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MATHEMATICAL ANALYSIS OF A THREE-TIERED MODEL OF
ANAEROBIC DIGESTION ∗

SARRA NOUAOURA† , NAHLA ABDELLATIF†‡ , RADHOUANE FEKIH-SALEM†§ , AND

TEWFIK SARI¶

Abstract. In this paper, we are interested in a mechanistic model describing the anaerobic
mineralization of chlorophenol in a three-step food-web. The model is a six-dimensional system of
ordinary differential equations. In our study, we take into account the phenol and the hydrogen
input concentrations as well as the maintenance terms. Moreover, we consider the case of a large
class of growth rates, instead of specific kinetics. In this general case, a recent study shows that the
system can have up to eight steady states and their existence conditions were analytically determined.
We focus here on the necessary and sufficient conditions of the local stability of the steady states,
according to the four operating parameters of the process, which are the dilution rate and the
chlorophenol, phenol and hydrogen input concentrations. In previous studies, this stability analysis
was performed only numerically. We show that the positive steady state can be unstable and we
give numerical evidence for a supercritical Hopf bifurcation with the appearance of a stable periodic
orbit. We give a bifurcation diagram with the chlorophenol input concentration as the bifurcating
parameter, showing that the system can present rich behavior including bistability, coexistence and
occurrence of limit cycle.

Key words. Anaerobic digestion, Bistability, Chemostat, Chlorophenol mineralization, Hopf
bifurcation, Limit cycle.

AMS subject classifications. 34A34, 34D20, 37N25, 92B05

1. Introduction. The anaerobic digestion is a natural process in which organic
material is converted into biogas in an environment without oxygen by the action of a
microbial ecosystem. It is used for the treatment of wastewater and has the advantage
of producing methane and hydrogen under appropriate conditions [12]. The removed
carbon dioxide can be used as a carbon source for microalgae [11]. The full Anaerobic
Digestion Model No.1.(ADM1) [1] is highly parameterized with a large number of
state variables. Whilst suitable for dynamic simulation, analytical results on the
model are impossible and only numerical investigations are available [4]. Due to the
analytical intractability of the full ADM1, simpler mechanistic models of microbial
interaction have been proposed in view of a better understanding of the anaerobic
digestion process.

The two-tiered models, which take the form of four-dimensional mathematical
models with a cascade of two biological reactions, where one substrate is consumed
by one microorganism in a chemostat to produce a product that serves as the main lim-
iting substrate for a second microorganism, are the simplest models which encapsulate
the essence of the anaerobic digestion process. Two-tiered models with commensal-
istic relationship including or not substrate inhibition of the second population are
widely considered [2, 3, 16, 20] where the second population (the commensal popula-
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tion) benefits for its growth from the first population (the host population) while the
host population is not affected by the growth of the commensal population. On the
contrary, when the growth of the first population is affected by the growth of the sec-
ond population, the system describes a syntrophic relationship [5, 6, 8, 17, 18, 23, 27].
For more details and informations on commensalism and syntrophy, the reader is
referred to [18] and the references therein. Important and interesting extensions of
the two-tiered models are the eight-dimensional mathematical models, which include
syntrophy and inhibition [25, 26] and the model with five state variables studied in
[4, 14].

In this paper, we consider another extension of two-tiered models which consists in
a six-dimensional mathematical model obtained by introducing an additional micro-
organism and substrate into a two-tiered syntrophic model. The organisms involved
in the resulting three-tiered food-web are the chlorophenol and the phenol degraders
and the hydrogenotrophic methanogen [24] (see section 4 for the description of this
food-web). It has been shown in [24] that this model can have up to eight steady
states. Arguing that the Routh–Hurwitz theorem allowing for an explicit analysis of
the stability of steady states, is intractable beyond five dimensions, as it was noticed
in [13], the stability of the steady states were determined only numerically [24] using
specific growth rates (see formulas (4.2)). Several operating diagrams, which are the
bifurcation diagrams with respect to the four operating parameters (i.e. the dilu-
tion rate, the chlorophenol, the phenol and the hydrogen input concentrations) have
been numerically constructed in [24], showing the role, and the importance of each
operating parameter, in particular for the coexistence of all three species.

The model of [24] is extended in [15, 19] with general growth rates (see section 2
for the assumptions on the growth rates) and takes the form:

ẋ0 = (µ0(s0, s2)−D − a0)x0

ẋ1 = (µ1(s1, s2)−D − a1)x1

ẋ2 = (µ2(s2)−D − a2)x2

ṡ0 = D
(
sin

0 − s0

)
− µ0(s0, s2)x0

ṡ1 = D
(
sin

1 − s1

)
+ µ0(s0, s2)x0 − µ1(s1, s2)x1

ṡ2 = D
(
sin

2 − s2

)
− ωµ0(s0, s2)x0 + µ1(s1, s2)x1 − µ2(s2)x2

(1.1)

where s0 is the first substrate (chlorophenol in the application) concentration and x0

its degrader concentration; s1 and x1 for the second substrate (phenol); s2 and x2 for
the third substrate (hydrogen); D is the dilution rate; µi is the specific growth rate; sin

i

is the input substrate concentration in the chemostat; ω is a yield coefficient; ai is the
maintenance (or decay) rate for i = 0, 1, 2 and corresponding to chlorophenol, phenol
and hydrogen, respectively. In the resulting three-tiered model (1.1), the chlorophenol
degrader grows on both chlorophenol and hydrogen and produces phenol. The phenol
degrader consumes the phenol to form hydrogen, which inhibits its growth. The
hydrogenotrophic methanogen grows on the produced hydrogen.

The mathematical analysis of (1.1), under various assumptions, is given in [15, 19].
The system (1.1) was studied in [19] in the case sin

0 > 0 and sin
1 = sin

2 = 0 where at
most three types of steady states can exist. The results of [19] were extended in
[15] in the case sin

1 ≥ 0 and sin
2 ≥ 0 where at most eight types of steady states

can exist. These steady states, which were depicted only numerically in [24], are
analytically studied in [15, 19], providing their necessary and sufficient conditions of
existence, and showing their uniqueness, except for one of them, that can exist in
two forms, a fact that was not described in [24]. In [15, 19], the stability of steady
states was analytically characterized only in the case without maintenance, where the
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six-dimensional mathematical model is reduced to a three-dimensional one. It has
been shown in [15, 19] that the positive steady state can be unstable, a fact that has
also not been described in [24]. Numerical analysis has suggested the presence of a
Hopf bifurcation emerging through the positive steady state, with the chlorophenol
input concentration as the bifurcating parameter.

In [7], the three-tiered model of [24] was simplified by neglecting the part of hy-
drogen produced by the phenol degrader. The existence and stability of steady states
were analytically studied only in the case without maintenance. In [22], persistence
results were given in the case without maintenance, and the Hopf bifurcation of the
positive steady state, which was numerically observed in [19], is proved.

Here, we focus on the analysis of the stability of all steady states of (1.1), and we
analytically characterize the stability, by using the Liénard-Chipart stability criteria,
in the case including maintenance, where the system cannot be reduced to a three-
dimensional one. We generalize then [24] by allowing a larger class of growth functions
and by giving rigorous proofs for the results on the existence and stability of steady
states. For this class of growth function, we generalize [7, 15, 19, 22] by giving the
necessary and sufficient conditions of stability of steady states when maintenance is
included in the model.

This paper is organized as follows: in section 2, we recall the results of [15] on
the existence of the steady states. We give in section 3 our main result providing
the necessary and sufficient conditions of stability of the steady states. Next, in
section 4, we give an application of our theoretical results to the three-tiered model
considered in [24]. We dedicate section 5 to discuss our results. In Appendix A,
we define some auxiliary functions used for the description of the steady states with
their conditions of existence and stability. Proofs are reported in Appendix B. In
Appendix C, the description of the bifurcation diagram according to the chlorophenol
input concentration is supported by numerical experimentation. In Appendix D, we
present the Liénard-Chipart stability criteria. Details and complements on the three-
tiered model considered in [24] are given in Appendix E. In Appendix F, we illustrate
some numerical simulations and some tables are given in Appendix G.

2. Assumptions and existence of steady states. We consider model (1.1).
Following [15, 19], we assume that the growth functions are continuously differentiable
(C1) and satisfy the following conditions:

(H1) For all s0 > 0 and s2 > 0, 0 < µ0(s0, s2) < +∞, µ0(0, s2) = 0, µ0(s0, 0) = 0.
(H2) For all s1 > 0 and s2 ≥ 0, 0 < µ1(s1, s2) < +∞, µ1(0, s2) = 0.
(H3) For all s2 > 0, 0 < µ2(s2) < +∞, µ2(0) = 0.
(H4) For all s0 > 0 and s2 > 0, ∂µ0

∂s0
(s0, s2) > 0, ∂µ0

∂s2
(s0, s2) > 0.

(H5) For all s1 > 0 and s2 > 0, ∂µ1

∂s1
(s1, s2) > 0, ∂µ1

∂s2
(s1, s2) < 0.

(H6) For all s2 > 0, µ′2(s2) > 0.
(H7) The function s2 7→ µ0(+∞, s2) is monotonically increasing and the function

s2 7→ µ1(+∞, s2) is monotonically decreasing.
(H8) When ω < 1, the function Ψ has a unique minimum s2 = s2(D) on the

interval
(
s0

2, s
1
2

)
, such that ∂Ψ

∂s2
(s2, D) < 0 on

(
s0

2, s2

)
and ∂Ψ

∂s2
(s2, D) > 0 on

(
s2, s

1
2

)
.

Notice that the function Ψ considered in (H8), together with all other auxiliary
functions needed in the following results are defined in Appendix A. We begin by
recalling the main result of [15], see Theorem 1 in [15].

Theorem 2.1. Assume that Hypotheses (H1) to (H6) hold. System (1.1) can have
at most eight types of steady states whose components are given in Table 1. Assume
also that Hypothesis (H7) holds. The necessary and sufficient conditions of existence
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of the steady states are given in Table 2. When they exist, all steady states, except
SS4, are unique.
• If ω ≥ 1, when it exists, SS4 is unique.
• If ω < 1, assuming also that (H8) holds, the system has at most two steady states

of the form SS4.

Table 1
Steady states of (1.1). All functions are defined in Table 10.

s0, s1, s2 and x0, x1, x2 components

SS1 s0 = sin
0 , s1 = sin

1 , s2 = sin
2 and x0 = 0, x1 = 0, x2 = 0

SS2 s0 = sin
0 , s1 = sin

1 , s2 = M2(D + a2) and x0 = 0, x1 = 0, x2 = D
D+a2

(
sin

2 − s2

)
SS3

s1 = sin
1 + sin

0 − s0 and s2 = sin
2 − ω

(
sin

0 − s0

)
, where s0 is a solution of

ψ0(s0) = D + a0 and x0 = D
D+a0

(
sin

0 − s0

)
, x1 = 0, x2 = 0

SS4

s0 = M0(D + a0, s2) and s1 = M1(D + a1, s2), where s2 is a solution of

Ψ(s2, D) = (1− ω)sin
0 + sin

1 + sin
2

and x0 = D
D+a0

(
sin

0 − s0

)
, x1 = D

D+a1

(
sin

0 − s0 + sin
1 − s1

)
, x2 = 0

SS5
s0 = ϕ0(D), s1 = sin

1 + sin
0 − s0, s2 = M2(D + a2)

and x0 = D
D+a0

(
sin

0 − s0

)
, x1 = 0, x2 = D

D+a2

(
sin

2 − s2 − ω
(
sin

0 − s0

))
SS6

s0 = ϕ0(D), s1 = ϕ1(D), s2 = M2(D + a2) and x0 = D
D+a0

(
sin

0 − s0

)
,

x1 = D
D+a1

(
sin

0 − s0 + sin
1 − s1

)
, x2 = D

D+a2

(
(1− ω)(sin

0 − s0) + sin
1 − s1 + sin

2 − s2

)
SS7

s0 = sin
0 and s2 = sin

2 + sin
1 − s1, where s1 is a solution of ψ1(s1) = D + a1

and x0 = 0, x1 = D
D+a1

(
sin

1 − s1

)
, x2 = 0

SS8
s0 = sin

0 , s1 = ϕ1(D), s2 = M2(D + a2)

and x0 = 0, x1 = D
D+a1

(
sin

1 − s1

)
, x2 = D

D+a2

(
sin

1 − s1 + sin
2 − s2

)
Table 2

Existence conditions of steady states of (1.1). All functions are given in Table 10.

Existence conditions

SS1 Always exists

SS2 µ2

(
sin

2

)
> D + a2

SS3 µ0

(
sin

0 , s
in
2

)
> D + a0

SS4

(1− ω)sin
0 + sin

1 + sin
2 ≥ φ1(D), sin

0 > M0(D + a0, s2),

sin
0 + sin

1 > M0(D + a0, s2) +M1(D + a1, s2)

with s2 solution of equation Ψ(s2, D) = (1− ω)sin
0 + sin

1 + sin
2

SS5 sin
0 > ϕ0(D), sin

2 − ωsin
0 > M2(D + a2)− ωϕ0(D)

SS6 (1− ω)sin
0 + sin

1 + sin
2 > φ2(D), sin

0 > ϕ0(D), sin
0 + sin

1 > ϕ0(D) + ϕ1(D)

SS7 µ1

(
sin

1 , s
in
2

)
> D + a1

SS8 sin
1 > ϕ1(D), sin

1 + sin
2 > ϕ1(D) +M2(D + a2)

3. Stability of steady states. In this section, the necessary and sufficient
conditions of stability of all steady states are given in Table 5. Any reference to
steady state stability should be considered as local exponential stability, that is to
say, the real parts of the eigenvalues of the Jacobian matrix are negative. We need
the following notations:

E = ∂µ0

∂s0
(s0, s2), F = ∂µ0

∂s2
(s0, s2), G = ∂µ1

∂s1
(s1, s2), H = −∂µ1

∂s2
(s1, s2),(3.1)

I = µ′2(s2), J = µ0(s0, s2), K = µ1(s1, s2), L = µ2(s2).(3.2)

We have used the opposite sign of the partial derivative H = −∂µ1/∂s2, such that all
constants involved in the computation become positive. Using the Liénard-Chipart
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stability criteria, the asymptotic stability of SS4 and SS6 requires definitions and
notations that are given in Tables 3 and 4, respectively.

Table 3
Liénard-Chipart coefficients for SS4. The functions E, F , G, H, I, J, K and L, defined by

(3.1) and (3.2), are evaluated at the components of SS4 given in Table 1.

c1 = 2D + (E + ωF )x0 + (G+H)x1

c2 = D2 + (E + ωF )(D + J)x0 + (G+H)(D +K)x1 + (E(G+H)− (1− ω)FG)x0x1

c3 = D(E + ωF )Jx0 +D(G+H)Kx1 + (E(G+H)− (1− ω)FG)(J +K)x0x1

c4 = (E(G+H)− (1− ω)FG)JKx0x1

φ4

(
D, sin

0 , s
in
1 , s

in
2

)
= c1c2c3 − c21c4 − c23

Table 4
Liénard-Chipart coefficients for SS6. The functions E, F , G, H, I, J, K and L, defined by

(3.1) and (3.2), are evaluated at the components of SS6 given in Table 1.

c1 = 3D + (E + Fw)x0 + (G+H)x1 + Ix2

c2 = 3D2 + (2D + J)(E + ωF )x0 + (2D +K)(G+H)x1 + EIx0x2 +GIx1x2

+(2D + L)Ix2 + (E(G+H)− (1− ω)FG)x0x1

c3 = D3 +D(D + 2J)(E + ωF )x0 +D(D + 2K)(G+H)x1 +D(D + 2L)Ix2

+EI(D + J + L)x0x2 +GI(D +K + L)x1x2 + EGIx0x1x2 + (E(G+H)

−(1− ω)FG)(D + J +K)x0x1

c4 = D2(E + ωF )Jx0 +D2(G+H)Kx1 +D2ILx2 + EI(DJ +DL+ JL)x0x2

+GI (DK +DL+KL)x1x2 + EGI(J +K + L)x0x1x2 + (E(G+H)

−(1− ω)FG)(DJ +DK + JK)x0x1

c5 = DEIJLx0x2 +DGIKLx1x2 +D(E(G+H)− (1− ω)FG)JKx0x1

+EGI (JK + JL+KL)x0x1x2

c6 = EGIJKLx0x1x2

r0 = c1c2 − c3, r1 = c1c4 − c5, r2 = c3r0 − c1r1, r3 = c5r0 − c21c6
r4 = r1r2 − r0r3, r5 = r3r4 − c1c6r2

2

Now, we can state our main result.

Theorem 3.1. Assume that Hypotheses (H1) to (H8) hold. The necessary and
sufficient conditions of local stability of the steady states are given in Table 5.

Table 5
Stability conditions of steady states of (1.1). The function φ4 is given in Table 3, while c3, c5,

r4 and r5 are defined in Table 4. All other functions are given in Table 10.

Stability conditions

SS1 µ0

(
sin

0 , s
in
2

)
< D + a0, µ1

(
sin

1 , s
in
2

)
< D + a1, µ2

(
sin

2

)
< D + a2

SS2 sin
0 < ϕ0(D), sin

1 < ϕ1(D)

SS3
µ1

(
sin

0 + sin
1 − s0, s

in
2 − ω

(
sin

0 − s0

))
< D + a1, sin

2 − ωsin
0 < M2(D + a2)− ωϕ0(D)

with s0 solution of equation ψ0(s0) = D + a0

SS4 (1− ω)sin
0 + sin

1 + sin
2 < φ2(D), φ3(D) > 0, ∂Ψ

∂s2
(s2, D) > 0, φ4(D, sin

0 , s
in
1 , s

in
2 ) > 0

SS5 sin
0 + sin

1 < ϕ0(D) + ϕ1(D)

SS6 c3 > 0, c5 > 0, r4 > 0, r5 > 0

SS7
sin

1 + sin
2 < M3

(
sin

0 , D + a0

)
+M1

(
D + a1,M3

(
sin

0 , D + a0

))
,

sin
1 + sin

2 < M2(D + a2) + ϕ1(D)

SS8 sin
0 < ϕ0(D)

Remark 3.2. Using Lemma 3 in [15], we have the following results:
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• If ω ≥ 1, the stability condition of SS4 ∂Ψ
∂s2

(s2, D) > 0 is always satisfied.

• If ω < 1, and if (1−ω)sin
0 +sin

1 +sin
2 > φ1(D), the equation defining s2 in Table 1

has two solutions s∗12 < s∗22 , such that ∂Ψ
∂s2

(
s∗12 , D

)
< 0 and ∂Ψ

∂s2

(
s∗22 , D

)
> 0.

We denote by SS41 the steady state of type SS4 corresponding to s∗12 while
SS42 corresponds to s∗22 . When it exists, SS41 is unstable. When SS42 exists,
its stability condition ∂Ψ

∂s2
(s2, D) > 0 is always satisfied.

From Tables 2 and 5, we can deduce the following result.

Proposition 3.3.
• If SS2 or SS3 or SS7 exists then, SS1 is unstable.
• If SS6 exists then, SS2, SS4, SS5 and SS8 are unstable, when they exist.
• If SS5 exists then, SS2, SS3 and SS8 are unstable, when they exist.
• If SS8 exists then, SS7 is unstable, when it exists.

4. Applications to a three-tiered microbial ’food web’. In this section, we
consider the model of a chlorophenol-mineralising three-tiered microbial ‘food web’
in a chemostat as application of our mathematical analysis, in order to compare our
findings to the numerical results in [24]. This model is described by the following
system of differential equations

Ẋch = (Ychf0 (Sch, SH2
)−D − kdec,ch)Xch

Ẋph = (Yphf1 (Sph, SH2)−D − kdec,ph)Xph

ẊH2
= (YH2

f2 (SH2
)−D − kdec,H2

)XH2

Ṡch = D
(
Sin

ch − Sch

)
− f0 (Sch, SH2

)Xch

Ṡph = D
(
Sin

ph − Sph

)
+ 224

208 (1− Ych) f0 (Sch, SH2
)Xch − f1 (Sph, SH2

)Xph

ṠH2
= D

(
Sin

H2
−SH2

)
− 16

208f0 (Sch, SH2
)Xch+ 32

224 (1−Yph)f1 (Sph, SH2
)Xph

−f2(SH2
)XH2

,

(4.1)

where Sch, Sph and SH2
, are the chlorophenol, phenol and hydrogen substrates con-

centrations; Xch, Xph and XH2
are the chlorophenol, phenol and hydrogen degrader

concentrations; Sin
ch, S

in
ph and Sin

H2
are the input concentrations; kdec,ch, kdec,ph and

kdec,H2
are the decay rates; Ych, Yph and YH2

are the yield coefficients, respec-
tively; 224/208 (1− Ych) represents the fraction of chlorophenol converted to phenol;
32/224 (1− Yph) represents the fraction of phenol that is transformed to hydrogen and
16/208 represents the fraction of hydrogen consumed by the chlorophenol degrader.
The specific growth rates take the form:

f0 (Sch, SH2
) =

km,chSch

KS,ch+Sch

SH2

KS,H2,c+SH2
,

f1 (Sph, SH2) =
km,phSph

KS,ph+Sph

1
1+SH2

/KI,H2
, f2 (SH2) =

km,H2SH2

KS,H2
+SH2

,
(4.2)

The biological parameter values, used in [24], are provided in Table 14. Following [19],
the rescaling of the variables (E.1) and (E.2) can reduce (4.1) to the form (1.1), that is,
the yields coefficients in (4.1) are normalized to one, except one of them which is equal
to ω ' 0.53. Under this rescaling (E.1) and (E.2), the growth functions (4.2) take the
form (E.3) keeping their form of a double Monod, a Monod with product inhibition,
and a Monod kinetics, respectively, so that Hypotheses (H1) to (H8) are satisfied.
Therefore, Theorem 2.1 and Theorem 3.1, with ω < 1, apply and give rigorous proofs
for the results of [24], on existence and stability of steady states, which, for the most
part, have only been obtained numerically. See Appendix E for the details.
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In the following, we consider Sin
ph = 0 and Sin

H2
= 2.67 × 10−5, corresponding to

Fig. 3(a) in [24] and we fix D = 0.01 and we determine the bifurcation diagram,
where the input concentration Sin

ch is the bifurcation parameter. This choice for the
operating parameters is identical to that in [15] excepted that we have added the
microbial decay terms, as in [24]. Our aim is to compare our results to those of [24]
and to see if there are interesting phenomena that were not detected in the operating
diagram depicted in Fig. 3(a) of [24], see Remark 4.2 below. Our aim is also to see
the effects of mortality on the behavior of the process and to compare our bifurcation
diagram to the one depicted in [15], see Remark 4.3 below. Using Theorem 2.1 and
Theorem 3.1, we have the following result.

Proposition 4.1. Let Sin
ph = 0, Sin

H2
= 2.67×10−5 and D = 0.01. Notice that in this

case SS7 and SS8 do not exist. Using the biological parameter values in Table 14, the
bifurcation values σi, i = 1, . . . , 6 are provided in Table 6. The bifurcation analysis of
(4.1) according to Sin

ch is given in Table 7. The bifurcation types at the critical values
σi are defined in Table 8.

Table 6
Critical parameter values σi, for i = 1, . . . , 6 where Y is defined in Appendix E, r5 in Table 4

while all other functions are given in Table 10. Note that σ1 < σ3 < σ4 < σ2 < σ5 < σ6, compare
with Table 5 in [15].

Definition Value
σ1 = M0

(
D + a0, S

in
H2

)
/Y 0.003173

σ2 = (φ1(D)− Sin
H2

)/((1− ω)Y ) 0.029402
σ3 = ϕ0(D)/Y 0.013643
σ4 = (Sin

H2
−M2(D + a2) + ωϕ0(D))/(ωY ) 0.013985

σ5 = (φ2(D)− Sin
H2

)/((1− ω)Y ) 0.033292
σ6 is the largest root of equation r5 = 0 0.1025

Table 7
Existence and stability of steady states, with respect to Sin

ch. The bifurcation values σi, i =
1, . . . , 6 are given in Table 6. The letter S (resp. U) means that the corresponding steady state is
stable (resp. unstable). No letter means that the steady state does not exist.

Interval SS1 SS2 SS3 SS41 SS42 SS5 SS6
0 < Sin

ch < σ1 U S
σ1 < Sin

ch < σ3 U S U
σ3 < Sin

ch < σ4 U U U S
σ4 < Sin

ch < σ2 U U S
σ2 < Sin

ch < σ5 U U S U U
σ5 < Sin

ch < σ6 U U S U U U
σ6 < Sin

ch U U S U U S

Proof. This is supported by numerical experimentation and is given in Appen-
dix C.

Remark 4.2. Not all of the behaviors described in Table 7 were reported in [24].
For D = 0.01, the operating diagram of Fig. 3(a) in [24] predicts only three possible
behaviors: the stability of SS2, the stability of SS3 and the bistability between SS3
and SS6. Note that the destabilization of SS6 via a Hopf bifurcation with emergence
of a stable limit cycle has not been observed in [24]. Even, the possibility of stability
of SS5 has not been reported in the operating diagram. Indeed, Fig. 3(a) of [24] does
not correctly describe the transition from the region labeled SS2 (and corresponding
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Table 8
Bifurcation types corresponding to the critical values of σi, i = 1, . . . , 6, defined in Table 6.

There exists also a critical value σ∗ ' 0.099295 ∈ (σ5, σ6) corresponding to the value of Sin
ch where

the stable limit cycle disappears when Sin
ch is decreasing.

Bifurcation types
σ1 Transcritical bifurcation of SS1 and SS3
σ2 Saddle-node bifurcation of SS41 and SS42

σ3 Transcritical bifurcation of SS2 and SS5
σ4 Transcritical bifurcation of SS3 and SS5
σ5 Transcritical bifurcation of SS41 and SS6
σ6 Supercritical Hopf bifurcation
σ∗ Disappearance of the stable limit cycle

to the stability of SS2) to the SS3 region. Our results show that this transition is via a
SS5 region. The existence of the SS5 region was depicted in Fig. 3(b) of [24] in the case
where Sin

H2
= 2.67 × 10−2. However, this region also exists when Sin

H2
= 2.67 × 10−5,

but it is very thin, since for D = 0.01 it corresponds to σ3 < Sin
ch < σ4, where

σ3 ' 0.013643 and σ4 ' 0.013985.

Figures 4.1 and 4.2 show the one-parameter bifurcation diagrams of Xch and
XH2

versus Sin
ch in system (4.1), respectively. The magnifications of the bifurcation

diagrams are illustrated in Figure 4.1(b), Figure 4.2(b) and Figure 4.3 showing the
transcritical bifurcations at σ1, σ3, σ4 and σ5, the saddle-node bifurcation at σ2, the
Hopf bifurcation at σ6 and the disappearance of the cycle at σ∗. In Figure 4.1(b),
SS1 and SS2 cannot be distinguished since they have both a zero Xch-component. As
SS2 is stable and SS1 is unstable for Sin

ch < σ3, the Xch = 0 axis is plotted in blue as
the color of SS2 in Table 9. In Figure 4.2(b), SS1 and SS2 are distinguished but it is
not the case for SS1 and SS3, since they have both a zero XH2

-component. As SS3 is
stable and SS1 is unstable for Sin

ch > σ4, the XH2
= 0 axis is plotted in purple as the

color of SS3 in Table 9.

0 0.10.02 0.04 0.06 0.080.01 0.03 0.05 0.07 0.09 0.11

0e00

2e−04

4e−04

6e−04

8e−04

1e−04

3e−04

5e−04

7e−04

0 0.010.002 0.004 0.006 0.008 0.012 0.014 0.016 0.018

0e00

2e−06

1e−06

2e−07

4e−07

6e−07

8e−07

1.2e−06

1.4e−06

1.6e−06

1.8e−06

2.2e−06

2.4e−06
(a)Xch

SS1 SS2 SS3
SS41

SS6

SS42

σ1
σ3��� σ4AAK σ2σ5 σ∗σ6Sin

ch

(b)Xch

SS1SS2

SS3 SS5

σ1 σ3σ4Sin
ch

Fig. 4.1. (a) Bifurcation diagram of Xch versus Sin
ch ∈ [0, 0.11] in model (4.1) showing the ap-

pearance and disappearance of stable limit cycles. (b) Magnification on the transcritical bifurcations
for Sin

ch ∈ [0, 0.018].

Table 9
Colors used in Figures 4.1 to 4.3. The solid (resp. dashed) lines are used for stable (resp.

unstable) steady states.

SS1 SS2 SS3 SS41 SS42 SS5 SS6
Red Blue Purple Dark Green Magenta Green Cyan
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0e00

1e−04

2e−05

4e−05

6e−05

8e−05

1.2e−04

1.4e−04

1.6e−04

0 0.010.002 0.004 0.006 0.008 0.012 0.014 0.016 0.018

0e00

2e−07

4e−07

6e−07

1e−07

3e−07

5e−07

5e−08

1.5e−07

2.5e−07

3.5e−07

4.5e−07

5.5e−07

(a)XH2

SS1 SS2 SS3 SS41SS42

SS6

σ1
σ3��� σ4AAK σ2σ5 σ∗σ6Sin

ch

(b)XH2

SS1

SS2

SS3

SS5

σ1 σ3σ4Sin
ch

Fig. 4.2. (a) Bifurcation diagram of XH2
versus Sin

ch ∈ [0, 0.11] in model (4.1). (b) Magnifica-

tion on the transcritical bifurcations for Sin
ch ∈ [0, 0.018].

0.030.028 0.032 0.0340.029 0.031 0.033 0.035

0e00

2e−04

1e−04

2e−05

4e−05

6e−05

8e−05

1.2e−04

1.4e−04

1.6e−04

1.8e−04

0.10.098 0.102 0.1040.099 0.101 0.103 0.105

0e00

1e−04

2e−05

4e−05

6e−05

8e−05

1.2e−04

1.4e−04

1.6e−04

(a)Xch

SS42

SS41

SS6

SS1 SS2 SS3

σ2 σ5Sin
ch

(b)XH2

SS6

SS1SS2 SS3 SS41SS42

σ∗ σ6Sin
ch

Fig. 4.3. (a) Magnification on the saddle-node bifurcation at Sin
ch = σ2 and the transcritical

bifurcation at Sin
ch = σ5 for Sin

ch ∈ [0.028, 0.035]. (b) Magnification on the limit cycles for Sin
ch ∈

[0.098, 0.105].

Remark 4.3. Note that the change in all bifurcation values σi, i = 1, . . . , 6 com-
pared to [15] is predictable since their formulas in Table 6 involve the added decay
terms. However, the saddle-node bifurcation at σ2 arises after and not before the
transcritical bifurcations at σ3 and σ4 as in [15].

We present in Figures 4.4 to 4.6 (and also Figures F.1 to F.4), the numerical simula-
tions which illustrate our findings. We illustrate, in particular, the interesting three
cases where the steady states SS1, SS2, SS41 and SS42 are unstable:
• For Sin

ch ∈ (σ5, σ
∗), the numerical simulations done for various positive initial

conditions permit to conjecture the global asymptotic stability of SS3 (see
Figure 4.4).

• For Sin
ch ∈ (σ∗, σ6), the system exhibits a bistability with two basins of attrac-

tion: one toward the stable limit cycle and the second toward SS3. Figure 4.5
illustrates that the trajectories in pink and blue converge toward the stable
limit cycle in red, while the green trajectory converges toward SS3. For the
initial condition in Table 13, the time course in Figure F.1 illustrates the pos-
itive, periodic solution representing the coexistence of the three species. The
sustained oscillations prove the stability of the limit cycle. However, Figure F.2
shows the time course of the green trajectory in Figure 4.5.

• For Sin
ch > σ6, the system exhibits a bistability between SS6 and SS3. Figure 4.6

shows that the blue trajectory converges to the stable focus SS6, while the green
trajectory converges to SS3. Figures F.3 and F.4 illustrate the time courses
corresponding to the blue and the green trajectories in Figure 4.6, respectively.

Numerical simulations have shown that the stable limit cycle disappears at the
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0
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1.5e−04

XH2
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Xph

SS6

SS42

SS41
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Fig. 4.4. Case Sin
ch = 0.098 < σ∗: the solution of (4.1) converges to SS3.

00.001 0.00020.00040.00060.00080.0012

0
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0.001

0e00
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1e−04

5e−05

1.5e−04

XH2

Xch

Xph

SS6

SS42 SS41 SS3

Fig. 4.5. Case σ∗ < Sin
ch = 0.0995 < σ6 : bistability with convergence either to the stable limit

cycle (in red) or to SS3.

0
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0.0005

0

0.002

0.001

0.003

0e00

2e−04

1e−04

3e−04

5e−05

1.5e−04

2.5e−04

XH2

Xch

Xph

SS6
•

SS42

SS41

SS3

Fig. 4.6. Case σ6 < Sin
ch = 0.11 : bistability with convergence either to SS6 or to SS3.

critical value σ∗ ∈ (σ5, σ6) as Sin
ch decreases. Similarly to the numerical study of

the bifurcation diagram with respect to the parameter D in [22] in the case without
maintenance and sin

1 = sin
2 = 0, we conjecture that in our case also the stable limit

cycle disappears through a saddle-node bifurcation with another unstable limit cycle
when Sin

ch decreases.

5. Conclusion. In this study, we discussed the dynamics of three interacting
microbial species describing a chlorophenol-mineralising three-tiered ‘food web’ in the



ANAEROBIC DIGESTION MODEL 11

chemostat (4.1), introduced by Wade et al. [24]. In [24], following previous work
[27] on a two-tired model, this three-tiered microbial ‘food web’, was proposed as
a reduced model of the widely used ADM1. In [24], the existence and stability of
the steady states of model (4.1) have been analyzed as a function of the operating
parameters (input substrate concentrations and dilution rate), using numerical tools
and specific values of the biological parameters.

In this paper, we gave a complete analysis of the dynamics of the model (1.1)
which generalizes (4.1) by allowing a larger class of growth functions. The existence
of the steady states was analytically characterized in [15] where it was shown that
model (1.1) can have up to eight types of steady states: the washout steady state
denoted by SS1, six types of boundary steady states where one or two degrader popu-
lations are extinct denoted by SS2, SS3, SS4, SS5, SS7 and SS8, and a positive steady
state, denoted by SS6, where all microbial populations coexist. When they exist, all
steady states are unique, except the steady state SS4 where chlorophenol and phenol
degraders are maintained and the hydrogen degrader is eliminated. Here we focus
on the stability of steady states. We have managed to characterize the stability in
this six-dimensional system, although it is generally accepted that the Routh–Hurwitz
theorem is intractable beyond five dimensions. For this, we have used the Liénard-
Chipart stability criteria. For SS1, SS2, SS3 and SS7, the stability conditions are
determined explicitly. For SS5 and SS8, we explicitly characterize the stability con-
ditions using the Liénard-Chipart criteria. For SS4 and SS6, the stability is given with
respect to the signs of the Liénard-Chipart coefficients, defined in Tables 3 and 4. We
use numerical experimentation (see Appendix C) to plot the functions, whose signs
cannot be determined analytically. As shown in Appendix E, our presentation of the
existence and stability issue fully clarifies the numerical study made in [24] on the
three-tiered ‘food web’ model (4.1).

Our work extends all results on the stability of the existing literature [7, 15, 19, 22],
which were obtained only in the case without maintenance, where the six-dimensional
system (1.1) can be reduced to a three-dimensional one. We show that for SS4,
which can exist in two forms, at most one steady state can be stable, a fact that was
already noticed (when maintenance is not included in the model) in the particular
case without phenol and hydrogen input concentrations, studied in [19] and in the
general case, where these input concentrations are added, studied in [15].

We highlighted several possible asymptotic behaviors in this six-dimensional sys-
tem, including the stability of the positive steady state and a boundary steady state,
or the stability of a positive limit cycle and a boundary steady state, so that the long
term behavior depends on the initial condition. We proved that the positive steady
state of coexistence of all species can be unstable and we give numerical evidence for
the supercritical Hopf bifurcation, in the case including chlorophenol and hydrogen
input concentrations. The possibility of the Hopf bifurcation of the positive steady
state was previously observed in [19] in the case without phenol and hydrogen input
concentrations. It was analytically proved in [22], in the case without maintenance.

In order to gain more insight into the behavior of the system, we give a bifurca-
tion diagram with the chlorophenol input concentration as the bifurcating parameter
(see Figures 4.4 to 4.6) showing that one of the operating diagrams obtained numer-
ically in [24] has omitted important transition phenomena between steady states. If
the chlorophenol input concentration is too low, both the chlorophenol and phenol de-
graders are eliminated from the reactor and only the hydrogen degrader is maintained
(SS2 is the only stable steady state). Increasing the input chlorophenol concentration,
only the chlorophenol and hydrogen degraders are maintained (SS5 is the only stable
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steady state). Increasing further, only the chlorophenol degrader is maintained (SS3
is the only stable steady state). For higher chlorophenol input concentration, the
system exhibits a bistability behavior where either only the chlorophenol degrader is
maintained (SS3 is stable) or the coexistence of three microbial species may occur
around periodic oscillations (SS6 is unstable and a stable limit cycle exists). Finally,
for high chlorophenol input concentration, the system exhibits a bistability behavior
where either only the chlorophenol degrader is maintained or the coexistence of three
microbial species occurs at a positive steady state (SS3 and SS6 are both stable).

For making our theoretical results useful in practice, one should have a description
of the operating diagrams, giving the existence and stability of steady states regions
with respect to the operating parameters. In a future work, we will use our results to
determine analytically the operating diagrams by studying the effect of mortality on
the stability regions and the coexistence of species in a three-tiered microbial ’food
web’.

Appendix A. Auxiliary functions. For the description of the steady states
given in Table 1, together with the statement of their conditions of existence and
stability, we need to define some auxiliary functions that are listed in Table 10. Using
Hypotheses (H1) to (H7), the existence and definition domains of these functions are
all relatively straightforward and can be found as in [19].

Table 10
Notations, intervals and auxiliary functions.

Definition
si = Mi(y, s2)
i = 0, 1

Let s2 ≥ 0. si = Mi(y, s2) is the unique solution of
µi(si, s2) = y, for all 0 ≤ y < µi(+∞, s2)

s2 = M2(y)
s2 = M2(y) is the unique solution of
µ2(s2) = y, for all 0 ≤ y < µ2(+∞)

s2 = M3(s0, z)
Let s0 ≥ 0. s2 = M3(s0, z) is the unique solution of
µ0(s0, s2) = z, for all 0 ≤ z < µ0(s0,+∞)

si2 = si2(D)

i = 0, 1

si2 = si2(D) is the unique solution of µi (+∞, s2) = D + ai, for all
D + a0<µ0(+∞,+∞), µ1(+∞,+∞)<D + a1 < µ1(+∞, 0), resp.

I1, I2 I1 =
{
D ≥ 0 : s0

2 < s1
2

}
, I2 =

{
D ∈ I1 : s0

2 < M2(D + a2) < s1
2

}
Ψ(s2, D)

Ψ (s2, D) = (1− ω)M0(D + a0, s2) +M1(D + a1, s2) + s2,
for all D ∈ I1 and s0

2 < s2 < s1
2

φ1(D) φ1(D) = inf
s02<s2<s

1
2

Ψ(s2, D), for all D ∈ I1

φ2(D) φ2(D) = Ψ (M2(D + a2), D), for all D ∈ I2
φ3(D) φ3(D) = ∂Ψ

∂s2
(M2(D + a2), D), for all D ∈ I2

J0, J1 J0 =
(
max

(
0, sin

0 − sin
2 /ω

)
, sin

0

)
, J1 =

(
0, sin

1

)
ψ0(s0) ψ0(s0) = µ0

(
s0, s

in
2 − ω

(
sin

0 − s0

))
, for all s0 ≥ max

(
0, sin

0 − sin
2 /ω

)
ψ1(s1) ψ1(s1) = µ1

(
s1, s

in
2 + sin

1 − s1

)
, for all s1 ∈

[
0, sin

1 + sin
2

]
ϕi(D)
i = 0, 1

ϕi(D) = Mi (D + ai,M2(D + a2)), resp., for all,
D ∈

{
D ≥ 0 : s0

2 < M2(D + a2)
}

, D ∈
{
D ≥ 0 : M2(D + a2) < s1

2

}
Appendix B. Proofs.

B.1. Proof of Theorem 3.1. The local stability of the steady states is deter-
mined by the eigenvalues of the Jacobian matrix of system (1.1) evaluated at the
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steady state. The Jacobian matrix of (1.1) corresponds to the 6× 6 matrix:

J =


J−D−a0 0 0 Ex0 0 Fx0

0 K−D−a1 0 0 Gx1 −Hx1

0 0 L−D−a2 0 0 Ix2

−J 0 0 −D−Ex0 0 −Fx0

J −K 0 Ex0 −D−Gx1 Fx0+Hx1

−ωJ K −L −ωEx0 Gx1 −D−ωFx0−Hx1−Ix2

 ,

where the functions E, F , G, H, I, J , K and L are defined by (3.1) and (3.2), and are
evaluated at the steady state. The stability of the steady state is investigated by ana-
lyzing the real parts of the eigenvalues of J , which are the roots of the characteristic
polynomial.

For SS1, the characteristic polynomial is

P1(λ) = (λ− λ1)(λ− λ2)(λ− λ3)(λ+D)3,

where λ1 = µ0

(
sin

0 , s
in
2

)
−D−a0, λ2 = µ1

(
sin

1 , s
in
2

)
−D−a1 and λ3 = µ2

(
sin

2

)
−D−a2.

Therefore, SS1 is stable if and only if λ1 < 0, λ2 < 0 and λ3 < 0, that is, the stability
conditions of SS1 in Table 5 hold.

For SS2, the characteristic polynomial is

P2(λ) = (λ− λ1)(λ− λ2)(λ+D)2(λ2 + c1λ+ c2),

where λ1 = µ0

(
sin

0 ,M2(D + a2)
)
− D − a0, λ2 = µ1

(
sin

1 ,M2(D + a2)
)
− D − a1,

c1 = D + Ix2 and c2 = LIx2. Since c1 > 0 and c2 > 0, the real parts of the roots
of the quadratic factor are negative. Therefore, SS2 is stable if and only if λ1 < 0
and λ2 < 0. Since M0 and M1 are increasing, these conditions are equivalent to the
stability conditions of SS2 in Table 5.

For SS3, the characteristic polynomial is

P3(λ) = (λ− λ1)(λ− λ2)(λ+D)2(λ2 + c1λ+ c2),

where
λ1 = µ1

(
sin

0 − s0 + sin
1 , s

in
2 − ω

(
sin

0 − s0

))
−D−a1, λ2 = µ2

(
sin

2 −ω
(
sin

0 −s0

))
−D−a2,

c1 = D+ (E + ωF )x0 and c2 = J(E + ωF )x0, where s0 is the solution in the interval
J0 of equation ψ0 (s0) = D + a0. Since c1 > 0 and c2 > 0, the real parts of the roots
of the quadratic factor are negative. Therefore, SS3 is stable if and only if λ1 < 0 and
λ2 < 0. The condition λ1 < 0 is the first stability condition of SS3 in Table 5. Since
M2 is increasing, the condition λ2 < 0 is equivalent to

sin
2 − ω

(
sin

0 − s0

)
< M2(D + a2) ⇐⇒ s0 <

(
M2(D + a2)− sin

2

)
/ω + sin

0 .(B.1)

As the function ψ0 is increasing, (B.1) is equivalent to

ψ0(s0) < ψ0

((
M2(D + a2)− sin

2

)
/ω + sin

0

)
.(B.2)

From the definition of the function ψ0 together with the condition ψ0(s0) = D + a0

defining s0, we deduce that (B.2) is equivalent to

D + a0 < µ0

((
M2(D + a2)− sin

2

)
/ω + sin

0 ,M2(D + a2)
)
.

Since M0 is increasing, this condition is equivalent to the second stability condition
of SS3 in Table 5.
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For SS4, the characteristic polynomial is

P4(λ) = (λ− λ1)(λ+D)
(
λ4 + c1λ

3 + c2λ
2 + c3λ+ c4

)
,

where λ1 = µ2 (s2) −D − a2 with s2 is defined in Table 1 and the coefficients ci for
i = 1, . . . , 4 are defined in Table 3. From Lemma D.1, all of the roots of the fourth
order polynomial have negative real parts if and only if ci > 0, for i = 1, 3, 4 and
r1 = c1c2c3 − c21c4 − c23 > 0. From the expression of c1 given in Table 3, we always
have c1 > 0. Moreover, c3 > 0 and c4 > 0 if and only if

E(G+H)− (1− ω)FG > 0.(B.3)

Let s2 > 0. Under (H4) and (H5), we have

∂M0

∂s2
(y, s2) = −∂µ0

∂s2
(M0(y, s2), s2)

[
∂µ0

∂s0
(M0(y, s2), s2)

]−1

, for all y ∈ (0, µ0(+∞, s2)),

∂M1

∂s2
(y, s2) = −∂µ1

∂s2
(M1(y, s2), s2)

[
∂µ1

∂s1
(M1(y, s2), s2)

]−1

, for all y ∈ (0, µ1(+∞, s2)).

Using (3.1), we obtain

∂M0

∂s2
(D + a0, s2) = −FE and ∂M1

∂s2
(D + a1, s2) = H

G .

Moreover, we have for all s2 ∈
(
s0

2, s
1
2

)
and D ∈ I1,

∂Ψ
∂s2

(s2, D) = (1− ω)∂M0

∂s2
(D + a0, s2) + ∂M1

∂s2
(D + a1, s2) + 1.(B.4)

Using (B.4), it follows that

∂Ψ
∂s2

(s2, D) = −FE (1− ω) + H
G + 1 = E(G+H)−(1−ω)FG

EG .

Since E and G are positive, condition (B.3) is equivalent to ∂Ψ
∂s2

(s2, D) > 0.
From the definition of φ4 given in Table 3 and since µ2 is increasing, it follows

that, SS4 is stable if and only if

s2 < M2(D + a2), ∂Ψ
∂s2

(s2, D) > 0 and φ4

(
D, sin

0 , s
in
1 , s

in
2

)
> 0.(B.5)

which is equivalent to the stability condition in Table 5 because this first condition
of (B.5) is equivalent the first and the second one of SS4 in Table 5 (similarly to the
proof of Theorem 2 in [15]).

For SS5, the characteristic polynomial is

P5(λ) = (λ− λ1)(λ+D)
(
λ4 + c1λ

3 + c2λ
2 + c3λ+ c4

)
,

where λ1 = µ1

(
sin

0 + sin
1 −M0(D + a0,M2(D + a2)),M2(D + a2)

)
−D − a1 and the

coefficients ci are given by:

c1 = 2D + (E + ωF )x0 + Ix2,

c2 = D2 + (E + ωF )(D + J)x0 + I(D + L)x2 + EIx0x2,

c3 = D(E + ωF )Jx0 +DILx2 + EI(J + L)x0x2 and c4 = EIJLx0x2.

From Lemma D.1, the roots of the fourth order polynomial are of negative real parts
if and only if

ci > 0, for i = 1, 3, 4 and r1 = c1c2c3 − c21c4 − c23 > 0.(B.6)



ANAEROBIC DIGESTION MODEL 15

We always have ci > 0 for i = 1, 3, 4. We can write r1 as follows:

r1 =DJ
[
(D + J)(E + ωF )3 − E3J

]
x3

0 +D2I3Lx3
2 + E2I2(E + ωF )(J + L)x3

0x
2
2 +DEI3(J + 2L)x0x

3
2

+ E2I3(J + L)x2
0x

3
2 + EI

[
D(2J + L)(E + ωF )2 + ωFJ2(2E + ωF )

]
x3

0x2 + 3D3I2Lx2
2

+D2J
[
3D(E + ωF )2 + FωJ(2E + ωF )

]
x2

0 + EI2
[
D(J + L)(5E + 3ωF ) + Fω

(
J2 + L2

)]
x2

0x
2
2

+DI
[
Fω

(
DFω(2J + L) + FωJ(J + 2L) +DE(9J + 5L) + 2EJ2

)
+DE2(7J + 4L)

]
x2

0x2

+DI2 [DE(4J + 7L) + FωL(2J + L) +DFω(J + 2L)]x0x
2
2 + 2D4J(E + ωF )x0 + 2D4ILx2

+D2I [D(J + L)(5E + 3ωF ) + 2FωJL]x0x2 +
(
D2 +DEx0 +DIx2 + EIx0x2

)
(EJx0 − ILx2)2.

Thus, r1 > 0. Consequently, the conditions (B.6) are satisfied. Therefore, SS5 is
stable if and only if λ1 < 0. Since M1 is increasing, this condition is equivalent to the
stability condition of SS5 in Table 5.

For SS6, the characteristic polynomial is given by:

P6(λ) = λ6 + c1λ
5 + c2λ

4 + c3λ
3 + c4λ

2 + c5λ+ c6,

where ci, i = 1, . . . , 6 are defined in Table 4. From Lemma D.2, all of the roots of the
sixth order polynomial have negative real parts if and only if ci > 0, i = 1, 3, 5, 6 and
rj > 0, j = 4, 5, where ci and rj are listed in Table 4. Since c1 and c6 are positive,
the proof is complete.

For SS7, the characteristic polynomial is

P7(λ) = (λ− λ1)(λ− λ2)(λ+D)2(λ2 + c1λ+ c2),

where λ1 = µ0

(
sin

0 , s
in
1 − s1 + sin

2

)
−D − a0, λ2 = µ2

(
sin

1 − s1 + sin
2

)
−D − a2, c1 =

D + (G + H)x1 and c2 = K(G + H)x1 where s1 is the solution in the interval J1 of
equation ψ1 (s1) = D + a1. Since c1 > 0 and c2 > 0, the real parts of the roots of
the quadratic factor are negative. Therefore, SS7 is stable if and only if λ1 < 0 and
λ2 < 0. Since the functions M2 and M3 are increasing, the conditions λ1 < 0 and
λ2 < 0 are equivalent to

s1 > sin
1 + sin

2 −M3(sin
0 , D + a0) and s1 > sin

1 + sin
2 −M2(D + a2).(B.7)

Since the function ψ1 is increasing, (B.7) is equivalent to

ψ1(s1) > ψ1

(
sin

1 + sin
2 −M3(sin

0 , D + a0)
)
, ψ1(s1) > ψ1

(
sin

1 + sin
2 −M2(D + a2)

)
.

From the definition of the function ψ1 together with the condition ψ1(s1) = D + a1

which defines s1, the preceding conditions are equivalent to

µ1

(
sin

1 + sin
2 −M3(sin

0 , D + a0),M3(sin
0 , D + a0)

)
< D + a1,

µ1

(
sin

1 + sin
2 −M2(D + a2),M2(D + a2)

)
< D + a1.

Since M1 is increasing, these conditions are equivalent to the stability conditions of
SS7 in Table 5.

For SS8, the characteristic polynomial is

P8(λ) = (λ− λ1)(λ+D)
(
λ4 + c1λ

3 + c2λ
2 + c3λ+ c4

)
,

where λ1 = µ0

(
sin

0 ,M2(D + a2)
)
−D − a0 and the coefficients ci are given by:

c1 = 2D + (G+H)x1 + Ix2,

c2 = D2 + (G+H)(D +K)x1 + I(D + L)x2 +GIx1x2,

c3 = D(G+H)Kx1 +DILx2 +GI(K + L)x1x2 and c4 = GIKLx1x2.



16 S. NOUAOURA, N. ABDELLATIF, R. FEKIH-SALEM, AND T. SARI

From Lemma D.1, the roots of the fourth order polynomial are of negative real parts
if and only if

ci > 0, for i = 1, 3, 4 and r1 = c1c2c3 − c21c4 − c23 > 0.(B.8)

We always have ci > 0, for i = 1, 3, 4. We can write r1 as follows:

r1 =DK
[
(D +K)(G+H)3 −G3K

]
x3

1 +D2I3Lx3
2 +G2I2(G+H)(K + L)x3

1x
2
2 +G2I3(K + L)x2

1x
3
2

+GI
[
D(2K + L)(G+H)2 +HK2(2G+H)

]
x3

1x2 +DGI3(K + 2L)x1x
3
2 + 3D3I2Lx2

2

+D2K
[
3D(G+H)2 +HK(2G+H)

]
x2

1 +GI2
[
D(K + L)(5G+ 3H) +H

(
K2 + L2

)]
x2

1x
2
2

+DI
[
H
(
DH(2K + L) +HK(K + 2L) +DG(9K + 5L) + 2GK2

)
+DG2(7K + 4L)

]
x2

1x2

+DI2 [DG(4K + 7L) +HL(2K + L) +DH(K + 2L)]x1x
2
2 + 2D4K(G+H)x1 + 2D4ILx2

+D2I [D(K + L)(5G+ 3H) + 2HKL]x1x2 +
(
D2 +DGx1 +DIx2 +GIx1x2

)
(GKx1 − ILx2)2.

Thus, r1 > 0. Consequently, the conditions (B.8) are satisfied. Finally, SS8 is stable
if and only if λ1 < 0, that is to say µ0

(
sin

0 ,M2(D + a2)
)
< D + a0. Since M0 is

increasing, this condition is equivalent to the stability condition of SS8 in Table 5.

B.2. Proof of Proposition 3.3. If SS2 exists then, its condition of existence
µ2

(
sin

2

)
> D + a2 holds. Therefore, the condition µ2

(
sin

2

)
< D + a2 of stability of

SS1 is not satisfied.
If SS3 exists then, its condition of existence µ0

(
sin

0 , s
in
2

)
> D+a0 holds. Therefore,

the condition µ0

(
sin

0 , s
in
2

)
< D + a0 of stability of SS1 is not satisfied.

If SS7 exists then, its condition of existence µ1

(
sin

1 , s
in
2

)
> D+a1 holds. Therefore,

the condition µ1

(
sin

1 , s
in
2

)
< D + a1 of stability of SS1 is not satisfied.

If SS6 exists then, the conditions

(1− ω)sin
0 + sin

1 + sin
2 > φ2(D), sin

0 > ϕ0(D), sin
0 + sin

1 > ϕ0(D) + ϕ1(D)

hold. Therefore, the condition sin
0 < ϕ0(D) of stability of SS2 or SS8 is not satisfied,

the condition (1 − ω)sin
0 + sin

1 + sin
2 < φ2(D) of stability of SS4 is not satisfied, and

the condition sin
0 + sin

1 < ϕ0(D) + ϕ1(D) of stability of SS5 is not satisfied.
If SS5 exists then, its conditions of existence

sin
0 > ϕ0(D) and sin

2 − ωsin
0 > M2(D + a2)− ωϕ0(D)

hold. Therefore, the condition sin
0 < ϕ0(D) of stability of SS2 or SS8 is not satisfied

and the condition sin
2 −ωsin

0 < M2(D+a2)−ωϕ0(D) of stability of SS3 is not satisfied.
If SS8 exists then, its conditions of existence sin

1 + sin
2 > ϕ1(D) + M2(D + a2)

holds. Therefore, the condition sin
1 + sin

2 < ϕ1(D) +M2(D + a2) of stability of SS7 is
not satisfied.

Appendix C. Proof of Proposition 4.1. We assume that the biological
parameter values in model (4.1) are provided in Table 14. We assume that Sin

ph = 0,

Sin
H2

= 2.67×10−5 as in Fig. 3(a) from [24]. We assume that D = 0.01. As said in
Section 4, Theorem 3.1 applies to model (4.1). From Table 2, SS7 and SS8 do not
exist when sin

1 = 0. Using the change of variables (E.2), the necessary and sufficient
existence and stability conditions of steady states of (4.1), as stated in Tables 2 and 5,
are summarized in Table 11. Since the second stability condition of SS1 in Table 11
does not hold

µ2

(
Sin

H2

)
' 1.0845 > D + a2 = 0.03,(C.1)
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Table 11
Existence and local stability conditions of steady states of (4.1), when Sin

ph = 0. The functions

φ4 and µi are given in Table 3 and (E.3) while c3, c5, r4 and r5 are defined by Table 4. All other
functions are given in Table 10 and Table 15.

Existence conditions Stability conditions

SS1 Always exists µ0

(
Y Sin

ch, S
in
H2

)
< D + a0, µ2

(
Sin

H2

)
< D + a2

SS2 µ2

(
Sin

H2

)
> D + a2 Y Sin

ch < ϕ0(D)

SS3 µ0

(
Y Sin

ch, S
in
H2

)
> D + a0

µ1

(
Y Sin

ch − s0, S
in
H2

+ ω
(
Y Sin

ch − s0

))
<D+a1

Sin
H2
− ωY Sin

ch < M2(D + a2)− ωϕ0(D)

with s0 solution of ψ0(s0) = D + a0

SS4

(1− ω)Y Sin
ch + Sin

H2
≥ φ1(D),

Y Sin
ch > M0(D+a0, s2)+M1(D+a1, s2)

with s2 solution of

Ψ(s2, D) = (1− ω)Y Sin
ch + Sin

H2

(1− ω)Y Sin
ch + Sin

H2
< φ2(D), φ3(D) > 0

∂Ψ
∂s2

(s2, D) > 0, φ4(D,Sin
ch, S

in
H2

) > 0

SS5
Y Sin

ch > ϕ0(D),

Sin
H2
− ωY Sin

ch>M2(D + a2)− ωϕ0(D)
Y Sin

ch < ϕ0(D) + ϕ1(D)

SS6
(1− ω)Y Sin

ch + Sin
H2

> φ2(D),

Y Sin
ch > ϕ0(D) + ϕ1(D)

c3 > 0, c5 > 0, r4 > 0, r5 > 0

SS1 always exists and is unstable. Since the existence condition of SS2 in Table 11
holds (see inequality (C.1)), SS2 exists and is stable if and only if

Sin
ch < ϕ0(D)/Y =: σ3.

SS3 exists if and only if

Sin
ch > M0

(
D + a0, S

in
H2

)
/Y =: σ1.

Let F
(
Sin

ch

)
be the function defined by

F
(
Sin

ch

)
= µ1

(
Sin

chY − s0, S
in
H2

+ ω
(
Sin

chY − s0

))
.(C.2)

The first stability condition of SS3 in Table 11 holds for all Sin
ch > σ1, that is, F

(
Sin

ch

)
<

D + a1 since the maximum of F is smaller than 0.0013 while D + a1 = 0.03 (see
Figure C.1). From the second stability condition in Table 11, SS3 is stable if and only
if

Sin
ch >

(
Sin

H2
−M2(D + a2) + ωϕ0(D)

)
/(ωY ) =: σ4.

y

y = F (Sin
ch)

Sin
ch

σ1

y

y = F (Sin
ch)

Sin
ch

σ1

Fig. C.1. Curve of the function y = F
(
Sin

ch

)
defined by (C.2).

From Theorem 2.1, the system can have at most two steady states of the form
SS4 denoted by SS41 and SS42 as ω ' 0.53 < 1. Their first existence condition in
Table 11 holds if and only if

Sin
ch ≥

(
φ1(D)− Sin

H2

)
/((1− ω)Y ) =: σ2.
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Their second existence condition holds, for all Sin
ch ∈ [σ2, 0.11], since the straight line

of equation y = Sin
chY is above the curves of the functions y = M0

(
D + a0, s

∗i
2

)
+

M1

(
D + a1, s

∗i
2

)
, for i = 1, 2, respectively (see Figure C.2). Thus, SS41 and SS42

exist and are unstable for all Sin
ch ≥ σ2 since the second stability condition does not

hold where φ3(D) ' −1996.917 < 0.

y

y = M0

(
D + a0, s

∗1
2

)
+M1

(
D + a1, s

∗1
2

)

y = M0

(
D + a0, s

∗2
2

)
+M1

(
D + a1, s

∗2
2

)

y
=
Y
S
in
ch

Sin
ch

σ2

Fig. C.2. The green line of equation y = Y Sin
ch is above the red and blue curves of the functions

M0

(
D + a0, s∗i2

)
+M1

(
D + a1, s∗i2

)
, for i = 1, 2, which correspond to SS41 and SS42, respectively.

SS5 exists if and only if

σ3 := ϕ0(D)/Y < Sin
ch <

(
Sin

H2
−M2(D + a2) + ωϕ0(D)

)
/(ωY ) =: σ4.

When it exists, SS5 is stable since

Sin
ch < σ4 ' 0.013985 < (ϕ0(D) + ϕ1(D))/Y ' 0.02304.

SS6 exists if and only if

Sin
ch >

φ2(D)−Sin
H2

(1−ω)Y =: σ5 ' 0.033292, Sin
ch >

ϕ0(D)+ϕ1(D)
Y ' 0.02304.

Hence, SS6 exists if and only if Sin
ch > σ5. To determine the stability of SS6, the

functions c3, c5, r4 and r5 are plotted with respect to Sin
ch > σ5. Figure C.3 shows

that c3(Sin
ch), c5(Sin

ch), r4(Sin
ch) and r5(Sin

ch) are all positive if and only if Sin
ch > σ6

where σ6 ' 0.1025 is the largest root of equation r5

(
Sin

ch

)
= 0. To show that the

positive steady state SS6 is destabilized due to Hopf bifurcation for Sin
ch = σ6, we

determine numerically the eigenvalues of the Jacobian matrix of system (4.1) at SS6
and we plot them with respect to Sin

ch. Figure C.4(a-b) shows that two eigenvalues
denoted by λ1

(
Sin

ch

)
and λ2

(
Sin

ch

)
are real and remain negative for all Sin

ch ∈ (σ5, 0.11].

Figure C.4(c) shows that the two other eigenvalues λ3

(
Sin

ch

)
and λ4

(
Sin

ch

)
are real,

negative and distinct for all Sin
ch ∈ (σ5, σ

?) where σ? ' 0.03467. Then, they become a
complex-conjugate pair denoted by

λ3,4

(
Sin

ch

)
= α3,4

(
Sin

ch

)
± iβ3,4

(
Sin

ch

)
, for all Sin

ch ∈ (σ?, 0.11)

where the real part α3,4 remains negative. Figure C.4(d) shows that the two last
eigenvalues λ5

(
Sin

ch

)
and λ6

(
Sin

ch

)
are real, negative and distinct for all Sin

ch ∈ (σ5, σ
?).

Then, they become a complex-conjugate pair denoted by

λ5,6

(
Sin

ch

)
= α5,6

(
Sin

ch

)
± iβ5,6

(
Sin

ch

)
, for all Sin

ch ∈ (σ?, 0.11).

At the particular value Sin
ch = σ6, the pair λ5,6

(
Sin

ch

)
is purely imaginary such that

α5,6(σ6) = 0, with β5,6(σ6) 6= 0. Moreover, one has

dα5,6

dSin
ch

(σ6) < 0.
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(a)

Sin
ch

c3

σ5 σ6

(b)

Sin
ch

c5

σ5 σ6

(c)

Sin
ch

c5

σ5

(d)

Sin
ch

r4 r5

σ5 σ6

(e) Sin
ch

σ5

r4

(f)

Sin
ch

σ5

r5

Fig. C.3. Curves of the functions c3(Sin
ch), c5(Sin

ch), r4(Sin
ch) and r5(Sin

ch) for Sin
ch > σ5. (a)

Curve of c3. (b) Curve of c5. (c) Magnification of the curve of c5. (d) Curves of r4 and r5. (e)
Magnification of the curve of r4. (f) Magnification of the curve of r5.

(a)
σ5

Sin
ch

λ1

(b)σ5
Sin
ch

λ2

(c)
Sin
ch

σ5

σ?6

λ3

λ4 α3,4

(d)

Sin
ch

σ5��� σ6σ?6

λ5

λ6

α5,6

Fig. C.4. The real part of the eigenvalues of the Jacobian matrix at SS6 as a function of Sin
ch,

when D = 0.01, Sin
ph = 0 and Sin

H2
= 2.67×10−5. The real parts α3,4 and α5,6 for Sin

ch ∈ (σ?, 0.11].

Therefore, SS6 changes its stability through a supercritical Hopf bifurcation with the
emergence of a stable limit cycle that we illustrate in Figures 4.5 and F.1.

Remark C.1. Note that Figures C.1 and C.2 showing the stability of SS3 and
the existence of two steady states of type SS4 are similar to Figures 6 and 7 in [15],
respectively. But, on the contrary, Figure C.3 which concerns the stability of SS6
is completely different from Figure 8 in [15], since the conditions of stability of SS6
require to consider the signs of the Liénard-Chipart coefficients c3, c5, r3 and r5.

Appendix D. Liénard-Chipart stability criteria.

Lemma D.1. Consider the fourth-order polynomial P̃4(λ) with real coefficients
given by:

P̃4(λ) = c0λ
4 + c1λ

3 + c2λ
2 + c3λ+ c4.
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All of the roots of the polynomial P̃4(λ) have negative real part if and only if

ci > 0, for i = 1, 3, 4, and r1 = c3r0 − c21c4 > 0,(D.1)

where r0 = c1c2 − c0c3.

Proof. From the Liénard-Chipart stability criteria (see Gantmacher [9], Theorem

11), all of the roots of the polynomial P̃4 have negative real part if and only if

ci > 0, i = 1, 3, 4, det(∆2) > 0 and det(∆4) > 0,(D.2)

where ∆2 and ∆4 are the Hurwitz matrices defined by:

∆2 =

[
c1 c3
c0 c2

]
and ∆4 =


c1 c3 0 0
c0 c2 c4 0
0 c1 c3 0
0 c0 c2 c4

 .
Conditions (D.2) are equivalent to

ci > 0, i = 1, 3, 4, r0 = c1c2 − c0c3 > 0 and r1 = c3r0 − c21c4 > 0.(D.3)

When all conditions (D.3) hold, the condition r1 > 0 implies that r0 > 0. Thus,
conditions (D.3) are equivalent to (D.1).

Lemma D.2. Consider the six-order polynomial P̃6(λ) with real coefficients given
by:

P̃6(λ) = c0λ
6 + c1λ

5 + c2λ
4 + c3λ

3 + c4λ
2 + c5λ+ c6.

All of the roots of the polynomial P̃6(λ) have negative real part if and only if

ci > 0, i = 1, 3, 5, 6, r4 > 0 and r5 > 0,(D.4)

where r4 = r1r2 − r0r3 and r5 = r3r4 − c1c6r2
2, with

r0 = c1c2 − c0c3, r1 = c1c4 − c0c5, r2 = c3r0 − c1r1 and r3 = c5r0 − c21c6.

Proof. From the Liénard-Chipart stability criteria (see Gantmacher [9], Theorem

11), all of the roots of the polynomial P̃6 have negative real part if and only if

ci > 0, i = 1, 3, 5, 6, det(∆2) > 0, det(∆4) > 0 and det(∆6) > 0,(D.5)

where ∆2, ∆4 and ∆6 are the Hurwitz matrices defined by:

∆2 =

[
c1 c3
c0 c2

]
, ∆4 =


c1 c3 c5 0
c0 c2 c4 c6
0 c1 c3 c5
0 c0 c2 c4

 , ∆6 =


c1 c3 c5 0 0 0
c0 c2 c4 c6 0 0
0 c1 c3 c5 0 0
0 c0 c2 c4 c6 0
0 0 c1 c3 c5 0
0 0 c0 c2 c4 c6

 .

Conditions (D.5) are equivalent to

ci > 0, i = 1, 3, 5, 6, r0 > 0, r4 = r1r2 − r0r3 > 0, r5 = r3r4 − c1c6r2
2 > 0.(D.6)

When all conditions (D.6) hold, the condition r5 > 0 implies that r3 > 0, that is,
c5r0 > c6c

2
1 which implies that r0 > 0. Hence, conditions (D.6) are equivalent to

(D.4).
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Appendix E. A chlorophenol-mineralising three-tiered microbial ’food
web’. Following [19], model (4.1) can be written in the form of model (1.1), using
the following change of variables:

x0 = Y
Y0
Xch, x1 = Y4

Y1
Xph, x2 = 1

Y2
XH2

, s0 = Y Sch, s1 = Y4Sph, s2 = SH2
,(E.1)

where Y = Y3Y4. The input concentrations are given by:

sin
0 = Y Sin

ch, sin
1 = Y4S

in
ph, sin

2 = Sin
H2
,(E.2)

the death rates are a0 = kdec,ch, a1 = kdec,ph, a2 = kdec,H2
, and the yield coefficients

are

Y0 = Ych, Y1 = Yph, Y2 = YH2 , Y3 = 224/208(1− Y0), Y4 = 32/224(1− Y1)

with ω = 16
208Y = 1

2(1−Ych)(1−Yph) . The specific growth functions (4.2) become the

following functions satisfying Hypotheses (H1) to (H8):

µ0(s0, s2) = m0s0
K0+s0

s2
L0+s2

, µ1(s1, s2) = m1s1
K1+s1

1
1+s2/KI

, µ2(s2) = m2s2
K2+s2

,(E.3)

where

m0 = Y0km,ch, K0 = Y KS,ch, L0 = KS,H2,c, m1 = Y1km,ph,

K1 = Y4KS,ph, KI = KI,H2 , m2 = Y2km,H2 , K2 = KS,H2 .

For these specific kinetics (E.3), the various functions defined in Table 10 are listed
in Table 15. Using the linear change of variable given by (E.1) and (E.2), the yield
coefficients in (4.1) are normalized to one except one of them, which is equal to
ω ' 0.53, when the yield coefficients are those given in Table 14. Therefore, (4.1) is
of the form (1.1), with ω < 1 and the results of our paper apply to (4.1).

The aim of this section is to give rigorous proofs for the results of [24] on existence
and stability of the steady states of model (4.1). Notice that the results in [24] were
given with respect to the dimensionless form (F.2) of (4.1) by using the variables (F.1)
and the growth functions (F.3). The variables (F.1) are related to our variables (E.1)
by the formulas

x0 = X0K0, x1 = X1K1, x2 = X2K2, s0 = S0K0, s1 = S1K1, s2 = S2K2, t = τ/m0.

Hence, results given in variables (F.1) can be easily translated into results given in
variables (E.1) and vice versa.

From Tables 2 and 5, the existence and stability of steady states of model (4.1)
can be determine for the specific growth functions (E.3). Using the functions and
notations given in Table 15, we have the following results:

SS1 =
(
0, 0, 0, sin

0 , s
in
1 , s

in
2

)
always exists. It is stable if and only if

µ0

(
sin

0 , s
in
2

)
< D + a0, µ1

(
sin

1 , s
in
2

)
< D + a1 and µ2

(
sin

2

)
< D + a2.

These conditions are equivalent to the conditions of [24], section C1, given in terms
of variables (F.1) and growth functions (F.3).

SS2 = (0, 0, x2, s0, s1, s2) is given by:

s0 = sin
0 , s1 = sin

1 , s2 = K2(D+a2)
m2−D−a2 , x2 = D

D+a2

(
sin

2 − s2

)
.(E.4)



22 S. NOUAOURA, N. ABDELLATIF, R. FEKIH-SALEM, AND T. SARI

It exists if and only if sin
2 > s2, where s2 is given by (E.4). It is stable if and only if

µ0

(
sin

0 , s2

)
< D + a0 and µ1

(
sin

1 , s2

)
< D + a1.

Formulas (E.4) together with the conditions of existence and stability of SS2 were
established in [24], section C2, using variables (F.1) and growth functions (F.3).

SS3 = (x0, 0, 0, s0, s1, s2) is given by:

x0 = D
D+a0

(
sin

0 − s0

)
, s1 = sin

1 + sin
0 − s0, s2 = sin

2 − ω
(
sin

0 − s0

)
,(E.5)

where s0 is a solution of equation

m0s0(sin2 −ω(sin0 −s0))
(K0+s0)(L0+sin2 −ω(sin0 −s0))

= D + a0.(E.6)

Notice that (E.6) is a quadratic equation. Only its solution in the interval

J0 =
[
max

(
0, sin

0 − sin
2 /ω

)
, sin

0

)
is to be considered. SS3 exists if and only if the following condition holds

µ0

(
sin

0 , s
in
2

)
> D + a0.(E.7)

It is stable if and only if

µ1

(
sin

0 − s0 + sin
1 , s

in
2 − ω

(
sin

0 − s0

))
< D + a1,

sin
2 − ωsin

0 < M2(D + a2)− ωM0 (D + a0,M2(D + a2)) ,
(E.8)

where s0 is the solution in the interval J0 of equation (E.6). Formulas (E.5) together
with equation (E.6) giving s0 and the stability condition (E.8) were established in
[24], section C3, using variables (F.1) and growth functions (F.3). However, neither
condition (E.7) of existence of SS3 nor the signs of other eigenvalues of the Jacobian
matrix were explicitly established in [24], section C3, where the existence and stabil-
ity of SS3 were checked only numerically by considering the roots of polynomials of
degrees 2 and 3, respectively, see formulas (C.3) and (C.7) in [24].

SS4 = (x0, x1, 0, s0, s1, s2) is given by:

s0 = (D+a0)K0(L0+s2)
m0s2−(D+a0)(L0+s2) , s1 = (D+a1)K1(KI+s2)

m1KI−(D+a1)(KI+s2) ,

x0 = D
D+a0

(
sin

0 − s0

)
, x1 = D

D+a1

(
sin

0 − s0 + sin
1 − s1

)
,

(E.9)

where s2 is a solution of equation

(1− ω) (D+a0)K0(L0+s2)
m0s2−(D+a0)(L0+s2) + (D+a1)K1(KI+s2)

m1KI−(D+a1)(KI+s2) + s2

= (1− ω)sin
0 + sin

1 + sin
2 .

(E.10)

Notice that (E.10) reduces to a cubic equation in s2. Only its solutions in the interval
(s0

2, s
1
2) are to be considered. The steady states SS41 and SS42 exist if and only if the

following conditions hold

sin
0 > s0, sin

0 + sin
1 > s0 + s1 and (1− ω)sin

0 + sin
1 + sin

2 ≥ φ1 (D) ,(E.11)
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where s0 and s1 are defined by (E.9). SS41 is unstable whenever it exists and SS42 is
stable if and only if

(1− ω)sin
0 + sin

1 + sin
2 < φ2(D), φ3(D) > 0 and φ4(D, sin

0 , s
in
1 , s

in
2 ) > 0.(E.12)

Here φ2 and φ3 are defined in Table 10, and φ4 is defined in Table 3. Formulas
(E.9) together with equation (E.10) giving s2 were established in [24], section C4,
using variables (F.1) and growth functions (F.3). However, neither condition (E.11) of
existence of SS4 nor its condition of stability (E.12) have been established explicitly in
[24], section C4, where the existence and stability of SS4 were checked only numerically
by considering the roots of a polynomial of degree 5, see formula (C.20) in [24].

SS5 = (x0, 0, x2, s0, s1, s2) is given by:

s2 = (D+a2)K2

m2−D−a2 , s0 = (D+a0)K0(L0+s2)
m0s2−(D+a0)(L0+s2) , s1 = sin

0 − s0 + sin
1 ,

x0 = D
D+a0

(
sin

0 − s0

)
, x2 = D

D+a2

(
sin

2 − s2 − ω
(
sin

0 − s0

))
.

(E.13)

It exists if and only if the following conditions hold

sin
0 > s0, sin

2 − ωsin
0 > s2 − ωs0.(E.14)

where s0 and s2 are given by (E.13). SS5 is stable if and only if

sin
0 + sin

1 < M0 (D + a0,M2(D + a2)) +M1 (D + a1,M2(D + a2)) .(E.15)

Formulas (E.13) together with conditions (E.14) of existence and (E.15) of stability
of SS5 were established in [24], section C5, using variables (F.1) and growth functions
(F.3). However, the signs of other eigenvalues of the Jacobian matrix have been
checked only numerically by considering the roots of a polynomial of degree 4, see
formula (C.31) in [24].

SS6 = (x0, x1, x2, s0, s1, s2) is given by:

s2 = (D+a2)K2

m2−D−a2 , s0 = (D+a0)K0(L0+s2)
m0s2−(D+a0)(L0+s2) , s1 = (D+a1)K1(KI+s2)

m1KI−(D+a1)(KI+s2) ,

x0 = D
D+a0

(
sin

0 − s0

)
, x1 = D

D+a1

(
sin

0 − s0 + sin
1 − s1

)
,

x2 = D
D+a2

(
(1− ω)

(
sin

0 − s0

)
+ sin

1 − s1 + sin
2 − s2

)
.

(E.16)

It exists if and only if the following conditions hold

sin
0 > s0, sin

0 + sin
1 > s0 + s1, (1− ω)sin

0 + sin
1 + sin

2 > φ2(D),(E.17)

where s0 and s1 are given by (E.16). SS6 is stable if and only if

ci > 0, i = 3, 5, and rj > 0, j = 4, 5,(E.18)

where ci and rj are defined in Table 4. Formulas (E.16) together with conditions
(E.17) of existence of SS6 were established in [24], section C6, using variables (F.1)
and growth functions (F.3). However, the Liénard-Chipart stability conditions (E.18)
were not considered in [24], where the stability of SS6 was checked only numerically
by considering the roots of a polynomial of degree 6, see formula (C.42) in [24].

SS7 = (0, x1, 0, s0, s1, s2) is given by:

s0 = sin
0 , x1 = D

D+a1

(
sin

1 − s1

)
, s2 = sin

1 − s1 + sin
2 ,(E.19)
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where s1 is a unique solution of equation

m1s1KI

(K1+s1)(KI+sin1 +sin2 −s1)
= D + a1.(E.20)

Notice that (E.20) is a quadratic equation. Only its solution in the interval

J1 =
[
0, sin

1

)
is to be considered. SS7 exists if and only if the following condition holds

µ1

(
sin

1 , s
in
2

)
> D + a1.(E.21)

SS7 is stable if and only if

sin
1 + sin

2 < M1

(
D + a1,M3

(
sin

0 , D + a0

))
+M3

(
sin

0 , D + a0

)
,

sin
1 + sin

2 < M1(D + a1,M2(D + a2)) +M2(D + a2).
(E.22)

Formulas (E.19) together with equation (E.20) giving s1 and stability condition (E.22)
were established in [24], section C7, using variables (F.1) and growth functions (F.3).
However, condition (E.21) of existence of SS7 has not been established explicitly in
[24], section C7, where the existence of SS7 and the signs of other eigenvalues of
the Jacobian matrix were checked only numerically by considering the roots of a
polynomial of degree 3, see formula (C.53) in [24].

SS8 = (0, x1, x2, s0, s1, s2) is given by:

s0 = sin
0 , s2 = (D+a2)K2

m2−D−a2 , s1 = (D+a1)K1(KI+s2)
m1KI−(D+a1)(KI+s2) ,

x1 = D
D+a1

(
sin

1 − s1

)
, x2 = D

D+a2

(
sin

1 − s1 + sin
2 − s2

)
.

(E.23)

It exists if and only if the following conditions hold

sin
1 > s1, sin

1 + sin
2 > s1 + s2,(E.24)

where s1 and s2 are given by (E.23). SS8 is stable if and only if

sin
0 < M0 (D + a0,M2(D + a2)) .(E.25)

Formulas (E.23) together with conditions (E.24) of existence and (E.25) of stability
of SS8 were established in [24], section C8, using variables (F.1) and growth functions
(F.3). However, the signs of other eigenvalues of the Jacobian matrix have been
checked only numerically by considering the roots of a polynomial of degree 4, see
formula (C.62) in [24].

Appendix F. Numerical simulations. The plots of Figures C.1 to C.4 were
performed with Maple [10], which is used in particular for the computations of coeffi-
cients c3, c5, r4 and r5, evaluated at SS6, and the computations of the eigenvalues of
the Jacobian matrix evaluated at SS6. The plots of Figures 4.1 to 4.3 were performed
with Scilab [21] by using the formulas of the steady state components given in Table 1.
The various functions appearing in these formulas are given in Table 15. The plots
of Figures 4.4 to 4.6 and F.1 to F.4 were performed with Scilab [21]. The numerical
simulations presented in Figures 4.4 to 4.6, C.4, and F.1 to F.4 were performed on
the dimensionless form of (4.1) used in [24]. Indeed, in the original form (4.1), nu-
merical instabilities arise in numerical schemes. To reduce the number of parameters
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Fig. F.1. Trajectories of Sch, Sph, SH2
, Xch, Xph and XH2

for Sch,in = 0.0995 (in kgCOD/m3):
Convergence to the stable limit cycle.
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Convergence to the stable steady state SS3. (b) A magnification of (a) showing that the solution of
(4.1) converges to the nonzero Xch-component of SS3.

describing the dynamics and facilitate numerical simulations, the following rescaling
of the variables was used in [24]:

X0 = Xch

KS,chYch
, X1 =

Xph

KS,phYph
, X2 =

XH2

KS,H2YH2
,

S0 = Sch

KS,ch
, S1 =

Sph

KS,ph
, S2 =

SH2

KS,H2
, τ = km,chYcht.

(F.1)

Then, with these changes of variables the system given in (4.1) reduced to system

dX0

dτ = (ν0(S0, S2)− α− k0)X0

dX1

dτ = (ν1(S1, S2)− α− k1)X1

dX2

dτ = (ν2(S2)− α− k2)X2

dS0

dτ = α(u0 − S0)− ν0(S0, S2)X0

dS1

dτ = α(u1 − S1) + ω0ν0(S0, S2)X0 − ν1(S1, S2)X1

dS2

dτ = α(u2 − S2)− ω2ν0(S0, S2)X0 + ω1ν1(S1, S2)X1 − ν2(S2)X2.

(F.2)
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for Sch,in = 0.11 (in kgCOD/m3):
Convergence to the positive steady state SS6.
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Convergence to the stable steady state SS3. (b) A magnification of (a) showing that the solution of
(4.1) converges to the nonzero Xch-component of SS3.

The operating parameters are

α = D
km,chYch

, u0 =
Sin
ch

KS,ch
, u1 =

Sin
ph

KS,ph
, u2 =

Sin
H2

KS,H2
.

The yield coefficients are

ω0 =
KS,ch

KS,ph

224
208 (1− Ych), ω1 =

KS,ph

KS,H2

32
224 (1− Yph), ω2 = 16

208
KS,ch

KS,H2
.

The death rates are

k0 =
kdec,ch

km,chYch
, k1 =

kdec,ph
km,chYch

, k2 =
kdec,H2

km,chYch
.

The growth functions are

ν0(S0, S2) = S0

1+S0

S2

KP +S2
, ν1(S1, S2) = φ1S1

1+S1

1
1+KIS2

, ν2(S2) = φ2S2

1+S2
,(F.3)

where the biological parameters are given by

φ1 =
km,phYph

km,chYch
, φ2 =

km,H2
YH2

km,chYch
, KP =

KS,H2,C

KS,H2
, KI =

KS,H2

KI,H2
.
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The trajectories in Figures 4.4 to 4.6 and F.1 to F.4 were presented according to the
variables of model (4.1) using the change of variables (F.1). In Figures 4.4 to 4.6, the
projections of the orbits of the six-dimensional phase space into the three-dimensional
space (Xch, Xph, XH2) shows the appearance and disappearance of a stable limit cycle
for different values of Sin

ch > σ5. The plot of the limit cycle was obtained by solving the
ordinary differential equations using the default solver “lsoda” from the ODEPACK
package in Scilab. Tables 12 and 13 present the components of the stable steady states
SS3 and SS6, and all the initial conditions chosen to trace the different trajectories of
model (4.1) in Figures 4.4 to 4.6 and F.1 to F.4.

Table 12
Steady states SS3 and SS6 of model (4.1) corresponding to Figures 4.4 to 4.6 and F.1 to F.4.

The biological parameters are provided in Table 14. The operating parameters are D = 0.01, Sin
ph = 0,

Sin
H2

= 2.67×10−5 and Sin
ch given in the second column.

Figure Sin
ch

SS3 = (Xch, 0, 0, Sch, Sph, SH2)

SS6 = (Xch, Xph, XH2 , Sch, Sph, SH2)

4.4 0.098

(
2.19 10−6, 0, 0, 9.77 10−2, 3.65 10−4, 9.17 10−8

)(
5.34 10−4, 1.06 10−3, 8.80 10−5, 1.36 10−2, 9.93 10−3, 3.62 10−7

)
4.5

F.1

F.2

0.0995

(
2.19 10−6, 0, 0, 9.92 10−2, 3.65 10−4, 9.12 10−8

)(
5.44 10−4, 1.08 10−3, 9.00 10−5, 1.36 10−2, 9.93 10−3, 3.62 10−7

)
4.6

F.3

F.4

0.11

(
2.19 10−6, 0, 0, 1.10 10−1, 3.65 10−4, 8.79 10−8

)(
6.10 10−4, 1.22 10−3, 1.04 10−4, 1.36 10−2, 9.93 10−3, 3.62 10−7

)

Table 13
The initial conditions of solutions of model (4.1) in Figures 4.4 to 4.6 and F.1 to F.4 are

obtained from the initial conditions of the solutions of model (F.2) by using the change of variables
(F.1). The initial conditions of (F.2) are given by Xi(0) = X∗i + ε and Si(0) = S∗i + ε, i = 0, 1, 2
where X∗i and S∗i are the components of SS6 and ε is given in the second column. When there is
more than one trajectory in the figure, its color is indicated in the first column.

Figure

Color
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6.81 10−4, 2.07 10−3, 1.04 10−4, 1.74 10−2, 3.11 10−2, 2.11 10−6

)
F.1

F.2

F.3

F.4

2 10−3

3.5 10−2

6 10−2

7 10−2

(
5.46 10−4, 1.10 10−3, 9.00 10−5, 1.37 10−2, 1.05 10−2, 4.12 10−7

)(
5.79 10−4, 1.50 10−3, 9.00 10−5, 1.55 10−2, 2.05 10−2, 1.24 10−6

)(
6.71 10−4, 1.95 10−3, 1.04 10−4, 1.68 10−2, 2.80 10−2, 1.86 10−6

)(
6.81 10−4, 2.07 10−3, 1.04 10−4, 1.74 10−2, 3.11 10−2, 2.11 10−6

)
Appendix G. Tables. In this section, the biological parameter values are

provided in Table 14. In Table 15, we present the auxiliary functions in the case of
the growth functions given by (E.3).
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Table 14
Nominal parameter values, where i = ch, ph,H2. Units are expressed in Chemical Oxygen

Demand (COD).

Parameters Nominal values Units

km,ch 29 kgCODS/kgCODX/d

KS,ch 0.053 kgCOD/m3

Ych 0.019 kgCODX/kgCODS

km,ph 26 kgCODS/kgCODX/d

KS,ph 0.302 kgCOD/m3

Yph 0.04 kgCODX/kgCODS

km,H2 35 kgCODS/kgCODX/d

KS,H2 2.5×10−5 kgCOD/m3

KS,H2,c 1.0×10−6 kgCOD/m3

YH2 0.06 kgCODX/kgCODS

kdec,i 0.02 d−1

KI,H2 3.5×10−6 kgCOD/m3

Table 15
Auxiliary functions in the case of growth functions given by (E.3).

Auxiliary function Definition domain

M0(y, s2) = yK0(L0+s2)
m0s2−y(L0+s2)

0 ≤ y < m0s2
L0+s2

M1(y, s2) = yK1(KI+s2)
m1KI−y(KI+s2)

0 ≤ y < m1KI
KI+s2

M2(y) = yK2
m2−y

0 ≤ y < m2

M3(s0, z) = zL0(K0+s0)
m0s0−z(K0+s0)

0 ≤ z < m0s0
K0+s0

s0
2(D) = L0(D+a0)

m0−D−a0
D + a0 < m0

s1
2(D) = KI (m1−D−a1)

D+a1
D + a1 < m1

Ψ(s2, D)= (1− ω) (D+a0)K0(L0+s2)
m0s2−(D+a0)(L0+s2)

+ (D+a1)K1(KI+s2)
m1KI−(D+a1)(KI+s2)

+ s2

{
D ∈ I1 : s0

2 < s2 < s1
2

}
ψ0(s0) =

m0s0(sin2 −ω(sin0 −s0))
(K0+s0)(L0+sin2 −ω(sin0 −s0))

s0 ∈
[
max

(
0, sin

0 −sin
2 /ω

)
,+∞

)
ψ1(s1) = m1s1KI

(K1+s1)(KI+sin2 +sin1 −s1)
s1 ∈

[
0, sin

1 + sin
2

]
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