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MATHEMATICAL ANALYSIS OF A THREE-TIERED MODEL OF
ANAEROBIC DIGESTION *

SARRA NOUAOURA', NAHLA ABDELLATIFt{ RADHOUANE FEKIH-SALEMT'§, AND
TEWFIK SARIY

Abstract. In this paper, we are interested in a mechanistic model describing the anaerobic
mineralization of chlorophenol in a three-step food-web. The model is a six-dimensional system of
ordinary differential equations. In our study, we take into account the phenol and the hydrogen input
concentrations as well as the maintenance terms. Moreover, we consider the case of a large class of
growth rates, instead of specific kinetics. In this general case, a recent study shows that the system
can have up to eight steady states and their existence conditions were analytically determined. We
focus here on the necessary and sufficient conditions of the local stability of the steady states, accord-
ing to the four operating parameters of the process, which are the dilution rate and the chlorophenol,
phenol and hydrogen input concentrations. In previous studies, this stability analysis was performed
only numerically. Using the Liénard-Chipart stability criterion, we show that the positive steady
state can be unstable and we give numerical evidence for a supercritical Hopf bifurcation with the
appearance of a stable periodic orbit. We give two bifurcation diagrams with respect to the dilution
rate, first, and then to the chlorophenol input concentration as the bifurcating parameters, showing
that the system can present rich behavior including bistability, coexistence and occurrence of limit
cycle.

Key words. Anaerobic digestion, Chemostat, Chlorophenol mineralization, Hopf bifurcation,
Liénard-Chipart stability criterion, Limit cycle.

AMS subject classifications. 34A34, 34D20, 37N25, 92B05

1. Introduction. Anaerobic digestion is a natural process in which organic ma-
terial is converted into biogas in an environment without oxygen by the action of a
microbial ecosystem. It is used for the treatment of wastewater and organic solid
wastes and has the advantage of producing methane and hydrogen under appropriate
conditions [13]. The removed carbon dioxide can be used too as a carbon source
for microalgae [12]. Tt is used also for several industrial or domestic purposes in
biorefineries and other anaerobic technologies. For a recent review on the current
state-of-the-art with respect to the theory, applications, and technologies, the reader
is referred to Wade [25].

The full Anaerobic Digestion Model No.1.(ADM1) [1] is highly parameterized with
a large number of state variables. Whilst suitable for dynamic simulation, analytical
results on the model are impossible and only numerical investigations are available
[4]. Due to the analytical intractability of the full ADM1, simpler mechanistic models
of microbial interaction have been proposed in view of a better understanding of the
anaerobic digestion process.

The two-tiered models, which take the form of four-dimensional mathematical
models with a cascade of two biological reactions, where one substrate is consumed
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2 S. NOUAOURA, N. ABDELLATIF, R. FEKIH-SALEM, AND T. SARI

by one microorganism in a chemostat to produce a product that serves as the main lim-
iting substrate for a second microorganism, are the simplest models which encapsulate
the essence of the anaerobic digestion process. Two-tiered models with commensal-
istic relationship including or not substrate inhibition of the second population are
widely considered [2, 3, 17, 21] where the second population (the commensal popula-
tion) benefits for its growth from the first population (the host population) while the
host population is not affected by the growth of the commensal population. On the
contrary, when the growth of the first population is affected by the growth of the sec-
ond population, the system describes a syntrophic relationship [5, 7, 9, 18, 19, 24, 29].
For more details and informations on commensalism and syntrophy, the reader is
referred to [19] and the references therein. Important and interesting extensions of
the two-tiered models are the eight-dimensional mathematical models, which include
syntrophy and inhibition [27, 28] and the model with five state variables studied in
[4, 15].

In this paper, we consider a six-dimensional mathematical model, which is an
extension, with generalized growth functions, of the three-tiered food-web studied by
Wade et al. [26]. For a description of this food-web, where the microorganisms in-
volved are chlorophenol and phenol degraders and hydrogenotrophic methanogen, see
section 4. Note that the three-tiered food-web is not a classical anaerobic digestion
process since the chlorophenol mineralization may occur under aerobic or anaerobic
conditions with different microbial consortia involved. For more details on the biolog-
ical significance of this food-web and its relation to the complete ADMI, the reader
is invited to refer to [26]. It has been shown in [26] that this model can have up to
eight steady states. Arguing that the Routh—Hurwitz theorem allowing for an explicit
analysis of the stability of steady states, is intractable beyond five dimensions, as it
was noticed in [14], the stability of the steady states were determined only numeri-
cally [26] using specific growth rates (see formulas (4.1)). Several operating diagrams,
which are the bifurcation diagrams with respect to the four operating parameters (i.e.
the dilution rate, the chlorophenol, the phenol and the hydrogen input concentrations)
have been numerically constructed in [26], showing the role, and the importance of
each operating parameter, in particular for the coexistence of all three species.

The model of [26] is extended in [16, 20] with general growth rates (see section 2
for the assumptions on the growth rates) and takes the form:

o = (mo(so,s2) — D —aog)xo
1 = (pi(s1,82) =D —a1)xy
(1.1) iy = (p2(s2) — D —az)xs
’ é() = D (Sbn — So) — ,u0(807 82)1'0
31 = D (Sin — 81) + ,Uzo(S(), 82)1'0 — ul(sl, 82){E1
52 = D (512n — 52) — W[Lo(SO, SQ)SCO + ,Ll,l(Sl, 52)1‘1 — /LQ(SQ)JEQ

where sg, s1 and sy are the substrate concentrations (chlorophenol, phenol and hy-
drogen, in the application); o, ©1 and x5 are the biomass concentrations; D is the
dilution rate; p; is the specific growth rate; si* is the input substrate concentration
in the chemostat; w is a yield coefficient; a; is the maintenance (or decay) rate for
i =20,1,2 and corresponding to chlorophenol, phenol and hydrogen, respectively. As
explained in [26], the chlorophenol degrader grows on both chlorophenol and hydrogen
and produces phenol. The phenol degrader consumes the phenol to form hydrogen,
which inhibits its growth. The hydrogenotrophic methanogen grows on the produced
hydrogen.
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ANAEROBIC DIGESTION MODEL 3

The mathematical analysis of (1.1), under various assumptions, is given in [8, 16,
20, 23]. The system (1.1) was studied in [20] in the case si' > 0 and si* = sl =0
where at most three types of steady states can exist. The necessary and sufficient
conditions of existence of the steady states are analytically determined, showing their
uniqueness, except for one of them, that can exist in two forms. When maintenance
is neglected (ag, a1 and ay are assumed to be zero), the six-dimensional mathematical
model can be reduced to a three-dimensional one and the stability of steady states
was analytically characterized. It has been also shown in [20] that the positive steady
state can be unstable, a fact that has not been described in [26]. Numerical analysis
has suggested the presence of a Hopf bifurcation emerging through the positive steady
state, with the chlorophenol input concentration as the bifurcating parameter. System
(1.1) was studied in [23] in the case without maintenance and persistence results were
analytically proved. Using numerical estimation, it is shown in [23] that the system
has a rich dynamics including Hopf, Bogdanov-Takens and Bautin bifurcations. The
three-tiered model of [26] was simplified in [8] by neglecting the part of hydrogen
produced by the phenol degrader (u1(s1, s2)z1 is not considered in the model) as well
as maintenance, which gives rise to a less realistic model. However, the existence and
stability of steady states were analytically studied and a global analysis is performed,
proving the asymptotic persistence of the three bacteria. The results of [20] were
extended in [16] in the case si* > 0 and s > 0. When the inflow of the three
substrates is included, the system can have at most eight types of steady states. The
necessary and sufficient conditions of existence of the steady states are analytically
determined when maintenance is included. The necessary and sufficient conditions of
stability are analytically determined only when maintenance is neglected.

Here, we focus on the analysis of the stability of all steady states of (1.1), and we
analytically characterize the stability, by using the Liénard-Chipart stability criterion,
in the case including maintenance, where the system cannot be reduced to a three-
dimensional one. We then generalize [26] by allowing a larger class of growth functions
and by giving rigorous proofs for the results on the existence and stability of steady
states. For this class of growth functions, we generalize [8, 16, 20, 23] by giving the
necessary and sufficient conditions of stability of steady states when maintenance is
included in the model.

This paper is organized as follows: in section 2, we recall the general assumptions
on the growth functions and the steady states of model (1.1). We give in section 3
the necessary and sufficient conditions of existence and stability of the steady states.
Next, in section 4, we give an application of our theoretical results to the three-
tiered model considered in [26]. We dedicate section 5 to discuss our results. In
Appendix A, we define some auxiliary functions used for the description of the steady
states with their conditions of existence and stability. The Liénard-Chipart stability
criterion and all the proofs are reported in Appendices B and C, respectively. In
Appendix D, the description of the bifurcation diagram according to the dilution rate
is supported by numerical experimentation. The bifurcation diagram according to the
chlorophenol input concentration is determined in Appendix E and it is supported by
numerical experimentation in Appendix F. Details and complements on the three-
tiered model considered in [26] are given in Appendix G. In Appendix H, we illustrate
some numerical simulations and some tables are given in Appendix I.

2. Assumptions and steady states. We consider model (1.1). Following [16,

20], we assume that the growth functions are continuously differentiable (C!) and
satisfy the following conditions:

This manuscript is for review purposes only.
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4 S. NOUAOURA, N. ABDELLATIF, R. FEKIH-SALEM, AND T. SARI

(H1) For all s > 0 and so > 0, 0 < po(sg, s2) < 400, to(0, s2) = 0, po(se,0) = 0.
(H2) For all s; > 0 and s2 > 0, 0 < p1(s1,82) < 400, 11(0,s2) = 0.

(H3) For all s3 > 0, 0 < pa(s2) < 400, pu2(0) = 0.

(H4) For all sg > 0 and s2 > 0, g—ﬁ(so,sz) >0, M(80782) > 0.
(H5)

(H6)

(HT7)

0so

H5) For all s; > 0 and sy > 0, g’:ll (s1,82) >0, g’:; (s1,82) < 0.
H6) For all so > 0, u5(s2) > 0.
H7) The function s — po(400, $2) is monotonically increasing and the function
S92 > f11(+00, s2) is monotonically decreasing.

Let ¥ the function defined in Table 8 of Appendix A. Then, we assume that:

(H8) When w < 1, the function ¥ has a unique minimum Sy = S2(D) on the
interval (s3,s}), such that g—i(sQ,D) < 0on (s,5;) and %(827D) >0 on (S2,s3).

All other auxiliary functions needed in the afterward results are provided in Ap-
pendix A. Under Hypotheses (H1) to (H6), system (1.1) can have at most eight types
of steady states whose components are given in Table 1, see Theorem 1 in [16]. Notice
that a steady state exists or is said to be 'meaningful’ if and only if all its components
are nonnegative.

TABLE 1
Steady states of (1.1). All functions are defined in Table 8.

S0, S1, S2 and xq, T1, T2 components

SS1 sp=sp,851=81,8 =8y andxo=0,21=0,22=0

in in D in
SS2  so=sg, s1 =81, s2 = Ma(D + az) and g =0, z1 =0, x2:m(52 —32)

s1=s+ s — 50 and s9 = s — w (52)“ - so), where sg is a solution of
Yo(so) = D + ap and xo = %ao (55n —s0), 1 =0,22=0
s0 = Mo(D + ao, s2) and s1 = M1 (D + ai1, s2), where sz is a solution of
S84 W(s2, D) = (1 —w)si + 51" + s
= %%(sg‘fso), T = %al(s{)nfsoJrsif’fsl),xz:O
S0 = SOO(D)7 s1 = Siln + Sion — S0, S2 = MQ(D + ag)
= Dfao (sf)“ - so), 1 =0, 22 = %@2 (812“ — 83— w (siO“ — so))
ssg 0= wo(D), s1 = p1(D), s2 = M2(D + az2) and zo = #ao (56" — s0),
6 D in in D in in in
T1= g (so — 80 + 8 731), T2 = 5y ((170.))(50 —80) + 810 — 81+ s5 732)

so = so* and s2 = s5° + si* — s1, where s1 is a solution of ¥1(s1) = D + a1

SS3

SS5

ss7 o
and o =0, 1 = Dfal (81 731), 9 =0
ggg S0 =50, s1=¢1(D), 52 = Ma(D + a2)

2 ) b ) )
and o =0, 1 = Drar (811“—81), T2 = pias (811“—514—5‘2“—32)

3. Mathematical analysis. In this section, the necessary and sufficient condi-
tions of existence and stability of all steady states are given in Table 3. Any reference
to steady state stability should be considered as local exponential stability, that is to
say, the real parts of the eigenvalues of the Jacobian matrix are negative. We need
the following notations:
Ezggs(SQ,Sg), F:gZS(SO,Sg), G:g{:ll (81752), H:—gl:;(sl,Sg),

I:N/Q(SQ)a J:U0(80782)a K:U1(31752)a L:U2(32)

(3.1)

We have used the opposite sign of the partial derivative H = —0u; /052, such that all
constants involved in the computation become positive. Using the Liénard-Chipart
stability criterion, the asymptotic stability of SS6 requires definitions and notations
that are given in Table 2. Now, we can state our main result.

This manuscript is for review purposes only.
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ANAEROBIC DIGESTION MODEL 5

TABLE 2
Liénard-Chipart coefficients for SS6. The functions E,F,G,H,I,J, K and L, defined by (3.1),

are evaluated at the components of SS6 given in Table 1. Notice that they are depending on the
operating parameter D.

c1 =3D+ (E+ Fw)xg+ (G+ H)xy + Txo

c2 = 3D* + (2D + J)(E +wF)zo + (2D + K)(G + H)z1 + Elzozs + Glzi12
+2D+ L)Iz2+ (E(G+ H) — (1 —w)FG)zox:

c3 = D3>+ D(D +2J)(E + wF)xo + D(D + 2K)(G + H)x1 + D(D + 2L)Ix»
+EI(D+ J+ L)xoxs + GI(D + K + L)x122 + EGlIxoz172 + (E(G + H)
—(1-w)FG)(D+ J + K)zoz1

cs = D*(E + wF)Jzo + D*(G + H)Kx1 + D*ILzs + EI(DJ + DL + JL)zoz2
+GI (DK + DL + KL) r1T2 + EGI(J + K + L)woxll‘g + (E(G —+ H)
—(1—w)FG)(DJ + DK + JK)zoz1

C; = DEIJLJ,’()QZQ =+ DGIKLLI}lLI,’Q =+ D(E(G =+ H) — (1 — UJ)FG)JKl‘Owl
+EGI (JK + JL + KL) zox122

Ce — EGIJKL:E()xle

2
ro = C1C2 —C3, T1 =Ci1C4 —C5, T2 = C370 — CiT1, T3 = C5T9 — C1C¢

2
T4 = T17T2 — T0T3, Ts = T3T4 — C1CeT2

Theorem 3.1. Assume that Hypotheses (H1) to (H8) hold. The necessary and

sufficient conditions of existence and local stability of the steady states are given in
Table 3.

Remark 3.2. Let’s recall that in [16] all steady states, except SS4, are unique.
If w > 1, when it exists, SS4 is unique. Its stability condition %(SQ,D) > 0 is
always satisfied.
If w < 1, assuming also that (H8) holds, and if (1 — w)si + si* + sl > ¢ (D), the
equation defining s in Table 1 has two solutions s3! < s32, such that g—s‘l; (331, D) <
0 and g—f; (532, D) > 0. We denote by SS4' the steady state of type SS4 correspond-

ing to s3' while SS4° corresponds to s52. When it exists, S54' is unstable. When
o

SS4? exists, its stability condition 5o (82, D) > 0 is always satisfied.

The comparison with Table 4 of [16] shows that, with the exception of SS6, the
stability conditions of the steady states are the same as in the maintenance-free
case. Indeed, by replacing in the stability conditions of SSj, j = 1,...,8, j # 6,
in Table 3 the maintenance terms a; by zero, for i = 0,1, 2, we find the conditions
given in Table 4 of [16]. Therefore, the maintenance does not destabilize these
steady states. Only their regions of existence and stability, with respect to the
operating parameters, can be slightly modified when maintenance is included in

the model.

From Table 3, we can deduce the following result.

Proposition 3.3.

If SS2 or SS3 or SS7 exists then, SS1 is unstable.

If SS6 exists then, SS2, SS4, SS5 and SS8 are unstable, when they exist.
If SS5 exists then, SS2, SS3 and SS8 are unstable, when they exist.

If SS8 exists then, SS7 is unstable, when it exists.

4. Applications to a three-tiered microbial ’food web’. In this section, we

consider the model of a chlorophenol-mineralising three-tiered microbial ‘food web’
in a chemostat as application of our mathematical analysis, in order to compare our
findings to the numerical results in [26]. Let Scn, Spn and Su, be the chlorophenol,

This manuscript is for review purposes only.
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6 S. NOUAOURA, N. ABDELLATIF, R. FEKIH-SALEM, AND T. SARI

Existence and stability conditions of steadT;]z;(ie?; of (1.1). The functions c3, cs5, r4 and rs are
defined in Table 2. All other functions are given in Table 8.
Existence conditions Stability conditions
m (s{)“, Sign) < D+ ao, 1 (siln,sign) < D+ a,
W2 (Slgn) <D+ a2

SS1 Always exists

SS2 2 (Sign) > D+ as si < o(D), s < p1(D)
M1 (sbn + s — 50,85 —w (sbn - so))<D + a1,
SS3 o (sb“, 3‘2’]) > D+ ao 53— wsp < Ma(D + a2) — wpo(D)

with s¢ solution of ¥o(so) = D + ao

(1 —w)sg’ + 81" + 55" > ¢1(D),
sot > Mo(D + ao, s2),

o4 s s > Mo (D + ao, s2) 1- w)sion + sl 4§t < ¢2(D),
-|-M1(D +a1,32) ¢3(D) >0, %(827D) >0

with s2 solution of equation

U(s2,D) = (1 — w)sy + s + s

56" > po(D),

s — wsh > Ma(D + az) — wpo(D)

(1 —w)sg* + s + 55" > ¢2(D),

SS6 si > wo(D), c3>0,¢5>0,74>0,15>0
56 + 51" > po(D) + ¢1(D)

SS5 s+ s < (D) 4 @1(D)

o s+ 85" < Ms (s, D + ao) '
SST 1 (811n7812n) >D+a; . ' “+M (D—|—CL1,M3 (56’17D+GO))7
si* + 85" < M2(D + a2) + ¢1(D)

s > p1(D),

SS8 ;
s+ 53" > @1(D) + M2(D + az)

st" < po(D)

phenol and hydrogen substrates concentrations. The specific growth rates take the
form:

_ Kkm,chSch SH
fo (SCh’ SH2) - KS,CZJF;ch KS,HQ,CQJrSH2 ’
(4.1) km phsph 1 km Ho SH2
fl (Sph> SHz) :Ks,ph+5'ph 1+Su, /K11y’ f2 (SHz) = Ks 1y+SH,

Let Xcn, Xpn and Xy, be the chlorophenol, phenol and hydrogen degrader concen-
trations; S, Sh and S}, be the input concentrations; Kdec,ch, Kdee,ph and Kdee 1, be
the decay rates. This model in [26] is described by the following system of differential
equations

Xch = (}/chfo (SC}M SHz) - D - kdec,ch)Xch
Xph = (Ypn/1 (Sph, Suz) — D — kdec,ph) Xpn
Xn, = Vi, f2 (Sny) — D — Kdee o) XH,
(4.2) {Sen =D (S — Sen) — fo (Sen, St,) Xen

Son =D (Sin = Spn) + 25 (1= Yan) fo (Sens Sttz) Xen = fi (Sphs Sttz) Xpi

Su, =D (S —SH,) — 3050 (Scn, St,) Xen+ 505 (1= Yon) f1 (Sphs Sty ) Xpn
_fZ(SHz)Xsz

where Yo, Yon and Yy, are the yield coefficients, respectively; 224/208 (1 — Yqy,) rep-
resents the fraction of chlorophenol converted to phenol; 32/224 (1 — Y,},) represents
the fraction of phenol that is transformed to hydrogen and 16/208 represents the frac-
tion of hydrogen consumed by the chlorophenol degrader. The biological parameter

This manuscript is for review purposes only.
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values, used in [26], are provided in Table 15. Following [20], the rescaling of the vari-
ables (G.1) and (G.2) can reduce (4.2) to the form (1.1), that is, the yields coefficients
in (4.2) are normalized to one, except one of them which is equal to w ~ 0.53. Under
this rescaling (G.1) and (G.2), the growth functions (4.1) take the form (G.3) keep-
ing their form of a double Monod, a Monod with product inhibition, and a Monod
kinetics, respectively, so that Hypotheses (H1) to (H8) are satisfied. Therefore, with
w < 1, Theorem 3.1 apply and give rigorous proofs for the results of [26], on exis-
tence and stability of steady states, which, for the most part, have only been obtained
numerically. See Appendix G for the details.

In the following, we consider S;i;ﬁ =0 and Sﬁ‘z = 2.67 x 107°, corresponding to
Fig. 3(a) in [26] and we fix SI = 0.1. Then, we determine the bifurcation diagram,
where the operating parameter D is the bifurcation parameter. Qur aim is to compare
our results to those of [26] and to see if there are interesting phenomena that were
not detected in the operating diagram depicted in Fig. 3(a) of [26], see Remark 4.2.
Using Theorem 3.1, we have the following result, which is supported by numerical
experimentation and is proved in Appendix D.

Proposition 4.1. Let Sg}‘l =0, Sﬁ’z = 2.67 x 107 and Sé‘}‘l = 0.1. In this case,
SS7 and SS8 do not exist. Using the biological parameter values in Table 15, the
bifurcation values d;, ¢ = 1,...,7 are provided in Table 4. The bifurcation analysis of
(4.2) according to D is given in Table 5. The bifurcation types at the critical values
0; are defined in Table 6.

TABLE 4
Critical parameter values 6;, fori=1,...,7 where Y is defined in Appendiz G, rs in Table 2
while all other functions are given in Table 8.

Definition Value

61 is the largest root of equation r5 = 0 0.010412
85 is the root of ¢o(D) — Sif, — (1 —w)Y S =0 0.068641
b5 is the root of ¢1(D) — Sif, — (1 —w)Y' S} =0 0.068814
04 is the root of S%{“Q +w (<p0(D) — YSgﬁ) — Ms(D+a2) =0 0.267251
05 is the root of (D) — Y SE =0 0.267636
66 = po (Y S, Sﬁ‘z) —ag 0.327130
07 = o (Sg;) — as 1.064526

TABLE 5

Ezistence and stability of steady states, with respect to D. The bifurcation values §;, 1 =1,...,7
are given in Table 4. The letter S (resp. U) means that the corresponding steady state is stable
(resp. unstable). No letter means that the steady state does not exist.

Interval SS1 SS2 SS3 SS4!  SS4%2  SS5  SS6
0<D<d U U U
01 < D < b9 U U S
0o < D < d3 U S

03 < D <y
04 < D < 05
05 < D < dg
0g < D < 67
57 <D

naccaacaca
nncaadca
cdonwnnn
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TABLE 6
Bifurcation types corresponding to the critical values of §;, i = 1,...,7, defined in Table 4.
There ezists also a critical value §* ~ 0.009879 < 01 corresponding to the value of D where the
stable limit cycle disappears when D is increasing.

Bifurcation types
6* Disappearance of the stable limit cycle
01 Supercritical Hopf bifurcation
d,  Transcritical bifurcation of SS42 and SS6
53 Saddle-node bifurcation of SS4! and SS42
64 Transcritical bifurcation of SS3 and SS5
65 Transcritical bifurcation of SS2 and SS5
0¢ Transcritical bifurcation of SS1 and SS3
67  Transcritical bifurcation of SS1 and SS2

Figure 4.1 shows the one-parameter bifurcation diagram of X, versus D in system
(4.2). The magnifications of the bifurcation diagram are illustrated in Figure 4.1(b-
c-d) showing the disappearance of the limit cycle at §*, the Hopf bifurcation at d;,
the transcritical bifurcations at do, d4 and d5 and the saddle-node bifurcation at ds.
In Figure 4.1, SS1 and SS2 cannot be distinguished since they have both a zero Xy-
component. As SS2 is stable and SS1 is unstable for D < d7, the X, = 0 axis is
plotted in blue as the color of SS2 in Table 7.

Xen (a) Xeh (b)
oz § oo eor]
00011 4 * /4
"
ooos ] 1/ 1 Ss42
14-SS6 -t
ooos {174 556 word b b W ___________
woorr I T 1 SS6
1SS4
11 3e-04 -
00003 1 2e-04 .
_L.Ss4 L.
! legafmmmmmmmmSmmsssssmssssssssEEE
: SS3 SS1 SS2 D SS1__SS2 SS3 D
o < T y T T T T T T T T 1 0e00 o ~T T T ~T T al
/1 %\1 02 3\0.4 o5 oo 07 oo oo 1 gan 12 00096 ooosn 5 oot 00102 o.on)\ 5. 0o 00108
57810263 048556 1
() (d)
Xecn Xt
0.0012 44> C Qi AS 5.5e-06 <> ch
__________ 5542 o SS3
L I S ——— 5e-06 |
0.001 4 w*‘ . SS 41
SS6 h 4.50-06
0.0002 o 1e-08 4
L1881 Ss2 ,  ss3 ‘, r D e [ 5S1 852 . ‘ ‘ D
oo 5 oo oumng oo v g, o g

Fi1G. 4.1. (a) Bifurcation diagram of X¢n versus D € [0,1.2] in model (4.2). (b) Magnification
on the appearance and disappearance of stable limit cycles for D € [0.0095,0.0108]. (¢) Magnification
on the transcritical bifurcation at D = 02 and the saddle-node bifurcation at D = 63 for D €
[0.0685,0.069]. (d) Magnification on the transcritical bifurcations for D € [0.2665,0.2685].

Remark 4.2. Not all of the behaviors described in Table 5 were reported in [26].
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TABLE 7
Colors used in Figures 4.1 and E.1. The solid (resp. dashed) lines are used for stable (resp.
unstable) steady states.

SS1  SS2 SS3 SS4t SS42 SS5 SS6
Red Blue Purple Dark Green Magenta Green Cyan

For S = 0.1, the operating diagram of Fig. 3(a) in [26] predicts only three possible
behaviors: the stability of SS2, the stability of SS3 and the bistability between SS3
and SS6. Note that the destabilization of SS6 via a Hopf bifurcation with emergence
of a stable limit cycle has not been observed in [26]. Moreover, the region of existence
and stability of SS5, which was depicted in Fig. 3(b) of [26] in the case where S}}, =
2.67x 1072, was not reported in Fig. 3(a) of [26]. Our results show that this region
also exists when Siﬁlz = 2.67x107%, and explain why it was not detected by the
numerical analysis given in Fig. 3(a) of [26]: SS5 occurs in a very small region since,
for Sé’fl = 0.1 it corresponds to §4 < D < §5, where 64 ~ 0.267251 and 05 ~ 0.267636,
with 65 — 64 of order 10~%. However, while from a mathematical point of view the
diagram shown in [26] is incorrectly labeled, in biological terms, such a small region
of SS5 would likely not be attained.

To compare our results to those achieved in [16], we determine the bifurcation
diagram in Appendix E according to the bifurcation parameter (1:?1 Further, numer-
ical simulations are presented in Figures 4.2 to 4.4 (see also Figures H.1 to H.4) to
illustrate our findings, where the bifurcation values o5, o and o* of S are provided
in Tables 10 and 12, respectively. We illustrate, in particular, the interesting three
cases where the steady states SS1, SS2, SS4! and SS4? are unstable:

e For S € (05,0*), the numerical simulations done for various positive initial
conditions permit to conjecture the global asymptotic stability of SS3 (see
Figure 4.2).

e For gﬁ € (0%, 04), the system exhibits a bistability with two basins of attrac-
tion: one toward the stable limit cycle and the second toward SS3. Figure 4.3
illustrates that the trajectories in pink and blue converge toward the stable
limit cycle in red, while the green trajectory converges toward SS3. For the
initial condition in Table 14, the time course in Figure H.1 illustrates the pos-
itive, periodic solution representing the coexistence of the three species. The
sustained oscillations prove the stability of the limit cycle. However, Figure H.2
shows the time course of the green trajectory in Figure 4.3.

e For Séﬁ > o0g, the system exhibits a bistability between SS6 and SS3. Figure 4.4
shows that the blue trajectory converges to the stable focus SS6, while the green
trajectory converges to SS3. Figures H.3 and H.4 illustrate the time courses
corresponding to the blue and the green trajectories in Figure 4.4, respectively.

Numerical simulations have shown that the stable limit cycle disappears at the
critical value o* € (05,06) as S decreases. Similarly to the numerical study of
the bifurcation diagram with respect to the parameter D in [23] in the case without
maintenance and s = si' = 0, we conjecture that in our case also the stable limit
cycle disappears through a saddle-node bifurcation with another unstable limit cycle
when S decreases.

5. Conclusion. In this study, we discussed the dynamics of three interacting
microbial species describing a chlorophenol-mineralising three-tiered ‘food web’ in
the chemostat (4.2), introduced by Wade et al. [26] following previous work on a
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2e-04 4

1.5e-04

XH2

1e-04

5e-05 o

§542

0e00

00012 0001 00008 00006 00004 00002 0

ch

Fra. 4.2. Case S =0.098 < o*: the solution of (4.2) converges to SS3.

2e-04

1.5e-04 4

XH,
1le-04 o
5e-05 o
Ss4? 5
0e00 T T - T . {—=70.002 Aph
0.0012 0.001 00008 00006 00004  0.0002 o

ch
Fic. 4.3. Case o* < Sg; = 0.0995 < o6 : bistability with convergence either to the stable limit
cycle (in red) or to SS3.

3e-04

2.5e-04 J

2e-04 J
Xu,

1.5e-04 ]

1e-04 ]

5e-05 J

0.001

X cp 00005

0
0.003

Fic. 4.4. Case o6 < Sé‘}‘l = 0.11 : bistability with convergence either to SS6 or to SS3.

two-tiered model [29]. The existence and stability of the steady states of model
(4.2) have been analyzed as a function of the operating parameters (input substrate
concentrations and dilution rate), using numerical tools and specific values of the
biological parameters.

In this paper, we gave a complete analysis of the dynamics of the model (1.1)
which generalizes (4.2) by allowing a larger class of growth functions. The existence
of the steady states was analytically characterized in [16] where it was shown that
model (1.1) can have up to eight types of steady states: the washout steady state
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denoted by SS1, six types of boundary steady states where one or two degrader popu-
lations are extinct denoted by SS2, SS3, SS4, SS5, SS7 and SS8, and a positive steady
state, denoted by SS6, where all microbial populations coexist. When they exist, all
steady states are unique, except the steady state SS4 where chlorophenol and phenol
degraders are maintained and the hydrogen degrader is eliminated.

Here, we focus on the stability of steady states. We have managed to characterize
the stability in this six-dimensional system, although it is generally accepted that
the Routh—Hurwitz theorem is intractable beyond five dimensions. For this, we have
used the Liénard-Chipart stability criterion to simplify the mathematical analysis by
reducing considerably the number of the Routh-Hurwitz conditions to check. For SS1,
SS2, SS3 and SS7, the stability conditions are determined explicitly. For SS4, SS5
and SS8, we explicitly characterize the stability conditions using the Liénard-Chipart
stability criterion. For SS6, the stability is given with respect to the signs of the
Liénard-Chipart coefficients by using numerical experimentation (see Appendix D) to
plot these coefficients, whose signs cannot be determined analytically. As shown in
Appendix G, our presentation of the existence and stability issue fully clarifies the
numerical study made in [26] on the three-tiered ‘food web’ model (4.2).

Our work extends all results on the stability of the existing literature [8, 16, 20, 23],
which were obtained only in the case without maintenance, where the six-dimensional
system (1.1) can be reduced to a three-dimensional one. We show that for SS4,
which can exist in two forms, at most one steady state can be stable, a fact that was
already noticed (when maintenance is not included in the model) in the particular
case without phenol and hydrogen input concentrations, studied in [20] and in the
general case, where these input concentrations are added, studied in [16].

We highlighted several possible asymptotic behaviors in this six-dimensional sys-
tem, including the bistability between the positive steady state and a boundary steady
state, or the bistability between a positive limit cycle and a boundary steady state,
so that the long term behavior depends on the initial condition. We proved that the
positive steady state of coexistence of all species can be unstable and we give numeri-
cal evidence for the supercritical Hopf bifurcation, in the case including chlorophenol
and hydrogen input concentrations. The possibility of the Hopf bifurcation of the
positive steady state was previously observed in [20] in the case without phenol and
hydrogen input concentrations.

In order to gain more insight into the behavior of the system, we give a bifurcation
diagram with the dilution rate as the bifurcating parameter (see Figure 4.1) showing
that one of the operating diagrams obtained numerically in [26] has omitted important
transition phenomena between steady states. If the dilution rate is too low, only the
chlorophenol degrader is maintained (SS3 is the only stable steady state). Increasing
slightly the dilution rate D, the system exhibits a bistability behavior where either
only the chlorophenol degrader is maintained (SS3 is stable) or the coexistence of
three microbial species may occur around periodic oscillations (SS6 is unstable and a
stable limit cycle exists). Increasing a little more D, the system exhibits a bistability
behavior where either only the chlorophenol degrader is maintained or the coexistence
of three microbial species occurs at the positive steady state (SS3 and SS6 are both
stable). Increasing further D, the system exhibits a bistability between only the
chlorophenol degrader and both the chlorophenol and phenol degraders (SS3 and SS42
are both stable). Rising a little more the value of D, only the chlorophenol degrader
is maintained. Then, only the chlorophenol and hydrogen degraders are maintained
(SS5 is the only stable steady state). Adding a little more, both the chlorophenol and
phenol degraders are eliminated from the reactor and only the hydrogen degrader is
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maintained, since Sg’z > 0 (SS2 is the only stable steady state). For higher dilution
rate, there is washout of all three microbial populations (SS1 is the only stable steady
state).

Our results show that with the exception of SS6, the maintenance does not desta-
bilize the steady states. To make our theoretical results useful in practice, it would
be necessary to have the description of the operating diagrams that give the regions
of existence and stability of the steady states, in the space of the operating parame-
ters. In a future work, we will use our results to determine analytically the operating
diagrams in the cases with and without maintenance. These operating diagrams will
also allow us to answer the delicate question of whether or not SS6 can be destabilized
by including maintenance terms. Even without maintenance, this steady state can
be stable or unstable depending on the values of the operating parameters. Does the
introduction of maintenance modify the boundary between the region of stability and
the region of instability, or does it make more complex phenomena appear?

Appendix A. Auxiliary functions. For the description of the steady states
given in Table 1, together with the statement of their conditions of existence and
stability, we need to define some auxiliary functions that are listed in Table 8. Using
Hypotheses (H1) to (H7), the existence and definition domains of these functions are
all relatively straightforward and can be found as in [20].

TABLE 8
Notations, intervals and auziliary functions.
Definition
s; = M;(y,s2) Let so > 0. s; = M;(y, s2) is the unique solution of
i=0,1 wi(si,s2) =y, forall 0 <y < p;(+o0,s2)

s2 = Ms(y) is the unique solution of

s2 = Ma(y) ua(s2) =y, forall 0 <y < po(+00)
55 = My (s0, 2) Let so > 0. so = M3(sp, 2) is the unique solution of

to(So,82) =z, for all 0 < z < ug(sp, +00)
sy = sh(D) st = s5(D) is the unique solution of p; (+00, s2) = D + a;, for all
i=0,1 D + ag < po(+00, +00), p1(+00,+00) <D + a3 < pi(400,0), resp.
Iy, Ip L={D>0:sy<si}, b={Del:s)<M(D+ay) <s}}
\I/(Sg D) \IJ(827D) = (1—W)Mo(D—Fao,Sg)—|—M1(D—|—CL1,82)—|—82,

’ for all D € I and s3 < s3 < s}
¢1(D) ¢1 (D) = s°<i?2f<sl \11(827 D), forall D € I
2 2

@2(D) ¢2(D) = U (M3(D + az), D), forall D€ I,
$3(D) ¢3(D) = 5L (My(D +as), D), for all D € I
Jo, 1 Jo = (max (0, s — s /w) ,s5), J1=(0,s)
1o (s0) Yo(s0) = po (50, 85" —w (s — s9)), for all sy > max (0, si! — s /w)
1(s1) Y1(s1) = py (51,85 + 5P — 1), forall 51 € [0, s + s3]
©i(D) ©0i(D) = M; (D + a;, M2(D + as)), resp., for all,
i=0,1 De{D>0:5<My(D+az)}, De{D>0:My(D+az) <s}

Appendix B. Liénard-Chipart stability criterion. Note that conditions
in the stability criterion of Liénard and Chipart (see Gantmacher [10], Theorem 11)
represent almost half that of the Routh—Hurwitz theorem which facilitates the study
of asymptotic behavior of dynamic systems especially for dimensions beyond five. It
is known that for a polynomial of degree four the Routh-Hurwitz conditions can be
written as in the following Lemma, see, for instance, Theorem 11 [6].
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Lemma B.1. Consider the fourth-order polynomial P(\) with real coefficients
given by:
P(A) = coM + 1 X3 + eoA? + esh + ¢y

All of the roots of the polynomial P(\) have negative real part if and only if
(B.1) c; >0, for i=1,3,4, and 7 =cs(cico —cocs) — cieq > 0.

The following Lemma gives the conditions of stability for a six-dimensional dynamic
system.

Lemma B.2. Consider the six-order polynomial P(\) with real coefficients given
by:
P(X) = coA® 4+ 1A% 4+ oA 4 303 4 4 \? + e\ + ¢,

All of the roots of the polynomial P(\) have negative real part if and only if
(B.2) ¢ >0, i=1,3,5,6, r4>0 and r5>0,
where r4 = ri79 — 113 and r5 = r374 — c1c675, With

To = €1Cy — CoC3, T1 = C1C4 — CoCs, To = C37g — 171 and 73 = 57 — Cicg.

Proof. From the Liénard-Chipart stability criterion, all of the roots of the poly-
nomial P have negative real part if and only if

(B3) ¢ >0, i=1,3,56, det(Az)>0, det(As) >0 and det(Ag) >0,

where Ag, A4 and Ag are the Hurwitz matrices defined by:

C1 C3 Ch 0 0 0

C1 C3 Cjy 0 Ch C2 Cq4 Cp 0 0

Az _ C1 C3 A4 _ Cop C2 C4 Cg AG _ 0 Ci1 C3 Cs 0 0
Co C2 ’ 0 C1 C3 Cjy ’ 0 Co C2 C4 Cp 0

0 Chp C2 C4 0 0 C1 C3 Cs 0

0 0 ¢ c2 cq4 cg

Conditions (B.3) are equivalent to
(B4) ¢ >0,i=1,3,5,6, 790 >0, rg =71ro — 1913 >0, 15 = rary — clcﬁrg > 0.

When all conditions (B.4) hold, the condition 75 > 0 implies that r3 > 0, that is,
csTg > Cgc% which implies that rqg > 0. Hence, conditions (B.4) are equivalent to
(B.2). O

Appendix C. Proofs.

C.1. Proof of Theorem 3.1. The existence of the steady states is proven in
[16]. The local stability of the steady states is determined by the eigenvalues of the
Jacobian matrix of system (1.1) evaluated at the steady state. The Jacobian matrix
of (1.1) corresponds to the 6 x 6 matrix:

J—D—ag 0 0 Exg 0 Fxqo
0 K—D—ay 0 0 Gz —Huxy
o 0 0 L—D—as 0 0 Txo
J = —J 0 0 —D—Ezo 0 —Fay ’
J —-K 0 FExqo —D—Gzxq Fxo+Hx,

—wJ K —L —wFExo Gz —D—wFzog—Hz1—Ix2
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where the functions E, F, G, H, I, J, K and L are defined by (3.1), and are evaluated

at the steady state. The stability of the steady state is investigated by analyzing the

real parts of the eigenvalues of 7, which are the roots of the characteristic polynomial.
For SS1, the characteristic polynomial is

Pl()\) = ()\ — )\1)()\ — )\2)()\ — )\3)()\ + D)g,
where A\ = g (sion, 312“) —D—ag, Ao = 11 (siln, SiQH) —D—a; and A3 = o (3‘211) —D—as.
Therefore, SS1 is stable if and only if Ay < 0, A2 < 0 and A3 < 0, that is, the stability
conditions of SS1 in Table 3 hold.
For SS2, the characteristic polynomial is
PQ()\) = ()\ — )\1)()\ — )\2)()\ + D)2()\2 + A+ 02),
where ¢y = D + Ixy, co = LIzo and
(Cl) )\1 = Mo (Sgl, MQ(D + 0,2)) - D - ap, )\2 = U1 (Siln7 MQ(D + ag)) —D — aq,

Since ¢; > 0 and ¢ > 0, the real parts of the roots of the quadratic factor are
negative. Therefore, SS2 is stable if and only if \; < 0 and A < 0. Since My and
M are increasing, these conditions are equivalent to the stability conditions of SS2
in Table 3.

For SS3, the characteristic polynomial is

Ps(A) = (A= A1) (A= X) (A + D)2 (N + c1 A + ),

where
A1 =1 (sbn — S0+ s, 55 —w (sbn — so)) —D—aq, Ay = po (512“—w (s})“—so))—D—ag,
c1 =D+ (E+wF)xzy and cg = J(F 4+ wF)xg, where sq is the solution in the interval
Jo of equation g (sg) = D + ag. Since ¢; > 0 and ¢y > 0, the real parts of the roots
of the quadratic factor are negative. Therefore, SS3 is stable if and only if A\; < 0 and
Ao < 0. The condition A; < 0 is the first stability condition of SS3 in Table 3. Since
M is increasing, the condition Ay < 0 is equivalent to
(C2) s —w(sg' —s0) < Ma(D+a2) <= o< (Ma(D+as)—sy) /w+sg.
As the function g is increasing, (C.2) is equivalent to
(03) 1/)0(50) < g ((MQ(D + ag) - SiQH) /w + Sz)n) .
From the definition of the function 1y together with the condition ¥o(sg) = D + ag
defining sg, we deduce that (C.3) is equivalent to

D+ ag < po ((M2(D + az) — s8) Jw + sg', M2(D + az)) .

Since Mj is increasing, this condition is equivalent to the second stability condition
of SS3 in Table 3.
For SS4, the characteristic polynomial is

PiA) =A=X)A+D) (M + X + X’ +csh+ )
where Ay = ps (s2) — D — ag with sy is defined in Table 1 and the coefficients ¢; for
i=1,...,4 are given by
1 =2D+ (E+wF)xo+ (G+ H)x1,
ey =D*+(E +wF)(D + J)xo+(G+ H)(D 4+ K)x1+(E(G + H)—(1-w)FG)xoz1,
c3 =D(E+wF)Jxg+ D(G+ H)Kz1 4+ (E(G+ H) — (1 —w)FG)(J + K)oz,
¢y =(E(G+ H) — (1 —w)FG)JKxzox;.
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From Lemma B.1, all of the roots of the fourth order polynomial have negative real
parts if and only if

(C.4) c; >0, for i=1,3,4 and 7 =cicac3 — cfal — cg > 0.
We always have ¢; > 0. Moreover, c3 > 0 and ¢4 > 0 if and only if
(C.5) E(G+H)-(1-w)FG >0.

Let us denote

A=G+H, B=SGZ0-alG 4yq ¢ = Grullp

Note that B > 0 if and only if condition (C.5) is satisfied. Then, we can write ¢;, for
i=1,...,4 as follows:

C1 = 2D+ (B+C)I’o +AI’1,

=D*+ (B+C)(D + J)xo + A(D + K)x; + ABxgxy,
=D(B+C)Jzog+ DAKz1 + AB(J + K)xoz1, ¢4 = ABJKzoz:.

We can write r; as follows:

r1=DJ [(D+ J)(B+C)* — B*J| 23 + D*A*Ka} + B*A*(B + C)(J + K)z}2? + B*A%(J + K)x{a}
+ BA[D(2J + K)(B+ C)? + CJ?(2B + C)] ajz1 + DBA*(J + 2K)zoa? + 3D? A Ka?
+D*J [3D(B +C)* + CJ(2B + C)| 23 + BA? [D(J + K)(5B + 3C) + C (J? + K?)] xla?
+DA[C(DC(2J + K) + CJ(J +2K) + DB(9J + 5K) + 2BJ?) + DB*(7J + 4K)] 2z
+ DA?[DB(4J + 7TK) + CK(2J + K) + DC(J + 2K)]zoz? + 2D*J(B + C)z + 2D*AK 2,
+ D?A[D(J + K)(5B + 3C) 4+ 2CJK|zoz1 + (D® + DBxo + DAz + BAzozy) (BJxg — AK1)?.

Hence, conditions (C.4) are veriﬁed if and only if (C.5) is satisfied. Let us prove that
condition (C.5) is equivalent to 2 T (s2,D) > 0. Let s > 0. Under (H4) and (H5),
we have

9 f3)
OMo (4 55) = — 29 (M (y, s2), 52) [a

-1
- 35; (M1 (y, s2), 52) [g‘;; (M (y, s2), 82)} , for all y € (0, p1 (400, 52)).

-1
o (Mo(y, 52),52)|  for all y € (0, o (+00,5)),

31\9/[21 (ya 82) =

Using (3.1), we obtain

Mo (D + ag, s9) = —L and B—M; (D + ay,s2) =

H
882 Os G-

Moreover, we have for all so € (32, ) and D € I,
(C.6) g;l’ (s2,D) = (1 — w) %o 2(D +ao, s2) + 5 a0, (D +ai,s2) + 1.

Using (C.6), it follows that

E(G+H)—(1—w)FG
gi(82,D)=—§(1—w)+g+1: (+)EC(; JFG

Since E and G are positive, condition (C.5) is equivalent to g—f; (s2,D) > 0. Conse-
quently, since u9 is increasing, it follows that, SS4 is stable if and only if

(C.7) S92 < Ma(D +ay) and gs (s2,D) > 0,
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which is equivalent to the stability condition in Table 3 because this first condition
of (C.7) is equivalent the first and the second one of SS4 in Table 3 (similarly to the
proof of Theorem 2 in [16]).

For SS5, the characteristic polynomial is

P5(/\) - (/\ - )\1)(/\ + D) ()\4 + Cl)\B + 62)\2 + 03/\ + C4) 3

where Ay = py (s + s — Mo(D + ag, Ma(D + az)), M2(D + az)) — D — aq and the
coeflicients ¢; are given by:

1 =2D+ (F+wF)xg + Ixa,
co = D* + (E+wF)(D + J)xo + I(D + L)zy + Elzgxs,
c¢s = D(E+wF)Jxg+ DILxs + EI(J + L)zoze and ¢y = EIJLzgzs.

From Lemma B.1, the roots of the fourth order polynomial are of negative real parts
if and only if

(C.8) c; >0, for i=1,3,4 and 7 = cicocs — ey — c% > 0.
We always have ¢; > 0 for i = 1, 3,4. We can write r; as follows:

r1=DJ [(D+ J)(E +wF)® — E*J] 2} + D*I*La3 + E*I*(E + wF)(J + L)z}23 + DEI*(J + 2L)z}
+ E*I*(J + L)x3a3 + EI [D(2J + L)(E + wF)? + wFJ*(2E + wF)] xjx2 + 3D*I* La}
+ D*J [3D(E + wF)? 4+ FwJ (2E + wF)]| 2 + EI* [D(J + L)(5E + 3wF) + Fw (J* + L?)] 2323
+ DI [Fw (DFw(2J + L) + FwJ(J 4+ 2L) + DE(9J + 5L) + 2EJ?) + DE*(7J + 4L)] 22
+ DI?*[DE(4J + 7L) + FwL(2J + L) + DFw(J + 2L)| 2ov3 + 2D*J(E + wF)xg + 2D*I Lz,
+ D?I[D(J + L)(5E + 3wF) 4+ 2FwJL] zoxs + (D* + DExo + Dlzs + Elzgxs) (EJzg — I L),

Thus, r1 > 0. Consequently, the conditions (C.8) are satisfied. Therefore, SS5 is
stable if and only if A; < 0. Since M; is increasing, this condition is equivalent to the
stability condition of SS5 in Table 3.

For SS6, the characteristic polynomial is given by:

Pﬁ(/\) =6 + (21/\5 + CQ/\4 + 63)\3 + 64)\2 + s\ + cg,

where ¢;, t = 1,...,6 are defined in Table 2. From Lemma B.2, all of the roots of the
sixth order polynomial have negative real parts if and only if ¢; > 0,7 =1,3,5,6 and
r; > 0, j = 4,5, where ¢; and r; are listed in Table 2. Since c¢; and cg are positive,
the proof is complete.

For SS7, the characteristic polynomial is

Pr(A) = (A= A)A = )A+ D)\ + 1A+ ),

where A\ = g (s})n,siln — 81+ 312n) — D —ag, Ao = p2 (siln — 51+ si2n) —D—ag, c1 =
D+ (G + H)x; and co = K(G + H)xy where s is the solution in the interval J; of
equation 97 (s1) = D + ay. Since ¢; > 0 and ¢ > 0, the real parts of the roots of
the quadratic factor are negative. Therefore, SS7 is stable if and only if A\; < 0 and
Ao < 0. Since the functions My and Mj are increasing, the conditions A\; < 0 and
Ao < 0 are equivalent to

(C.9) 51> 80+ s — M3(si', D +ag) and  s1 > s+ sP — Mo (D + ay).

This manuscript is for review purposes only.
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Since the function v is increasing, (C.9) is equivalent to
1[)1(81) > '(/11 (Slln + Sizn — Mg(s})“, D + ao)) s ¢1(81) > ’1/11 (Slln + SiQH — MQ(D + az)) .

From the definition of the function ; together with the condition ¥1(s1) = D + a;
which defines s, the preceding conditions are equivalent to

1 (51111 —+ 5i2n — Mg(s%)“, D+ (10), Mg(s%)“, D+ ao)) <D+ ai,
I (siln + s — My(D + ag), My(D + az)) < D + a;.

Since M is increasing, these conditions are equivalent to the stability conditions of
SS7 in Table 3.
For SS8, the characteristic polynomial is

Pg(/\) = (/\ - )\1)(/\ + D) ()\4 + Cl)\3 + Cg)\2 + 03/\ + C4) s
where A1 = g (sion, My (D + a2)) — D — ag and the coefficients ¢; are given by:

c1=2D+ (G+ H)xy + Iz,
co =D*+ (G+ H)(D + K)xy + I(D + L)xy + Gl 29,
cs=D(G+ H)Kz1+ DILxs+ GI(K + L)x1ze and ¢4y = GIKLzxs.

From Lemma B.1, the roots of the fourth order polynomial are of negative real parts
if and only if

(C.10) c; >0, for i=1,3,4 and 71 =cicoc3 — 0?04 — c?), > 0.
We always have ¢; > 0, for ¢ = 1, 3,4. We can write r; as follows:

r1 =DK [(D+ K)(G+ H)® — G°K| o} + D*I*Laz} + G*I*(G + H)(K + L)2323 + G*I*(K + L)a%x3
+GI [D2K + L)(G + H)? + HK*(2G + H)] 2323 + DGI*(K + 2L)x 23 + 3D 1Lz}
+ D?K [3D(G + H)* + HK(2G + H)| o} + GI? [D(K + L)(5G + 3H) + H (K* + L?)] 2323
+ DI [H (DH(2K + L) + HK (K + 2L) + DG(9K + 5L) + 2GK?) + DG?*(TK + 4L)] z}>
+ DI? [DG(4K +7L) + HL(2K + L) + DH(K + 2L)| z12% + 2D*K (G + H)xy + 2D*I Las
+ DI [D(K + L)(5G + 3H) + 2HK L] 3125 + (D* + DGa1 + DIzy + GIz132) (GKz1 — I L),

Thus, r1 > 0. Consequently, the conditions (C.10) are satisfied. Finally, SS8 is stable
if and only if A; < 0, that is to say puo (SB“,MQ(D —|—a2)) < D + ag. Since M is
increasing, this condition is equivalent to the stability condition of SS8 in Table 3.

C.2. Proof of Proposition 3.3. If SS2 exists then, its condition of existence
Lo (512“) > D + ag holds. Therefore, the condition s (512“) < D + ay of stability of
SS1 is not satisfied.

If SS3 exists then, its condition of existence pq (s})“, si2“) > D+ag holds. Therefore,
the condition s (s, s5*) < D + ag of stability of SS1 is not satisfied.

If SS7 exists then, its condition of existence pq (sif‘, si2“) > D+aq holds. Therefore,
the condition 4y (s, s5) < D+ a; of stability of SS1 is not satisfied.

If SS6 exists then, the conditions

(1—w)sg + s + 85 > da(D), sg* > @o(D), s + s1* > @o(D) + ¢1(D)

This manuscript is for review purposes only.
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hold. Therefore, the condition si < (o (D) of stability of SS2 or SS8 is not satisfied,
the condition (1 — w)si® + sl + sl < ¢5(D) of stability of SS4 is not satisfied, and
the condition si' + sl < ¢o(D) + 1 (D) of stability of SS5 is not satisfied.

If SS5 exists then, its conditions of existence

s> @o(D) and  sY —wsl > My (D + ag) — wipo(D)

hold. Therefore, the condition sl < ¢o(D) of stability of SS2 or SS8 is not satisfied
and the condition si' —wsi < My(D+as) —wpo(D) of stability of SS3 is not satisfied.

If SS8 exists then, its conditions of existence s + si' > 1(D) + Ma(D + as)
holds. Therefore, the condition si® + si* < ¢1(D) 4+ Ma(D + az) of stability of SST7 is
not satisfied.

Appendix D. Proof of Proposition 4.1.  We assume that the biological
parameter values in model (4.2) are provided in Table 15. We assume that ngl =0,
Sif, = 2.67x107° as in Fig. 3(a) of [26]. We assume that S} = 0.1. As said in
Section 4, Theorem 3.1 applies to model (4.2). Using the change of variables (G.2)
and Table 3, SS7 and SS8 do not exist when ;‘}1 = 0. Moreover, the necessary and
sufficient existence and stability conditions of steady states of (4.2) are summarized
in Table 9.

TABLE 9
Existence and local stability conditions of steady states of (4.2), when S;‘L = 0. The functions

i are gwen in (G.3) while c3, c5, T4 and r5 are defined in Table 2. All other functions are given
in Table 8 and Table 16.

Existence conditions Stability conditions
SS1  Always exists 1o (Y in S’g‘z) < D+ ao, p2 (Sg‘z) < D+ a2
SS2 2 (Slﬁ;) > D+ as YS:;}‘] < (po(D)

1 (YS?Q — 50, Slifz —w (Y in_ 50)) <D+a
511?2 — wYSéE < MQ(D + CLQ) — wtpo(D)
with s¢ solution of ¥o(so) = D + ao

$S3 po (YSH, Sit,) > D + ao

(1 - w)YSE + S, > ¢1(D),
YS® > Mo(D+ao, s2)+Mi(D4ay,s2) (1 —w)YSH + Sit, < ¢2(D), ¢3(D) >0
with s2 solution of %(52, D)>0

U(s2, D) = (1 —w)YSH + Si,

Y S > wo(D),

Sit, — wY S > Ma(D + az) — wpo(D)
(1 —w)YSH + Sit, > ¢2(D),

Y Sk > @o(D) + ¢1(D)

SS4

SS5 Y S < wo(D) + ¢1(D)

SS6 c3>0,¢c5>0,74>0,75 >0

SS1 always exists and it is stable if and only if
D> po (YSH,Si,) —ao =08 and D > py (Si)) — az = 7.

Thus, SS1 is stable if and only if D > max(dg,d7) = d7 (see Table 4 for all critical
parameter values ¢;, ¢ = 1,...,7). From Table 9, SS2 exists if and only if D < §7.
From the eigenvalues A\; and Ay defined by (C.1), we deduce that SS2 is stable if and
only if

Fi(D) = po (YS}, Ma(D +a3)) =D —ag <0 <= <D <07

where J5 is the solution of equation Fy(D) = 0 (see Figure D.1). SS3 exists if and

This manuscript is for review purposes only.
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F1 (D)

Fic. D.1. Stability of SS2 for all D € (d5,87): change of sign of the function Fi(D).

only if D < §g and it is stable if and only if
Fy(D) ==y (SRY — 50, Sit, —w (SY — s0)) — D — a1 <0,
F3(D) := Sif, + w (po(D) = YS§) — Ma(D + az) <0,

that is, D < d4, where d4 is the solution of equation F3(D) = 0 (see Figure D.2).
From Remark 3.2, the system can have at most two steady states of the form SS4

0.006

‘ % F3(D)

0.004

0.002

Fa(D o = oD
0z 2(D) 04 d6

0.002
-0.004

-0.006

-0.4 -0.008

Fic. D.2. Stability of SS3 for all D < §4: signs of the functions Fa(D) and F3(D).

denoted by SS4! and SS42 as w ~ 0.53 < 1. Their first existence condition in Table 9
holds if and only if

Fy(D):=¢1(D) - Sif, — (1 —w)YSE <0 < D<é

where d3 is the solution of equation Fy(D) = 0 (see Figure D.3(a)). Their second
existence condition holds for all D < 3, since the straight line of equation y = Y5
is above the curve of the function y = M, (D + ao,sgi) + My (D + al,sgi), for i =
1,2, which correspond to SS4' and SS42, respectively, (see Figure D.3(b)). From

(2) oors Y (b) _ygin
F4(D) Y= ch
0.014
VES
0.08 0.013
0.012
0.06
o011
@y, s*1
s,
e 0.010 > 85
0.009
002 0.008 :
*2
-2 Di+ a1,55%)
0007y:M0(D+U40752)+M1( H ’
0.1 0.2 0.3 0.4 D 0:000 0.01 0.02 0.03 0.04 0.05 0.06 3
63 2 3 . 3 .05 6 63

Fic. D.3. Emistence of SS4 for all D < d3: (a) change of sign of the function Fa(D), (b) the
green line of equation y = Y S]} is above the red and blue curves of the functions Mo (D + ao, sgl) +
My (D +aq, sgi), i =1,2, respectively.

Remark 3.2 and Table 9, SS4! is unstable for all 0 < D < d3 while SS4? is stable if
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and only if
F5(D) := ¢2(D) = Sif, = (1 =w)YS; >0 and  ¢3(D) >0,

6 that is, D € (02, d3) where 0z is the solution of equation F5(D) = 0 (see Figure D.4).
Indeed, F5(D) > 0 for all D € (d2,d3) and ¢3(D) > 0 for all D € (d5,03) where
d% ~ 0.057865 is the solution of equation ¢3(D) = 0 such that 65 < ds.

S e |

N DN
3

(a) (b) (c)
F5(D) F5(D)

obse s 0.0657 0.061

0.000005

AV
F1G. D.4. Stability of SS4 for all D € (62,03): (a) Curve of the function F5(D). (b) Magnifi-
cation of F5(D) for D € [0.0685,0.0688]. (c) Curve of the function ¢3(D).

ot
]
o

SS5 exists if and only if Fy (D) > 0 and F3(D) > 0, that is, 4 < D < d5. SS5 is
stable if and only if

Fs(D) := po(D) + ¢1(D) — YSéﬁ > 0,

that is, for all D € (44, d5) (see Figure D.5).

(@) (b)
014
i Fs(D)
oooq___ . Fg
012 Fs(D)
0 0.04
000 0.03
0.04
0.024
0.0,
0.01
T o2 /4‘\03 D D
-0.02 54 S5 02665 02670 02680

5 5
Fic. D.5. Stability of SS5 for all D € (é4,85) and existence of SS6 for all D < d2: (a) curve
of the function Fg(D). (b) Magnification of Fs(D) for D € [0.266,0.268].

530 SS6 exists if and only if F5(D) < 0 and Fg(D) < 0, that is, for all D < do where
531 0g is the solution of the equation F5(D) = 0 (see Figure D.4(a-b) and Figure D.5).
532 Indeed, F5(D) < 0 for all D < d2 and Fg(D) < 0 for all D < §J where ¢4 ~ 0.113033
533 is the solution of equation Fg(D) = 0 such that dy < §5. To determine the stability
534 of SS6, the functions c3, ¢5, r4 and r5 are plotted with respect to D < §,. Figure D.6
535 shows that c3(D), ¢5(D), r4(D) and r5(D) are all positive if and only if §; < D < 62
536 where 1 ~ 0.010412 is the solution of equation r5(D) = 0.

To give a numerical evidence of the Hopf bifurcation occurring for D = 47, we de-
termine numerically the eigenvalues of the Jacobian matrix of system (4.2) at SS6 and
we plot them with respect to D. Figure D.7(a-b) shows that two eigenvalues denoted
by A1(D) and A2(D) are real and remain negative for all D € [0,d3). Figure D.7(c)
shows that the two other eigenvalues A3(D) and A4(D) form a complex-conjugate pair
denoted by

)\3,4(D) = 04374(D) + ’L‘ﬁ374(D), forall D € [O, 5*),
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Fic. D.6. (a-b-c-d) Curves of the functions c3(D), c5(D), ra(D) and r5(D) for 0 < D < d3.
(e) Magnification of the curve of ra and rs for D € [0,0.02].
(a) (b)
D
02

~0.02 100

D

001 002 | 003 004 005 0.06

b2

001 0.02 003 | o004 0.05 0.06

~0.04 2004
0.06

3004 >\2
~0.08
~0.10
—0.12

~0.14

o.16

(d)

0.014

~0.02

002 003 004 005 006

0.04

~0.06
~0.01

0.08

0.02
~0.10

“0.12 -0.03

Fic. D.7. The eigenvalues of the Jacobian matrixz at SS6 as a function of D, when Sérﬁ =0.1,
S;’i} =0 and Siﬁ‘Q =2.67x107°. (c-d) The real parts as s and ase for D € [0,5%).

where the real part a3 4 remains negative and 0* ~ 0.068504. Then, they become
real, negative and distinct for all D € (6*,d2). Similarly, Figure D.7(d) shows that
the two last eigenvalues \5(D) and A\g(D) form a complex-conjugate pair denoted by

)\576(D) = 045,6(D) + iﬁ576(D), forall D e [O, 5*),

where the real part as ¢ is positive for all D € [0, 1) and negative for all D € (61, 6).
Then, for all D € (§*,d3), they become real, negative and distinct. At the particular
value D = ¢y, the pair A5 (D) is purely imaginary such that asg(d1) = 0, with
B5.6(61) # 0. Moreover, one has

dass (51) < 0.

This is consistent with Figure 4.1(b) showing that, as D decreases and crosses dy,
the steady state SS6 becomes unstable and we have a supercritical Hopf bifurcation,
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leading to the appearance, from the steady state SS6, of small-amplitude periodic
oscillations.

Appendix E. Bifurcation diagram with respect to Sé‘ﬁ In the following,
we consider ;‘L = 0 and Sjf, = 2.67 x 1077, corresponding to Fig. 3(a) in [26] and
we fix D = 0.01. Then, we determine the bifurcation diagram, where the input con-
centration S is the bifurcation parameter. This choice for the operating parameters
is identical to that in [16] excepted that we have added the microbial decay terms,
as in [26]. Our aim is to compare our results to those of [26] and to see if there are
interesting phenomena that were not detected in the operating diagram depicted in
Fig. 3(a) of [26], see Remark E.2. Our aim is also to see the effects of mortality on the
behavior of the process and to compare our bifurcation diagram to the one depicted in
[16], see Remark E.3 below. Using Theorem 3.1, we have the following result, which
is supported by numerical experimentation and is proved in Appendix F.

Proposition E.1. Let Eﬁ =0, S%{HQ = 2.67 x 107° and D = 0.01. In this case,
SS7 and SS8 do not exist. Using the biological parameter values in Table 15, the
bifurcation values o;, i = 1,...,6 are provided in Table 10. The bifurcation analysis
of (4.2) according to S is given in Table 11. The bifurcation types at the critical
values o; are defined in Table 12.

TABLE 10
Critical parameter values o;, for i =1,...,6 where Y is defined in Appendiz G, r5 in Table 2
while all other functions are given in Table 8. Note that 01 < 03 < 04 < 02 < 05 < 06, compare
with Table 5 in [16].

Definition Value

o1 =My (D+ao,S%)/Y 0.003173
oy = (¢1(D) — Sit) /(1 —w)Y) 0.029402
o3 = ¢o(D)]Y 0.013643
o4 = (SH, — Ma(D + az) + wpo(D))/(wY)  0.013985
o5 = (¢2(D) — St )/ (1 —w)Y) 0.033292

o¢ is the largest root of equation r5 = 0 0.1025

TABLE 11
Existence and stability of steady states, with respect to Sé'}‘) The bifurcation values o;, i =
1,...,6 are given in Table 10.

Interval SS1  SS2 SS3  SS4!  8S42  SS5 SS6
0<SG <o1
o1 < Sérﬁ < 03
03 < Sérﬁ < 04
o4 < S(‘:?l < 09
o9 < (1:?1 < 05
o5 < gﬁ < 0g
o < Sérﬁ

ccocccacaa
ccccacun
nnnncd

U U
U U U
U U

Remark E.2. As explained in Remark 4.2, the operating diagram of Fig. 3(a) in
[26] for D = 0.01 does not accurately describe the transition from the region labeled
SS2 (corresponding to the stability of SS2) to the SS3 region (corresponding to the
stability of SS3). Our results show that this transition is via a SS5 region, which is very
thin, since it corresponds to o3 < Sér}‘l < o4, where o3 ~ 0.013643 and o4 ~ 0.013985.
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TABLE 12
Bifurcation types corresponding to the critical values of o;, i = 1,...,6, defined in Table 10.
There exists also a critical value o* ~ 0.099295 € (05,06) corresponding to the value of S} where

the stable limit cycle disappears when S(‘:E is decreasing.

Bifurcation types
o1 Transcritical bifurcation of SS1 and SS3
o2 Saddle-node bifurcation of SS4' and SS42
o3 Transcritical bifurcation of SS2 and SS5
o4 Transcritical bifurcation of SS3 and SS5
o5 Transcritical bifurcation of SS4' and SS6
o¢ Supercritical Hopf bifurcation
o* Disappearance of the stable limit cycle

This region was missing in Fig. 3(a) in [26], since o4 — 03 is of order 10~%. Indeed,
the limitations of the operating diagram in Fig. 3(a) in [26] are due to the numerical
resolution: the stability of SS5 occurs in a very small region and may not be detected
if the step size was for example an order of magnitude greater than o4 — o3.

Figures E.1 and E.2 show the one-parameter bifurcation diagrams of X, and
Xp, versus S in system (4.2), respectively. The magnifications of the bifurcation
diagrams are illustrated in Figure E.1(b), Figure E.2(b) and Figure E.3 showing the
transcritical bifurcations at o1, o3, 04 and o5, the saddle-node bifurcation at oo, the
Hopf bifurcation at g and the disappearance of the cycle at ¢*. In Figure E.1(b),
SS1 and SS2 cannot be distinguished since they have both a zero X.,-component. As
SS2 is stable and SS1 is unstable for g‘l < o3, the X, = 0 axis is plotted in blue as
the color of SS2 in Table 7. In Figure E.2(b), SS1 and SS2 are distinguished but it is
not the case for SS1 and SS3, since they have both a zero Xp,-component. As SS3 is
stable and SS1 is unstable for SI > o4, the Xy, = 0 axis is plotted in purple as the
color of SS3 in Table 7.

a b
aefodfxch ( ) zaefosfxc}l ( )
220064 .
e P P ]
. 2e-06 PR
4 .
6e-04 .- - 1.8e-06 - "
e 1.6e-06 o '
se-04 . h
Phd 1.4e-06 o N
P '
S842.-° se-o6 ] :
30-04 1 " '
- 8e-07 o L} N 5
L. 1SS3 SS5
2e-04 1 L. Ge-07 '
< .-°536 se-07] H
- Bt Sy :
\ SS4 20-07] '
SS1SS2S8S3 SS1SS2;
0e00 ~r - ™ T ~r - ™ T *r 0e00 - 1
001 007‘ 002 003 004 005 jg9s 007 005 009 o3  omu © 0002 _ 0004 000G  000B_n001 0012 0014 001 0018
o
o3 o4 9295 Sen 0796 1 Seh 0304

Fic. E.1. (a) Bifurcation diagram of Xy, versus S € [0,0.11] in model (4.2) showing the ap-
pearance and disappearance of stable limit cycles. (b) Magnification on the transcritical bifurcations
for S € [0,0.018].

Remark E.3. As explained in Remark 3.2, with the exception of SS6, the main-
tenance does not destabilize the steady states. Only their regions of existence and
stability, with respect to the operating parameters, can be modified. For SS6, it is
more difficult to answer the question of whether or not it can be destabilized by in-
cluding maintenance terms. The bifurcations diagrams depicted in Figures E.1 to E.3,
and the results given in Proposition E.1, permit to answer this question at least for
the following values of the operating parameters Sli)‘fl =0, Sﬁ‘z =2.67x107% D =0.01
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Xu, (a) w011 X, (b)
L6e-04 4 5.5e-07 - SS2
1.4e-04 5e-07 o
ase-07|
1.26-04 | SS5
se-o7 |
1e-04 ‘ ase-07 |
se-o7 |
se-0s |
250071
se-0s | 2e-07-|
se-05 996 150-07 |
me 1e-07 -
2e-05-]
1 as1laaa2 Se-08 3
SS18S2SS3 SS4°SS4 SS1 SS3
s | e e P S oc00 -t , . . - - \
007 oofiRote o002 oos  oos jege o007 oos oo  op  ou o ochgjocs oo  oms _eh ooz  oou oow  oow
o3/ \og 9295 Sen 0706 Sen 0304

Fic. E.2. (a) Bifurcation diagram of Xy, versus S € [0,0.11] in model (4.2). (b) Magnifica-
tion on the transcritical bifurcations for S(‘:E € [0,0.018].

X (a) Xn (v)
-------- teeor] VH2
1ee-0ad _aa="
16004 ] SS42 L.--0T Lae-04
1404 Sl SS6 1.26-04 -
L L R T P
1.26-04 - sS4 to0ad o .
SS6 1
1e-04
8e-05
8e-05 -
ce-05 |
Ge-05 -
4e-05 |
40-05
oo ] 2e-05 | s
SS1SS2, SS3 . SS1SS2, SS3 SS4°SS4~° .
0200 ™ T g = = = 3 0e00 Tk T — “r - -
0028 0020 o, 003 0031 iy, 0032 003 . 0034 003 0.098 00% ¥ 01 0101 Ginoiz g 0103 0.104 0.105
2 sin 5 Sah 6

Fia. E.3. (a) Magnification on the saddle-node bifurcation at S = o2 and the transcritical
bifurcation at S = o5 for S € [0.028,0.035]. (b) Magnification on the limit cycles for Sil €
[0.098,0.105].

and Sé‘ﬁ > 0. The comparison of the results obtained in Table 11 with those given
in Table 6 of [16] shows only minor changes in the bifurcation values o;, i = 1,...,6.
Therefore, even for SS6, the maintenance does not destabilize the system: only the
regions of stability, with respect to the operating parameters, are slightly modified.
Note that the change of the bifurcation values o; is predictable since their formulas
in Table 10 involve the added decay terms. However, the saddle-node bifurcation at
o9 arises after and not before the transcritical bifurcations at o3 and o4 as in [16].

Appendix F. Proof of Proposition E.1. As said in Section 4, Theorem 3.1
applies to model (4.2). From Theorem 3.1 and the change of variables (G.2), SS7 and
SS8 do not exist since ;‘;1 = 0. The necessary and sufficient existence and stability
conditions of all other steady states are summarized in Table 9. Since the second
stability condition of SS1 in Table 9 does not hold

(F.1) p2 (Si,) ~1.0845 > D + ay = 0.03,

SS1 always exists and is unstable. Since the existence condition of SS2 in Table 9
holds (see inequality (F.1)), SS2 exists and is stable if and only if

< 9o(D)/Y =:03.
SS3 exists if and only if

g}ll > My (D‘FCL(),S%_E) /Y =.01.
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Let F (S2) be the function defined by
(F.2) F(SB) = p1 (SRY — s0, i, —w (SRY —s0)) .

The first stability condition of SS3 in Table 9 holds for all S' > o1, that is, F' (SI}) <
D + ay since the maximum of F is smaller than 0.0013 while D + a; = 0.03 (see
Figure F.1). From the second stability condition in Table 9, SS3 is stable if and only
if

> (SH, = Ma(D + as) +wpo(D)) /(wY) =: 04.

y = F(Sc)

0.0010 0.0010

= F(S&)

0.0005 0.0005

in i
Sch in

o 0.02 0.04 0.06 0.08 0.10 0, 200000 400000 600000 800000 1000000 ch
o1 g1

Fic. F.1. Curve of the function y = F (Sé?l) defined by (F.2).

From Theorem 3.1, the system can have at most two steady states of the form
SS4 denoted by SS4' and SS42 as w ~ 0.53 < 1. Their first existence condition in
Table 9 holds if and only if

S > (91(D) - S,) /(1 - w)Y) = o2,

Their second existence condition holds, for all S € [o9,0.11], since the straight line
of equation y = SIY is above the curves of the functions y = My (D + ag, s3°) +
M; (D + ay, s3'), for i = 1,2, respectively (see Figure F.2). Thus, SS4' and SS4?
exist and are unstable for all Si}, > o9 since the second stability condition does not
hold where ¢3(D) ~ —1996.917 < 0.

ooisq Y

o010 y = Mo (D+ao,s3") + M1 (D+az,s3")

0.005

y = Mo (D + ao, s3%) + M1 (D + a1, s3%)

gin
0.02 o 0.04 0.06 0.08 0.10 ch
2

Fic. F.2. The green line of equation y = YS;E is above the red and blue curves of the functions
Mo (D + agp, s%‘) + My (D + a1, s’éi), for i = 1,2, which correspond to SS4' and SS42, respectively.

SS5 exists if and only if o3 := ¢o(D)/Y < S} < 4. When it exists, SS5 is stable
since

N < g4 ~0.013985 < (po(D) + ¢1(D))/Y =~ 0.02304.
SS6 exists if and only if

i > DS gy~ 0.033202, ST > 221D 02304,
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(a) (b) (c)
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0034 o 0036 0037 0038 0039 0040
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004 005 006 007 008 009 oo ol 004 005 006 007 008 009 010 011  -0.000005
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0034 0:035_ 0036 0037 0038 0039 0040 .
in
10000,
“00{T5 )
ch
00536 | 009 00346 | 00350
-
T4 |y 002 95
5000 5 1x1077
-0.03
Slr‘ ~2.x 1077
ch -oo+ r
004 005 006 007 o 1 B
o6 ~0.05- “3x 10
000 0.06 ax 1077
007 ~s.x 1077
10000,
-0.08
“6.x 1077

Fic. F.3. (a-b-d) Curves of the functions c;;(Sé?]), e5 (S, ry(S1) and rg,(Sé‘?)) for S > g5
(c-e-f) Magnifications of the curves cs and rq for S4 € [05,0.04] and of 5 for S € [05,0.035].

(b)

(a) o5 gin
T5 001 003 008 007 008 ops_oso_onigin 0oa obs  obe 007 obs obs oio oif’ch
0.054450 ch
100
~0.054455]
A1 Ao
-0.054460]
-300
0.054465]
~a00-
-0.054470]
-0.054475] -s007
o5 (c) (d)
in
%uua 005 006 007 008 009 o010 o1i~ch
* 0.020
ag A
~0.01 5
0.015]
0.02- )\3
0.010]
Q5.6
ool Ay X6
3.4 0.005-
-0.04 in
A o6a 005 T0de 007 0bs 000 00 NQif ch
g5 *

o . 96
F1G. F.4. The eigenvalues of the Jacobian matriz at SS6 as a function of S, when D = 0.01,
Sgﬁ =0 and Siﬁ‘z =2.67x107°. (c-d) The real parts az,4 and ase for St € (o*,0.11].

the stability of SS6, the
> 05. Figure F.3 shows

Hence, SS6 exists if and only if éﬁ > o05. To determine
functions c3, ¢z, r4 and 75 are plotted with respect to S

that c3(S2), c5(S2), 74(S®) and 75(SH) are all positive if and only if SB > o4
where og ~ 0.1025 is the largest root of equation 5 (Sé’ﬁ) = 0. To give a numerical
evidence of the Hopf bifurcation occurring for Si = og, we determine numerically
the eigenvalues of the Jacobian matrix of system (4.2) at SS6 and we plot them with
respect to S1. Figure F.4(a-b) shows that two eigenvalues denoted by A; (S&) and
A2 (S) are real and remain negative for all S € (05,0.11]. Figure F.4(c) shows
that the two other eigenvalues A3 (Sérﬁ) and A4 (Sé?l) are real, negative and distinct
for all S € (05,0*) where 0* ~ 0.03467. Then, they become a complex-conjugate

pair denoted by
)\3)4 (Sérﬁ) = Q34 (Sgﬁ) + i53)4 (Sérﬁ) s for all Sérﬁ S (O'*,O.ll]

where the real part as 4 remains negative.
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Figure F.4(d) shows that the two last eigenvalues A5 (S') and Ag (S}) are real,
positive and distinct for all é‘ﬁ € (05,0*]. Then, they become a complex-conjugate
pair denoted by

>\5,6 (Séﬁ) =056 ( (1)11’,11) + iﬂf),ﬁ ( gﬁ) s for all él}ll S (0'*70.11],

so that the real part asg is positive for all S € (0*,04) and negative for all S €
(06,0.11]. At the particular value S} = g, the pair A5 (Sé’ﬁ) is purely imaginary
such that a5 6(06) = 0, with 85 6(06) # 0. Moreover, one has

d
e (o) < 0.
ch

This is consistent with Figures E.1 to E.3, showing that, as (‘fﬁ decreases and crosses
og, the steady state SS6 changes its stability through a supercritical Hopf bifurcation
with the emergence of a stable limit cycle that we illustrate in Figures 4.3 and H.1.

Remark F.1. Note that Figures F.1 and F.2 showing the stability of SS3 and the
existence of two steady states of type SS4 are similar to Figures 6 and 7 in [16],
respectively. But, on the contrary, Figure F.3 which concerns the stability of SS6
is completely different from Figure 8 in [16], since the conditions of stability of SS6
require to consider the signs of the Liénard-Chipart coefficients c3, ¢5, 74 and r5.

Appendix G. A chlorophenol-mineralising three-tiered microbial ’food
web’.  Following [20], model (4.2) can be written in the form of model (1.1), using
the following change of variables:

Y Y, 1
(G.l) o — TOXchaiUl = ﬁXph,LEz = 72XH2’ S = YSCh, S1 = Y4Sph7 S9 = SHQ,
where Y = Y3Y,. The input concentrations are given by:
in __ in in __ in in _ Qin
(G.2) 5o =Y S, 81 =YaSpy, sy = SH,,

the death rates are ag = Kdec,chy @1 = Kdec,phy @2 = Kdec,H,, and the yield coefficients
are

Yo=Yen, Yi=Yy, Yo=VYu, Y3=224/208(1-Yp), Y;=32/224(1-Y;)

. _ 16 _ 1
with w = 555 = 2(1—Yen)(1=Ypn)

following functions satisfying Hypotheses (H1) to (HS8):

The specific growth functions (4.1) become the

(G-3)  no(so,82) = 2828, (s, s2) = £f§1m7 p2(s2) = 2%,
where

mo = Yokmch, Ko=YKgcn, Lo=Ksu,c, M1 =Y1knpn,
K\ =Y4Kspn, Kr=Krn,, mo=Yek,n, Ko=LKgsn,.

For these specific kinetics (G.3), the various functions defined in Table 8 are listed
in Table 16. Using the linear change of variable given by (G.1) and (G.2), the yield
coefficients in (4.2) are normalized to one except one of them, which is equal to
w =~ 0.53, when the yield coefficients are those given in Table 15. Therefore, (4.2) is
of the form (1.1), with w < 1 and the results of our paper apply to (4.2).

The aim of this section is to give rigorous proofs for the results of [26] on existence
and stability of the steady states of model (4.2). Notice that the results in [26] were
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given with respect to the dimensionless form (H.2) of (4.2) by using the variables
(H.1) and the growth functions (H.3). The variables (H.1) are related to our variables
(G.1) by the formulas

g = XoKo, 11 = X1 K1, 22 = XoKs, 5o = SoKo, 51 = S1K1, 53 = SaKa, t = 7/my.

Hence, results given in variables (H.1) can be easily translated into results given in
variables (G.1) and vice versa.

From Theorem 3.1, the existence and stability of steady states of model (4.2)
can be determine for the specific growth functions (G.3). Using the functions and
notations given in Table 16, we have the following results:

SS1 = (0, 0,0, s, sin, 3i2“) always exists. It is stable if and only if

140 (sion, siQH) < D+ag, 1 (siln, sizn) <D+a; and ps (s‘zn) < D+ as.

These conditions are equivalent to the conditions of [26], section C1, given in terms
of variables (H.1) and growth functions (H.3).
SS2 = (0,0, x2, So, 51, S2) is given by:
Ko (D+az) D (SIQH B 82) )

_ _in __in o _
(G.4) S0 =380, S1=81, s2= 25l my= -

It exists if and only if si' > so, where sy is given by (G.4). It is stable if and only if
1o (sz)n, 52) <D+ay and (siln, 52) <D+ay.

Formulas (G.4) together with the conditions of existence and stability of SS2 were
established in [26], section C2, using variables (H.1) and growth functions (H.3).
SS3 = (0, 0,0, so, 51, S2) is given by:

(@5) o= pl (5 —s0). s =Pt —s0, sa= s —w(sh - s0),

where sq is a solution of equation

in __

moso(sg‘—w(O so)) _
(GG) (KDJrSo)(L0+Si2n7w(si0"750)) = D + ag-.

Notice that (G.6) is a quadratic equation. Only its solution in the interval
Jo = [max (0, s§* — s5'/w) , s5")

is to be considered. SS3 exists if and only if the following condition holds

(G.7) to (', 5") > D + ag.

It is stable if and only if

141 (56“ — 80+ siln,si{‘ —w (s})“ — 50)) <D+ ay,

G.8) . )
( sy —wsyt < Ma(D + ag) —wMy (D + ag, M2(D + as)),

where sg is the solution in the interval Jy of equation (G.6). Formulas (G.5) together
with equation (G.6) giving sg and the stability condition (G.8) were established in
[26], section C3, using variables (H.1) and growth functions (H.3). However, neither
condition (G.7) of existence of SS3 nor the signs of other eigenvalues of the Jacobian
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matrix were explicitly established in [26], section C3, where the existence and stabil-
ity of SS3 were checked only numerically by considering the roots of polynomials of
degrees 2 and 3, respectively, see formulas (C.3) and (C.7) in [26].

854 = (20, 71,0, 50, 51, 52) is given by:
Sn = (D+ao)Ko(Lo+s2) 51 — (D4a1) K (K1+s2)
(G.9) 0™ mosz=(DFao)(Lo+s2)’ L= miK—(D+an)(Ki+s2)’

_ _D in __ _ D in _ in __
Lo = D+ago (SO SO) I D+ay (SO so + 51 81) ’

where s3 is a solution of equation

(1 _ w) (D+ag)Ko(Lo+s2) (D+a1)K1(K1+s2)
(GlO) mosz—(D+ao)(Lo+s2) m1Kr—(D+ay)(Kr+s2)

= (1 —w)si* + s + st

+ So

Notice that (G.10) reduces to a cubic equation in s3. Only its solutions in the interval
(59, 53) are to be considered. The steady states SS4' and SS47 exist if and only if the
following conditions hold

(G.11) s> 59, s 4 s> 5045 and (1 —w)sit + s+ 510 > ¢ (D),

where sy and s; are defined by (G.9). SS4' is unstable whenever it exists and SS4?
is stable if and only if

(G.12) (1 —w)sg’ + 8" + 85 < ¢2(D), and ¢3(D) > 0.

Here ¢9 and ¢3 are defined in Table 8. Formulas (G.9) together with equation (G.10)
giving s, were established in [26], section C4, using variables (H.1) and growth func-
tions (H.3). However, neither condition (G.11) of existence of SS4 nor its condition
of stability (G.12) have been established explicitly in [26], section C4, where the exis-
tence and stability of SS4 were checked only numerically by considering the roots of
a polynomial of degree 5, see formula (C.20) in [26].

SS5 = (20,0, 22, So, $1, S2) is given by:

D K.
S:(+a2)2 S0 =

2 “D—
(G13) sz "’ aiz;l’ D in in
./L'():m(SO—SO), 'TQZW(SZ_SQ_W(SO_SO))*

(D+ao) Ko (Lo+s2)

_ oin __ in
mos2—(D+ao)(Lo+s2)’ 1= 50 S0+ 51,

It exists if and only if the following conditions hold

in

(G.14) S8t > 50, Sy —wsh > 59 — wsp.
where so and so are given by (G.13). SS5 is stable if and only if
(G.15) s s < Mo (D 4+ ag, Ma(D + ag)) + My (D + ay, Mo(D + az)).

Formulas (G.13) together with conditions (G.14) of existence and (G.15) of stability
of SS5 were established in [26], section C5, using variables (H.1) and growth functions
(H.3). However, the signs of other eigenvalues of the Jacobian matrix have been
checked only numerically by considering the roots of a polynomial of degree 4, see
formula (C.31) in [26].

SS6 = (xo,x1, T2, So, S1, S2) 18 given by:

5o — (D+a2) K> s = (D+ao)Ko(Lo+sz2) - (D+a1) K (Kr+s2)
2 mo—D—as’ mos2—(D+ao)(Lo+s2)’ 1 m1Kr—(D+a1)(Kr+s2)’
D i D i i
(G16) To = Dtag (Sbn — 80) , X1 = D+a; (Slon — 8o+ Slln - 81) s

To = —DEM (1 —w) (s = s0) + s — 514 s5* — s9) .
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It exists if and only if the following conditions hold

(G.17) s> 50, sS4 sP> 50451, (1—w)sit 4 s+ st > go(D),
where sp and s; are given by (G.16). SS6 is stable if and only if

(G.18) ¢ >0, i=3,5 and r; >0, j=4,5,

where ¢; and r; are defined in Table 2. Formulas (G.16) together with conditions
(G.17) of existence of SS6 were established in [26], section C6, using variables (H.1)
and growth functions (H.3). However, the Liénard-Chipart stability conditions (G.18)
were not considered in [26], where the stability of SS6 was checked only numerically
by considering the roots of a polynomial of degree 6, see formula (C.42) in [26].

SS7 = (0, 21,0, so, 51, S2) is given by:

— cin _ _D in _ cin in
(G.19) s0 = 53, ml—m(sl —51), S2=sP— s+ s,

where s; is a unique solution of equation

mis1 Ky _
(G20) (K1+51)(K1+si1"+si2"781) =D+ aj.

Notice that (G.20) is a quadratic equation. Only its solution in the interval
Ji = [0,s1)

is to be considered. SS7 exists if and only if the following condition holds

(G.21) pa (51, 85") > D+ ay.

SS7 is stable if and only if

s+ 83" < My (D +ay, M (sg', D + ao)) + M3 (sg, D + ao) ,

(G.22) : .
s+ syt < Mi(D + ag, Ma(D + a2)) + Ma(D + az).
Formulas (G.19) together with equation (G.20) giving s; and stability condition
(G.22) were established in [26], section C7, using variables (H.1) and growth functions
(H.3). However, condition (G.21) of existence of SS7 has not been established explic-
itly in [26], section C7, where the existence of SS7 and the signs of other eigenvalues
of the Jacobian matrix were checked only numerically by considering the roots of a
polynomial of degree 3, see formula (C.53) in [26].
SS8 = (0, z1, x2, So, S1, S2) is given by:
_ (D+a2)K> (D+a1) K1 (K1+s2)

— ¢in —
S0 = SO ) 52 = mo—D—asg’ 51 = leI—(D+a1)(K1+sz)’

(G23) _ D in o D in _ in _
1= Dray (s =s1), 2= Dtas (s —s1 + 5P —s2) .

It exists if and only if the following conditions hold
(G.24) s> 51, s 4 s > 51+ sy,
where s; and sy are given by (G.23). SS8 is stable if and only if

(G.25) s < My (D + ag, Mo(D + az)).
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Formulas (G.23) together with conditions (G.24) of existence and (G.25) of stability
of SS8 were established in [26], section C8, using variables (H.1) and growth functions
(H.3). However, the signs of other eigenvalues of the Jacobian matrix have been

checked only numerically by considering the roots of a polynomial of degree 4, see
formula (C.62) in [26].

Appendix H. Numerical simulations. The plots of Figures F.1 to F.4 were
performed with Maple [11], which is used in particular for the computations of coeffi-
cients c3, ¢5, r4 and 75, evaluated at SS6, and the computations of the eigenvalues of
the Jacobian matrix evaluated at SS6. The plots of Figures E.1 to E.3 were performed
with Scilab [22] by using the formulas of the steady state components given in Table 1.
The various functions appearing in these formulas are given in Table 16. The plots
of Figures 4.2 to 4.4 and H.1 to H.4 were performed with Scilab [22]. The numerical
simulations presented in Figures 4.2 to 4.4, F.4, and H.1 to H.4 were performed on
the dimensionless form of (4.2) used in [26]. Indeed, in the original form (4.2), nu-
merical instabilities arise in numerical schemes. To reduce the number of parameters
describing the dynamics and facilitate numerical simulations, the following rescaling
of the variables was used in [26]:

— Xch — A — i
(H 1) Xo = Ks chYen’ X1 = Ks,pnYpn’ Xo = Ks n,Yu, ’
’ S, Sph Su
So= g S FRia 2T ka7 = kmanYant.

Then, with these changes of variables the system given in (4.2) reduced to system

X0 = (vy(So, S2) — @ — ko) Xo
% = (1/1(51, SQ) -0 — kl)X1
(

(H.2) art = (a(S) —a— k)Xo
230 = aug — So) — vo(So, S2) Xo
% = afu; — S1) + woro(So, S2)Xo — v1(S1, 52) X1
% = afug — S2) — wary(So, S2) Xo + w11 (S1, 52) X1 — 12(S2) Xo.

The operating parameters are

in
— SHz

i in
D Sgkl. — Sph Uy =
Kspn’ 2 Ksmu,*

Km,ch Yen’ Uo = Ks,cn’

o =
The yield coefficients are

wo = Ks,ch &(1 _ Y;h), Wy = Ks,ph ﬂ(l _ th), Wy = 16 Ks,ch

Ks,pn 208 Ks n, 224 208 Ks,u,
The death rates are
__kdec,ch _ kdec,pn _ kdec,Hq
ko - km,ch Ych ’ kl - km,chych ’ k2 - km,chYch !
The growth functions are
_ _So Sa _ 915 1 __ 92855
(H3)  v0(S0,52) = 5 rptsy  n(51,9) = i mmgs; 72(52) = 11,

where the biological parameters are given by

_ kmpnYpn _ kmob, Y, Kp — Ks Hy,c K, — Ks 1,
d)l - km,chych ’ ¢2 - kfzn,chych ) P = KS,H2 ’ = KI,H2 :
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Fic. H.1. Trajectories of Sch, Sph, SHa s Xch, Xph and Xu, for Sch in = 0.0995 (in kgCOD/m?3 ):

Convergence to the stable limit cycle.

M‘UU\JU\JUUU[%%) Xen () Lt (f?};(szh o, t (days)
T Tl tdayy tdas tdays)

Fic. H.2. Trajectories of Sch, Sph, SHa s Xch, Xph and Xu, for Sch in = 0.0995 (in kgCOD/m?):
Convergence to the stable steady state SS3. (b) A magnification of (a) showing that the solution of
(4.2) converges to the nonzero X.p-component of SS3.

The trajectories in Figures 4.2 to 4.4 and H.1 to H.4 were presented according
to the variables of model (4.2) using the change of variables (H.1). In Figures 4.2
to 4.4, the projections of the orbits of the six-dimensional phase space into the three-
dimensional space (Xcn, Xph, Xn,) shows the appearance and disappearance of a sta-
ble limit cycle for different values of Si! > 5. The plot of the limit cycle was obtained
by solving the ordinary differential equations using the default solver “lsoda” from the
ODEPACK package in Scilab. Tables 13 and 14 present the components of the stable
steady states SS3 and SS6, and all the initial conditions chosen to trace the different
trajectories of model (4.2) in Figures 4.2 to 4.4 and H.1 to H.4.

Appendix I. Tables. In this section, the biological parameter values are
provided in Table 15. In Table 16, we present the auxiliary functions in the case of
the growth functions given by (G.3).
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t E;aysA) t (‘tniwaysl)m tw(ndayAs)

F16. H.3. Trajectories of Scy, Sph, Sty s Xch, Xph and Xy, for Schin = 0.11 (in kgCOD/m?3):
Convergence to the positive steady state SS6.
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F16. H.4. Trajectories of Sch, Sph, Sty s Xch, Xph and Xy, for Schin = 0.11 (in kgCOD/m3):
Convergence to the stable steady state SS3. (b) A magnification of (a) showing that the solution of
(4.2) converges to the nonzero Xcp-component of SS3.
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