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MATHEMATICAL ANALYSIS OF A THREE-TIERED MODEL OF1

ANAEROBIC DIGESTION ∗2

SARRA NOUAOURA† , NAHLA ABDELLATIF†‡ , RADHOUANE FEKIH-SALEM†§ , AND3

TEWFIK SARI¶4

Abstract. In this paper, we are interested in a mechanistic model describing the anaerobic5
mineralization of chlorophenol in a three-step food-web. The model is a six-dimensional system of6
ordinary differential equations. In our study, we take into account the phenol and the hydrogen input7
concentrations as well as the maintenance terms. Moreover, we consider the case of a large class of8
growth rates, instead of specific kinetics. In this general case, a recent study shows that the system9
can have up to eight steady states and their existence conditions were analytically determined. We10
focus here on the necessary and sufficient conditions of the local stability of the steady states, accord-11
ing to the four operating parameters of the process, which are the dilution rate and the chlorophenol,12
phenol and hydrogen input concentrations. In previous studies, this stability analysis was performed13
only numerically. Using the Liénard-Chipart stability criterion, we show that the positive steady14
state can be unstable and we give numerical evidence for a supercritical Hopf bifurcation with the15
appearance of a stable periodic orbit. We give two bifurcation diagrams with respect to the dilution16
rate, first, and then to the chlorophenol input concentration as the bifurcating parameters, showing17
that the system can present rich behavior including bistability, coexistence and occurrence of limit18
cycle.19

Key words. Anaerobic digestion, Chemostat, Chlorophenol mineralization, Hopf bifurcation,20
Liénard-Chipart stability criterion, Limit cycle.21

AMS subject classifications. 34A34, 34D20, 37N25, 92B0522

1. Introduction. Anaerobic digestion is a natural process in which organic ma-23

terial is converted into biogas in an environment without oxygen by the action of a24

microbial ecosystem. It is used for the treatment of wastewater and organic solid25

wastes and has the advantage of producing methane and hydrogen under appropriate26

conditions [13]. The removed carbon dioxide can be used too as a carbon source27

for microalgae [12]. It is used also for several industrial or domestic purposes in28

biorefineries and other anaerobic technologies. For a recent review on the current29

state-of-the-art with respect to the theory, applications, and technologies, the reader30

is referred to Wade [25].31

The full Anaerobic Digestion Model No.1.(ADM1) [1] is highly parameterized with32

a large number of state variables. Whilst suitable for dynamic simulation, analytical33

results on the model are impossible and only numerical investigations are available34

[4]. Due to the analytical intractability of the full ADM1, simpler mechanistic models35

of microbial interaction have been proposed in view of a better understanding of the36

anaerobic digestion process.37

The two-tiered models, which take the form of four-dimensional mathematical38

models with a cascade of two biological reactions, where one substrate is consumed39
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by one microorganism in a chemostat to produce a product that serves as the main lim-40

iting substrate for a second microorganism, are the simplest models which encapsulate41

the essence of the anaerobic digestion process. Two-tiered models with commensal-42

istic relationship including or not substrate inhibition of the second population are43

widely considered [2, 3, 17, 21] where the second population (the commensal popula-44

tion) benefits for its growth from the first population (the host population) while the45

host population is not affected by the growth of the commensal population. On the46

contrary, when the growth of the first population is affected by the growth of the sec-47

ond population, the system describes a syntrophic relationship [5, 7, 9, 18, 19, 24, 29].48

For more details and informations on commensalism and syntrophy, the reader is49

referred to [19] and the references therein. Important and interesting extensions of50

the two-tiered models are the eight-dimensional mathematical models, which include51

syntrophy and inhibition [27, 28] and the model with five state variables studied in52

[4, 15].53

In this paper, we consider a six-dimensional mathematical model, which is an54

extension, with generalized growth functions, of the three-tiered food-web studied by55

Wade et al. [26]. For a description of this food-web, where the microorganisms in-56

volved are chlorophenol and phenol degraders and hydrogenotrophic methanogen, see57

section 4. Note that the three-tiered food-web is not a classical anaerobic digestion58

process since the chlorophenol mineralization may occur under aerobic or anaerobic59

conditions with different microbial consortia involved. For more details on the biolog-60

ical significance of this food-web and its relation to the complete ADM1, the reader61

is invited to refer to [26]. It has been shown in [26] that this model can have up to62

eight steady states. Arguing that the Routh–Hurwitz theorem allowing for an explicit63

analysis of the stability of steady states, is intractable beyond five dimensions, as it64

was noticed in [14], the stability of the steady states were determined only numeri-65

cally [26] using specific growth rates (see formulas (4.1)). Several operating diagrams,66

which are the bifurcation diagrams with respect to the four operating parameters (i.e.67

the dilution rate, the chlorophenol, the phenol and the hydrogen input concentrations)68

have been numerically constructed in [26], showing the role, and the importance of69

each operating parameter, in particular for the coexistence of all three species.70

The model of [26] is extended in [16, 20] with general growth rates (see section 271

for the assumptions on the growth rates) and takes the form:72 

ẋ0 = (µ0(s0, s2)−D − a0)x0

ẋ1 = (µ1(s1, s2)−D − a1)x1

ẋ2 = (µ2(s2)−D − a2)x2

ṡ0 = D
(
sin

0 − s0

)
− µ0(s0, s2)x0

ṡ1 = D
(
sin

1 − s1

)
+ µ0(s0, s2)x0 − µ1(s1, s2)x1

ṡ2 = D
(
sin

2 − s2

)
− ωµ0(s0, s2)x0 + µ1(s1, s2)x1 − µ2(s2)x2

(1.1)73

74

where s0, s1 and s2 are the substrate concentrations (chlorophenol, phenol and hy-75

drogen, in the application); x0, x1 and x2 are the biomass concentrations; D is the76

dilution rate; µi is the specific growth rate; sin
i is the input substrate concentration77

in the chemostat; ω is a yield coefficient; ai is the maintenance (or decay) rate for78

i = 0, 1, 2 and corresponding to chlorophenol, phenol and hydrogen, respectively. As79

explained in [26], the chlorophenol degrader grows on both chlorophenol and hydrogen80

and produces phenol. The phenol degrader consumes the phenol to form hydrogen,81

which inhibits its growth. The hydrogenotrophic methanogen grows on the produced82

hydrogen.83
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The mathematical analysis of (1.1), under various assumptions, is given in [8, 16,84

20, 23]. The system (1.1) was studied in [20] in the case sin
0 > 0 and sin

1 = sin
2 = 085

where at most three types of steady states can exist. The necessary and sufficient86

conditions of existence of the steady states are analytically determined, showing their87

uniqueness, except for one of them, that can exist in two forms. When maintenance88

is neglected (a0, a1 and a2 are assumed to be zero), the six-dimensional mathematical89

model can be reduced to a three-dimensional one and the stability of steady states90

was analytically characterized. It has been also shown in [20] that the positive steady91

state can be unstable, a fact that has not been described in [26]. Numerical analysis92

has suggested the presence of a Hopf bifurcation emerging through the positive steady93

state, with the chlorophenol input concentration as the bifurcating parameter. System94

(1.1) was studied in [23] in the case without maintenance and persistence results were95

analytically proved. Using numerical estimation, it is shown in [23] that the system96

has a rich dynamics including Hopf, Bogdanov-Takens and Bautin bifurcations. The97

three-tiered model of [26] was simplified in [8] by neglecting the part of hydrogen98

produced by the phenol degrader (µ1(s1, s2)x1 is not considered in the model) as well99

as maintenance, which gives rise to a less realistic model. However, the existence and100

stability of steady states were analytically studied and a global analysis is performed,101

proving the asymptotic persistence of the three bacteria. The results of [20] were102

extended in [16] in the case sin
1 ≥ 0 and sin

2 ≥ 0. When the inflow of the three103

substrates is included, the system can have at most eight types of steady states. The104

necessary and sufficient conditions of existence of the steady states are analytically105

determined when maintenance is included. The necessary and sufficient conditions of106

stability are analytically determined only when maintenance is neglected.107

Here, we focus on the analysis of the stability of all steady states of (1.1), and we108

analytically characterize the stability, by using the Liénard-Chipart stability criterion,109

in the case including maintenance, where the system cannot be reduced to a three-110

dimensional one. We then generalize [26] by allowing a larger class of growth functions111

and by giving rigorous proofs for the results on the existence and stability of steady112

states. For this class of growth functions, we generalize [8, 16, 20, 23] by giving the113

necessary and sufficient conditions of stability of steady states when maintenance is114

included in the model.115

This paper is organized as follows: in section 2, we recall the general assumptions116

on the growth functions and the steady states of model (1.1). We give in section 3117

the necessary and sufficient conditions of existence and stability of the steady states.118

Next, in section 4, we give an application of our theoretical results to the three-119

tiered model considered in [26]. We dedicate section 5 to discuss our results. In120

Appendix A, we define some auxiliary functions used for the description of the steady121

states with their conditions of existence and stability. The Liénard-Chipart stability122

criterion and all the proofs are reported in Appendices B and C, respectively. In123

Appendix D, the description of the bifurcation diagram according to the dilution rate124

is supported by numerical experimentation. The bifurcation diagram according to the125

chlorophenol input concentration is determined in Appendix E and it is supported by126

numerical experimentation in Appendix F. Details and complements on the three-127

tiered model considered in [26] are given in Appendix G. In Appendix H, we illustrate128

some numerical simulations and some tables are given in Appendix I.129

2. Assumptions and steady states. We consider model (1.1). Following [16,130

20], we assume that the growth functions are continuously differentiable (C1) and131

satisfy the following conditions:132
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(H1) For all s0 > 0 and s2 > 0, 0 < µ0(s0, s2) < +∞, µ0(0, s2) = 0, µ0(s0, 0) = 0.133

(H2) For all s1 > 0 and s2 ≥ 0, 0 < µ1(s1, s2) < +∞, µ1(0, s2) = 0.134

(H3) For all s2 > 0, 0 < µ2(s2) < +∞, µ2(0) = 0.135

(H4) For all s0 > 0 and s2 > 0, ∂µ0

∂s0
(s0, s2) > 0, ∂µ0

∂s2
(s0, s2) > 0.136

(H5) For all s1 > 0 and s2 > 0, ∂µ1

∂s1
(s1, s2) > 0, ∂µ1

∂s2
(s1, s2) < 0.137

(H6) For all s2 > 0, µ′2(s2) > 0.138

(H7) The function s2 7→ µ0(+∞, s2) is monotonically increasing and the function139

s2 7→ µ1(+∞, s2) is monotonically decreasing.140

Let Ψ the function defined in Table 8 of Appendix A. Then, we assume that:141

(H8) When ω < 1, the function Ψ has a unique minimum s2 = s2(D) on the142

interval
(
s0

2, s
1
2

)
, such that ∂Ψ

∂s2
(s2, D) < 0 on

(
s0

2, s2

)
and ∂Ψ

∂s2
(s2, D) > 0 on

(
s2, s

1
2

)
.143

All other auxiliary functions needed in the afterward results are provided in Ap-144

pendix A. Under Hypotheses (H1) to (H6), system (1.1) can have at most eight types145

of steady states whose components are given in Table 1, see Theorem 1 in [16]. Notice146

that a steady state exists or is said to be ’meaningful’ if and only if all its components147

are nonnegative.

Table 1
Steady states of (1.1). All functions are defined in Table 8.

s0, s1, s2 and x0, x1, x2 components

SS1 s0 = sin
0 , s1 = sin

1 , s2 = sin
2 and x0 = 0, x1 = 0, x2 = 0

SS2 s0 = sin
0 , s1 = sin

1 , s2 = M2(D + a2) and x0 = 0, x1 = 0, x2 = D
D+a2

(
sin

2 − s2

)
SS3

s1 = sin
1 + sin

0 − s0 and s2 = sin
2 − ω

(
sin

0 − s0

)
, where s0 is a solution of

ψ0(s0) = D + a0 and x0 = D
D+a0

(
sin

0 − s0

)
, x1 = 0, x2 = 0

SS4

s0 = M0(D + a0, s2) and s1 = M1(D + a1, s2), where s2 is a solution of

Ψ(s2, D) = (1− ω)sin
0 + sin

1 + sin
2

and x0 = D
D+a0

(
sin

0 − s0

)
, x1 = D

D+a1

(
sin

0 − s0 + sin
1 − s1

)
, x2 = 0

SS5
s0 = ϕ0(D), s1 = sin

1 + sin
0 − s0, s2 = M2(D + a2)

and x0 = D
D+a0

(
sin

0 − s0

)
, x1 = 0, x2 = D

D+a2

(
sin

2 − s2 − ω
(
sin

0 − s0

))
SS6

s0 = ϕ0(D), s1 = ϕ1(D), s2 = M2(D + a2) and x0 = D
D+a0

(
sin

0 − s0

)
,

x1 = D
D+a1

(
sin

0 − s0 + sin
1 − s1

)
, x2 = D

D+a2

(
(1− ω)(sin

0 − s0) + sin
1 − s1 + sin

2 − s2

)
SS7

s0 = sin
0 and s2 = sin

2 + sin
1 − s1, where s1 is a solution of ψ1(s1) = D + a1

and x0 = 0, x1 = D
D+a1

(
sin

1 − s1

)
, x2 = 0

SS8
s0 = sin

0 , s1 = ϕ1(D), s2 = M2(D + a2)

and x0 = 0, x1 = D
D+a1

(
sin

1 − s1

)
, x2 = D

D+a2

(
sin

1 − s1 + sin
2 − s2

)
148

3. Mathematical analysis. In this section, the necessary and sufficient condi-149

tions of existence and stability of all steady states are given in Table 3. Any reference150

to steady state stability should be considered as local exponential stability, that is to151

say, the real parts of the eigenvalues of the Jacobian matrix are negative. We need152

the following notations:153

E= ∂µ0

∂s0
(s0, s2), F = ∂µ0

∂s2
(s0, s2), G= ∂µ1

∂s1
(s1, s2), H = −∂µ1

∂s2
(s1, s2),

I = µ′2(s2), J = µ0(s0, s2), K = µ1(s1, s2), L = µ2(s2).
(3.1)154

155

We have used the opposite sign of the partial derivative H = −∂µ1/∂s2, such that all156

constants involved in the computation become positive. Using the Liénard-Chipart157

stability criterion, the asymptotic stability of SS6 requires definitions and notations158

that are given in Table 2. Now, we can state our main result.159
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Table 2
Liénard-Chipart coefficients for SS6. The functions E,F,G,H, I, J,K and L, defined by (3.1),

are evaluated at the components of SS6 given in Table 1. Notice that they are depending on the
operating parameter D.

c1 = 3D + (E + Fw)x0 + (G+H)x1 + Ix2

c2 = 3D2 + (2D + J)(E + ωF )x0 + (2D +K)(G+H)x1 + EIx0x2 +GIx1x2

+(2D + L)Ix2 + (E(G+H)− (1− ω)FG)x0x1

c3 = D3 +D(D + 2J)(E + ωF )x0 +D(D + 2K)(G+H)x1 +D(D + 2L)Ix2

+EI(D + J + L)x0x2 +GI(D +K + L)x1x2 + EGIx0x1x2 + (E(G+H)

−(1− ω)FG)(D + J +K)x0x1

c4 = D2(E + ωF )Jx0 +D2(G+H)Kx1 +D2ILx2 + EI(DJ +DL+ JL)x0x2

+GI (DK +DL+KL)x1x2 + EGI(J +K + L)x0x1x2 + (E(G+H)

−(1− ω)FG)(DJ +DK + JK)x0x1

c5 = DEIJLx0x2 +DGIKLx1x2 +D(E(G+H)− (1− ω)FG)JKx0x1

+EGI (JK + JL+KL)x0x1x2

c6 = EGIJKLx0x1x2

r0 = c1c2 − c3, r1 = c1c4 − c5, r2 = c3r0 − c1r1, r3 = c5r0 − c21c6
r4 = r1r2 − r0r3, r5 = r3r4 − c1c6r2

2

Theorem 3.1. Assume that Hypotheses (H1) to (H8) hold. The necessary and160

sufficient conditions of existence and local stability of the steady states are given in161

Table 3.162

Remark 3.2. Let’s recall that in [16] all steady states, except SS4, are unique.163

• If ω ≥ 1, when it exists, SS4 is unique. Its stability condition ∂Ψ
∂s2

(s2, D) > 0 is164

always satisfied.165

• If ω < 1, assuming also that (H8) holds, and if (1− ω)sin
0 + sin

1 + sin
2 > φ1(D), the166

equation defining s2 in Table 1 has two solutions s∗12 < s∗22 , such that ∂Ψ
∂s2

(
s∗12 , D

)
<167

0 and ∂Ψ
∂s2

(
s∗22 , D

)
> 0. We denote by SS41 the steady state of type SS4 correspond-168

ing to s∗12 while SS42 corresponds to s∗22 . When it exists, SS41 is unstable. When169

SS42 exists, its stability condition ∂Ψ
∂s2

(s2, D) > 0 is always satisfied.170

• The comparison with Table 4 of [16] shows that, with the exception of SS6, the171

stability conditions of the steady states are the same as in the maintenance-free172

case. Indeed, by replacing in the stability conditions of SSj, j = 1, . . . , 8, j 6= 6,173

in Table 3 the maintenance terms ai by zero, for i = 0, 1, 2, we find the conditions174

given in Table 4 of [16]. Therefore, the maintenance does not destabilize these175

steady states. Only their regions of existence and stability, with respect to the176

operating parameters, can be slightly modified when maintenance is included in177

the model.178

From Table 3, we can deduce the following result.179

Proposition 3.3.180

• If SS2 or SS3 or SS7 exists then, SS1 is unstable.181

• If SS6 exists then, SS2, SS4, SS5 and SS8 are unstable, when they exist.182

• If SS5 exists then, SS2, SS3 and SS8 are unstable, when they exist.183

• If SS8 exists then, SS7 is unstable, when it exists.184

4. Applications to a three-tiered microbial ’food web’. In this section, we185

consider the model of a chlorophenol-mineralising three-tiered microbial ‘food web’186

in a chemostat as application of our mathematical analysis, in order to compare our187

findings to the numerical results in [26]. Let Sch, Sph and SH2
be the chlorophenol,188
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Table 3
Existence and stability conditions of steady states of (1.1). The functions c3, c5, r4 and r5 are

defined in Table 2. All other functions are given in Table 8.

Existence conditions Stability conditions

SS1 Always exists
µ0

(
sin

0 , s
in
2

)
< D + a0, µ1

(
sin

1 , s
in
2

)
< D + a1,

µ2

(
sin

2

)
< D + a2

SS2 µ2

(
sin

2

)
> D + a2 sin

0 < ϕ0(D), sin
1 < ϕ1(D)

SS3 µ0

(
sin

0 , s
in
2

)
> D + a0

µ1

(
sin

0 + sin
1 − s0, s

in
2 − ω

(
sin

0 − s0

))
<D + a1,

sin
2 − ωsin

0 < M2(D + a2)− ωϕ0(D)

with s0 solution of ψ0(s0) = D + a0

SS4

(1− ω)sin
0 + sin

1 + sin
2 ≥ φ1(D),

sin
0 > M0(D + a0, s2),

sin
0 + sin

1 > M0(D + a0, s2)

+M1(D + a1, s2)

with s2 solution of equation

Ψ(s2, D) = (1− ω)sin
0 + sin

1 + sin
2

(1− ω)sin
0 + sin

1 + sin
2 < φ2(D),

φ3(D) > 0, ∂Ψ
∂s2

(s2, D) > 0

SS5
sin

0 > ϕ0(D),

sin
2 − ωsin

0 > M2(D + a2)− ωϕ0(D)
sin

0 + sin
1 < ϕ0(D) + ϕ1(D)

SS6

(1− ω)sin
0 + sin

1 + sin
2 > φ2(D),

sin
0 > ϕ0(D),

sin
0 + sin

1 > ϕ0(D) + ϕ1(D)

c3 > 0, c5 > 0, r4 > 0, r5 > 0

SS7 µ1

(
sin

1 , s
in
2

)
> D + a1

sin
1 + sin

2 <M3

(
sin

0 , D + a0

)
+M1

(
D+a1,M3

(
sin

0 , D+a0

))
,

sin
1 + sin

2 < M2(D + a2) + ϕ1(D)

SS8
sin

1 > ϕ1(D),

sin
1 + sin

2 > ϕ1(D) +M2(D + a2)
sin

0 < ϕ0(D)

phenol and hydrogen substrates concentrations. The specific growth rates take the189

form:190

f0 (Sch, SH2
) =

km,chSch

KS,ch+Sch

SH2

KS,H2,c+SH2
,

f1 (Sph, SH2) =
km,phSph

KS,ph+Sph

1
1+SH2

/KI,H2
, f2 (SH2) =

km,H2SH2

KS,H2
+SH2

.
(4.1)191

192

Let Xch, Xph and XH2
be the chlorophenol, phenol and hydrogen degrader concen-193

trations; Sin
ch, S

in
ph and Sin

H2
be the input concentrations; kdec,ch, kdec,ph and kdec,H2 be194

the decay rates. This model in [26] is described by the following system of differential195

equations196 

Ẋch = (Ychf0 (Sch, SH2)−D − kdec,ch)Xch

Ẋph = (Yphf1 (Sph, SH2
)−D − kdec,ph)Xph

ẊH2
= (YH2

f2 (SH2
)−D − kdec,H2

)XH2

Ṡch = D
(
Sin

ch − Sch

)
− f0 (Sch, SH2)Xch

Ṡph = D
(
Sin

ph − Sph

)
+ 224

208 (1− Ych) f0 (Sch, SH2
)Xch − f1 (Sph, SH2

)Xph

ṠH2 = D
(
Sin

H2
−SH2

)
− 16

208f0 (Sch, SH2)Xch+ 32
224 (1−Yph)f1 (Sph, SH2)Xph

−f2(SH2)XH2 ,

(4.2)197

198

where Ych, Yph and YH2 are the yield coefficients, respectively; 224/208 (1− Ych) rep-199

resents the fraction of chlorophenol converted to phenol; 32/224 (1− Yph) represents200

the fraction of phenol that is transformed to hydrogen and 16/208 represents the frac-201

tion of hydrogen consumed by the chlorophenol degrader. The biological parameter202
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values, used in [26], are provided in Table 15. Following [20], the rescaling of the vari-203

ables (G.1) and (G.2) can reduce (4.2) to the form (1.1), that is, the yields coefficients204

in (4.2) are normalized to one, except one of them which is equal to ω ' 0.53. Under205

this rescaling (G.1) and (G.2), the growth functions (4.1) take the form (G.3) keep-206

ing their form of a double Monod, a Monod with product inhibition, and a Monod207

kinetics, respectively, so that Hypotheses (H1) to (H8) are satisfied. Therefore, with208

ω < 1, Theorem 3.1 apply and give rigorous proofs for the results of [26], on exis-209

tence and stability of steady states, which, for the most part, have only been obtained210

numerically. See Appendix G for the details.211

In the following, we consider Sin
ph = 0 and Sin

H2
= 2.67 × 10−5, corresponding to212

Fig. 3(a) in [26] and we fix Sin
ch = 0.1. Then, we determine the bifurcation diagram,213

where the operating parameter D is the bifurcation parameter. Our aim is to compare214

our results to those of [26] and to see if there are interesting phenomena that were215

not detected in the operating diagram depicted in Fig. 3(a) of [26], see Remark 4.2.216

Using Theorem 3.1, we have the following result, which is supported by numerical217

experimentation and is proved in Appendix D.218

Proposition 4.1. Let Sin
ph = 0, Sin

H2
= 2.67 × 10−5 and Sin

ch = 0.1. In this case,219

SS7 and SS8 do not exist. Using the biological parameter values in Table 15, the220

bifurcation values δi, i = 1, . . . , 7 are provided in Table 4. The bifurcation analysis of221

(4.2) according to D is given in Table 5. The bifurcation types at the critical values222

δi are defined in Table 6.223

Table 4
Critical parameter values δi, for i = 1, . . . , 7 where Y is defined in Appendix G, r5 in Table 2

while all other functions are given in Table 8.

Definition Value
δ1 is the largest root of equation r5 = 0 0.010412
δ2 is the root of φ2(D)− Sin

H2
− (1− ω)Y Sin

ch = 0 0.068641
δ3 is the root of φ1(D)− Sin

H2
− (1− ω)Y Sin

ch = 0 0.068814
δ4 is the root of Sin

H2
+ ω

(
ϕ0(D)− Y Sin

ch

)
−M2(D + a2) = 0 0.267251

δ5 is the root of ϕ0(D)− Y Sin
ch = 0 0.267636

δ6 = µ0

(
Y Sin

ch, S
in
H2

)
− a0 0.327130

δ7 = µ2

(
Sin

H2

)
− a2 1.064526

Table 5
Existence and stability of steady states, with respect to D. The bifurcation values δi, i = 1, . . . , 7

are given in Table 4. The letter S (resp. U) means that the corresponding steady state is stable
(resp. unstable). No letter means that the steady state does not exist.

Interval SS1 SS2 SS3 SS41 SS42 SS5 SS6
0 < D < δ1 U U S U U U
δ1 < D < δ2 U U S U U S
δ2 < D < δ3 U U S U S
δ3 < D < δ4 U U S
δ4 < D < δ5 U U U S
δ5 < D < δ6 U S U
δ6 < D < δ7 U S
δ7 < D S
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Table 6
Bifurcation types corresponding to the critical values of δi, i = 1, . . . , 7, defined in Table 4.

There exists also a critical value δ∗ ' 0.009879 < δ1 corresponding to the value of D where the
stable limit cycle disappears when D is increasing.

Bifurcation types
δ∗ Disappearance of the stable limit cycle
δ1 Supercritical Hopf bifurcation
δ2 Transcritical bifurcation of SS42 and SS6
δ3 Saddle-node bifurcation of SS41 and SS42

δ4 Transcritical bifurcation of SS3 and SS5
δ5 Transcritical bifurcation of SS2 and SS5
δ6 Transcritical bifurcation of SS1 and SS3
δ7 Transcritical bifurcation of SS1 and SS2

Figure 4.1 shows the one-parameter bifurcation diagram of Xch versus D in system224

(4.2). The magnifications of the bifurcation diagram are illustrated in Figure 4.1(b-225

c-d) showing the disappearance of the limit cycle at δ∗, the Hopf bifurcation at δ1,226

the transcritical bifurcations at δ2, δ4 and δ5 and the saddle-node bifurcation at δ3.227

In Figure 4.1, SS1 and SS2 cannot be distinguished since they have both a zero Xch-228

component. As SS2 is stable and SS1 is unstable for D < δ7, the Xch = 0 axis is229

plotted in blue as the color of SS2 in Table 7.230
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3e−04

5e−04
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0
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0.0008
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(a)Xch

SS1 SS2SS3

SS41

SS42

SS6�

δ∗ 6���δ1 6δ2 δ3AAK δ46δ5AAK δ6
AAK δ7

D

(b)Xch

SS1 SS2 SS3

SS41

SS42

SS6

δ∗ δ1AAK
D

(c)
Xch

SS1 SS2 SS3

SS41

SS42

SS6
6

δ2 δ3

D

(d)
Xch

SS1 SS2

SS3

SS5

δ4 δ5

D

Fig. 4.1. (a) Bifurcation diagram of Xch versus D ∈ [0, 1.2] in model (4.2). (b) Magnification
on the appearance and disappearance of stable limit cycles for D ∈ [0.0095, 0.0108]. (c) Magnification
on the transcritical bifurcation at D = δ2 and the saddle-node bifurcation at D = δ3 for D ∈
[0.0685, 0.069]. (d) Magnification on the transcritical bifurcations for D ∈ [0.2665, 0.2685].

Remark 4.2. Not all of the behaviors described in Table 5 were reported in [26].231
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Table 7
Colors used in Figures 4.1 and E.1. The solid (resp. dashed) lines are used for stable (resp.

unstable) steady states.

SS1 SS2 SS3 SS41 SS42 SS5 SS6
Red Blue Purple Dark Green Magenta Green Cyan

For Sin
ch = 0.1, the operating diagram of Fig. 3(a) in [26] predicts only three possible232

behaviors: the stability of SS2, the stability of SS3 and the bistability between SS3233

and SS6. Note that the destabilization of SS6 via a Hopf bifurcation with emergence234

of a stable limit cycle has not been observed in [26]. Moreover, the region of existence235

and stability of SS5, which was depicted in Fig. 3(b) of [26] in the case where Sin
H2

=236

2.67×10−2, was not reported in Fig. 3(a) of [26]. Our results show that this region237

also exists when Sin
H2

= 2.67×10−5, and explain why it was not detected by the238

numerical analysis given in Fig. 3(a) of [26]: SS5 occurs in a very small region since,239

for Sin
ch = 0.1 it corresponds to δ4 < D < δ5, where δ4 ' 0.267251 and δ5 ' 0.267636,240

with δ5 − δ4 of order 10−4. However, while from a mathematical point of view the241

diagram shown in [26] is incorrectly labeled, in biological terms, such a small region242

of SS5 would likely not be attained.243

To compare our results to those achieved in [16], we determine the bifurcation244

diagram in Appendix E according to the bifurcation parameter Sin
ch. Further, numer-245

ical simulations are presented in Figures 4.2 to 4.4 (see also Figures H.1 to H.4) to246

illustrate our findings, where the bifurcation values σ5, σ6 and σ∗ of Sin
ch are provided247

in Tables 10 and 12, respectively. We illustrate, in particular, the interesting three248

cases where the steady states SS1, SS2, SS41 and SS42 are unstable:249

• For Sin
ch ∈ (σ5, σ

∗), the numerical simulations done for various positive initial250

conditions permit to conjecture the global asymptotic stability of SS3 (see251

Figure 4.2).252

• For Sin
ch ∈ (σ∗, σ6), the system exhibits a bistability with two basins of attrac-253

tion: one toward the stable limit cycle and the second toward SS3. Figure 4.3254

illustrates that the trajectories in pink and blue converge toward the stable255

limit cycle in red, while the green trajectory converges toward SS3. For the256

initial condition in Table 14, the time course in Figure H.1 illustrates the pos-257

itive, periodic solution representing the coexistence of the three species. The258

sustained oscillations prove the stability of the limit cycle. However, Figure H.2259

shows the time course of the green trajectory in Figure 4.3.260

• For Sin
ch > σ6, the system exhibits a bistability between SS6 and SS3. Figure 4.4261

shows that the blue trajectory converges to the stable focus SS6, while the green262

trajectory converges to SS3. Figures H.3 and H.4 illustrate the time courses263

corresponding to the blue and the green trajectories in Figure 4.4, respectively.264

Numerical simulations have shown that the stable limit cycle disappears at the265

critical value σ∗ ∈ (σ5, σ6) as Sin
ch decreases. Similarly to the numerical study of266

the bifurcation diagram with respect to the parameter D in [23] in the case without267

maintenance and sin
1 = sin

2 = 0, we conjecture that in our case also the stable limit268

cycle disappears through a saddle-node bifurcation with another unstable limit cycle269

when Sin
ch decreases.270

5. Conclusion. In this study, we discussed the dynamics of three interacting271

microbial species describing a chlorophenol-mineralising three-tiered ‘food web’ in272

the chemostat (4.2), introduced by Wade et al. [26] following previous work on a273
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Fig. 4.2. Case Sin
ch = 0.098 < σ∗: the solution of (4.2) converges to SS3.
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SS6

SS42 SS41 SS3

Fig. 4.3. Case σ∗ < Sin
ch = 0.0995 < σ6 : bistability with convergence either to the stable limit

cycle (in red) or to SS3.

0
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0
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•
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Fig. 4.4. Case σ6 < Sin
ch = 0.11 : bistability with convergence either to SS6 or to SS3.

two-tiered model [29]. The existence and stability of the steady states of model274

(4.2) have been analyzed as a function of the operating parameters (input substrate275

concentrations and dilution rate), using numerical tools and specific values of the276

biological parameters.277

In this paper, we gave a complete analysis of the dynamics of the model (1.1)278

which generalizes (4.2) by allowing a larger class of growth functions. The existence279

of the steady states was analytically characterized in [16] where it was shown that280

model (1.1) can have up to eight types of steady states: the washout steady state281
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denoted by SS1, six types of boundary steady states where one or two degrader popu-282

lations are extinct denoted by SS2, SS3, SS4, SS5, SS7 and SS8, and a positive steady283

state, denoted by SS6, where all microbial populations coexist. When they exist, all284

steady states are unique, except the steady state SS4 where chlorophenol and phenol285

degraders are maintained and the hydrogen degrader is eliminated.286

Here, we focus on the stability of steady states. We have managed to characterize287

the stability in this six-dimensional system, although it is generally accepted that288

the Routh–Hurwitz theorem is intractable beyond five dimensions. For this, we have289

used the Liénard-Chipart stability criterion to simplify the mathematical analysis by290

reducing considerably the number of the Routh-Hurwitz conditions to check. For SS1,291

SS2, SS3 and SS7, the stability conditions are determined explicitly. For SS4, SS5292

and SS8, we explicitly characterize the stability conditions using the Liénard-Chipart293

stability criterion. For SS6, the stability is given with respect to the signs of the294

Liénard-Chipart coefficients by using numerical experimentation (see Appendix D) to295

plot these coefficients, whose signs cannot be determined analytically. As shown in296

Appendix G, our presentation of the existence and stability issue fully clarifies the297

numerical study made in [26] on the three-tiered ‘food web’ model (4.2).298

Our work extends all results on the stability of the existing literature [8, 16, 20, 23],299

which were obtained only in the case without maintenance, where the six-dimensional300

system (1.1) can be reduced to a three-dimensional one. We show that for SS4,301

which can exist in two forms, at most one steady state can be stable, a fact that was302

already noticed (when maintenance is not included in the model) in the particular303

case without phenol and hydrogen input concentrations, studied in [20] and in the304

general case, where these input concentrations are added, studied in [16].305

We highlighted several possible asymptotic behaviors in this six-dimensional sys-306

tem, including the bistability between the positive steady state and a boundary steady307

state, or the bistability between a positive limit cycle and a boundary steady state,308

so that the long term behavior depends on the initial condition. We proved that the309

positive steady state of coexistence of all species can be unstable and we give numeri-310

cal evidence for the supercritical Hopf bifurcation, in the case including chlorophenol311

and hydrogen input concentrations. The possibility of the Hopf bifurcation of the312

positive steady state was previously observed in [20] in the case without phenol and313

hydrogen input concentrations.314

In order to gain more insight into the behavior of the system, we give a bifurcation315

diagram with the dilution rate as the bifurcating parameter (see Figure 4.1) showing316

that one of the operating diagrams obtained numerically in [26] has omitted important317

transition phenomena between steady states. If the dilution rate is too low, only the318

chlorophenol degrader is maintained (SS3 is the only stable steady state). Increasing319

slightly the dilution rate D, the system exhibits a bistability behavior where either320

only the chlorophenol degrader is maintained (SS3 is stable) or the coexistence of321

three microbial species may occur around periodic oscillations (SS6 is unstable and a322

stable limit cycle exists). Increasing a little more D, the system exhibits a bistability323

behavior where either only the chlorophenol degrader is maintained or the coexistence324

of three microbial species occurs at the positive steady state (SS3 and SS6 are both325

stable). Increasing further D, the system exhibits a bistability between only the326

chlorophenol degrader and both the chlorophenol and phenol degraders (SS3 and SS42327

are both stable). Rising a little more the value of D, only the chlorophenol degrader328

is maintained. Then, only the chlorophenol and hydrogen degraders are maintained329

(SS5 is the only stable steady state). Adding a little more, both the chlorophenol and330

phenol degraders are eliminated from the reactor and only the hydrogen degrader is331
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maintained, since Sin
H2

> 0 (SS2 is the only stable steady state). For higher dilution332

rate, there is washout of all three microbial populations (SS1 is the only stable steady333

state).334

Our results show that with the exception of SS6, the maintenance does not desta-335

bilize the steady states. To make our theoretical results useful in practice, it would336

be necessary to have the description of the operating diagrams that give the regions337

of existence and stability of the steady states, in the space of the operating parame-338

ters. In a future work, we will use our results to determine analytically the operating339

diagrams in the cases with and without maintenance. These operating diagrams will340

also allow us to answer the delicate question of whether or not SS6 can be destabilized341

by including maintenance terms. Even without maintenance, this steady state can342

be stable or unstable depending on the values of the operating parameters. Does the343

introduction of maintenance modify the boundary between the region of stability and344

the region of instability, or does it make more complex phenomena appear?345

Appendix A. Auxiliary functions. For the description of the steady states346

given in Table 1, together with the statement of their conditions of existence and347

stability, we need to define some auxiliary functions that are listed in Table 8. Using348

Hypotheses (H1) to (H7), the existence and definition domains of these functions are349

all relatively straightforward and can be found as in [20].

Table 8
Notations, intervals and auxiliary functions.

Definition
si = Mi(y, s2)
i = 0, 1

Let s2 ≥ 0. si = Mi(y, s2) is the unique solution of
µi(si, s2) = y, for all 0 ≤ y < µi(+∞, s2)

s2 = M2(y)
s2 = M2(y) is the unique solution of
µ2(s2) = y, for all 0 ≤ y < µ2(+∞)

s2 = M3(s0, z)
Let s0 ≥ 0. s2 = M3(s0, z) is the unique solution of
µ0(s0, s2) = z, for all 0 ≤ z < µ0(s0,+∞)

si2 = si2(D)

i = 0, 1

si2 = si2(D) is the unique solution of µi (+∞, s2) = D + ai, for all
D + a0<µ0(+∞,+∞), µ1(+∞,+∞)<D + a1 < µ1(+∞, 0), resp.

I1, I2 I1 =
{
D ≥ 0 : s0

2 < s1
2

}
, I2 =

{
D ∈ I1 : s0

2 < M2(D + a2) < s1
2

}
Ψ(s2, D)

Ψ (s2, D) = (1− ω)M0(D + a0, s2) +M1(D + a1, s2) + s2,
for all D ∈ I1 and s0

2 < s2 < s1
2

φ1(D) φ1(D) = inf
s02<s2<s

1
2

Ψ(s2, D), for all D ∈ I1

φ2(D) φ2(D) = Ψ (M2(D + a2), D), for all D ∈ I2
φ3(D) φ3(D) = ∂Ψ

∂s2
(M2(D + a2), D), for all D ∈ I2

J0, J1 J0 =
(
max

(
0, sin

0 − sin
2 /ω

)
, sin

0

)
, J1 =

(
0, sin

1

)
ψ0(s0) ψ0(s0) = µ0

(
s0, s

in
2 − ω

(
sin

0 − s0

))
, for all s0 ≥ max

(
0, sin

0 − sin
2 /ω

)
ψ1(s1) ψ1(s1) = µ1

(
s1, s

in
2 + sin

1 − s1

)
, for all s1 ∈

[
0, sin

1 + sin
2

]
ϕi(D)
i = 0, 1

ϕi(D) = Mi (D + ai,M2(D + a2)), resp., for all,
D ∈

{
D ≥ 0 : s0

2 < M2(D + a2)
}

, D ∈
{
D ≥ 0 : M2(D + a2) < s1

2

}
350

Appendix B. Liénard-Chipart stability criterion. Note that conditions351

in the stability criterion of Liénard and Chipart (see Gantmacher [10], Theorem 11)352

represent almost half that of the Routh–Hurwitz theorem which facilitates the study353

of asymptotic behavior of dynamic systems especially for dimensions beyond five. It354

is known that for a polynomial of degree four the Routh-Hurwitz conditions can be355

written as in the following Lemma, see, for instance, Theorem 11 [6].356
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Lemma B.1. Consider the fourth-order polynomial P (λ) with real coefficients
given by:

P (λ) = c0λ
4 + c1λ

3 + c2λ
2 + c3λ+ c4.

All of the roots of the polynomial P (λ) have negative real part if and only if357

ci > 0, for i = 1, 3, 4, and r1 = c3(c1c2 − c0c3)− c21c4 > 0.(B.1)358359

The following Lemma gives the conditions of stability for a six-dimensional dynamic360

system.361

Lemma B.2. Consider the six-order polynomial P (λ) with real coefficients given
by:

P (λ) = c0λ
6 + c1λ

5 + c2λ
4 + c3λ

3 + c4λ
2 + c5λ+ c6.

All of the roots of the polynomial P (λ) have negative real part if and only if362

ci > 0, i = 1, 3, 5, 6, r4 > 0 and r5 > 0,(B.2)363364

where r4 = r1r2 − r0r3 and r5 = r3r4 − c1c6r2
2, with

r0 = c1c2 − c0c3, r1 = c1c4 − c0c5, r2 = c3r0 − c1r1 and r3 = c5r0 − c21c6.

Proof. From the Liénard-Chipart stability criterion, all of the roots of the poly-365

nomial P have negative real part if and only if366

ci > 0, i = 1, 3, 5, 6, det(∆2) > 0, det(∆4) > 0 and det(∆6) > 0,(B.3)367368

where ∆2, ∆4 and ∆6 are the Hurwitz matrices defined by:369

∆2 =

[
c1 c3
c0 c2

]
, ∆4 =


c1 c3 c5 0
c0 c2 c4 c6
0 c1 c3 c5
0 c0 c2 c4

 , ∆6 =


c1 c3 c5 0 0 0
c0 c2 c4 c6 0 0
0 c1 c3 c5 0 0
0 c0 c2 c4 c6 0
0 0 c1 c3 c5 0
0 0 c0 c2 c4 c6

 .370

Conditions (B.3) are equivalent to371

ci > 0, i = 1, 3, 5, 6, r0 > 0, r4 = r1r2 − r0r3 > 0, r5 = r3r4 − c1c6r2
2 > 0.(B.4)372373

When all conditions (B.4) hold, the condition r5 > 0 implies that r3 > 0, that is,374

c5r0 > c6c
2
1 which implies that r0 > 0. Hence, conditions (B.4) are equivalent to375

(B.2).376

Appendix C. Proofs.377

C.1. Proof of Theorem 3.1. The existence of the steady states is proven in378

[16]. The local stability of the steady states is determined by the eigenvalues of the379

Jacobian matrix of system (1.1) evaluated at the steady state. The Jacobian matrix380

of (1.1) corresponds to the 6× 6 matrix:381

J =


J−D−a0 0 0 Ex0 0 Fx0

0 K−D−a1 0 0 Gx1 −Hx1

0 0 L−D−a2 0 0 Ix2

−J 0 0 −D−Ex0 0 −Fx0

J −K 0 Ex0 −D−Gx1 Fx0+Hx1

−ωJ K −L −ωEx0 Gx1 −D−ωFx0−Hx1−Ix2

 ,382
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where the functions E, F , G, H, I, J , K and L are defined by (3.1), and are evaluated383

at the steady state. The stability of the steady state is investigated by analyzing the384

real parts of the eigenvalues of J , which are the roots of the characteristic polynomial.385

For SS1, the characteristic polynomial is

P1(λ) = (λ− λ1)(λ− λ2)(λ− λ3)(λ+D)3,

where λ1 = µ0

(
sin

0 , s
in
2

)
−D−a0, λ2 = µ1

(
sin

1 , s
in
2

)
−D−a1 and λ3 = µ2

(
sin

2

)
−D−a2.386

Therefore, SS1 is stable if and only if λ1 < 0, λ2 < 0 and λ3 < 0, that is, the stability387

conditions of SS1 in Table 3 hold.388

For SS2, the characteristic polynomial is

P2(λ) = (λ− λ1)(λ− λ2)(λ+D)2(λ2 + c1λ+ c2),

where c1 = D + Ix2, c2 = LIx2 and389

λ1 = µ0

(
sin

0 ,M2(D + a2)
)
−D − a0, λ2 = µ1

(
sin

1 ,M2(D + a2)
)
−D − a1,(C.1)390391

Since c1 > 0 and c2 > 0, the real parts of the roots of the quadratic factor are392

negative. Therefore, SS2 is stable if and only if λ1 < 0 and λ2 < 0. Since M0 and393

M1 are increasing, these conditions are equivalent to the stability conditions of SS2394

in Table 3.395

For SS3, the characteristic polynomial is

P3(λ) = (λ− λ1)(λ− λ2)(λ+D)2(λ2 + c1λ+ c2),

where396

λ1 = µ1

(
sin

0 − s0 + sin
1 , s

in
2 − ω

(
sin

0 − s0

))
−D−a1, λ2 = µ2

(
sin

2 −ω
(
sin

0 −s0

))
−D−a2,397

c1 = D+ (E + ωF )x0 and c2 = J(E + ωF )x0, where s0 is the solution in the interval398

J0 of equation ψ0 (s0) = D + a0. Since c1 > 0 and c2 > 0, the real parts of the roots399

of the quadratic factor are negative. Therefore, SS3 is stable if and only if λ1 < 0 and400

λ2 < 0. The condition λ1 < 0 is the first stability condition of SS3 in Table 3. Since401

M2 is increasing, the condition λ2 < 0 is equivalent to402

sin
2 − ω

(
sin

0 − s0

)
< M2(D + a2) ⇐⇒ s0 <

(
M2(D + a2)− sin

2

)
/ω + sin

0 .(C.2)403404

As the function ψ0 is increasing, (C.2) is equivalent to405

ψ0(s0) < ψ0

((
M2(D + a2)− sin

2

)
/ω + sin

0

)
.(C.3)406407

From the definition of the function ψ0 together with the condition ψ0(s0) = D + a0

defining s0, we deduce that (C.3) is equivalent to

D + a0 < µ0

((
M2(D + a2)− sin

2

)
/ω + sin

0 ,M2(D + a2)
)
.

Since M0 is increasing, this condition is equivalent to the second stability condition408

of SS3 in Table 3.409

For SS4, the characteristic polynomial is

P4(λ) = (λ− λ1)(λ+D)
(
λ4 + c1λ

3 + c2λ
2 + c3λ+ c4

)
,

where λ1 = µ2 (s2) −D − a2 with s2 is defined in Table 1 and the coefficients ci for410

i = 1, . . . , 4 are given by411

c1 =2D + (E + ωF )x0 + (G+H)x1,412

c2 =D2+(E + ωF )(D + J)x0+(G+H)(D +K)x1+(E(G+H)−(1−ω)FG)x0x1,413

c3 =D(E + ωF )Jx0 +D(G+H)Kx1 + (E(G+H)− (1− ω)FG)(J +K)x0x1,414

c4 =(E(G+H)− (1− ω)FG)JKx0x1.415416

This manuscript is for review purposes only.



ANAEROBIC DIGESTION MODEL 15

From Lemma B.1, all of the roots of the fourth order polynomial have negative real417

parts if and only if418

ci > 0, for i = 1, 3, 4 and r1 = c1c2c3 − c21c4 − c23 > 0.(C.4)419420

We always have c1 > 0. Moreover, c3 > 0 and c4 > 0 if and only if421

E(G+H)− (1− ω)FG > 0.(C.5)422423

Let us denote424

A = G+H, B = E(G+H)−(1−ω)FG
G+H and C = G+ωH

G+H F.425

Note that B > 0 if and only if condition (C.5) is satisfied. Then, we can write ci, for426

i = 1, . . . , 4 as follows:427

c1 = 2D + (B + C)x0 +Ax1,428

c2 = D2 + (B + C)(D + J)x0 +A(D +K)x1 +ABx0x1,429

c3 = D(B + C)Jx0 +DAKx1 +AB(J +K)x0x1, c4 = ABJKx0x1.430431

We can write r1 as follows:432

r1 =DJ
[
(D + J)(B + C)3 −B3J

]
x3

0 +D2A3Kx3
1 +B2A2(B + C)(J +K)x3

0x
2
1 +B2A3(J +K)x2

0x
3
1

+BA
[
D(2J +K)(B + C)2 + CJ2(2B + C)

]
x3

0x1 +DBA3(J + 2K)x0x
3
1 + 3D3A2Kx2

1

+D2J
[
3D(B + C)2 + CJ(2B + C)

]
x2

0 +BA2
[
D(J +K)(5B + 3C) + C

(
J2 +K2

)]
x2

0x
2
1

+DA
[
C
(
DC(2J +K) + CJ(J + 2K) +DB(9J + 5K) + 2BJ2

)
+DB2(7J + 4K)

]
x2

0x1

+DA2[DB(4J + 7K) + CK(2J +K) +DC(J + 2K)]x0x
2
1 + 2D4J(B + C)x0 + 2D4AKx1

+D2A[D(J +K)(5B + 3C) + 2CJK]x0x1 +
(
D2 +DBx0 +DAx1 +BAx0x1

)
(BJx0 −AKx1)2.

433

Hence, conditions (C.4) are verified if and only if (C.5) is satisfied. Let us prove that434

condition (C.5) is equivalent to ∂Ψ
∂s2

(s2, D) > 0. Let s2 > 0. Under (H4) and (H5),435

we have436

∂M0

∂s2
(y, s2) = −∂µ0

∂s2
(M0(y, s2), s2)

[
∂µ0

∂s0
(M0(y, s2), s2)

]−1

, for all y ∈ (0, µ0(+∞, s2)),

∂M1

∂s2
(y, s2) = −∂µ1

∂s2
(M1(y, s2), s2)

[
∂µ1

∂s1
(M1(y, s2), s2)

]−1

, for all y ∈ (0, µ1(+∞, s2)).
437

Using (3.1), we obtain

∂M0

∂s2
(D + a0, s2) = −FE and ∂M1

∂s2
(D + a1, s2) = H

G .

Moreover, we have for all s2 ∈
(
s0

2, s
1
2

)
and D ∈ I1,438

∂Ψ
∂s2

(s2, D) = (1− ω)∂M0

∂s2
(D + a0, s2) + ∂M1

∂s2
(D + a1, s2) + 1.(C.6)439

440

Using (C.6), it follows that

∂Ψ
∂s2

(s2, D) = −FE (1− ω) + H
G + 1 = E(G+H)−(1−ω)FG

EG .

Since E and G are positive, condition (C.5) is equivalent to ∂Ψ
∂s2

(s2, D) > 0. Conse-441

quently, since µ2 is increasing, it follows that, SS4 is stable if and only if442

s2 < M2(D + a2) and ∂Ψ
∂s2

(s2, D) > 0,(C.7)443
444

This manuscript is for review purposes only.



16 S. NOUAOURA, N. ABDELLATIF, R. FEKIH-SALEM, AND T. SARI

which is equivalent to the stability condition in Table 3 because this first condition445

of (C.7) is equivalent the first and the second one of SS4 in Table 3 (similarly to the446

proof of Theorem 2 in [16]).447

For SS5, the characteristic polynomial is

P5(λ) = (λ− λ1)(λ+D)
(
λ4 + c1λ

3 + c2λ
2 + c3λ+ c4

)
,

where λ1 = µ1

(
sin

0 + sin
1 −M0(D + a0,M2(D + a2)),M2(D + a2)

)
−D − a1 and the448

coefficients ci are given by:449

c1 = 2D + (E + ωF )x0 + Ix2,450

c2 = D2 + (E + ωF )(D + J)x0 + I(D + L)x2 + EIx0x2,451

c3 = D(E + ωF )Jx0 +DILx2 + EI(J + L)x0x2 and c4 = EIJLx0x2.452453

From Lemma B.1, the roots of the fourth order polynomial are of negative real parts454

if and only if455

ci > 0, for i = 1, 3, 4 and r1 = c1c2c3 − c21c4 − c23 > 0.(C.8)456457

We always have ci > 0 for i = 1, 3, 4. We can write r1 as follows:458

r1 =DJ
[
(D + J)(E + ωF )3 − E3J

]
x3

0 +D2I3Lx3
2 + E2I2(E + ωF )(J + L)x3

0x
2
2 +DEI3(J + 2L)x0x

3
2

+ E2I3(J + L)x2
0x

3
2 + EI

[
D(2J + L)(E + ωF )2 + ωFJ2(2E + ωF )

]
x3

0x2 + 3D3I2Lx2
2

+D2J
[
3D(E + ωF )2 + FωJ(2E + ωF )

]
x2

0 + EI2
[
D(J + L)(5E + 3ωF ) + Fω

(
J2 + L2

)]
x2

0x
2
2

+DI
[
Fω

(
DFω(2J + L) + FωJ(J + 2L) +DE(9J + 5L) + 2EJ2

)
+DE2(7J + 4L)

]
x2

0x2

+DI2 [DE(4J + 7L) + FωL(2J + L) +DFω(J + 2L)]x0x
2
2 + 2D4J(E + ωF )x0 + 2D4ILx2

+D2I [D(J + L)(5E + 3ωF ) + 2FωJL]x0x2 +
(
D2 +DEx0 +DIx2 + EIx0x2

)
(EJx0 − ILx2)2.

459

Thus, r1 > 0. Consequently, the conditions (C.8) are satisfied. Therefore, SS5 is460

stable if and only if λ1 < 0. Since M1 is increasing, this condition is equivalent to the461

stability condition of SS5 in Table 3.462

For SS6, the characteristic polynomial is given by:

P6(λ) = λ6 + c1λ
5 + c2λ

4 + c3λ
3 + c4λ

2 + c5λ+ c6,

where ci, i = 1, . . . , 6 are defined in Table 2. From Lemma B.2, all of the roots of the463

sixth order polynomial have negative real parts if and only if ci > 0, i = 1, 3, 5, 6 and464

rj > 0, j = 4, 5, where ci and rj are listed in Table 2. Since c1 and c6 are positive,465

the proof is complete.466

For SS7, the characteristic polynomial is

P7(λ) = (λ− λ1)(λ− λ2)(λ+D)2(λ2 + c1λ+ c2),

where λ1 = µ0

(
sin

0 , s
in
1 − s1 + sin

2

)
−D − a0, λ2 = µ2

(
sin

1 − s1 + sin
2

)
−D − a2, c1 =467

D + (G + H)x1 and c2 = K(G + H)x1 where s1 is the solution in the interval J1 of468

equation ψ1 (s1) = D + a1. Since c1 > 0 and c2 > 0, the real parts of the roots of469

the quadratic factor are negative. Therefore, SS7 is stable if and only if λ1 < 0 and470

λ2 < 0. Since the functions M2 and M3 are increasing, the conditions λ1 < 0 and471

λ2 < 0 are equivalent to472

s1 > sin
1 + sin

2 −M3(sin
0 , D + a0) and s1 > sin

1 + sin
2 −M2(D + a2).(C.9)473474
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Since the function ψ1 is increasing, (C.9) is equivalent to

ψ1(s1) > ψ1

(
sin

1 + sin
2 −M3(sin

0 , D + a0)
)
, ψ1(s1) > ψ1

(
sin

1 + sin
2 −M2(D + a2)

)
.

From the definition of the function ψ1 together with the condition ψ1(s1) = D + a1475

which defines s1, the preceding conditions are equivalent to476

µ1

(
sin

1 + sin
2 −M3(sin

0 , D + a0),M3(sin
0 , D + a0)

)
< D + a1,

µ1

(
sin

1 + sin
2 −M2(D + a2),M2(D + a2)

)
< D + a1.

477

Since M1 is increasing, these conditions are equivalent to the stability conditions of478

SS7 in Table 3.479

For SS8, the characteristic polynomial is

P8(λ) = (λ− λ1)(λ+D)
(
λ4 + c1λ

3 + c2λ
2 + c3λ+ c4

)
,

where λ1 = µ0

(
sin

0 ,M2(D + a2)
)
−D − a0 and the coefficients ci are given by:480

c1 = 2D + (G+H)x1 + Ix2,481

c2 = D2 + (G+H)(D +K)x1 + I(D + L)x2 +GIx1x2,482

c3 = D(G+H)Kx1 +DILx2 +GI(K + L)x1x2 and c4 = GIKLx1x2.483484

From Lemma B.1, the roots of the fourth order polynomial are of negative real parts485

if and only if486

ci > 0, for i = 1, 3, 4 and r1 = c1c2c3 − c21c4 − c23 > 0.(C.10)487488

We always have ci > 0, for i = 1, 3, 4. We can write r1 as follows:489

r1 =DK
[
(D +K)(G+H)3 −G3K

]
x3

1 +D2I3Lx3
2 +G2I2(G+H)(K + L)x3

1x
2
2 +G2I3(K + L)x2

1x
3
2

+GI
[
D(2K + L)(G+H)2 +HK2(2G+H)

]
x3

1x2 +DGI3(K + 2L)x1x
3
2 + 3D3I2Lx2

2

+D2K
[
3D(G+H)2 +HK(2G+H)

]
x2

1 +GI2
[
D(K + L)(5G+ 3H) +H

(
K2 + L2

)]
x2

1x
2
2

+DI
[
H
(
DH(2K + L) +HK(K + 2L) +DG(9K + 5L) + 2GK2

)
+DG2(7K + 4L)

]
x2

1x2

+DI2 [DG(4K + 7L) +HL(2K + L) +DH(K + 2L)]x1x
2
2 + 2D4K(G+H)x1 + 2D4ILx2

+D2I [D(K + L)(5G+ 3H) + 2HKL]x1x2 +
(
D2 +DGx1 +DIx2 +GIx1x2

)
(GKx1 − ILx2)2.

490

Thus, r1 > 0. Consequently, the conditions (C.10) are satisfied. Finally, SS8 is stable491

if and only if λ1 < 0, that is to say µ0

(
sin

0 ,M2(D + a2)
)
< D + a0. Since M0 is492

increasing, this condition is equivalent to the stability condition of SS8 in Table 3.493

C.2. Proof of Proposition 3.3. If SS2 exists then, its condition of existence494

µ2

(
sin

2

)
> D + a2 holds. Therefore, the condition µ2

(
sin

2

)
< D + a2 of stability of495

SS1 is not satisfied.496

If SS3 exists then, its condition of existence µ0

(
sin

0 , s
in
2

)
> D+a0 holds. Therefore,497

the condition µ0

(
sin

0 , s
in
2

)
< D + a0 of stability of SS1 is not satisfied.498

If SS7 exists then, its condition of existence µ1

(
sin

1 , s
in
2

)
> D+a1 holds. Therefore,499

the condition µ1

(
sin

1 , s
in
2

)
< D + a1 of stability of SS1 is not satisfied.500

If SS6 exists then, the conditions501

(1− ω)sin
0 + sin

1 + sin
2 > φ2(D), sin

0 > ϕ0(D), sin
0 + sin

1 > ϕ0(D) + ϕ1(D)502
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hold. Therefore, the condition sin
0 < ϕ0(D) of stability of SS2 or SS8 is not satisfied,503

the condition (1 − ω)sin
0 + sin

1 + sin
2 < φ2(D) of stability of SS4 is not satisfied, and504

the condition sin
0 + sin

1 < ϕ0(D) + ϕ1(D) of stability of SS5 is not satisfied.505

If SS5 exists then, its conditions of existence506

sin
0 > ϕ0(D) and sin

2 − ωsin
0 > M2(D + a2)− ωϕ0(D)507

hold. Therefore, the condition sin
0 < ϕ0(D) of stability of SS2 or SS8 is not satisfied508

and the condition sin
2 −ωsin

0 < M2(D+a2)−ωϕ0(D) of stability of SS3 is not satisfied.509

If SS8 exists then, its conditions of existence sin
1 + sin

2 > ϕ1(D) + M2(D + a2)510

holds. Therefore, the condition sin
1 + sin

2 < ϕ1(D) +M2(D + a2) of stability of SS7 is511

not satisfied.512

Appendix D. Proof of Proposition 4.1. We assume that the biological513

parameter values in model (4.2) are provided in Table 15. We assume that Sin
ph = 0,514

Sin
H2

= 2.67×10−5 as in Fig. 3(a) of [26]. We assume that Sin
ch = 0.1. As said in515

Section 4, Theorem 3.1 applies to model (4.2). Using the change of variables (G.2)516

and Table 3, SS7 and SS8 do not exist when Sin
ph = 0. Moreover, the necessary and517

sufficient existence and stability conditions of steady states of (4.2) are summarized518

in Table 9.

Table 9
Existence and local stability conditions of steady states of (4.2), when Sin

ph = 0. The functions

µi are given in (G.3) while c3, c5, r4 and r5 are defined in Table 2. All other functions are given
in Table 8 and Table 16.

Existence conditions Stability conditions

SS1 Always exists µ0

(
Y Sin

ch, S
in
H2

)
< D + a0, µ2

(
Sin

H2

)
< D + a2

SS2 µ2

(
Sin

H2

)
> D + a2 Y Sin

ch < ϕ0(D)

SS3 µ0

(
Y Sin

ch, S
in
H2

)
> D + a0

µ1

(
Y Sin

ch − s0, S
in
H2
− ω

(
Y Sin

ch − s0

))
<D+a1

Sin
H2
− ωY Sin

ch < M2(D + a2)− ωϕ0(D)

with s0 solution of ψ0(s0) = D + a0

SS4

(1− ω)Y Sin
ch + Sin

H2
≥ φ1(D),

Y Sin
ch > M0(D+a0, s2)+M1(D+a1, s2)

with s2 solution of

Ψ(s2, D) = (1− ω)Y Sin
ch + Sin

H2

(1− ω)Y Sin
ch + Sin

H2
< φ2(D), φ3(D) > 0

∂Ψ
∂s2

(s2, D) > 0

SS5
Y Sin

ch > ϕ0(D),

Sin
H2
− ωY Sin

ch>M2(D + a2)− ωϕ0(D)
Y Sin

ch < ϕ0(D) + ϕ1(D)

SS6
(1− ω)Y Sin

ch + Sin
H2

> φ2(D),

Y Sin
ch > ϕ0(D) + ϕ1(D)

c3 > 0, c5 > 0, r4 > 0, r5 > 0

519

SS1 always exists and it is stable if and only if520

D > µ0

(
Y Sin

ch, S
in
H2

)
− a0 := δ6 and D > µ2

(
Sin

H2

)
− a2 := δ7.521

Thus, SS1 is stable if and only if D > max(δ6, δ7) = δ7 (see Table 4 for all critical
parameter values δi, i = 1, . . . , 7). From Table 9, SS2 exists if and only if D < δ7.
From the eigenvalues λ1 and λ2 defined by (C.1), we deduce that SS2 is stable if and
only if

F1(D) := µ0

(
Y Sin

ch,M2(D + a2)
)
−D − a0 < 0 ⇐⇒ δ5 < D < δ7

where δ5 is the solution of equation F1(D) = 0 (see Figure D.1). SS3 exists if and522
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δ5

F1(D)

Dδ7

Fig. D.1. Stability of SS2 for all D ∈ (δ5, δ7): change of sign of the function F1(D).

only if D < δ6 and it is stable if and only if523

F2(D) := µ1

(
Sin

chY − s0, S
in
H2
− ω

(
Sin

chY − s0

))
−D − a1 < 0,

F3(D) := Sin
H2

+ ω
(
ϕ0(D)− Y Sin

ch

)
−M2(D + a2) < 0,

524

525

that is, D < δ4, where δ4 is the solution of equation F3(D) = 0 (see Figure D.2).
From Remark 3.2, the system can have at most two steady states of the form SS4

F2(D)

D
δ6 F3(D)

D
δ6δ4

Fig. D.2. Stability of SS3 for all D < δ4: signs of the functions F2(D) and F3(D).

denoted by SS41 and SS42 as ω ' 0.53 < 1. Their first existence condition in Table 9
holds if and only if

F4(D) := φ1(D)− Sin
H2
− (1− ω)Y Sin

ch ≤ 0 ⇐⇒ D ≤ δ3

where δ3 is the solution of equation F4(D) = 0 (see Figure D.3(a)). Their second
existence condition holds for all D ≤ δ3, since the straight line of equation y = Y Sin

ch

is above the curve of the function y = M0

(
D + a0, s

∗i
2

)
+ M1

(
D + a1, s

∗i
2

)
, for i =

1, 2, which correspond to SS41 and SS42, respectively, (see Figure D.3(b)). From

(a)

F4(D)

D
δ3

(b)y

D

y = Y Sin
ch

y = M
0
(
D + a0 , s∗1

2
)
+M

1
(
D + a1 , s∗1

2
)

y = M0

(
D + a0, s

∗2
2

)
+M1

(
D + a1, s

∗2
2

)
δ3

Fig. D.3. Existence of SS4 for all D ≤ δ3: (a) change of sign of the function F4(D), (b) the
green line of equation y = Y Sin

ch is above the red and blue curves of the functions M0

(
D + a0, s∗i2

)
+

M1

(
D + a1, s∗i2

)
, i = 1, 2, respectively.

Remark 3.2 and Table 9, SS41 is unstable for all 0 < D < δ3 while SS42 is stable if
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and only if

F5(D) := φ2(D)− Sin
H2
− (1− ω)Y Sin

ch > 0 and φ3(D) > 0,

that is, D ∈ (δ2, δ3) where δ2 is the solution of equation F5(D) = 0 (see Figure D.4).526

Indeed, F5(D) > 0 for all D ∈ (δ2, δ3) and φ3(D) > 0 for all D ∈ (δ′2, δ3) where527

δ′2 ' 0.057865 is the solution of equation φ3(D) = 0 such that δ′2 < δ2.

(a)

D

F5(D)

δ2��� AAKδ3

(b)

D
δ2

F5(D)

δ3

(c)

D
δ′2

δ3

φ3(D)

Fig. D.4. Stability of SS4 for all D ∈ (δ2, δ3): (a) Curve of the function F5(D). (b) Magnifi-
cation of F5(D) for D ∈ [0.0685, 0.0688]. (c) Curve of the function φ3(D).

528
SS5 exists if and only if F1(D) > 0 and F3(D) > 0, that is, δ4 < D < δ5. SS5 is

stable if and only if

F6(D) := ϕ0(D) + ϕ1(D)− Y Sin
ch > 0,

that is, for all D ∈ (δ4, δ5) (see Figure D.5).

(a)

F6(D)

D

δ4��� δ5AAK

(b)

F6(D)

D
δ4 δ5

Fig. D.5. Stability of SS5 for all D ∈ (δ4, δ5) and existence of SS6 for all D < δ2: (a) curve
of the function F6(D). (b) Magnification of F6(D) for D ∈ [0.266, 0.268].

529
SS6 exists if and only if F5(D) < 0 and F6(D) < 0, that is, for all D < δ2 where530

δ2 is the solution of the equation F5(D) = 0 (see Figure D.4(a-b) and Figure D.5).531

Indeed, F5(D) < 0 for all D < δ2 and F6(D) < 0 for all D < δ′′2 where δ′′2 ' 0.113033532

is the solution of equation F6(D) = 0 such that δ2 < δ′′2 . To determine the stability533

of SS6, the functions c3, c5, r4 and r5 are plotted with respect to D < δ2. Figure D.6534

shows that c3(D), c5(D), r4(D) and r5(D) are all positive if and only if δ1 < D < δ2535

where δ1 ' 0.010412 is the solution of equation r5(D) = 0.536

To give a numerical evidence of the Hopf bifurcation occurring for D = δ1, we de-
termine numerically the eigenvalues of the Jacobian matrix of system (4.2) at SS6 and
we plot them with respect to D. Figure D.7(a-b) shows that two eigenvalues denoted
by λ1(D) and λ2(D) are real and remain negative for all D ∈ [0, δ2). Figure D.7(c)
shows that the two other eigenvalues λ3(D) and λ4(D) form a complex-conjugate pair
denoted by

λ3,4(D) = α3,4(D)± iβ3,4(D), for all D ∈ [0, δ?),
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(a)

D

c3

δ2

(b)

D

c5

δ2

(c)

D

r4

δ2

(d)

D

r5

δ1
δ2

(e)

D

δ1

r4
r5

Fig. D.6. (a-b-c-d) Curves of the functions c3(D), c5(D), r4(D) and r5(D) for 0 < D < δ2.
(e) Magnification of the curve of r4 and r5 for D ∈ [0, 0.02].

(a)

δ2
D

λ1

(b)

δ2
D

λ2

(c)
D

δ2δ?
���6

λ3

λ4

α3,4

(d)

D

δ2AAK���
δ1

δ?
λ5

λ6

α5,6

Fig. D.7. The eigenvalues of the Jacobian matrix at SS6 as a function of D, when Sin
ch = 0.1,

Sin
ph = 0 and Sin

H2
= 2.67×10−5. (c-d) The real parts α3,4 and α5,6 for D ∈ [0, δ?).

where the real part α3,4 remains negative and δ? ' 0.068504. Then, they become
real, negative and distinct for all D ∈ (δ?, δ2). Similarly, Figure D.7(d) shows that
the two last eigenvalues λ5(D) and λ6(D) form a complex-conjugate pair denoted by

λ5,6(D) = α5,6(D)± iβ5,6(D), for all D ∈ [0, δ?),

where the real part α5,6 is positive for all D ∈ [0, δ1) and negative for all D ∈ (δ1, δ
?).

Then, for all D ∈ (δ?, δ2), they become real, negative and distinct. At the particular
value D = δ1, the pair λ5,6(D) is purely imaginary such that α5,6(δ1) = 0, with
β5,6(δ1) 6= 0. Moreover, one has

dα5,6

dD (δ1) < 0.

This is consistent with Figure 4.1(b) showing that, as D decreases and crosses δ1,537

the steady state SS6 becomes unstable and we have a supercritical Hopf bifurcation,538
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leading to the appearance, from the steady state SS6, of small-amplitude periodic539

oscillations.540

Appendix E. Bifurcation diagram with respect to Sin
ch. In the following,541

we consider Sin
ph = 0 and Sin

H2
= 2.67 × 10−5, corresponding to Fig. 3(a) in [26] and542

we fix D = 0.01. Then, we determine the bifurcation diagram, where the input con-543

centration Sin
ch is the bifurcation parameter. This choice for the operating parameters544

is identical to that in [16] excepted that we have added the microbial decay terms,545

as in [26]. Our aim is to compare our results to those of [26] and to see if there are546

interesting phenomena that were not detected in the operating diagram depicted in547

Fig. 3(a) of [26], see Remark E.2. Our aim is also to see the effects of mortality on the548

behavior of the process and to compare our bifurcation diagram to the one depicted in549

[16], see Remark E.3 below. Using Theorem 3.1, we have the following result, which550

is supported by numerical experimentation and is proved in Appendix F.551

Proposition E.1. Let Sin
ph = 0, Sin

H2
= 2.67 × 10−5 and D = 0.01. In this case,552

SS7 and SS8 do not exist. Using the biological parameter values in Table 15, the553

bifurcation values σi, i = 1, . . . , 6 are provided in Table 10. The bifurcation analysis554

of (4.2) according to Sin
ch is given in Table 11. The bifurcation types at the critical555

values σi are defined in Table 12.556

Table 10
Critical parameter values σi, for i = 1, . . . , 6 where Y is defined in Appendix G, r5 in Table 2

while all other functions are given in Table 8. Note that σ1 < σ3 < σ4 < σ2 < σ5 < σ6, compare
with Table 5 in [16].

Definition Value

σ1 = M0

(
D + a0, S

in
H2

)
/Y 0.003173

σ2 = (φ1(D)− Sin
H2

)/((1− ω)Y ) 0.029402
σ3 = ϕ0(D)/Y 0.013643
σ4 = (Sin

H2
−M2(D + a2) + ωϕ0(D))/(ωY ) 0.013985

σ5 = (φ2(D)− Sin
H2

)/((1− ω)Y ) 0.033292
σ6 is the largest root of equation r5 = 0 0.1025

Table 11
Existence and stability of steady states, with respect to Sin

ch. The bifurcation values σi, i =
1, . . . , 6 are given in Table 10.

Interval SS1 SS2 SS3 SS41 SS42 SS5 SS6
0 < Sin

ch < σ1 U S
σ1 < Sin

ch < σ3 U S U
σ3 < Sin

ch < σ4 U U U S
σ4 < Sin

ch < σ2 U U S
σ2 < Sin

ch < σ5 U U S U U
σ5 < Sin

ch < σ6 U U S U U U
σ6 < Sin

ch U U S U U S

Remark E.2. As explained in Remark 4.2, the operating diagram of Fig. 3(a) in557

[26] for D = 0.01 does not accurately describe the transition from the region labeled558

SS2 (corresponding to the stability of SS2) to the SS3 region (corresponding to the559

stability of SS3). Our results show that this transition is via a SS5 region, which is very560

thin, since it corresponds to σ3 < Sin
ch < σ4, where σ3 ' 0.013643 and σ4 ' 0.013985.561
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Table 12
Bifurcation types corresponding to the critical values of σi, i = 1, . . . , 6, defined in Table 10.

There exists also a critical value σ∗ ' 0.099295 ∈ (σ5, σ6) corresponding to the value of Sin
ch where

the stable limit cycle disappears when Sin
ch is decreasing.

Bifurcation types
σ1 Transcritical bifurcation of SS1 and SS3
σ2 Saddle-node bifurcation of SS41 and SS42

σ3 Transcritical bifurcation of SS2 and SS5
σ4 Transcritical bifurcation of SS3 and SS5
σ5 Transcritical bifurcation of SS41 and SS6
σ6 Supercritical Hopf bifurcation
σ∗ Disappearance of the stable limit cycle

This region was missing in Fig. 3(a) in [26], since σ4 − σ3 is of order 10−4. Indeed,562

the limitations of the operating diagram in Fig. 3(a) in [26] are due to the numerical563

resolution: the stability of SS5 occurs in a very small region and may not be detected564

if the step size was for example an order of magnitude greater than σ4 − σ3.565

Figures E.1 and E.2 show the one-parameter bifurcation diagrams of Xch and566

XH2
versus Sin

ch in system (4.2), respectively. The magnifications of the bifurcation567

diagrams are illustrated in Figure E.1(b), Figure E.2(b) and Figure E.3 showing the568

transcritical bifurcations at σ1, σ3, σ4 and σ5, the saddle-node bifurcation at σ2, the569

Hopf bifurcation at σ6 and the disappearance of the cycle at σ∗. In Figure E.1(b),570

SS1 and SS2 cannot be distinguished since they have both a zero Xch-component. As571

SS2 is stable and SS1 is unstable for Sin
ch < σ3, the Xch = 0 axis is plotted in blue as572

the color of SS2 in Table 7. In Figure E.2(b), SS1 and SS2 are distinguished but it is573

not the case for SS1 and SS3, since they have both a zero XH2
-component. As SS3 is574

stable and SS1 is unstable for Sin
ch > σ4, the XH2

= 0 axis is plotted in purple as the575

color of SS3 in Table 7.
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(a)Xch

SS1 SS2 SS3
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SS6

SS42

σ1
σ3��� σ4AAK σ2σ5 σ∗σ6Sin

ch

(b)Xch

SS1SS2

SS3 SS5

σ1 σ3σ4Sin
ch

Fig. E.1. (a) Bifurcation diagram of Xch versus Sin
ch ∈ [0, 0.11] in model (4.2) showing the ap-

pearance and disappearance of stable limit cycles. (b) Magnification on the transcritical bifurcations
for Sin

ch ∈ [0, 0.018].
576

Remark E.3. As explained in Remark 3.2, with the exception of SS6, the main-577

tenance does not destabilize the steady states. Only their regions of existence and578

stability, with respect to the operating parameters, can be modified. For SS6, it is579

more difficult to answer the question of whether or not it can be destabilized by in-580

cluding maintenance terms. The bifurcations diagrams depicted in Figures E.1 to E.3,581

and the results given in Proposition E.1, permit to answer this question at least for582

the following values of the operating parameters Sin
ph = 0, Sin

H2
= 2.67×10−5, D = 0.01583
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Fig. E.2. (a) Bifurcation diagram of XH2
versus Sin

ch ∈ [0, 0.11] in model (4.2). (b) Magnifica-

tion on the transcritical bifurcations for Sin
ch ∈ [0, 0.018].
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(b)XH2

SS6

SS1SS2 SS3 SS41SS42
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Fig. E.3. (a) Magnification on the saddle-node bifurcation at Sin
ch = σ2 and the transcritical

bifurcation at Sin
ch = σ5 for Sin

ch ∈ [0.028, 0.035]. (b) Magnification on the limit cycles for Sin
ch ∈

[0.098, 0.105].

and Sin
ch ≥ 0. The comparison of the results obtained in Table 11 with those given584

in Table 6 of [16] shows only minor changes in the bifurcation values σi, i = 1, . . . , 6.585

Therefore, even for SS6, the maintenance does not destabilize the system: only the586

regions of stability, with respect to the operating parameters, are slightly modified.587

Note that the change of the bifurcation values σi is predictable since their formulas588

in Table 10 involve the added decay terms. However, the saddle-node bifurcation at589

σ2 arises after and not before the transcritical bifurcations at σ3 and σ4 as in [16].590

Appendix F. Proof of Proposition E.1. As said in Section 4, Theorem 3.1591

applies to model (4.2). From Theorem 3.1 and the change of variables (G.2), SS7 and592

SS8 do not exist since Sin
ph = 0. The necessary and sufficient existence and stability593

conditions of all other steady states are summarized in Table 9. Since the second594

stability condition of SS1 in Table 9 does not hold595

µ2

(
Sin

H2

)
' 1.0845 > D + a2 = 0.03,(F.1)596597

SS1 always exists and is unstable. Since the existence condition of SS2 in Table 9
holds (see inequality (F.1)), SS2 exists and is stable if and only if

Sin
ch < ϕ0(D)/Y =: σ3.

SS3 exists if and only if

Sin
ch > M0

(
D + a0, S

in
H2

)
/Y =: σ1.
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Let F
(
Sin

ch

)
be the function defined by598

F
(
Sin

ch

)
= µ1

(
Sin

chY − s0, S
in
H2
− ω

(
Sin

chY − s0

))
.(F.2)599600

The first stability condition of SS3 in Table 9 holds for all Sin
ch > σ1, that is, F

(
Sin

ch

)
<

D + a1 since the maximum of F is smaller than 0.0013 while D + a1 = 0.03 (see
Figure F.1). From the second stability condition in Table 9, SS3 is stable if and only
if

Sin
ch >

(
Sin

H2
−M2(D + a2) + ωϕ0(D)

)
/(ωY ) =: σ4.

y

y = F (Sin
ch)

Sin
ch

σ1

y

y = F (Sin
ch)

Sin
ch

σ1

Fig. F.1. Curve of the function y = F
(
Sin

ch

)
defined by (F.2).

601

From Theorem 3.1, the system can have at most two steady states of the form
SS4 denoted by SS41 and SS42 as ω ' 0.53 < 1. Their first existence condition in
Table 9 holds if and only if

Sin
ch ≥

(
φ1(D)− Sin

H2

)
/((1− ω)Y ) =: σ2.

Their second existence condition holds, for all Sin
ch ∈ [σ2, 0.11], since the straight line602

of equation y = Sin
chY is above the curves of the functions y = M0

(
D + a0, s

∗i
2

)
+603

M1

(
D + a1, s

∗i
2

)
, for i = 1, 2, respectively (see Figure F.2). Thus, SS41 and SS42604

exist and are unstable for all Sin
ch > σ2 since the second stability condition does not605

hold where φ3(D) ' −1996.917 < 0.

y

y = M0

(
D + a0, s

∗1
2

)
+M1

(
D + a1, s

∗1
2

)

y = M0

(
D + a0, s

∗2
2

)
+M1

(
D + a1, s

∗2
2

)

y
=
Y
S
in
ch

Sin
ch

σ2

Fig. F.2. The green line of equation y = Y Sin
ch is above the red and blue curves of the functions

M0

(
D + a0, s∗i2

)
+M1

(
D + a1, s∗i2

)
, for i = 1, 2, which correspond to SS41 and SS42, respectively.

606
SS5 exists if and only if σ3 := ϕ0(D)/Y < Sin

ch < σ4. When it exists, SS5 is stable
since

Sin
ch < σ4 ' 0.013985 < (ϕ0(D) + ϕ1(D))/Y ' 0.02304.

SS6 exists if and only if

Sin
ch >

φ2(D)−Sin
H2

(1−ω)Y =: σ5 ' 0.033292, Sin
ch >

ϕ0(D)+ϕ1(D)
Y ' 0.02304.
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(a)
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(e) Sin
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(f)

Sin
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Fig. F.3. (a-b-d) Curves of the functions c3(Sin
ch), c5(Sin

ch), r4(Sin
ch) and r5(Sin

ch) for Sin
ch > σ5.

(c-e-f) Magnifications of the curves c5 and r4 for Sin
ch ∈ [σ5, 0.04] and of r5 for Sin

ch ∈ [σ5, 0.035].
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(b)σ5
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σ5

σ?6
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λ4 α3,4

(d)

Sin
ch

σ5��� σ6σ?6

λ5

λ6
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Fig. F.4. The eigenvalues of the Jacobian matrix at SS6 as a function of Sin
ch, when D = 0.01,

Sin
ph = 0 and Sin

H2
= 2.67×10−5. (c-d) The real parts α3,4 and α5,6 for Sin

ch ∈ (σ?, 0.11].

Hence, SS6 exists if and only if Sin
ch > σ5. To determine the stability of SS6, the

functions c3, c5, r4 and r5 are plotted with respect to Sin
ch > σ5. Figure F.3 shows

that c3(Sin
ch), c5(Sin

ch), r4(Sin
ch) and r5(Sin

ch) are all positive if and only if Sin
ch > σ6

where σ6 ' 0.1025 is the largest root of equation r5

(
Sin

ch

)
= 0. To give a numerical

evidence of the Hopf bifurcation occurring for Sin
ch = σ6, we determine numerically

the eigenvalues of the Jacobian matrix of system (4.2) at SS6 and we plot them with
respect to Sin

ch. Figure F.4(a-b) shows that two eigenvalues denoted by λ1

(
Sin

ch

)
and

λ2

(
Sin

ch

)
are real and remain negative for all Sin

ch ∈ (σ5, 0.11]. Figure F.4(c) shows

that the two other eigenvalues λ3

(
Sin

ch

)
and λ4

(
Sin

ch

)
are real, negative and distinct

for all Sin
ch ∈ (σ5, σ

?) where σ? ' 0.03467. Then, they become a complex-conjugate
pair denoted by

λ3,4

(
Sin

ch

)
= α3,4

(
Sin

ch

)
± iβ3,4

(
Sin

ch

)
, for all Sin

ch ∈ (σ?, 0.11]

where the real part α3,4 remains negative.607
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Figure F.4(d) shows that the two last eigenvalues λ5

(
Sin

ch

)
and λ6

(
Sin

ch

)
are real,

positive and distinct for all Sin
ch ∈ (σ5, σ

?]. Then, they become a complex-conjugate
pair denoted by

λ5,6

(
Sin

ch

)
= α5,6

(
Sin

ch

)
± iβ5,6

(
Sin

ch

)
, for all Sin

ch ∈ (σ?, 0.11],

so that the real part α5,6 is positive for all Sin
ch ∈ (σ?, σ6) and negative for all Sin

ch ∈
(σ6, 0.11]. At the particular value Sin

ch = σ6, the pair λ5,6

(
Sin

ch

)
is purely imaginary

such that α5,6(σ6) = 0, with β5,6(σ6) 6= 0. Moreover, one has

dα5,6

dSin
ch

(σ6) < 0.

This is consistent with Figures E.1 to E.3, showing that, as Sin
ch decreases and crosses608

σ6, the steady state SS6 changes its stability through a supercritical Hopf bifurcation609

with the emergence of a stable limit cycle that we illustrate in Figures 4.3 and H.1.610

Remark F.1. Note that Figures F.1 and F.2 showing the stability of SS3 and the611

existence of two steady states of type SS4 are similar to Figures 6 and 7 in [16],612

respectively. But, on the contrary, Figure F.3 which concerns the stability of SS6613

is completely different from Figure 8 in [16], since the conditions of stability of SS6614

require to consider the signs of the Liénard-Chipart coefficients c3, c5, r4 and r5.615

Appendix G. A chlorophenol-mineralising three-tiered microbial ’food616

web’. Following [20], model (4.2) can be written in the form of model (1.1), using617

the following change of variables:618

x0 = Y
Y0
Xch, x1 = Y4

Y1
Xph, x2 = 1

Y2
XH2

, s0 = Y Sch, s1 = Y4Sph, s2 = SH2
,(G.1)619

620

where Y = Y3Y4. The input concentrations are given by:621

sin
0 = Y Sin

ch, sin
1 = Y4S

in
ph, sin

2 = Sin
H2
,(G.2)622623

the death rates are a0 = kdec,ch, a1 = kdec,ph, a2 = kdec,H2 , and the yield coefficients
are

Y0 = Ych, Y1 = Yph, Y2 = YH2 , Y3 = 224/208(1− Y0), Y4 = 32/224(1− Y1)

with ω = 16
208Y = 1

2(1−Ych)(1−Yph) . The specific growth functions (4.1) become the624

following functions satisfying Hypotheses (H1) to (H8):625

µ0(s0, s2) = m0s0
K0+s0

s2
L0+s2

, µ1(s1, s2) = m1s1
K1+s1

1
1+s2/KI

, µ2(s2) = m2s2
K2+s2

,(G.3)626
627

where628

m0 = Y0km,ch, K0 = Y KS,ch, L0 = KS,H2,c, m1 = Y1km,ph,629

K1 = Y4KS,ph, KI = KI,H2 , m2 = Y2km,H2 , K2 = KS,H2 .630631

For these specific kinetics (G.3), the various functions defined in Table 8 are listed632

in Table 16. Using the linear change of variable given by (G.1) and (G.2), the yield633

coefficients in (4.2) are normalized to one except one of them, which is equal to634

ω ' 0.53, when the yield coefficients are those given in Table 15. Therefore, (4.2) is635

of the form (1.1), with ω < 1 and the results of our paper apply to (4.2).636

The aim of this section is to give rigorous proofs for the results of [26] on existence
and stability of the steady states of model (4.2). Notice that the results in [26] were
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given with respect to the dimensionless form (H.2) of (4.2) by using the variables
(H.1) and the growth functions (H.3). The variables (H.1) are related to our variables
(G.1) by the formulas

x0 = X0K0, x1 = X1K1, x2 = X2K2, s0 = S0K0, s1 = S1K1, s2 = S2K2, t = τ/m0.

Hence, results given in variables (H.1) can be easily translated into results given in637

variables (G.1) and vice versa.638

From Theorem 3.1, the existence and stability of steady states of model (4.2)639

can be determine for the specific growth functions (G.3). Using the functions and640

notations given in Table 16, we have the following results:641

SS1 =
(
0, 0, 0, sin

0 , s
in
1 , s

in
2

)
always exists. It is stable if and only if

µ0

(
sin

0 , s
in
2

)
< D + a0, µ1

(
sin

1 , s
in
2

)
< D + a1 and µ2

(
sin

2

)
< D + a2.

These conditions are equivalent to the conditions of [26], section C1, given in terms642

of variables (H.1) and growth functions (H.3).643

SS2 = (0, 0, x2, s0, s1, s2) is given by:644

s0 = sin
0 , s1 = sin

1 , s2 = K2(D+a2)
m2−D−a2 , x2 = D

D+a2

(
sin

2 − s2

)
.(G.4)645

646

It exists if and only if sin
2 > s2, where s2 is given by (G.4). It is stable if and only if

µ0

(
sin

0 , s2

)
< D + a0 and µ1

(
sin

1 , s2

)
< D + a1.

Formulas (G.4) together with the conditions of existence and stability of SS2 were647

established in [26], section C2, using variables (H.1) and growth functions (H.3).648

SS3 = (x0, 0, 0, s0, s1, s2) is given by:649

x0 = D
D+a0

(
sin

0 − s0

)
, s1 = sin

1 + sin
0 − s0, s2 = sin

2 − ω
(
sin

0 − s0

)
,(G.5)650

651

where s0 is a solution of equation652

m0s0(sin2 −ω(sin0 −s0))
(K0+s0)(L0+sin2 −ω(sin0 −s0))

= D + a0.(G.6)653
654

Notice that (G.6) is a quadratic equation. Only its solution in the interval

J0 =
[
max

(
0, sin

0 − sin
2 /ω

)
, sin

0

)
is to be considered. SS3 exists if and only if the following condition holds655

µ0

(
sin

0 , s
in
2

)
> D + a0.(G.7)656657

It is stable if and only if658

µ1

(
sin

0 − s0 + sin
1 , s

in
2 − ω

(
sin

0 − s0

))
< D + a1,

sin
2 − ωsin

0 < M2(D + a2)− ωM0 (D + a0,M2(D + a2)) ,
(G.8)659

660

where s0 is the solution in the interval J0 of equation (G.6). Formulas (G.5) together661

with equation (G.6) giving s0 and the stability condition (G.8) were established in662

[26], section C3, using variables (H.1) and growth functions (H.3). However, neither663

condition (G.7) of existence of SS3 nor the signs of other eigenvalues of the Jacobian664
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matrix were explicitly established in [26], section C3, where the existence and stabil-665

ity of SS3 were checked only numerically by considering the roots of polynomials of666

degrees 2 and 3, respectively, see formulas (C.3) and (C.7) in [26].667

SS4 = (x0, x1, 0, s0, s1, s2) is given by:668

s0 = (D+a0)K0(L0+s2)
m0s2−(D+a0)(L0+s2) , s1 = (D+a1)K1(KI+s2)

m1KI−(D+a1)(KI+s2) ,

x0 = D
D+a0

(
sin

0 − s0

)
, x1 = D

D+a1

(
sin

0 − s0 + sin
1 − s1

)
,

(G.9)669

670

where s2 is a solution of equation671

(1− ω) (D+a0)K0(L0+s2)
m0s2−(D+a0)(L0+s2) + (D+a1)K1(KI+s2)

m1KI−(D+a1)(KI+s2) + s2

= (1− ω)sin
0 + sin

1 + sin
2 .

(G.10)672

673

Notice that (G.10) reduces to a cubic equation in s2. Only its solutions in the interval674

(s0
2, s

1
2) are to be considered. The steady states SS41 and SS42 exist if and only if the675

following conditions hold676

sin
0 > s0, sin

0 + sin
1 > s0 + s1 and (1− ω)sin

0 + sin
1 + sin

2 ≥ φ1 (D) ,(G.11)677678

where s0 and s1 are defined by (G.9). SS41 is unstable whenever it exists and SS42
679

is stable if and only if680

(1− ω)sin
0 + sin

1 + sin
2 < φ2(D), and φ3(D) > 0.(G.12)681682

Here φ2 and φ3 are defined in Table 8. Formulas (G.9) together with equation (G.10)683

giving s2 were established in [26], section C4, using variables (H.1) and growth func-684

tions (H.3). However, neither condition (G.11) of existence of SS4 nor its condition685

of stability (G.12) have been established explicitly in [26], section C4, where the exis-686

tence and stability of SS4 were checked only numerically by considering the roots of687

a polynomial of degree 5, see formula (C.20) in [26].688

SS5 = (x0, 0, x2, s0, s1, s2) is given by:689

s2 = (D+a2)K2

m2−D−a2 , s0 = (D+a0)K0(L0+s2)
m0s2−(D+a0)(L0+s2) , s1 = sin

0 − s0 + sin
1 ,

x0 = D
D+a0

(
sin

0 − s0

)
, x2 = D

D+a2

(
sin

2 − s2 − ω
(
sin

0 − s0

))
.

(G.13)690

691

It exists if and only if the following conditions hold692

sin
0 > s0, sin

2 − ωsin
0 > s2 − ωs0.(G.14)693694

where s0 and s2 are given by (G.13). SS5 is stable if and only if695

sin
0 + sin

1 < M0 (D + a0,M2(D + a2)) +M1 (D + a1,M2(D + a2)) .(G.15)696697

Formulas (G.13) together with conditions (G.14) of existence and (G.15) of stability698

of SS5 were established in [26], section C5, using variables (H.1) and growth functions699

(H.3). However, the signs of other eigenvalues of the Jacobian matrix have been700

checked only numerically by considering the roots of a polynomial of degree 4, see701

formula (C.31) in [26].702

SS6 = (x0, x1, x2, s0, s1, s2) is given by:703

s2 = (D+a2)K2

m2−D−a2 , s0 = (D+a0)K0(L0+s2)
m0s2−(D+a0)(L0+s2) , s1 = (D+a1)K1(KI+s2)

m1KI−(D+a1)(KI+s2) ,

x0 = D
D+a0

(
sin

0 − s0

)
, x1 = D

D+a1

(
sin

0 − s0 + sin
1 − s1

)
,

x2 = D
D+a2

(
(1− ω)

(
sin

0 − s0

)
+ sin

1 − s1 + sin
2 − s2

)
.

(G.16)704

705
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It exists if and only if the following conditions hold706

sin
0 > s0, sin

0 + sin
1 > s0 + s1, (1− ω)sin

0 + sin
1 + sin

2 > φ2(D),(G.17)707708

where s0 and s1 are given by (G.16). SS6 is stable if and only if709

ci > 0, i = 3, 5, and rj > 0, j = 4, 5,(G.18)710711

where ci and rj are defined in Table 2. Formulas (G.16) together with conditions712

(G.17) of existence of SS6 were established in [26], section C6, using variables (H.1)713

and growth functions (H.3). However, the Liénard-Chipart stability conditions (G.18)714

were not considered in [26], where the stability of SS6 was checked only numerically715

by considering the roots of a polynomial of degree 6, see formula (C.42) in [26].716

SS7 = (0, x1, 0, s0, s1, s2) is given by:717

s0 = sin
0 , x1 = D

D+a1

(
sin

1 − s1

)
, s2 = sin

1 − s1 + sin
2 ,(G.19)718

719

where s1 is a unique solution of equation720

m1s1KI

(K1+s1)(KI+sin1 +sin2 −s1)
= D + a1.(G.20)721

722

Notice that (G.20) is a quadratic equation. Only its solution in the interval

J1 =
[
0, sin

1

)
is to be considered. SS7 exists if and only if the following condition holds723

µ1

(
sin

1 , s
in
2

)
> D + a1.(G.21)724725

SS7 is stable if and only if726

sin
1 + sin

2 < M1

(
D + a1,M3

(
sin

0 , D + a0

))
+M3

(
sin

0 , D + a0

)
,

sin
1 + sin

2 < M1(D + a1,M2(D + a2)) +M2(D + a2).
(G.22)727

728

Formulas (G.19) together with equation (G.20) giving s1 and stability condition729

(G.22) were established in [26], section C7, using variables (H.1) and growth functions730

(H.3). However, condition (G.21) of existence of SS7 has not been established explic-731

itly in [26], section C7, where the existence of SS7 and the signs of other eigenvalues732

of the Jacobian matrix were checked only numerically by considering the roots of a733

polynomial of degree 3, see formula (C.53) in [26].734

SS8 = (0, x1, x2, s0, s1, s2) is given by:735

s0 = sin
0 , s2 = (D+a2)K2

m2−D−a2 , s1 = (D+a1)K1(KI+s2)
m1KI−(D+a1)(KI+s2) ,

x1 = D
D+a1

(
sin

1 − s1

)
, x2 = D

D+a2

(
sin

1 − s1 + sin
2 − s2

)
.

(G.23)736

737

It exists if and only if the following conditions hold738

sin
1 > s1, sin

1 + sin
2 > s1 + s2,(G.24)739740

where s1 and s2 are given by (G.23). SS8 is stable if and only if741

sin
0 < M0 (D + a0,M2(D + a2)) .(G.25)742743
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Formulas (G.23) together with conditions (G.24) of existence and (G.25) of stability744

of SS8 were established in [26], section C8, using variables (H.1) and growth functions745

(H.3). However, the signs of other eigenvalues of the Jacobian matrix have been746

checked only numerically by considering the roots of a polynomial of degree 4, see747

formula (C.62) in [26].748

Appendix H. Numerical simulations. The plots of Figures F.1 to F.4 were749

performed with Maple [11], which is used in particular for the computations of coeffi-750

cients c3, c5, r4 and r5, evaluated at SS6, and the computations of the eigenvalues of751

the Jacobian matrix evaluated at SS6. The plots of Figures E.1 to E.3 were performed752

with Scilab [22] by using the formulas of the steady state components given in Table 1.753

The various functions appearing in these formulas are given in Table 16. The plots754

of Figures 4.2 to 4.4 and H.1 to H.4 were performed with Scilab [22]. The numerical755

simulations presented in Figures 4.2 to 4.4, F.4, and H.1 to H.4 were performed on756

the dimensionless form of (4.2) used in [26]. Indeed, in the original form (4.2), nu-757

merical instabilities arise in numerical schemes. To reduce the number of parameters758

describing the dynamics and facilitate numerical simulations, the following rescaling759

of the variables was used in [26]:760

X0 = Xch

KS,chYch
, X1 =

Xph

KS,phYph
, X2 =

XH2

KS,H2YH2
,

S0 = Sch

KS,ch
, S1 =

Sph

KS,ph
, S2 =

SH2

KS,H2
, τ = km,chYcht.

(H.1)761

762

Then, with these changes of variables the system given in (4.2) reduced to system763 

dX0

dτ = (ν0(S0, S2)− α− k0)X0

dX1

dτ = (ν1(S1, S2)− α− k1)X1

dX2

dτ = (ν2(S2)− α− k2)X2

dS0

dτ = α(u0 − S0)− ν0(S0, S2)X0

dS1

dτ = α(u1 − S1) + ω0ν0(S0, S2)X0 − ν1(S1, S2)X1

dS2

dτ = α(u2 − S2)− ω2ν0(S0, S2)X0 + ω1ν1(S1, S2)X1 − ν2(S2)X2.

(H.2)764

765

The operating parameters are

α = D
km,chYch

, u0 =
Sin
ch

KS,ch
, u1 =

Sin
ph

KS,ph
, u2 =

Sin
H2

KS,H2
.

The yield coefficients are

ω0 =
KS,ch

KS,ph

224
208 (1− Ych), ω1 =

KS,ph

KS,H2

32
224 (1− Yph), ω2 = 16

208
KS,ch

KS,H2
.

The death rates are

k0 =
kdec,ch

km,chYch
, k1 =

kdec,ph
km,chYch

, k2 =
kdec,H2

km,chYch
.

The growth functions are766

ν0(S0, S2) = S0

1+S0

S2

KP +S2
, ν1(S1, S2) = φ1S1

1+S1

1
1+KIS2

, ν2(S2) = φ2S2

1+S2
,(H.3)767

768

where the biological parameters are given by

φ1 =
km,phYph

km,chYch
, φ2 =

km,H2
YH2

km,chYch
, KP =

KS,H2,C

KS,H2
, KI =

KS,H2

KI,H2
.
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Fig. H.1. Trajectories of Sch, Sph, SH2 , Xch, Xph and XH2 for Sch,in = 0.0995 (in kgCOD/m3):
Convergence to the stable limit cycle.
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Fig. H.2. Trajectories of Sch, Sph, SH2 , Xch, Xph and XH2 for Sch,in = 0.0995 (in kgCOD/m3):
Convergence to the stable steady state SS3. (b) A magnification of (a) showing that the solution of
(4.2) converges to the nonzero Xch-component of SS3.

The trajectories in Figures 4.2 to 4.4 and H.1 to H.4 were presented according769

to the variables of model (4.2) using the change of variables (H.1). In Figures 4.2770

to 4.4, the projections of the orbits of the six-dimensional phase space into the three-771

dimensional space (Xch, Xph, XH2
) shows the appearance and disappearance of a sta-772

ble limit cycle for different values of Sin
ch > σ5. The plot of the limit cycle was obtained773

by solving the ordinary differential equations using the default solver “lsoda” from the774

ODEPACK package in Scilab. Tables 13 and 14 present the components of the stable775

steady states SS3 and SS6, and all the initial conditions chosen to trace the different776

trajectories of model (4.2) in Figures 4.2 to 4.4 and H.1 to H.4.777

Appendix I. Tables. In this section, the biological parameter values are778

provided in Table 15. In Table 16, we present the auxiliary functions in the case of779

the growth functions given by (G.3).780
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Fig. H.3. Trajectories of Sch, Sph, SH2
, Xch, Xph and XH2

for Sch,in = 0.11 (in kgCOD/m3):
Convergence to the positive steady state SS6.

0 200 400 600100 300 500 700

0

0.1

0.02

0.04

0.06

0.08

0.12

0.01

0.03

0.05

0.07

0.09

0.11

0 200 400 600100 300 500 700

0

0.02

0.01

0.03

0.005

0.015

0.025

0.035

0 200 400 600100 300 500 700

0e00

2e−06

1e−06

2e−07

4e−07

6e−07

8e−07

1.2e−06

1.4e−06

1.6e−06

1.8e−06

2.2e−06

0 200 400 600100 300 500 700

0e00

2e−04

4e−04

6e−04

8e−04

1e−04

3e−04

5e−04

7e−04

9e−04

0 200 400 600100 300 500 700

0e00

1e−04

2e−05

4e−05

6e−05

8e−05

1e−05

3e−05

5e−05

7e−05

9e−05

0 200 400 600100 300 500 700

0

0.002

0.001

0.003

0.0005

0.0015

0.0025

0 200 400 600100 300 500 700

0e00

2e−04

1e−04

3e−04

5e−05

1.5e−04

2.5e−04

t (days) t (days) t (days)

Sch Sph SH2

(a) (b)

t (days) t (days) t (days) t (days)

Xch Xch Xph XH2

Fig. H.4. Trajectories of Sch, Sph, SH2
, Xch, Xph and XH2

for Sch,in = 0.11 (in kgCOD/m3):
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(4.2) converges to the nonzero Xch-component of SS3.
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Table 13
Steady states SS3 and SS6 of model (4.2) corresponding to Figures 4.2 to 4.4 and H.1 to H.4.

The biological parameters are provided in Table 15. The operating parameters are D = 0.01, Sin
ph = 0,

Sin
H2

= 2.67×10−5 and Sin
ch given in the second column.

Figure Sin
ch

SS3 = (Xch, 0, 0, Sch, Sph, SH2)

SS6 = (Xch, Xph, XH2 , Sch, Sph, SH2)

4.2 0.098

(
2.19 10−6, 0, 0, 9.77 10−2, 3.65 10−4, 9.17 10−8

)(
5.34 10−4, 1.06 10−3, 8.80 10−5, 1.36 10−2, 9.93 10−3, 3.62 10−7

)
4.3

H.1

H.2

0.0995

(
2.19 10−6, 0, 0, 9.92 10−2, 3.65 10−4, 9.12 10−8

)(
5.44 10−4, 1.08 10−3, 9.00 10−5, 1.36 10−2, 9.93 10−3, 3.62 10−7

)
4.4

H.3

H.4

0.11

(
2.19 10−6, 0, 0, 1.10 10−1, 3.65 10−4, 8.79 10−8

)(
6.10 10−4, 1.22 10−3, 1.04 10−4, 1.36 10−2, 9.93 10−3, 3.62 10−7

)
Table 14

The initial conditions of solutions of model (4.2) in Figures 4.2 to 4.4 and H.1 to H.4 are
obtained from the initial conditions of the solutions of model (H.2) by using the change of variables
(H.1). The initial conditions of (H.2) are given by Xi(0) = X∗i + ε and Si(0) = S∗i + ε, i = 0, 1, 2
where X∗i and S∗i are the components of SS6 and ε is given in the second column. When there is
more than one trajectory in the figure, its color is indicated in the first column.

Figure

Color
ε (Xch(0), Xph(0), XH2(0), Sch(0), Sph(0), SH2(0))

4.2 9.7 10−3
(
5.44 10−4, 1.17 10−3, 8.80 10−5, 1.42 10−2, 1.29 10−2, 6.05 10−7

)
4.3

Pink

Blue

Green

10−2

3.2 10−2

3.5 10−2

(
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