∈ I 1 and s 0 2 < s 2 < s 1 2 φ 1 (D) φ 1 (D) = inf s 0 2 <s2<s 1 2 Ψ(s 2 , D), for all D ∈ I 1 φ 2 (D) φ 2 (D) = Ψ (M 2 (D + a 2 ), D), for all D ∈ I 2 φ 3 (D) φ 3 (D) = ∂Ψ ∂s2 (M 2 (D + a 2 ), D), for all D ∈ I 2 J 0 , J 1 J 0 = max 0, s in 0 -s in 2 /ω , s in 0 , J 1 = 0, s in 1 ψ 0 (s 0 ) ψ 0 (s 0 ) = µ 0 s 0 , s in 2 -ω s in 0 -s 0 , for all s 0 ≥ max 0, s in 0 -s in 2 /ω ψ 1 (s 1 ) ψ 1 (s 1 ) = µ 1 s 1 , s in 2 + s in 1 -s 1 , for all s 1 ∈ 0, s in 1 + s in 2 ϕ i (D) i = 0, 1 ϕ i (D) = M i (D + a i , M 2 (D + a 2 )), resp., for all, D ∈ D ≥ 0 : s 0 2 < M 2 (D + a 2 ) , D ∈ D ≥ 0 : M 2 (D + a 2 ) < s 1 2
Appendix B. Liénard-Chipart stability criterion. Note that conditions in the stability criterion of Liénard and Chipart (see Gantmacher [START_REF] Gantmacher | Application of the theory of matrices[END_REF], Theorem 11) represent almost half that of the Routh-Hurwitz theorem which facilitates the study of asymptotic behavior of dynamic systems especially for dimensions beyond five. It is known that for a polynomial of degree four the Routh-Hurwitz conditions can be written as in the following Lemma, see, for instance, Theorem 11 [START_REF] Coppel | Stability and Asymptotic Behavior of Differential Equations[END_REF].
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Lemma B.1. Consider the fourth-order polynomial P (λ) with real coefficients given by:

P (λ) = c 0 λ 4 + c 1 λ 3 + c 2 λ 2 + c 3 λ + c 4 .
All of the roots of the polynomial P (λ) have negative real part if and only if c i > 0, for i = 1, 3, 4, and

r 1 = c 3 (c 1 c 2 -c 0 c 3 ) -c 2 1 c 4 > 0. (B.1)
The following Lemma gives the conditions of stability for a six-dimensional dynamic system.

Lemma B.2. Consider the six-order polynomial P (λ) with real coefficients given by:

P (λ) = c 0 λ 6 + c 1 λ 5 + c 2 λ 4 + c 3 λ 3 + c 4 λ 2 + c 5 λ + c 6 .
All of the roots of the polynomial P (λ) have negative real part if and only if

c i > 0, i = 1, 3, 5, 6, r 4 > 0 and r 5 > 0, (B.2)
where r 4 = r 1 r 2 -r 0 r 3 and r 5 = r 3 r 4 -c 1 c 6 r 2 2 , with

r 0 = c 1 c 2 -c 0 c 3 , r 1 = c 1 c 4 -c 0 c 5 , r 2 = c 3 r 0 -c 1 r 1 and r 3 = c 5 r 0 -c 2 1 c 6 . Proof.
From the Liénard-Chipart stability criterion, all of the roots of the polynomial P have negative real part if and only if

c i > 0, i = 1, 3, 5, 6, det(∆ 2 ) > 0, det(∆ 4 ) > 0 and det(∆ 6 ) > 0, (B.3)
where ∆ 2 , ∆ 4 and ∆ 6 are the Hurwitz matrices defined by:

∆ 2 = c 1 c 3 c 0 c 2 , ∆ 4 =     c 1 c 3 c 5 0 c 0 c 2 c 4 c 6 0 c 1 c 3 c 5 0 c 0 c 2 c 4     , ∆ 6 =         c 1 c 3 c 5 0 0 0 c 0 c 2 c 4 c 6 0 0 0 c 1 c 3 c 5 0 0 0 c 0 c 2 c 4 c 6 0 0 0 c 1 c 3 c 5 0 0 0 c 0 c 2 c 4 c 6         . Conditions (B.3) are equivalent to c i > 0, i = 1, 3, 5, 6, r 0 > 0, r 4 = r 1 r 2 -r 0 r 3 > 0, r 5 = r 3 r 4 -c 1 c 6 r 2 2 > 0. (B.4)
When all conditions (B.4) hold, the condition r 5 > 0 implies that r 3 > 0, that is,

c 5 r 0 > c 6 c 2
1 which implies that r 0 > 0. Hence, conditions (B.4) are equivalent to (B.2).

Appendix C. Proofs.

C.1. Proof of Theorem 3.1. The existence of the steady states is proven in [START_REF] Nouaoura | Mathematical analysis of a three-tiered food-web in the chemostat[END_REF]. The local stability of the steady states is determined by the eigenvalues of the Jacobian matrix of system (1.1) evaluated at the steady state. The Jacobian matrix of (1.1) corresponds to the 6 × 6 matrix:

J =         J-D-a0 0 0 Ex0 0 F x0 0 K-D-a1 0 0 Gx1 -Hx1 0 0 L-D-a2 0 0 Ix2 -J 0 0 -D-Ex0 0 -F x0 J -K 0 Ex0 -D-Gx1 F x0+Hx1 -ωJ K -L -ωEx0 Gx1 -D-ωF x0-Hx1-Ix2         ,
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where the functions E, F , G, H, I, J, K and L are defined by (3.1), and are evaluated at the steady state. The stability of the steady state is investigated by analyzing the real parts of the eigenvalues of J , which are the roots of the characteristic polynomial.

For SS1, the characteristic polynomial is

P 1 (λ) = (λ -λ 1 )(λ -λ 2 )(λ -λ 3 )(λ + D) 3 ,
where

λ 1 = µ 0 s in 0 , s in 2 -D-a 0 , λ 2 = µ 1 s in 1 , s in 2 -D-a 1 and λ 3 = µ 2 s in 2 -D-a 2 .
Therefore, SS1 is stable if and only if λ 1 < 0, λ 2 < 0 and λ 3 < 0, that is, the stability conditions of SS1 in Table 3 hold.

For SS2, the characteristic polynomial is

P 2 (λ) = (λ -λ 1 )(λ -λ 2 )(λ + D) 2 (λ 2 + c 1 λ + c 2 ),
where

c 1 = D + Ix 2 , c 2 = LIx 2 and λ 1 = µ 0 s in 0 , M 2 (D + a 2 ) -D -a 0 , λ 2 = µ 1 s in 1 , M 2 (D + a 2 ) -D -a 1 , (C.1)
Since c 1 > 0 and c 2 > 0, the real parts of the roots of the quadratic factor are negative. Therefore, SS2 is stable if and only if λ 1 < 0 and λ 2 < 0. Since M 0 and M 1 are increasing, these conditions are equivalent to the stability conditions of SS2 in Table 3.

For SS3, the characteristic polynomial is

P 3 (λ) = (λ -λ 1 )(λ -λ 2 )(λ + D) 2 (λ 2 + c 1 λ + c 2 ),
where

λ 1 = µ 1 s in 0 -s 0 + s in 1 , s in 2 -ω s in 0 -s 0 -D-a 1 , λ 2 = µ 2 s in 2 -ω s in 0 -s 0 -D-a 2 , c 1 = D + (E + ωF )x 0 and c 2 = J(E + ωF )x 0
, where s 0 is the solution in the interval J 0 of equation ψ 0 (s 0 ) = D + a 0 . Since c 1 > 0 and c 2 > 0, the real parts of the roots of the quadratic factor are negative. Therefore, SS3 is stable if and only if λ 1 < 0 and λ 2 < 0. The condition λ 1 < 0 is the first stability condition of SS3 in Table 3. Since M 2 is increasing, the condition λ 2 < 0 is equivalent to

s in 2 -ω s in 0 -s 0 < M 2 (D + a 2 ) ⇐⇒ s 0 < M 2 (D + a 2 ) -s in 2 /ω + s in 0 . (C.2)
As the function ψ 0 is increasing, (C.2) is equivalent to

ψ 0 (s 0 ) < ψ 0 M 2 (D + a 2 ) -s in 2 /ω + s in 0 . (C.3)
From the definition of the function ψ 0 together with the condition ψ 0 (s 0 ) = D + a 0 defining s 0 , we deduce that (C.3) is equivalent to

D + a 0 < µ 0 M 2 (D + a 2 ) -s in 2 /ω + s in 0 , M 2 (D + a 2 )
. Since M 0 is increasing, this condition is equivalent to the second stability condition of SS3 in Table 3.

For SS4, the characteristic polynomial is

P 4 (λ) = (λ -λ 1 )(λ + D) λ 4 + c 1 λ 3 + c 2 λ 2 + c 3 λ + c 4 ,
where λ 1 = µ 2 (s 2 ) -D -a 2 with s 2 is defined in Table 1 and the coefficients c i for i = 1, . . . , 4 are given by

c 1 =2D + (E + ωF )x 0 + (G + H)x 1 , c 2 =D 2 +(E + ωF )(D + J)x 0 +(G + H)(D + K)x 1 +(E(G + H)-(1-ω)F G)x 0 x 1 , c 3 =D(E + ωF )Jx 0 + D(G + H)Kx 1 + (E(G + H) -(1 -ω)F G)(J + K)x 0 x 1 , c 4 =(E(G + H) -(1 -ω)F G)JKx 0 x 1 .
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From Lemma B.1, all of the roots of the fourth order polynomial have negative real parts if and only if

c i > 0, for i = 1, 3, 4 and r 1 = c 1 c 2 c 3 -c 2 1 c 4 -c 2 3 > 0. (C.4)
We always have c 1 > 0. Moreover, c 3 > 0 and c 4 > 0 if and only if

E(G + H) -(1 -ω)F G > 0. (C.5)

Let us denote

A = G + H, B = E(G+H)-(1-ω)F G G+H and C = G+ωH G+H F.
Note that B > 0 if and only if condition (C.5) is satisfied. Then, we can write c i , for i = 1, . . . , 4 as follows:

c 1 = 2D + (B + C)x 0 + Ax 1 , c 2 = D 2 + (B + C)(D + J)x 0 + A(D + K)x 1 + ABx 0 x 1 , c 3 = D(B + C)Jx 0 + DAKx 1 + AB(J + K)x 0 x 1 , c 4 = ABJKx 0 x 1 .
We can write r 1 as follows:

r 1 =DJ (D + J)(B + C) 3 -B 3 J x 3 0 + D 2 A 3 Kx 3 1 + B 2 A 2 (B + C)(J + K)x 3 0 x 2 1 + B 2 A 3 (J + K)x 2 0 x 3 1 + BA D(2J + K)(B + C) 2 + CJ 2 (2B + C) x 3 0 x 1 + DBA 3 (J + 2K)x 0 x 3 1 + 3D 3 A 2 Kx 2 1 + D 2 J 3D(B + C) 2 + CJ(2B + C) x 2 0 + BA 2 D(J + K)(5B + 3C) + C J 2 + K 2 x 2 0 x 2 1 + DA C DC(2J + K) + CJ(J + 2K) + DB(9J + 5K) + 2BJ 2 + DB 2 (7J + 4K) x 2 0 x 1 + DA 2 [DB(4J + 7K) + CK(2J + K) + DC(J + 2K)]x 0 x 2 1 + 2D 4 J(B + C)x 0 + 2D 4 AKx 1 + D 2 A[D(J + K)(5B + 3C) + 2CJK]x 0 x 1 + D 2 + DBx 0 + DAx 1 + BAx 0 x 1 (BJx 0 -AKx 1 ) 2 .
Hence, conditions (C.4) are verified if and only if (C.5) is satisfied. Let us prove that condition (C.5) is equivalent to ∂Ψ ∂s2 (s 2 , D) > 0. Let s 2 > 0. Under (H4) and (H5),

we have

∂M0 ∂s2 (y, s 2 ) = -∂µ0 ∂s2 (M 0 (y, s 2 ), s 2 ) ∂µ0 ∂s0 (M 0 (y, s 2 ), s 2 ) -1
, for all y ∈ (0, µ 0 (+∞, s 2 )),

∂M1 ∂s2 (y, s 2 ) = -∂µ1 ∂s2 (M 1 (y, s 2 ), s 2 ) ∂µ1 ∂s1 (M 1 (y, s 2 ), s 2 ) -1
, for all y ∈ (0, µ 1 (+∞, s 2 )).

Using (3.1), we obtain

∂M0 ∂s2 (D + a 0 , s 2 ) = -F E and ∂M1 ∂s2 (D + a 1 , s 2 ) = H G .
Moreover, we have for all s 2 ∈ s 0 2 , s 1 2 and

D ∈ I 1 , ∂Ψ ∂s2 (s 2 , D) = (1 -ω) ∂M0 ∂s2 (D + a 0 , s 2 ) + ∂M1 ∂s2 (D + a 1 , s 2 ) + 1. (C.6) Using (C.6), it follows that ∂Ψ ∂s2 (s 2 , D) = -F E (1 -ω) + H G + 1 = E(G+H)-(1-ω)F G EG .
Since E and G are positive, condition (C.5) is equivalent to ∂Ψ ∂s2 (s 2 , D) > 0. Consequently, since µ 2 is increasing, it follows that, SS4 is stable if and only if

s 2 < M 2 (D + a 2 ) and ∂Ψ ∂s2 (s 2 , D) > 0, (C.7)
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which is equivalent to the stability condition in Table 3 because this first condition of (C.7) is equivalent the first and the second one of SS4 in Table 3 (similarly to the proof of Theorem 2 in [START_REF] Nouaoura | Mathematical analysis of a three-tiered food-web in the chemostat[END_REF]).

For SS5, the characteristic polynomial is

P 5 (λ) = (λ -λ 1 )(λ + D) λ 4 + c 1 λ 3 + c 2 λ 2 + c 3 λ + c 4 ,
where

λ 1 = µ 1 s in 0 + s in 1 -M 0 (D + a 0 , M 2 (D + a 2 )), M 2 (D + a 2 )
-D -a 1 and the coefficients c i are given by:

c 1 = 2D + (E + ωF )x 0 + Ix 2 , c 2 = D 2 + (E + ωF )(D + J)x 0 + I(D + L)x 2 + EIx 0 x 2 , c 3 = D(E + ωF )Jx 0 + DILx 2 + EI(J + L)x 0 x 2 and c 4 = EIJLx 0 x 2 .
From Lemma B.1, the roots of the fourth order polynomial are of negative real parts if and only if

c i > 0, for i = 1, 3, 4 and r 1 = c 1 c 2 c 3 -c 2 1 c 4 -c 2 3 > 0. (C.8)
We always have c i > 0 for i = 1, 3, 4. We can write r 1 as follows:

r 1 =DJ (D + J)(E + ωF ) 3 -E 3 J x 3 0 + D 2 I 3 Lx 3 2 + E 2 I 2 (E + ωF )(J + L)x 3 0 x 2 2 + DEI 3 (J + 2L)x 0 x 3 2 + E 2 I 3 (J + L)x 2 0 x 3 2 + EI D(2J + L)(E + ωF ) 2 + ωF J 2 (2E + ωF ) x 3 0 x 2 + 3D 3 I 2 Lx 2 2 + D 2 J 3D(E + ωF ) 2 + F ωJ(2E + ωF ) x 2 0 + EI 2 D(J + L)(5E + 3ωF ) + F ω J 2 + L 2 x 2 0 x 2 2 + DI F ω DF ω(2J + L) + F ωJ(J + 2L) + DE(9J + 5L) + 2EJ 2 + DE 2 (7J + 4L) x 2 0 x 2 + DI 2 [DE(4J + 7L) + F ωL(2J + L) + DF ω(J + 2L)] x 0 x 2 2 + 2D 4 J(E + ωF )x 0 + 2D 4 ILx 2 + D 2 I [D(J + L)(5E + 3ωF ) + 2F ωJL] x 0 x 2 + D 2 + DEx 0 + DIx 2 + EIx 0 x 2 (EJx 0 -ILx 2 ) 2 .
Thus, r 1 > 0. Consequently, the conditions (C.8) are satisfied. Therefore, SS5 is stable if and only if λ 1 < 0. Since M 1 is increasing, this condition is equivalent to the stability condition of SS5 in Table 3.

For SS6, the characteristic polynomial is given by:

P 6 (λ) = λ 6 + c 1 λ 5 + c 2 λ 4 + c 3 λ 3 + c 4 λ 2 + c 5 λ + c 6 ,
where c i , i = 1, . . . , 6 are defined in Table 2. From Lemma B.2, all of the roots of the sixth order polynomial have negative real parts if and only if c i > 0, i = 1, 3, 5, 6 and r j > 0, j = 4, 5, where c i and r j are listed in Table 2. Since c 1 and c 6 are positive, the proof is complete.

For SS7, the characteristic polynomial is

P 7 (λ) = (λ -λ 1 )(λ -λ 2 )(λ + D) 2 (λ 2 + c 1 λ + c 2 ),
where

λ 1 = µ 0 s in 0 , s in 1 -s 1 + s in 2 -D -a 0 , λ 2 = µ 2 s in 1 -s 1 + s in 2 -D -a 2 , c 1 = D + (G + H)x 1 and c 2 = K(G + H)x 1
where s 1 is the solution in the interval J 1 of equation ψ 1 (s 1 ) = D + a 1 . Since c 1 > 0 and c 2 > 0, the real parts of the roots of the quadratic factor are negative. Therefore, SS7 is stable if and only if λ 1 < 0 and λ 2 < 0. Since the functions M 2 and M 3 are increasing, the conditions λ 1 < 0 and λ 2 < 0 are equivalent to

s 1 > s in 1 + s in 2 -M 3 (s in 0 , D + a 0 ) and s 1 > s in 1 + s in 2 -M 2 (D + a 2 ). (C.9)
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Since the function ψ 1 is increasing, (C.9) is equivalent to

ψ 1 (s 1 ) > ψ 1 s in 1 + s in 2 -M 3 (s in 0 , D + a 0 ) , ψ 1 (s 1 ) > ψ 1 s in 1 + s in 2 -M 2 (D + a 2 ) .
From the definition of the function ψ 1 together with the condition ψ 1 (s 1 ) = D + a 1 which defines s 1 , the preceding conditions are equivalent to

µ 1 s in 1 + s in 2 -M 3 (s in 0 , D + a 0 ), M 3 (s in 0 , D + a 0 ) < D + a 1 , µ 1 s in 1 + s in 2 -M 2 (D + a 2 ), M 2 (D + a 2 ) < D + a 1 .
Since M 1 is increasing, these conditions are equivalent to the stability conditions of SS7 in Table 3.

For SS8, the characteristic polynomial is

P 8 (λ) = (λ -λ 1 )(λ + D) λ 4 + c 1 λ 3 + c 2 λ 2 + c 3 λ + c 4 ,
where λ 1 = µ 0 s in 0 , M 2 (D + a 2 ) -D -a 0 and the coefficients c i are given by:

c 1 = 2D + (G + H)x 1 + Ix 2 , c 2 = D 2 + (G + H)(D + K)x 1 + I(D + L)x 2 + GIx 1 x 2 , c 3 = D(G + H)Kx 1 + DILx 2 + GI(K + L)x 1 x 2 and c 4 = GIKLx 1 x 2 .
From Lemma B.1, the roots of the fourth order polynomial are of negative real parts if and only if

c i > 0, for i = 1, 3, 4 and r 1 = c 1 c 2 c 3 -c 2 1 c 4 -c 2 3 > 0. (C.10)
We always have c i > 0, for i = 1, 3, 4. We can write r 1 as follows:

r 1 =DK (D + K)(G + H) 3 -G 3 K x 3 1 + D 2 I 3 Lx 3 2 + G 2 I 2 (G + H)(K + L)x 3 1 x 2 2 + G 2 I 3 (K + L)x 2 1 x 3 2 + GI D(2K + L)(G + H) 2 + HK 2 (2G + H) x 3 1 x 2 + DGI 3 (K + 2L)x 1 x 3 2 + 3D 3 I 2 Lx 2 2 + D 2 K 3D(G + H) 2 + HK(2G + H) x 2 1 + GI 2 D(K + L)(5G + 3H) + H K 2 + L 2 x 2 1 x 2 2 + DI H DH(2K + L) + HK(K + 2L) + DG(9K + 5L) + 2GK 2 + DG 2 (7K + 4L) x 2 1 x 2 + DI 2 [DG(4K + 7L) + HL(2K + L) + DH(K + 2L)] x 1 x 2 2 + 2D 4 K(G + H)x 1 + 2D 4 ILx 2 + D 2 I [D(K + L)(5G + 3H) + 2HKL] x 1 x 2 + D 2 + DGx 1 + DIx 2 + GIx 1 x 2 (GKx 1 -ILx 2 ) 2 .
Thus, r 1 > 0. Consequently, the conditions (C.10) are satisfied. Finally, SS8 is stable if and only if λ 1 < 0, that is to say µ 0 s in 0 , M 2 (D + a 2 ) < D + a 0 . Since M 0 is increasing, this condition is equivalent to the stability condition of SS8 in Table 3. If SS6 exists then, the conditions

C.2. Proof of

(1 -ω)s in 0 + s in 1 + s in 2 > φ 2 (D), s in 0 > ϕ 0 (D), s in 0 + s in 1 > ϕ 0 (D) + ϕ 1 (D)
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hold. Therefore, the condition s in 0 < ϕ 0 (D) of stability of SS2 or SS8 is not satisfied, the condition (1 -ω)s in 0 + s in 1 + s in 2 < φ 2 (D) of stability of SS4 is not satisfied, and the condition s in 0 + s in 1 < ϕ 0 (D) + ϕ 1 (D) of stability of SS5 is not satisfied.

If SS5 exists then, its conditions of existence

s in 0 > ϕ 0 (D) and s in 2 -ωs in 0 > M 2 (D + a 2 ) -ωϕ 0 (D)
hold. Therefore, the condition s in 0 < ϕ 0 (D) of stability of SS2 or SS8 is not satisfied and the condition s in 2 -ωs in 0 < M 2 (D +a 2 )-ωϕ 0 (D) of stability of SS3 is not satisfied.

If SS8 exists then, its conditions of existence

s in 1 + s in 2 > ϕ 1 (D) + M 2 (D + a 2 )
holds. Therefore, the condition

s in 1 + s in 2 < ϕ 1 (D) + M 2 (D + a 2 ) of stability of SS7 is not satisfied. Appendix D. Proof of Proposition 4.1.
We assume that the biological parameter values in model (4.2) are provided in Table 15. We assume that S in ph = 0, S in H2 = 2.67 × 10 -5 as in Fig. 3(a) of [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF]. We assume that S in ch = 0.1. As said in Section 4, Theorem 3.1 applies to model (4.2). Using the change of variables (G.2)

and Table 3, SS7 and SS8 do not exist when S in ph = 0. Moreover, the necessary and sufficient existence and stability conditions of steady states of (4.2) are summarized in Table 9.

Table 9

Existence and local stability conditions of steady states of (4.2), when S in ph = 0. The functions µ i are given in (G.3) while c 3 , c 5 , r 4 and r 5 are defined in Table 2. All other functions are given in Table 8 and Table 16.

Existence conditions Stability conditions

SS1 Always exists µ0 Y S in ch , S in H 2 < D + a0, µ2 S in H 2 < D + a2 SS2 µ2 S in H 2 > D + a2 Y S in ch < ϕ0(D) SS3 µ0 Y S in ch , S in H 2 > D + a0 µ1 Y S in ch -s0, S in H 2 -ω Y S in ch -s0 < D+a1 S in H 2 -ωY S in ch < M2(D + a2) -ωϕ0(D) with s0 solution of ψ0(s0) = D + a0 SS4 (1 -ω)Y S in ch + S in H 2 ≥ φ1(D), Y S in ch > M0(D+a0, s2)+M1(D+a1, s2) with s2 solution of Ψ(s2, D) = (1 -ω)Y S in ch + S in H 2 (1 -ω)Y S in ch + S in H 2 < φ2(D), φ3(D) > 0 ∂Ψ ∂s 2 (s2, D) > 0 SS5 Y S in ch > ϕ0(D), S in H 2 -ωY S in ch > M2(D + a2) -ωϕ0(D) Y S in ch < ϕ0(D) + ϕ1(D) SS6 (1 -ω)Y S in ch + S in H 2 > φ2(D), Y S in ch > ϕ0(D) + ϕ1(D) c3 > 0, c5 > 0, r4 > 0, r5 > 0
SS1 always exists and it is stable if and only if

D > µ 0 Y S in ch , S in H2 -a 0 := δ 6 and D > µ 2 S in H2 -a 2 := δ 7 .
Thus, SS1 is stable if and only if D > max(δ 6 , δ 7 ) = δ 7 (see Table 4 for all critical parameter values δ i , i = 1, . . . , 7). From Table 9, SS2 exists if and only if D < δ 7 .

From the eigenvalues λ 1 and λ 2 defined by (C.1), we deduce that SS2 is stable if and only if

F 1 (D) := µ 0 Y S in ch , M 2 (D + a 2 ) -D -a 0 < 0 ⇐⇒ δ 5 < D < δ 7
where δ 5 is the solution of equation

F 1 (D) = 0 (see Figure D.

1). SS3 exists if and

This manuscript is for review purposes only. only if D < δ 6 and it is stable if and only if denoted by SS4 1 and SS4 2 as ω 0.53 < 1. Their first existence condition in Table 9 holds if and only if

F 2 (D) := µ 1 S in ch Y -s 0 , S in H2 -ω S in ch Y -s 0 -D -a 1 < 0, F 3 (D) := S in H2 + ω ϕ 0 (D) -Y S in ch -M 2 (D + a 2 ) < 0, that is, D < δ 4 ,
F 4 (D) := φ 1 (D) -S in H2 -(1 -ω)Y S in ch ≤ 0 ⇐⇒ D ≤ δ 3
where δ 3 is the solution of equation 

M 0 D + a 0 , s * i 2 + M 1 D + a 1 , s * i 2 , i = 1, 2, respectively.
Remark 3.2 and Table 9, SS4 1 is unstable for all 0 < D < δ 3 while SS4 2 is stable if

This manuscript is for review purposes only. To give a numerical evidence of the Hopf bifurcation occurring for D = δ 1 , we determine numerically the eigenvalues of the Jacobian matrix of system (4.2) at SS6 and we plot them with respect to D. where the real part α 3,4 remains negative and δ 0.068504. Then, they become real, negative and distinct for all D ∈ (δ , δ 2 ). Similarly, Figure D.7(d) shows that the two last eigenvalues λ 5 (D) and λ 6 (D) form a complex-conjugate pair denoted by

SS5 exists if and only if

F 1 (D) > 0 and F 3 (D) > 0, that is, δ 4 < D < δ 5 . SS5 is stable if and only if F 6 (D) := ϕ 0 (D) + ϕ 1 (D) -Y S in ch > 0,
λ 5,6 (D) = α 5,6 (D) ± iβ 5,6 (D), for all D ∈ [0, δ ),
where the real part α 5,6 is positive for all D ∈ [0, δ 1 ) and negative for all D ∈ (δ 1 , δ ). Then, for all D ∈ (δ , δ 2 ), they become real, negative and distinct. At the particular value D = δ 1 , the pair λ 5,6 (D) is purely imaginary such that α 5,6 (δ 1 ) = 0, with β 5,6 (δ 1 ) = 0. Moreover, one has Appendix E. Bifurcation diagram with respect to S in ch . In the following, we consider S in ph = 0 and S in H2 = 2.67 × 10 -5 , corresponding to Fig. 3(a) in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF] and we fix D = 0.01. Then, we determine the bifurcation diagram, where the input concentration S in ch is the bifurcation parameter. This choice for the operating parameters is identical to that in [START_REF] Nouaoura | Mathematical analysis of a three-tiered food-web in the chemostat[END_REF] excepted that we have added the microbial decay terms, as in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF]. Our aim is to compare our results to those of [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF] and to see if there are interesting phenomena that were not detected in the operating diagram depicted in Fig. 3(a) of [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF], see Remark E.2. Our aim is also to see the effects of mortality on the behavior of the process and to compare our bifurcation diagram to the one depicted in [START_REF] Nouaoura | Mathematical analysis of a three-tiered food-web in the chemostat[END_REF] 2 while all other functions are given in Table 8. Note that σ 1 < σ 3 < σ 4 < σ 2 < σ 5 < σ 6 , compare with Table 5 in [START_REF] Nouaoura | Mathematical analysis of a three-tiered food-web in the chemostat[END_REF].

Definition

Value 10.

σ 1 = M 0 D + a 0 , S in H2 /Y 0.003173 σ 2 = (φ 1 (D) -S in
Interval SS1 SS2 SS3 SS4 1 SS4 2 SS5 SS6 0 < S in ch < σ 1 U S σ 1 < S in ch < σ 3 U S U σ 3 < S in ch < σ 4 U U U S σ 4 < S in ch < σ 2 U U S σ 2 < S in ch < σ 5 U U S U U σ 5 < S in ch < σ 6 U U S U U U σ 6 < S in ch U U S U U S Remark E.2.
As explained in Remark 4.2, the operating diagram of Fig. 3(a) in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF] for D = 0.01 does not accurately describe the transition from the region labeled SS2 (corresponding to the stability of SS2) to the SS3 region (corresponding to the stability of SS3). Our results show that this transition is via a SS5 region, which is very thin, since it corresponds to σ 3 < S in ch < σ 4 , where σ 3 0.013643 and σ 4 0.013985.
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Table 12

Bifurcation types corresponding to the critical values of σ i , i = 1, . . . , 6, defined in Table 10. There exists also a critical value σ * 0.099295 ∈ (σ 5 , σ 6 ) corresponding to the value of S in ch where the stable limit cycle disappears when S in ch is decreasing.

Bifurcation types σ 1 Transcritical bifurcation of SS1 and SS3 σ 2 Saddle-node bifurcation of SS4 1 and SS4 2 σ 3 Transcritical bifurcation of SS2 and SS5 σ 4 Transcritical bifurcation of SS3 and SS5 σ 5 Transcritical bifurcation of SS4 1 and SS6 σ 6 Supercritical Hopf bifurcation σ * Disappearance of the stable limit cycle This region was missing in Fig. 3(a) in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF], since σ 4 -σ 3 is of order 10 -4 . Indeed, the limitations of the operating diagram in Fig. 3(a) in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF] are due to the numerical resolution: the stability of SS5 occurs in a very small region and may not be detected if the step size was for example an order of magnitude greater than σ 4 -σ 3 . SS1 and SS2 cannot be distinguished since they have both a zero X ch -component. As SS2 is stable and SS1 is unstable for S in ch < σ 3 , the X ch = 0 axis is plotted in blue as the color of SS2 in Table 7. In Figure E.2(b), SS1 and SS2 are distinguished but it is not the case for SS1 and SS3, since they have both a zero X H2 -component. As SS3 is stable and SS1 is unstable for S in ch > σ 4 , the X H2 = 0 axis is plotted in purple as the color of SS3 in Table 7. 

0
(a) X ch SS1 SS2 SS3 SS4 1 SS6 SS4 2 σ1 σ3¡ ¡ ! σ4 e e u σ2σ5 σ * σ6 S in ch (b) X ch SS1SS2 SS3 SS5 σ1 σ3 σ4 S in ch Fig. E.1. (a) Bifurcation diagram of X ch versus S in ch ∈ [0, 0.11] in model (4.2)
showing the appearance and disappearance of stable limit cycles. (b) Magnification on the transcritical bifurcations for S in ch ∈ [0, 0.018].

Remark E.3. As explained in Remark 3.2, with the exception of SS6, the maintenance does not destabilize the steady states. Only their regions of existence and stability, with respect to the operating parameters, can be modified. For SS6, it is more difficult to answer the question of whether or not it can be destabilized by including maintenance terms. The bifurcations diagrams depicted in Figures E. and S in ch ≥ 0. The comparison of the results obtained in Table 11 with those given in Table 6 of [START_REF] Nouaoura | Mathematical analysis of a three-tiered food-web in the chemostat[END_REF] shows only minor changes in the bifurcation values σ i , i = 1, . . . , 6.

(a) X ch SS4 2 SS4 1 SS6 SS1 SS2 SS3 σ2 σ5 S in ch (b) XH 2 SS6 SS1SS2 SS3 SS4 1 SS4 2 σ * σ6 S in ch
Therefore, even for SS6, the maintenance does not destabilize the system: only the regions of stability, with respect to the operating parameters, are slightly modified.

Note that the change of the bifurcation values σ i is predictable since their formulas in Table 10 involve the added decay terms. However, the saddle-node bifurcation at σ 2 arises after and not before the transcritical bifurcations at σ 3 and σ 4 as in [START_REF] Nouaoura | Mathematical analysis of a three-tiered food-web in the chemostat[END_REF].

Appendix F. Proof of Proposition E.1. As said in Section 4, Theorem 3.1 applies to model (4.2). From Theorem 3.1 and the change of variables (G.2), SS7 and SS8 do not exist since S in ph = 0. The necessary and sufficient existence and stability conditions of all other steady states are summarized in Table 9. Since the second stability condition of SS1 in Table 9 does not hold

µ 2 S in H2 1.0845 > D + a 2 = 0.03, (F.1)
SS1 always exists and is unstable. Since the existence condition of SS2 in Table 9 holds (see inequality (F.1)), SS2 exists and is stable if and only if

S in ch < ϕ 0 (D)/Y =: σ 3 .

SS3 exists if and only if

S in ch > M 0 D + a 0 , S in H2 /Y =: σ 1 .
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Let F S in ch be the function defined by

F S in ch = µ 1 S in ch Y -s 0 , S in H2 -ω S in ch Y -s 0 . (F.2)
The first stability condition of SS3 in Table 9 holds for all S in ch > σ 1 , that is, F S in ch < D + a 1 since the maximum of F is smaller than 0.0013 while D + a 1 = 0.03 (see Figure F.1). From the second stability condition in Table 9, SS3 is stable if and only if From Theorem 3.1, the system can have at most two steady states of the form SS4 denoted by SS4 1 and SS4 2 as ω 0.53 < 1. Their first existence condition in Table 9 holds if and only if

S in ch > S in H2 -M 2 (D + a 2 ) + ωϕ 0 (D) /(ωY ) =: σ 4 .
S in ch ≥ φ 1 (D) -S in H2 /((1 -ω)Y ) =: σ 2 .
Their second existence condition holds, for all S in ch ∈ 

M 0 D + a 0 , s * i 2 + M 1 D + a 1 , s * i
2 , for i = 1, 2, which correspond to SS4 1 and SS4 2 , respectively.

SS5 exists if and only if σ

3 := ϕ 0 (D)/Y < S in ch < σ 4 . When it exists, SS5 is stable since S in ch < σ 4 0.013985 < (ϕ 0 (D) + ϕ 1 (D))/Y 0.02304.

SS6 exists if and only if

S in ch > φ2(D)-S in H 2 (1-ω)Y =: σ 5 0.033292, S in ch > ϕ0(D)+ϕ1(D) Y 0.02304.
This manuscript is for review purposes only. Hence, SS6 exists if and only if S in ch > σ 5 . To determine the stability of SS6, the functions c 3 , c 5 , r 4 and r 5 are plotted with respect to S in ch > σ 5 . Figure F.3 shows that c 3 (S in ch ), c 5 (S in ch ), r 4 (S in ch ) and r 5 (S in ch ) are all positive if and only if S in ch > σ 6 where σ 6 0.1025 is the largest root of equation r 5 S in ch = 0. To give a numerical evidence of the Hopf bifurcation occurring for S in ch = σ 6 , we determine numerically the eigenvalues of the Jacobian matrix of system (4.2) at SS6 and we plot them with respect to S in ch . is completely different from Figure 8 in [START_REF] Nouaoura | Mathematical analysis of a three-tiered food-web in the chemostat[END_REF], since the conditions of stability of SS6 require to consider the signs of the Liénard-Chipart coefficients c 3 , c 5 , r 4 and r 5 .

Appendix G. A chlorophenol-mineralising three-tiered microbial 'food web'. Following [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF], model (4.2) can be written in the form of model (1.1), using the following change of variables:

x 0 = Y Y0 X ch , x 1 = Y4 Y1 X ph , x 2 = 1 Y2 X H2 , s 0 = Y S ch , s 1 = Y 4 S ph , s 2 = S H2 , (G.1)
where Y = Y 3 Y 4 . The input concentrations are given by:

s in 0 = Y S in ch , s in 1 = Y 4 S in ph , s in 2 = S in H2 , (G.2)
the death rates are a 0 = k dec,ch , a 1 = k dec,ph , a 2 = k dec,H2 , and the yield coefficients are

Y 0 = Y ch , Y 1 = Y ph , Y 2 = Y H2 , Y 3 = 224/208(1 -Y 0 ), Y 4 = 32/224(1 -Y 1 ) with ω = 16 208Y = 1 2(1-Y ch )(1-Y ph )
. The specific growth functions (4.1) become the following functions satisfying Hypotheses (H1) to (H8):

µ 0 (s 0 , s 2 ) = m0s0 K0+s0 s2 L0+s2 , µ 1 (s 1 , s 2 ) = m1s1 K1+s1 1 1+s2/K I , µ 2 (s 2 ) = m2s2 K2+s2 , (G.3)
where

m 0 = Y 0 k m,ch , K 0 = Y K S,ch , L 0 = K S,H2,c , m 1 = Y 1 k m,ph , K 1 = Y 4 K S,ph , K I = K I,H2 , m 2 = Y 2 k m,H2 , K 2 = K S,H2 .
For these specific kinetics (G.3), the various functions defined in Table 8 are listed in Table 16. Using the linear change of variable given by (G.1) and (G.2), the yield coefficients in (4.2) are normalized to one except one of them, which is equal to ω 0.53, when the yield coefficients are those given in Table 15. Therefore, (4.2) is of the form (1.1), with ω < 1 and the results of our paper apply to (4.2). The aim of this section is to give rigorous proofs for the results of [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF] on existence and stability of the steady states of model (4.2). Notice that the results in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF] were This manuscript is for review purposes only.

given with respect to the dimensionless form (H.2) of (4.2) by using the variables (H.1) and the growth functions (H.3). The variables (H.1) are related to our variables (G.1) by the formulas

x 0 = X 0 K 0 , x 1 = X 1 K 1 , x 2 = X 2 K 2 , s 0 = S 0 K 0 , s 1 = S 1 K 1 , s 2 = S 2 K 2 , t = τ /m 0 .
Hence, results given in variables (H.1) can be easily translated into results given in variables (G.1) and vice versa.

From Theorem 3.1, the existence and stability of steady states of model (4.2) can be determine for the specific growth functions (G.3). Using the functions and notations given in Table 16, we have the following results: SS1 = 0, 0, 0, s in 0 , s in 1 , s in 2 always exists. It is stable if and only if

µ 0 s in 0 , s in 2 < D + a 0 , µ 1 s in 1 , s in 2 < D + a 1 and µ 2 s in 2 < D + a 2 .
These conditions are equivalent to the conditions of [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF], section C1, given in terms of variables (H.1) and growth functions (H.3). SS2 = (0, 0, x 2 , s 0 , s 1 , s 2 ) is given by:

s 0 = s in 0 , s 1 = s in 1 , s 2 = K2(D+a2) m2-D-a2 , x 2 = D D+a2 s in 2 -s 2 . (G.4)
It exists if and only if s in 2 > s 2 , where s 2 is given by (G.4). It is stable if and only if

µ 0 s in 0 , s 2 < D + a 0 and µ 1 s in 1 , s 2 < D + a 1 .
Formulas (G.4) together with the conditions of existence and stability of SS2 were established in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF], section C2, using variables (H.1) and growth functions (H.3). SS3 = (x 0 , 0, 0, s 0 , s 1 , s 2 ) is given by:

x 0 = D D+a0 s in 0 -s 0 , s 1 = s in 1 + s in 0 -s 0 , s 2 = s in 2 -ω s in 0 -s 0 , (G.5)
where s 0 is a solution of equation

m0s0(s in 2 -ω(s in 0 -s0)) (K0+s0)(L0+s in 2 -ω(s in 0 -s0)) = D + a 0 . (G.6)
Notice that (G.6) is a quadratic equation. Only its solution in the interval J 0 = max 0, s in 0 -s in 2 /ω , s in 0 is to be considered. SS3 exists if and only if the following condition holds

µ 0 s in 0 , s in 2 > D + a 0 . (G.7)
It is stable if and only if

µ 1 s in 0 -s 0 + s in 1 , s in 2 -ω s in 0 -s 0 < D + a 1 , s in 2 -ωs in 0 < M 2 (D + a 2 ) -ωM 0 (D + a 0 , M 2 (D + a 2 )) , (G.8)
where s 0 is the solution in the interval J 0 of equation (G.6). Formulas (G.5) together with equation (G.6) giving s 0 and the stability condition (G.8) were established in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF], section C3, using variables (H.1) and growth functions (H.3). However, neither condition (G.7) of existence of SS3 nor the signs of other eigenvalues of the Jacobian This manuscript is for review purposes only.

matrix were explicitly established in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF], section C3, where the existence and stability of SS3 were checked only numerically by considering the roots of polynomials of degrees 2 and 3, respectively, see formulas (C.3) and (C.7) in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF]. SS4 = (x 0 , x 1 , 0, s 0 , s 1 , s 2 ) is given by:

s 0 = (D+a0)K0(L0+s2) m0s2-(D+a0)(L0+s2) , s 1 = (D+a1)K1(K I +s2) m1K I -(D+a1)(K I +s2) , x 0 = D D+a0 s in 0 -s 0 , x 1 = D D+a1 s in 0 -s 0 + s in 1 -s 1 , (G.9)
where s 2 is a solution of equation

(1 -ω) (D+a0)K0(L0+s2) m0s2-(D+a0)(L0+s2) + (D+a1)K1(K I +s2) m1K I -(D+a1)(K I +s2) + s 2 = (1 -ω)s in 0 + s in 1 + s in 2 .
(G.10)

Notice that (G.10) reduces to a cubic equation in s 2 . Only its solutions in the interval

(s 0 2 , s 1 
2 ) are to be considered. The steady states SS4 1 and SS4 2 exist if and only if the following conditions hold

s in 0 > s 0 , s in 0 + s in 1 > s 0 + s 1 and (1 -ω)s in 0 + s in 1 + s in 2 ≥ φ 1 (D) , (G.11)
where s 0 and s 1 are defined by (G.9). SS4 1 is unstable whenever it exists and SS4 2 is stable if and only if

(1 -ω)s in 0 + s in 1 + s in 2 < φ 2 (D), and φ 3 (D) > 0. (G.12)
Here φ 2 and φ 3 are defined in Table 8. Formulas (G.9) together with equation (G.10) giving s 2 were established in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF], section C4, using variables (H.1) and growth functions (H.3). However, neither condition (G.11) of existence of SS4 nor its condition of stability (G.12) have been established explicitly in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF], section C4, where the existence and stability of SS4 were checked only numerically by considering the roots of a polynomial of degree 5, see formula (C.20) in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF]. SS5 = (x 0 , 0, x 2 , s 0 , s 1 , s 2 ) is given by:

s 2 = (D+a2)K2 m2-D-a2 , s 0 = (D+a0)K0(L0+s2) m0s2-(D+a0)(L0+s2) , s 1 = s in 0 -s 0 + s in 1 , x 0 = D D+a0 s in 0 -s 0 , x 2 = D D+a2 s in 2 -s 2 -ω s in 0 -s 0 . (G.13)
It exists if and only if the following conditions hold

s in 0 > s 0 , s in 2 -ωs in 0 > s 2 -ωs 0 . (G.14)
where s 0 and s 2 are given by (G.13). SS5 is stable if and only if

s in 0 + s in 1 < M 0 (D + a 0 , M 2 (D + a 2 )) + M 1 (D + a 1 , M 2 (D + a 2 )) . (G.15)
Formulas (G.13) together with conditions (G.14) of existence and (G.15) of stability of SS5 were established in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF], section C5, using variables (H.1) and growth functions (H.3). However, the signs of other eigenvalues of the Jacobian matrix have been checked only numerically by considering the roots of a polynomial of degree 4, see formula (C.31) in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF]. SS6 = (x 0 , x 1 , x 2 , s 0 , s 1 , s 2 ) is given by:

s 2 = (D+a2)K2 m2-D-a2 , s 0 = (D+a0)K0(L0+s2) m0s2-(D+a0)(L0+s2) , s 1 = (D+a1)K1(K I +s2) m1K I -(D+a1)(K I +s2) , x 0 = D D+a0 s in 0 -s 0 , x 1 = D D+a1 s in 0 -s 0 + s in 1 -s 1 , x 2 = D D+a2 (1 -ω) s in 0 -s 0 + s in 1 -s 1 + s in 2 -s 2 . (G.16)
This manuscript is for review purposes only.

It exists if and only if the following conditions hold

s in 0 > s 0 , s in 0 + s in 1 > s 0 + s 1 , (1 -ω)s in 0 + s in 1 + s in 2 > φ 2 (D), (G.17)
where s 0 and s 1 are given by (G.16). SS6 is stable if and only if c i > 0, i = 3, 5, and r j > 0, j = 4, 5, (G. [START_REF] Sari | The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat[END_REF] where c i and r j are defined in Table 2. Formulas (G.16) together with conditions (G.17) of existence of SS6 were established in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF], section C6, using variables (H.1) and growth functions (H.3). However, the Liénard-Chipart stability conditions (G. [START_REF] Sari | The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat[END_REF] were not considered in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF], where the stability of SS6 was checked only numerically by considering the roots of a polynomial of degree 6, see formula (C.42) in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF]. SS7 = (0, x 1 , 0, s 0 , s 1 , s 2 ) is given by:

s 0 = s in 0 , x 1 = D D+a1 s in 1 -s 1 , s 2 = s in 1 -s 1 + s in 2 , (G.19)
where s 1 is a unique solution of equation

m1s1K I (K1+s1)(K I +s in 1 +s in 2 -s1) = D + a 1 .
(G.20)

Notice that (G.20) is a quadratic equation. Only its solution in the interval

J 1 = 0, s in 1
is to be considered. SS7 exists if and only if the following condition holds

µ 1 s in 1 , s in 2 > D + a 1 . (G.21)

SS7 is stable if and only if

s in 1 + s in 2 < M 1 D + a 1 , M 3 s in 0 , D + a 0 + M 3 s in 0 , D + a 0 , s in 1 + s in 2 < M 1 (D + a 1 , M 2 (D + a 2 )) + M 2 (D + a 2 ). (G.22)
Formulas (G. [START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF]) together with equation (G.20) giving s 1 and stability condition (G.22) were established in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF], section C7, using variables (H.1) and growth functions (H.3). However, condition (G.21) of existence of SS7 has not been established explicitly in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF], section C7, where the existence of SS7 and the signs of other eigenvalues of the Jacobian matrix were checked only numerically by considering the roots of a polynomial of degree 3, see formula (C.53) in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF]. SS8 = (0, x 1 , x 2 , s 0 , s 1 , s 2 ) is given by:

s 0 = s in 0 , s 2 = (D+a2)K2 m2-D-a2 , s 1 = (D+a1)K1(K I +s2) m1K I -(D+a1)(K I +s2) , x 1 = D D+a1 s in 1 -s 1 , x 2 = D D+a2 s in 1 -s 1 + s in 2 -s 2 .
(G.23)

It exists if and only if the following conditions hold

s in 1 > s 1 , s in 1 + s in 2 > s 1 + s 2 , (G.24)
where s 1 and s 2 are given by (G.23). SS8 is stable if and only if

s in 0 < M 0 (D + a 0 , M 2 (D + a 2 )) . (G.25)
This manuscript is for review purposes only.

Formulas (G.23) together with conditions (G.24) of existence and (G.25) of stability of SS8 were established in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF], section C8, using variables (H.1) and growth functions (H.3). However, the signs of other eigenvalues of the Jacobian matrix have been checked only numerically by considering the roots of a polynomial of degree 4, see formula (C.62) in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF].

Appendix H. Numerical simulations. The plots of Figures F.1 to F.4 were performed with Maple [START_REF] Maple | [END_REF], which is used in particular for the computations of coefficients c 3 , c 5 , r 4 and r 5 , evaluated at SS6, and the computations of the eigenvalues of the Jacobian matrix evaluated at SS6. The plots of Figures E.1 to E.3 were performed with Scilab [22] by using the formulas of the steady state components given in Table 1.

The various functions appearing in these formulas are given in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF]. Indeed, in the original form (4.2), numerical instabilities arise in numerical schemes. To reduce the number of parameters describing the dynamics and facilitate numerical simulations, the following rescaling of the variables was used in [START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF]:

X 0 = X ch K S,ch Y ch , X 1 = X ph K S,ph Y ph , X 2 = XH 2 KS,H 2 YH 2 , S 0 = S ch K S,ch , S 1 = S ph K S,ph , S 2 = SH 2 KS,H 2 , τ = k m,ch Y ch t. (H.1)
Then, with these changes of variables the system given in (4.2) reduced to system

                     dX0 dτ = (ν 0 (S 0 , S 2 ) -α -k 0 )X 0 dX1 dτ = (ν 1 (S 1 , S 2 ) -α -k 1 )X 1 dX2 dτ = (ν 2 (S 2 ) -α -k 2 )X 2 dS0 dτ = α(u 0 -S 0 ) -ν 0 (S 0 , S 2 )X 0 dS1 dτ = α(u 1 -S 1 ) + ω 0 ν 0 (S 0 , S 2 )X 0 -ν 1 (S 1 , S 2 )X 1 dS2 dτ = α(u 2 -S 2 ) -ω 2 ν 0 (S 0 , S 2 )X 0 + ω 1 ν 1 (S 1 , S 2 )X 1 -ν 2 (S 2 )X 2 . (H.2)
The operating parameters are

α = D k m,ch Y ch , u 0 = S in ch K S,ch , u 1 = S in ph K S,ph , u 2 = S in H 2 KS,H 2 .
The yield coefficients are

ω 0 = K S,ch K S,ph 224 208 (1 -Y ch ), ω 1 = K S,ph KS,H 2 32 224 (1 -Y ph ), ω 2 = 16 208 K S,ch KS,H 2 .
The death rates are

k 0 = k dec,ch k m,ch Y ch , k 1 = k dec,ph k m,ch Y ch , k 2 = k dec,H 2 k m,ch Y ch .
The growth functions are

ν 0 (S 0 , S 2 ) = S0 1+S0 S2 K P +S2 , ν 1 (S 1 , S 2 ) = φ1S1 1+S1 1 1+K I S2 , ν 2 (S 2 ) = φ2S2 1+S2 , (H.3)
where the biological parameters are given by 4.4, the projections of the orbits of the six-dimensional phase space into the threedimensional space (X ch , X ph , X H2 ) shows the appearance and disappearance of a stable limit cycle for different values of S in ch > σ 5 . The plot of the limit cycle was obtained by solving the ordinary differential equations using the default solver "lsoda" from the ODEPACK package in Scilab. Tables 13 and14 Appendix I. Tables.

φ 1 = k m,ph Y ph k m,ch Y ch , φ 2 = km,H 2 YH 2 k m,ch Y ch , K P = KS,H
In this section, the biological parameter values are provided in Table 15. In Table 16, we present the auxiliary functions in the case of the growth functions given by (G.3).
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This manuscript is for review purposes only. The initial conditions of (H.2) are given by X i (0) = X * i + ε and S i (0) = S * i + ε, i = 0, 1, 2 where X * i and S * i are the components of SS6 and ε is given in the second column. When there is more than one trajectory in the figure, its color is indicated in the first column. 5.54 10 -4 , 1.20 10 -3 , 9.00 10 -5 , 1.42 10 -2 , 1.29 10 -2 , 6.12 10 -7 5.76 10 -4 , 1.46 10 -3 , 9.00 10 -5 , 1.53 10 -2 , 1.96 10 -2 , 1.16 10 -6 5.79 10 -4 , 1.50 10 -3 , 9.00 10 -5 , 1.55 10 -2 , 2.05 10 -2 , 1.24 10 -6 4.4 Blue Green 6 10 -2 7 10 -2 6.71 10 -4 , 1.95 10 -3 , 1.04 10 -4 , 1.68 10 -2 , 2.80 10 -2 , 1.86 10 -6 6.81 10 -4 , 2.07 10 -3 , 1.04 10 -4 , 1.74 10 -2 , 3.11 10 -2 , 2.11 10 -6 H.1 H.2 H.3 H.4 2 10 -3 3.5 10 -2 6 10 -2 7 10 -2 5.46 10 -4 , 1.10 10 -3 , 9.00 10 -5 , 1.37 10 -2 , 1.05 10 -2 , 4.12 10 -7 5.79 10 -4 , 1.50 10 -3 , 9.00 10 -5 , 1.55 10 -2 , 2.05 10 -2 , 1.24 10 -6 6.71 10 -4 , 1.95 10 -3 , 1.04 10 -4 , 1.68 10 -2 , 2.80 10 -2 , 1.86 10 -6 6.81 10 -4 , 2.07 10 -3 , 1.04 10 -4 , 1.74 10 -2 , 3.11 10 -2 , 2.11 10 -6 

Auxiliary function

Definition domain M0(y, s2) = yK 0 (L 0 +s 2 ) m 0 s 2 -y(L 0 +s 2 ) 0 ≤ y < m 0 s 2 L 0 +s 2 M1(y, s2) = yK 1 (K I +s 2 ) + (D+a 1 )K 1 (K I +s 2 ) m 1 K I -(D+a 1 )(K I +s 2 ) + s2 D ∈ I1 : s 0 2 < s2 < s 1 2 ψ0(s0) = m 0 s 0( s in 2 -ω(s in 0 -s 0)) (K 0 +s 0 )(L 0 +s in 2 -ω(s in 0 -s 0)) s0 ∈ max 0, s in 0 -s in 2 /ω , +∞ ψ1(s1) = m 1 s 1 K I (K 1 +s 1 )(K I +s in 2 +s in 1 -s 1)

m 1 K I -y(K I +s 2 ) 0 ≤ y < m 1 K I K I +s 2 M2(y) = yK
s1 ∈ 0, s in 1 + s in

(4. 2 )

 2 where Y ch , Y ph and Y H2 are the yield coefficients, respectively; 224/208 (1 -Y ch ) represents the fraction of chlorophenol converted to phenol; 32/224 (1 -Y ph ) represents the fraction of phenol that is transformed to hydrogen and 16/208 represents the fraction of hydrogen consumed by the chlorophenol degrader. The biological parameter This manuscript is for review purposes only.

Figure 4 .

 4 Figure 4.1 shows the one-parameter bifurcation diagram of X ch versus D in system (4.2). The magnifications of the bifurcation diagram are illustrated in Figure 4.1(b-

δ5 DFig. 4 . 1 .

 δ541 Fig. 4.1. (a) Bifurcation diagram of X ch versus D ∈ [0, 1.2] in model (4.2). (b) Magnification on the appearance and disappearance of stable limit cycles for D ∈ [0.0095, 0.0108]. (c) Magnification on the transcritical bifurcation at D = δ 2 and the saddle-node bifurcation at D = δ 3 for D ∈ [0.0685, 0.069]. (d) Magnification on the transcritical bifurcations for D ∈ [0.2665, 0.2685].

Figure 4 .

 4 Figure 4.2).

Figure 4 . 3 illustrates

 43 that the trajectories in pink and blue converge toward the stable limit cycle in red, while the green trajectory converges toward SS3. For the initial condition in Table14, the time course in Figure H.1 illustrates the positive, periodic solution representing the coexistence of the three species. The sustained oscillations prove the stability of the limit cycle. However, Figure H.2 shows the time course of the green trajectory in Figure 4.3.

Figure 4 . 4 shows

 44 that the blue trajectory converges to the stable focus SS6, while the green trajectory converges to SS3. Figures H.3 and H.4 illustrate the time courses corresponding to the blue and the green trajectories in Figure 4.4, respectively.

1 SS3Fig. 4 . 2 .Fig. 4 . 3 .Fig. 4 . 4 .

 1424344 Fig. 4.2. Case S in ch = 0.098 < σ * : the solution of (4.2) converges to SS3.

Proposition 3. 3 . 2 s in 2 > D + a 2 holds. Therefore, the condition µ 2 s in 2 < D + a 2 , s in 2 >, s in 2 <, s in 2 >the condition µ 1 s in 1 , s in 2 < D + a 1

 3222222221 If SS2 exists then, its condition of existence µ of stability of SS1 is not satisfied.If SS3 exists then, its condition of existence µ 0 s in 0 D+a 0 holds. Therefore, the condition µ 0 s in 0 D + a 0 of stability of SS1 is not satisfied.If SS7 exists then, its condition of existence µ 1 s in 1 D+a 1 holds. Therefore, of stability of SS1 is not satisfied.

Fig. D. 1 .

 1 Fig. D.1. Stability of SS2 for all D ∈ (δ 5 , δ 7 ): change of sign of the function F 1 (D).

where δ 4 F2Fig. D. 2 .

 42 Fig. D.2. Stability of SS3 for all D < δ 4 : signs of the functions F 2 (D) and F 3 (D).

F 4 ( 2 + M 1 D

 421 D) = 0 (see Figure D.3(a)). Their second existence condition holds for all D ≤ δ 3 , since the straight line of equation y = Y S in ch is above the curve of the function y = M 0 D + a 0 , s * i + a 1 , s * i 2 , for i = 1, 2, which correspond to SS4 1 and SS4 2 , respectively, (see Figure D.3(b)). From

2 + M 1 D + a 1 , s * 1 2y 2 + 2 δ3Fig. D. 3 .

 2111223 Fig. D.3. Existence of SS4 for all D ≤ δ 3 : (a) change of sign of the function F 4 (D), (b) the green line of equation y = Y S in ch is above the red and blue curves of the functions M 0 D + a 0 , s * i 2 + M 1 D + a 1 , s * i 2 , i = 1, 2, respectively.

F 5 (Fig. D. 4 .

 54 Fig. D.4. Stability of SS4 for all D ∈ (δ 2 , δ 3 ): (a) Curve of the function F 5 (D). (b) Magnification of F 5 (D) for D ∈ [0.0685, 0.0688]. (c) Curve of the function φ 3 (D).

  that is, for all D ∈ (δ 4 , δ 5 ) (see Figure D.5).

Fig. D. 5 .

 5 Fig. D.5. Stability of SS5 for all D ∈ (δ 4 , δ 5 ) and existence of SS6 for all D < δ 2 : (a) curve of the function F 6 (D). (b) Magnification of F 6 (D) for D ∈ [0.266, 0.268]. SS6 exists if and only if F 5 (D) < 0 and F 6 (D) < 0, that is, for all D < δ 2 where δ 2 is the solution of the equation F 5 (D) = 0 (see Figure D.4(a-b) and Figure D.5). Indeed, F 5 (D) < 0 for all D < δ 2 and F 6 (D) < 0 for all D < δ 2 where δ 2 0.113033 is the solution of equation F 6 (D) = 0 such that δ 2 < δ 2 . To determine the stability of SS6, the functions c 3 , c 5 , r 4 and r 5 are plotted with respect to D < δ 2 . Figure D.6 shows that c 3 (D), c 5 (D), r 4 (D) and r 5 (D) are all positive if and only if δ 1 < D < δ 2 where δ 1 0.010412 is the solution of equation r 5 (D) = 0.

  Figure D.7(a-b) shows that two eigenvalues denoted by λ 1 (D) and λ 2 (D) are real and remain negative for all D ∈ [0, δ 2 ).

  Figure D.7(c) shows that the two other eigenvalues λ 3 (D) and λ 4 (D) form a complex-conjugate pair denoted by λ 3,4 (D) = α 3,4 (D) ± iβ 3,4 (D), for all D ∈ [0, δ ),This manuscript is for review purposes only.

Fig

  Fig. D.6. (a-b-c-d) Curves of the functions c 3 (D), c 5 (D), r 4 (D) and r 5 (D) for 0 < D < δ 2 . (e) Magnification of the curve of r 4 and r 5 for D ∈ [0, 0.02].

Fig. D. 7 .

 7 Fig. D.7. The eigenvalues of the Jacobian matrix at SS6 as a function of D, when S in ch = 0.1, S in ph = 0 and S in H 2 = 2.67×10 -5 . (c-d) The real parts α 3,4 and α 5,6 for D ∈ [0, δ ).

dα5, 6 dD (δ 1 )

 61 < 0. This is consistent with Figure4.1(b) showing that, as D decreases and crosses δ 1 , 537 the steady state SS6 becomes unstable and we have a supercritical Hopf bifurcation, leading to the appearance, from the steady state SS6, of small-amplitude periodic oscillations.

  H2 )/((1 -ω)Y ) 0.029402 σ 3 = ϕ 0 (D)/Y 0.013643 σ 4 = (S in H2 -M 2 (D + a 2 ) + ωϕ 0 (D))/(ωY ) 0.013985 σ 5 = (φ 2 (D) -S in H2 )/((1 -ω)Y ) 0.033292 σ 6 is the largest root of equation r 5 = 0 0.1025

Figures E. 1

 1 Figures E.1 and E.2 show the one-parameter bifurcation diagrams of X ch and X H2 versus S in ch in system (4.2), respectively. The magnifications of the bifurcation diagrams are illustrated in Figure E.1(b), Figure E.2(b) and Figure E.3 showing the transcritical bifurcations at σ 1 , σ 3 , σ 4 and σ 5 , the saddle-node bifurcation at σ 2 , the Hopf bifurcation at σ 6 and the disappearance of the cycle at σ * . In Figure E.1(b),

Fig. E. 3 .

 3 Fig. E.3. (a) Magnification on the saddle-node bifurcation at S in ch = σ 2 and the transcritical bifurcation at S in ch = σ 5 for S in ch ∈ [0.028, 0.035]. (b) Magnification on the limit cycles for S in ch ∈ [0.098, 0.105].

Fig. F. 1 .

 1 Fig. F.1. Curve of the function y = F S in ch defined by (F.2).

σ 2 , 2 +M 1 D 2 + 2 y 2 +Fig. F. 2 .

 2212222 Fig. F.2. The green line of equation y = Y S in ch is above the red and blue curves of the functions M 0 D + a 0 , s * i

Fig. F. 3 .

 3 Fig. F.3. (a-b-d) Curves of the functions c 3 (S in ch ), c 5 (S in ch ), r 4 (S in ch ) and r 5 (S in ch ) for S in ch > σ 5 . (c-e-f ) Magnifications of the curves c 5 and r 4 for S in ch ∈ [σ 5 , 0.04] and of r 5 for S in ch ∈ [σ 5 , 0.035].

Fig. F. 4 .

 4 Fig. F.4. The eigenvalues of the Jacobian matrix at SS6 as a function of S in ch , when D = 0.01, S in ph = 0 and S in H 2 = 2.67×10 -5 . (c-d) The real parts α 3,4 and α 5,6 for S in ch ∈ (σ , 0.11].

Fig. H. 2 .

 2 Fig. H.2.Trajectories of S ch , S ph , S H 2 , X ch , X ph and X H 2 for S ch,in = 0.0995 (in kgCOD/m 3 ): Convergence to the stable steady state SS3. (b) A magnification of (a) showing that the solution of (4.2) converges to the nonzero X ch -component of SS3.

  to 4.4 and H.1 to H.4 were presented according to the variables of model (4.2) using the change of variables (H.1). In Figures 4.2

  to

  present the components of the stable steady states SS3 and SS6, and all the initial conditions chosen to trace the different trajectories of model (4.2) in Figures 4.2

  to 4.4 and H.1 to H.4.

Fig. H. 4 .

 4 Fig. H.4. Trajectories of S ch , S ph , S H 2 , X ch , X ph and X H 2 for S ch,in = 0.11 (in kgCOD/m 3 ): Convergence to the stable steady state SS3. (b) A magnification of (a) showing that the solution of (4.2) converges to the nonzero X ch -component of SS3.

  to 4.4 and H.1 to H.4 are obtained from the initial conditions of the solutions of model (H.2) by using the change of variables (H.1).

Figure

  Figure Color ε (X ch (0), X ph (0), XH 2 (0), S ch (0), S ph (0), SH 2 (0))4.2 9.7 10 -3 5.44 10 -4 , 1.17 10 -3 , 8.80 10 -5 , 1.42 10 -2 , 1.29 10 -2 , 6.05 10 -7 4.3 Pink Blue Green 10 -2 3.2 10 -2 3.5 10 -2
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 2 

m 2 D + a0 < m0 s 1 2 ( 1 D

 221 -y 0 ≤ y < m2 M3(s0, z) = zL 0 (K 0 +s 0 ) m 0 s 0 -z(K 0 +s 0 ) 0 ≤ z < m 0 s 0 K 0 +s 0 s 0 2 (D) = L 0 (D+a 0 ) m 0 -D-a 0 D) = K I (m 1 -D-a 1 )D+a + a1 < m1Ψ(s2, D)= (1 -ω) (D+a 0 )K 0 (L 0 +s 2 ) m 0 s 2 -(D+a 0 )(L 0 +s 2 )

Table 8

 8 

	of Appendix A. Then, we assume that:

that a steady state exists or is said to be 'meaningful' if and only if all its components are nonnegative.

Table 1

 1 Steady states of (1.1). All functions are defined in Table8.

Table 2

 2 Liénard-Chipart coefficients for SS6. The functions E, F, G, H, I, J, K and L, defined by (3.1), are evaluated at the components of SS6 given in Table1. Notice that they are depending on the operating parameter D.

  , see Remark 4.2. Using the biological parameter values in Table 15, the bifurcation values δ i , i = 1, . . . , 7 are provided in Table 4. The bifurcation analysis of (4.2) according to D is given in Table 5. The bifurcation types at the critical values δ i are defined in Table 6.

	Using Theorem 3.1, we have the following result, which is supported by numerical
	experimentation and is proved in Appendix D.
	Proposition 4.1. Let S in ph = 0, S in H2 = 2.67 × 10 -5 and S in ch = 0.1. In this case,
	SS7 and SS8 do not exist.

Table 4

 4 Critical parameter values δ i , for i = 1, . . . , 7 where Y is defined in Appendix G, r 5 in Table2while all other functions are given in Table8.

Table 5

 5 Existence and stability of steady states, with respect to D. The bifurcation values δ i , i = 1, . . . , 7 are given in Table4. The letter S (resp. U) means that the corresponding steady state is stable (resp. unstable). No letter means that the steady state does not exist.

Table 6

 6 Bifurcation types corresponding to the critical values of δ i , i = 1, . . . , 7, defined in Table4. There exists also a critical value δ * 0.009879 < δ 1 corresponding to the value of D where the stable limit cycle disappears when D is increasing.

	Bifurcation types
	δ * Disappearance of the stable limit cycle
	δ 1 Supercritical Hopf bifurcation
	δ 2 Transcritical bifurcation of SS4 2 and SS6
	δ 3 Saddle-node bifurcation of SS4 1 and SS4 2
	δ 4 Transcritical bifurcation of SS3 and SS5
	δ 5 Transcritical bifurcation of SS2 and SS5
	δ 6 Transcritical bifurcation of SS1 and SS3
	δ 7 Transcritical bifurcation of SS1 and SS2

Table 7

 7 Colors used in Figures 4.1 and E.1. The solid (resp. dashed) lines are used for stable (resp. unstable) steady states.

Table 8

 8 Notations, intervals and auxiliary functions.

  , see Remark E.3 below. Using Theorem 3.1, we have the following result, which is supported by numerical experimentation and is proved in Appendix F. Proposition E.1. Let S in ph = 0, S in H2 = 2.67 × 10 -5 and D = 0.01. In this case, SS7 and SS8 do not exist. Using the biological parameter values in Table 15, the bifurcation values σ i , i = 1, . . . , 6 are provided in Table 10. The bifurcation analysis of (4.2) according to S in ch is given in Table 11. The bifurcation types at the critical values σ i are defined in Table 12.

Table 10

 10 Critical parameter values σ i , for i = 1, . . . , 6 where Y is defined in Appendix G, r 5 in Table

Table 11

 11 Existence and stability of steady states, with respect to S in ch . The bifurcation values σ i , i = 1, . . . , 6 are given in Table

  Fig. E.2. (a) Bifurcation diagram of X H 2 versus S in ch ∈ [0, 0.11] in model (4.2). (b) Magnification on the transcritical bifurcations for S in ch ∈ [0, 0.018].
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1 to E.3, and the results given in Proposition E.1, permit to answer this question at least for the following values of the operating parameters S in ph = 0, S in H2 = 2.67×10 -5 , D = 0.01

  Figure F.4(d) shows that the two last eigenvalues λ 5 S in ch and λ 6 S in ch are real, positive and distinct for all S in ch ∈ (σ 5 , σ ]. Then, they become a complex-conjugate pair denoted by λ 5,6 S in ch = α 5,6 S in ch ± iβ 5,6 S in ch , for all S in ch ∈ (σ , 0.11], so that the real part α 5,6 is positive for all S in ch ∈ (σ , σ 6 ) and negative for all S in ch ∈ (σ 6 , 0.11]. At the particular value S in ch = σ 6 , the pair λ 5,6 S in ch is purely imaginary such that α 5,6 (σ 6 ) = 0, with β 5,6 (σ 6 ) = 0. Moreover, one has This is consistent with Figures E.1 to E.3, showing that, as S in ch decreases and crosses σ 6 , the steady state SS6 changes its stability through a supercritical Hopf bifurcation with the emergence of a stable limit cycle that we illustrate in Figures 4.3 and H.1. Remark F.1. Note that Figures F.1 and F.2 showing the stability of SS3 and the existence of two steady states of type SS4 are similar to Figures 6 and 7 in [16], respectively. But, on the contrary, Figure F.3 which concerns the stability of SS6

	dα5,6 ch dS in	(σ 6 ) < 0.
	F.4(a-b) shows that two eigenvalues denoted by λ 1 S in ch and
	λ 2 S in ch are real and remain negative for all S in ch ∈ (σ 5 , 0.11]. Figure F.4(c) shows
	that the two other eigenvalues λ 3 S in ch and λ 4 S in ch are real, negative and distinct for all S in ch ∈ (σ 5 , σ ) where σ 0.03467. Then, they become a complex-conjugate
	pair denoted by	
	λ 3,4 S in ch = α 3,4 S in ch ± iβ 3,4 S in ch , for all S in ch ∈ (σ , 0.11]
	where the real part α 3,4 remains negative.

607

This manuscript is for review purposes only.

Table 16 .

 16 The plots of Figures 4.2 to 4.4 and H.1 to H.4 were performed with Scilab [22]. The numerical simulations presented in Figures 4.2 to 4.4, F.4, and H.1 to H.4 were performed on the dimensionless form of (4.2) used in

  Fig. H.1. Trajectories of S ch , S ph , S H 2 , X ch , X ph and X H 2 for S ch,in = 0.0995 (in kgCOD/m 3 ): Convergence to the stable limit cycle.
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  Fig. H.3. Trajectories of S ch , S ph , S H 2 , X ch , X ph and X H 2 for S ch,in = 0.11 (in kgCOD/m 3 ): Convergence to the positive steady state SS6.
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Table 13

 13 Steady states SS3 and SS6 of model (4.2) corresponding to Figures 4.2 to 4.4 and H.1 to H.4. The biological parameters are provided in Table15. The operating parameters are D = 0.01, S in ph = 0, S in H 2 = 2.67×10 -5 and S in ch given in the second column. ch , 0, 0, S ch , S ph , SH 2 ) SS6 = (X ch , X ph , XH 2 , S ch , S ph , SH 2 ) , 0, 0, 9.77 10 -2 , 3.65 10 -4 , 9.17 10 -8 5.34 10 -4 , 1.06 10 -3 , 8.80 10 -5 , 1.36 10 -2 , 9.93 10 -3 , 3.62 10 -7 , 0, 0, 9.92 10 -2 , 3.65 10 -4 , 9.12 10 -8 5.44 10 -4 , 1.08 10 -3 , 9.00 10 -5 , 1.36 10 -2 , 9.93 10 -3 , 3.62 10 -7 , 0, 0, 1.10 10 -1 , 3.65 10 -4 , 8.79 10 -8 6.10 10 -4 , 1.22 10 -3 , 1.04 10 -4 , 1.36 10 -2 , 9.93 10 -3 , 3.62 10 -7

	Figure S in ch SS3 = (X 4.2 0.098 2.19 10 -6 4.3 H.1 H.2 0.0995 2.19 10 -6 4.4 H.3 0.11 2.19 10 -6
	H.4

Table 14

 14 The initial conditions of solutions of model (4.2) in Figures 4.2

Table 15

 15 Nominal parameter values, where i = ch, ph, H 2 . Units are expressed in Chemical Oxygen Demand (COD).

	Parameters Nominal values Units
	k m,ch	29	kgCODS/kgCODX/d
	K S,ch	0.053	kgCOD/m 3
	Y ch	0.019	kgCODX/kgCODS
	k m,ph	26	kgCODS/kgCODX/d
	K S,ph	0.302	kgCOD/m 3
	Y ph	0.04	kgCODX/kgCODS
	km,H 2	35	kgCODS/kgCODX/d
	KS,H 2	2.5×10 -5	kgCOD/m 3
	KS,H 2 ,c	1.0×10 -6	kgCOD/m 3
	YH 2	0.06	kgCODX/kgCODS
	k dec,i	0.02	d -1
	KI,H 2	3.5×10 -6	kgCOD/m 3

Table 16

 16 Auxiliary functions in the case of growth functions given by (G.3).
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